JP2010129452A - Organic light-emitting element, and display device using it - Google Patents

Organic light-emitting element, and display device using it Download PDF

Info

Publication number
JP2010129452A
JP2010129452A JP2008304607A JP2008304607A JP2010129452A JP 2010129452 A JP2010129452 A JP 2010129452A JP 2008304607 A JP2008304607 A JP 2008304607A JP 2008304607 A JP2008304607 A JP 2008304607A JP 2010129452 A JP2010129452 A JP 2010129452A
Authority
JP
Japan
Prior art keywords
layer
light
light emitting
organic
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008304607A
Other languages
Japanese (ja)
Inventor
Koichi Fukuda
浩一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008304607A priority Critical patent/JP2010129452A/en
Publication of JP2010129452A publication Critical patent/JP2010129452A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic light-emitting element which has high luminous efficiency and is small in view angle dependency of light-emitting characteristics of the element. <P>SOLUTION: In the organic light-emitting element in which light going toward a light extraction electrode 103 from a light-emitting layer 105, and light which is emitted from the light-emitting layer 105 and reflected by a reflecting face on a reflecting electrode 102 side from the light-emitting layer 105 are interfered with each other. In the reflecting electrode 102 or on the opposite side of the light-emitting layer 105 side of the light extraction electrode 103, this has a resonance part (for example, dielectric layer 102B) to resonate light emitted from the light-emitting layer 105, and a film thickness d<SB>1</SB>of the resonance part satisfies a formula: m<SB>1</SB>+1/2<(2n<SB>1</SB>d<SB>1</SB>/λ)+ϕ/2π<m<SB>1</SB>+3/4 against the refractive index n<SB>1</SB>of the resonance part, the maximum peak wavelength λ of a spectrum of light extracted outside of the organic light-emitting element, a phase shift ϕ caused when light emitted from the light-emitting layer 105 is reflected on both ends of the resonance part, and an integer m<SB>1</SB>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は有機発光素子およびそれを用いた表示装置に関するものである。   The present invention relates to an organic light emitting element and a display device using the same.

有機発光素子(以下、素子と呼称する場合がある)は、薄膜、自発光を特徴としており、新方式のフラットパネルディスプレイとして応用されている。   Organic light-emitting elements (hereinafter sometimes referred to as elements) are characterized by thin films and self-light emission, and are applied as new-type flat panel displays.

有機発光素子は、陰極と陽極から成る一対の電極と、この一対の電極の間に形成される有機化合物層とから構成されている。有機発光素子の発光は、陰極から電子、陽極からホールを有機化合物層に注入し、有機化合物層中の発光層で励起子を生成させ、この励起子によって発光層内の分子が励起状態にされ、分子が励起状態から基底状態にもどる際に光が放出される原理を利用している。発光層は、蛍光性有機化合物若しくは燐光性有機化合物、量子ドットなどの発光性材料から成る。   The organic light emitting device is composed of a pair of electrodes composed of a cathode and an anode, and an organic compound layer formed between the pair of electrodes. The organic light emitting device emits light by injecting electrons from the cathode and holes from the anode into the organic compound layer, generating excitons in the light emitting layer in the organic compound layer, and the molecules in the light emitting layer are excited by the excitons. The principle is that light is emitted when the molecule returns from the excited state to the ground state. The light emitting layer is made of a light emitting material such as a fluorescent organic compound, a phosphorescent organic compound, or a quantum dot.

これまで、有機発光素子においては、発光色の色純度や発光効率を向上させるために、特許文献1のような共振器構造が導入されている。共振器構造を備えた素子では、共振波長の光が増幅されて素子外に取り出される。このため、素子外に取り出される光のスペクトルのピーク波長の強度が大きく、スペクトル幅の狭い光を取り出すことが可能となる。
特開2004−127795号公報
Until now, in the organic light emitting device, in order to improve the color purity and luminous efficiency of the luminescent color, a resonator structure as in Patent Document 1 has been introduced. In an element having a resonator structure, light having a resonance wavelength is amplified and extracted outside the element. For this reason, the intensity of the peak wavelength of the spectrum of light extracted outside the element is large, and light having a narrow spectrum width can be extracted.
Japanese Patent Laid-Open No. 2004-127795

しかしながら、上記の共振器構造を有した有機発光素子では、干渉効果が強くなるため、発光面を斜め方向から見た場合に、取り出される光の波長が短波長側にシフトしたり、発光強度が低下したりと、発光特性の視野角依存性が大きくなるという課題がある。これは、発光面の正面に取り出される光と、発光面から斜め方向に取り出される光の光路長が異なり、共振器構造によって強められる光の波長がそれぞれ異なることに起因すると考えられる。   However, in the organic light emitting device having the resonator structure described above, since the interference effect is strong, when the light emitting surface is viewed from an oblique direction, the wavelength of the extracted light is shifted to the short wavelength side, or the light emission intensity is high. There is a problem that the viewing angle dependency of the light emission characteristic becomes large when the light emission characteristic is lowered. This is considered to be due to the fact that the optical path lengths of the light extracted from the front surface of the light emitting surface and the light extracted obliquely from the light emitting surface are different and the wavelengths of the light enhanced by the resonator structure are different.

また一般的に、発光効率を向上させるために、素子を構成する一対の電極のうち、光取り出し側とは反対側にある電極が、反射率の高い金属で構成されたり、反射層と透明導電層とが積層された構成であることが多い。このため、発光層から光取り出し側に向かう光と、発光層で発光し、光取り出し側と反対側にある反射率の高い電極や反射層で反射される光が少なからず干渉するため、共振器構造を有していない有機発光素子であっても上記課題が生じてしまう。   In general, in order to improve luminous efficiency, the electrode on the side opposite to the light extraction side of the pair of electrodes constituting the element is made of a highly reflective metal, or the reflective layer and the transparent conductive material. In many cases, the layers are laminated. For this reason, since the light emitted from the light emitting layer toward the light extraction side and the light emitted from the light emitting layer and reflected from the electrode having a high reflectance on the side opposite to the light extraction side and the reflection layer interfere with each other, the resonator Even the organic light emitting element having no structure causes the above-described problem.

本発明は、上記課題に鑑み、高効率かつ素子の発光特性の視野角依存性が小さい有機発光素子を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an organic light-emitting device with high efficiency and low viewing angle dependency of light-emitting characteristics of the device.

上記課題を解決するために、本発明の有機発光素子は、複数の層からなる反射電極と、発光層を有する有機化合物層と、光取り出し電極とが順にあり、前記発光層から前記光取り出し電極に向かう光と、前記発光層で発光し、前記発光層より前記反射電極側にある反射面によって反射される光とが干渉する有機発光素子であって、前記反射電極内もしくは前記光取り出し電極の前記発光層側と反対側に、前記発光層で発光した光を共振させる共振部を有し、前記共振部の膜厚dが、前記共振部の屈折率n、前記有機発光素子の外部に取り出される光のスペクトルの最大ピーク波長λ、前記発光層で発光した光が前記共振部の両端で反射する際に生じる位相シフトφ、整数mに対して、式 In order to solve the above problems, an organic light-emitting device of the present invention includes a reflective electrode composed of a plurality of layers, an organic compound layer having a light-emitting layer, and a light extraction electrode in this order. An organic light emitting element in which light emitted from the light emitting layer interferes with light emitted from the light emitting layer and reflected by a reflective surface on the reflective electrode side from the light emitting layer, On the opposite side to the light emitting layer side, there is a resonance part that resonates light emitted from the light emitting layer, and the film thickness d 1 of the resonance part is the refractive index n 1 of the resonance part, the outside of the organic light emitting element The maximum peak wavelength λ of the spectrum of the light extracted to the phase, the phase shift φ that occurs when the light emitted from the light emitting layer is reflected at both ends of the resonance part, and the integer m 1

Figure 2010129452
Figure 2010129452

を満たすことを特徴とする。 It is characterized by satisfying.

本発明によれば、高効率かつ素子の発光特性の視野角依存性が小さい有機発光素子を実現できる。   According to the present invention, it is possible to realize an organic light emitting device with high efficiency and low viewing angle dependency of light emitting characteristics of the device.

以下、本発明の原理を構成例に基づいて説明する。なお、共振器構造とは、1つの層あるいは複数の層から成る層と、その1つの層の両端もしくは複数の層から成る層の両端にある2つの反射面で構成され、その2つの反射面の間で光が多重干渉される構造を指す。共振部とは、共振器構造を構成する1つの層あるいは複数の層のことを指す。   Hereinafter, the principle of the present invention will be described based on structural examples. The resonator structure is composed of one layer or a plurality of layers and two reflecting surfaces at both ends of the one layer or both layers. Refers to a structure in which light is subjected to multiple interference. The resonating part refers to one layer or a plurality of layers constituting the resonator structure.

図1に、本発明の有機発光素子の概略断面図を示す。なお、図示例では有機発光素子を示したが、QD−LED素子などであっても実施できる。図1に示した有機発光素子は、基板100上に、反射層102A、誘電体層102B、透明導電層102Cが積層され、陽極となる反射電極102が形成されている。この反射電極102上に、発光層105を有する有機化合物層101が形成され、さらに陰極となる光取り出し電極103が形成されている。光取り出し電極とは、発光層で発光した光を素子の外に取り出すために、光透過性を有した透明もしくは半透明な電極のことである。なお、ここで用いる「光透過性」とは、可視光に対して50〜100%の透過率を有する性質のことを指す。   FIG. 1 shows a schematic cross-sectional view of the organic light-emitting device of the present invention. In addition, although the organic light emitting element was shown in the example of illustration, even if it is a QD-LED element etc., it can implement. In the organic light-emitting element shown in FIG. 1, a reflective layer 102A, a dielectric layer 102B, and a transparent conductive layer 102C are laminated on a substrate 100, and a reflective electrode 102 serving as an anode is formed. On the reflective electrode 102, an organic compound layer 101 having a light emitting layer 105 is formed, and a light extraction electrode 103 serving as a cathode is further formed. The light extraction electrode is a transparent or translucent electrode having light transmittance in order to extract light emitted from the light emitting layer out of the device. As used herein, “light transmission” refers to a property having a transmittance of 50 to 100% with respect to visible light.

反射層102Aは、Al合金やAg合金などで構成されている。また、反射層102は、可視光の波長域(λ=380nm〜780nm)で分光反射率75%以上の高反射率であることが望ましい。誘電体層102Bは、光透過性のあるSiO、SiO、SiN、アクリル樹脂などで構成される。透明導電層102Cは、ITOやIZOなどの透明酸化導電層である。また、光取り出し電極103は、透明導電層102Cと同様の透明酸化導電層を用いることができるし、AgやAl、またはAg合金やAl合金などの金属薄膜からなる電極(金属半透明電極)としてもよい。または、光取り出し電極103は、透明酸化導電層と金属薄膜の積層構成からなる電極としても良い。 The reflective layer 102A is made of an Al alloy, an Ag alloy, or the like. The reflective layer 102 preferably has a high reflectance of 75% or more in the spectral reflectance in the visible light wavelength region (λ = 380 nm to 780 nm). The dielectric layer 102B is made of light transmissive SiO 2 , SiO, SiN x O y , acrylic resin, or the like. The transparent conductive layer 102C is a transparent oxide conductive layer such as ITO or IZO. As the light extraction electrode 103, a transparent oxide conductive layer similar to the transparent conductive layer 102C can be used, and as an electrode (metal translucent electrode) made of a metal thin film such as Ag, Al, Ag alloy, Al alloy or the like. Also good. Alternatively, the light extraction electrode 103 may be an electrode having a laminated structure of a transparent oxide conductive layer and a metal thin film.

有機化合物層101は、図1に示すように、通常、ホール輸送層106、発光層105、電子輸送層107が積層された構成を採っている。また、有機化合物層は発光層のみの構成を採っても良いし、必要に応じて陽極とホール輸送層との間にホール注入層を、陰極と電子輸送層との間に電子注入層を設けても良い。つまり、有機化合物層は、少なくとも発光層を有し、必要に応じて、ホール注入層、ホール輸送層、電子輸送層、電子注入層などの機能層のうち一つまたは複数を有する構成を採っても良い。また、有機化合物層は同じ機能を持った機能層を複数有していてもよい。また、発光層105は、それぞれの発光色に応じた蛍光性有機化合物もしくは燐光性有機化合物を含んでいる。   As shown in FIG. 1, the organic compound layer 101 usually has a structure in which a hole transport layer 106, a light emitting layer 105, and an electron transport layer 107 are laminated. In addition, the organic compound layer may be configured only of the light emitting layer, and if necessary, a hole injection layer is provided between the anode and the hole transport layer, and an electron injection layer is provided between the cathode and the electron transport layer. May be. That is, the organic compound layer has at least a light emitting layer, and has a configuration having one or more of functional layers such as a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer as necessary. Also good. The organic compound layer may have a plurality of functional layers having the same function. The light emitting layer 105 contains a fluorescent organic compound or a phosphorescent organic compound corresponding to each emission color.

有機発光素子を構成する反射電極102と光取り出し電極103の間に電圧を印加すると、陽極(反射電極102)からホールが、陰極(光取り出し電極103)から電子が有機化合物層101に注入される。注入されたホールと電子が、発光層105において励起子を形成し、この励起子により発光層内の分子が励起状態になり、分子が励起状態から基底状態に戻る際に光が放射される。ここで、図1に示した有機発光素子の構成例では、発光層105で発生した光に対して光取り出し電極103側から素子外に光が取り出される。   When a voltage is applied between the reflective electrode 102 and the light extraction electrode 103 constituting the organic light emitting device, holes are injected from the anode (reflective electrode 102) and electrons are injected from the cathode (light extraction electrode 103) into the organic compound layer 101. . The injected holes and electrons form excitons in the light emitting layer 105, and the molecules in the light emitting layer are excited by the excitons, and light is emitted when the molecules return from the excited state to the ground state. Here, in the configuration example of the organic light emitting element shown in FIG. 1, light is extracted from the light extraction electrode 103 side to the outside of the element with respect to the light generated in the light emitting layer 105.

反射電極102は、反射層102Aと透明導電層102Cとの間に、透明導電層102Cと屈折率の異なる材料からなる誘電体層102Bを有している。この場合、この誘電体層102Bが、反射層102Aと有機化合物層101との間にある中間層である。誘電体層102Bの光路長を変化させることで、反射電極102と有機化合物層101との界面での発光光に対する反射率を調整することができる。   The reflective electrode 102 has a dielectric layer 102B made of a material having a refractive index different from that of the transparent conductive layer 102C between the reflective layer 102A and the transparent conductive layer 102C. In this case, the dielectric layer 102B is an intermediate layer located between the reflective layer 102A and the organic compound layer 101. By changing the optical path length of the dielectric layer 102B, the reflectance with respect to the emitted light at the interface between the reflective electrode 102 and the organic compound layer 101 can be adjusted.

有機発光素子では、発光層で発光して光取り出し電極に向かう光と、発光層で発光し、反射電極側にある反射面(この場合、反射電極と有機化合物層との界面)で反射される光との干渉効果により、発光層で発光した光の発光効率を高め、色純度を向上している。この干渉効果によって得られる干渉強度分布の最大ピーク波長は、素子の発光面から傾いた角度で見た場合に、その角度が大きくなるにつれ、短波長側にずれる(短波長シフト)。このため、干渉効果を利用した有機発光素子では、素子の発光特性の視野角依存性が大きくなり、発光面の正面から見た場合の光の色度と、発光面から傾いた角度で見た場合の光の色度との色度ずれが大きくなる。一般に、反射電極の反射率を大きくすると、干渉効果が強くなるので、発光効率が向上する一方、有機発光素子の発光特性の視野角依存性が大きくなる。   In the organic light emitting device, light emitted from the light emitting layer and directed to the light extraction electrode, light emitted from the light emitting layer, and reflected by the reflective surface on the reflective electrode side (in this case, the interface between the reflective electrode and the organic compound layer). Due to the interference effect with light, the light emission efficiency of light emitted from the light emitting layer is increased, and the color purity is improved. When viewed from an angle inclined from the light emitting surface of the device, the maximum peak wavelength of the interference intensity distribution obtained by this interference effect shifts to the short wavelength side (short wavelength shift) as the angle increases. For this reason, in the organic light emitting device using the interference effect, the viewing angle dependency of the light emission characteristics of the device is increased, and the light chromaticity when viewed from the front of the light emitting surface and the angle inclined from the light emitting surface are viewed. In this case, the chromaticity deviation from the chromaticity of the light becomes large. In general, when the reflectance of the reflective electrode is increased, the interference effect is enhanced, so that the light emission efficiency is improved, while the viewing angle dependency of the light emission characteristics of the organic light emitting element is increased.

本発明の有機発光素子は、正面を基準とした、光の取り出される角度が大きくなるのに伴い、反射電極102と有機化合物層101との界面での反射率が大きくなるように、誘電体層102Bの光路長が調整されている。それと同時に、素子外に取り出される光の最大ピーク波長の反射電極102と有機化合物層101との界面での反射率が低下しないように、誘電体層102Bの光路長が調整されている。   The organic light-emitting device of the present invention has a dielectric layer so that the reflectance at the interface between the reflective electrode 102 and the organic compound layer 101 increases as the angle at which light is extracted with respect to the front surface increases. The optical path length of 102B is adjusted. At the same time, the optical path length of the dielectric layer 102B is adjusted so that the reflectance at the interface between the reflective electrode 102 having the maximum peak wavelength of light extracted outside the element and the organic compound layer 101 does not decrease.

つまり、本発明の有機発光素子は、反射電極102内の誘電体層102Bの膜厚を所望に設定することによって、素子外に取り出される光の最大ピーク波長の強度を大きくしながら、正面から傾いた角度で取り出される光の短波長シフトを抑制している。   That is, the organic light emitting device of the present invention is tilted from the front while increasing the maximum peak wavelength intensity of light extracted outside the device by setting the film thickness of the dielectric layer 102B in the reflective electrode 102 as desired. The short wavelength shift of the light extracted at a certain angle is suppressed.

このことにより、有機発光素子の発光効率を向上させると同時に、素子の発光特性の視野角依存性を小さくすることが可能となる。   As a result, the light emission efficiency of the organic light emitting device can be improved, and at the same time, the viewing angle dependence of the light emission characteristics of the device can be reduced.

より詳しく本発明の原理を述べる。図1に示すように、反射電極102と有機化合物層101との界面の複素反射係数をr=|r|exp(iφ)とする。さらに、光取り出し電極103の光取り出し側の界面(光取り出し電極103と電子輸送層107との界面とは反対側の面)での複素反射係数をr=|r|exp(iφ)とする。ここで、位相シフトの定義域を−π<φ,φ≦πとする。また、反射電極102と光取り出し電極103の光取り出し側の界面との間の距離をd、この間の各層の平均屈折率をnとし、反射電極102と発光層105内の発光点108との間の距離をd、この間の層の平均屈折率をnとする。 The principle of the present invention will be described in more detail. As shown in FIG. 1, the complex reflection coefficient at the interface between the reflective electrode 102 and the organic compound layer 101 is r = | r | exp (iφ ). Further, the complex reflection coefficient at the interface of the light extraction electrode 103 on the light extraction side (the surface opposite to the interface between the light extraction electrode 103 and the electron transport layer 107) is expressed as r + = | r + | exp (iφ + ). And Here, it is assumed that the domain of phase shift is −π <φ , φ + ≦ π. Further, the distance between the reflective electrode 102 and the light extraction side interface of the light extraction electrode 103 is d, and the average refractive index of each layer therebetween is n, and the distance between the reflection electrode 102 and the light emitting point 108 in the light emitting layer 105 is Is d , and the average refractive index of the layer between them is n .

有機発光素子の発光強度I(λ)は、発光層105から有機発光素子の外部に取り出される光のスペクトルの最大ピーク波長をλとし、波数をk=2π/λ、正面を基準にした光の取り出される角度をθとすると、数2で与えられる。   The light emission intensity I (λ) of the organic light emitting device is that the maximum peak wavelength of the spectrum of light extracted from the light emitting layer 105 to the outside of the organic light emitting device is λ, the wave number is k = 2π / λ, If the angle taken out is θ, it is given by Equation 2.

Figure 2010129452
Figure 2010129452

数2の分母の位相部分より、整数mに対して、多重干渉が強め合う位相条件が数3で与えられる。また、数2の分子の位相部分より、整数mに対して、広角干渉が強め合う位相条件が数4で与えられる。これらから、光の取り出される角度θが大きくなるのに従い、干渉により強め合う波長が短波長シフトしていき、その結果、色度ずれが生じることがわかる。通常は、正面(θ=0)に取り出される光の発光強度を向上させるために、反射面(反射電極102と有機化合物層101との界面、及び、光取り出し電極103の光取り出し側の界面)での反射率、つまり、複素反射係数の絶対値|r|、|r|が大きくされる。これに伴い、正面(θ=0)に取り出される光の発光強度が向上する一方、取り出される発光色の視野角依存性が大きくなってしまう。 From the phase part of the denominator of Equation 2, the phase condition for strengthening multiple interference is given by Equation 3 for the integer m. Further, the phase part of the number 2 of the molecule, the integer m - relative to the phase condition for the wide-angle interference constructive is given by the number 4. From these, it can be seen that as the angle θ from which light is extracted increases, the wavelengths that are strengthened by interference shift by a short wavelength, resulting in a chromaticity shift. Usually, in order to improve the emission intensity of light extracted to the front (θ = 0), the reflecting surface (the interface between the reflective electrode 102 and the organic compound layer 101 and the interface on the light extraction side of the light extraction electrode 103). , That is, the absolute values of the complex reflection coefficients | r | and | r + | are increased. As a result, the emission intensity of the light extracted to the front (θ = 0) is improved, and the viewing angle dependency of the extracted emission color is increased.

Figure 2010129452
Figure 2010129452

Figure 2010129452
Figure 2010129452

本発明では、光の取り出される角度θが大きくなるのに伴い、最大ピーク波長λでの反射電極102の複素反射係数の絶対値|r|が大きくなるようにして、視野角依存性を低減するものである。つまり、取り出される角度θが大きくなるのに伴い、素子外に取り出される光の最大ピーク波長λでの干渉の強め合いが低下する分を、複素反射係数の絶対値|r|の増加により補うことで、発光強度I(λ)の視野角依存性を低減する。これは、最大ピーク波長λよりも長波長側にある波長で反射電極102と有機化合物層101との界面での反射率が干渉により高められるように、誘電体層102Bの光路長を調整することで可能である。この条件は、数5で与えられる。ここで、図1の構成において、反射層102Aと誘電体層102Bとの界面の複素反射係数をr=|r|exp(iφ)とし、誘電体層102Bと透明導電層102Cとの界面の複素反射係数をr=|r|exp(iφ)とした。さらに、誘電体層102Bの膜厚をd、誘電体層102Bの屈折率をnとした。mは整数である。この有機発光素子において、反射層102Aと誘電体層102Bとの界面と誘電体層102Bと透明導電層102Cとの界面との間で、発光層105で発生した光が多重干渉する共振器構造が得られる。つまり、この場合、共振器構造の共振部は、反射電極102内の中間層、つまり、誘電体層102Bである。 In the present invention, the absolute value | r | of the complex reflection coefficient of the reflective electrode 102 at the maximum peak wavelength λ increases so that the viewing angle dependency is reduced as the angle θ at which light is extracted increases. To do. That is, the increase in the absolute value | r | of the complex reflection coefficient compensates for the decrease in the intensity of interference at the maximum peak wavelength λ of the light extracted outside the device as the extracted angle θ increases. Thus, the viewing angle dependency of the emission intensity I (λ) is reduced. This is to adjust the optical path length of the dielectric layer 102B so that the reflectance at the interface between the reflective electrode 102 and the organic compound layer 101 is increased by interference at a wavelength longer than the maximum peak wavelength λ. Is possible. This condition is given by Equation 5. Here, in the configuration of FIG. 1, the complex reflection coefficient at the interface between the reflective layer 102A and the dielectric layer 102B is r 1 = | r 1 | exp (iφ 1 ), and the dielectric layer 102B and the transparent conductive layer 102C The complex reflection coefficient of the interface was r 2 = | r 2 | exp (iφ 2 ). Further, the thickness of the dielectric layer 102B is d 1 , and the refractive index of the dielectric layer 102B is n 1 . m 1 is an integer. In this organic light emitting device, a resonator structure in which light generated in the light emitting layer 105 interferes multiplely between the interface between the reflective layer 102A and the dielectric layer 102B and the interface between the dielectric layer 102B and the transparent conductive layer 102C. can get. That is, in this case, the resonance part of the resonator structure is the intermediate layer in the reflective electrode 102, that is, the dielectric layer 102B.

Figure 2010129452
Figure 2010129452

しかし、誘電体層102Bの膜厚dが大きくなればなるほど、素子外に取り出される光の最大ピーク波長λの、反射電極102と有機化合物層101との界面での反射率が大きく低下してしまう。このために、誘電体層102Bの膜厚dは、数6を満たすようにすればよい。数6は、素子外に取り出される光スペクトルの最大ピーク波長λで、反射電極102全体の反射率が誘電体層102B内での多重干渉により高められ、有機発光素子の発光強度が向上する条件である。数6で与えられた条件を満たすと、発光層で発光した光のうち、最大ピーク波長λの強度が誘電体層102B内で弱くなり、それにともなって、誘電体層102Bよりも光取り出し側では、最大ピーク波長λの強度が強くなる。そのため、反射電極102全体の最大ピーク波長λに対する反射率が大きくなる。 However, the greater the thickness d 1 of the dielectric layer 102B, the maximum peak wavelength λ of light extracted out of the element, reduced to increase the reflectance at the interface between the reflective electrode 102 and the organic compound layer 101 End up. For this, the film thickness d 1 of the dielectric layer 102B may be to satisfy Equation 6. Equation 6 is the maximum peak wavelength λ of the light spectrum extracted outside the device. The reflectance of the reflective electrode 102 as a whole is enhanced by multiple interference in the dielectric layer 102B, and the light emission intensity of the organic light emitting device is improved. is there. When the condition given by Equation 6 is satisfied, the intensity of the maximum peak wavelength λ of the light emitted from the light emitting layer becomes weaker in the dielectric layer 102B, and accordingly, on the light extraction side than the dielectric layer 102B. The intensity of the maximum peak wavelength λ is increased. Therefore, the reflectance with respect to the maximum peak wavelength λ of the entire reflective electrode 102 is increased.

Figure 2010129452
Figure 2010129452

よって、数5、数6から、有機発光素子において、発光強度を向上し、かつ、視野角依存性を低減するための誘電体層102Bの膜厚の条件は、数7で与えられる。本発明では、誘電体層102Bの膜厚dが、数7の条件を満たすように調整されている。ただし、数7では、φ=φ+φとしている。このφは、発光層105で発光した光が共振部の両端(反射層102Aと誘電体層102Bとの界面、及び、誘電体層102Bと透明導電層102Cとの界面)で反射する際に生じる位相シフトと呼ぶことができる。 Therefore, from Equations 5 and 6, the condition of the film thickness of the dielectric layer 102B for improving the emission intensity and reducing the viewing angle dependency in the organic light emitting device is given by Equation 7. In the present invention, the thickness d 1 of the dielectric layer 102B has been adjusted to meet the number 7 conditions. However, in Equation 7, φ = φ 1 + φ 2 . This φ occurs when the light emitted from the light emitting layer 105 is reflected at both ends of the resonance part (the interface between the reflective layer 102A and the dielectric layer 102B and the interface between the dielectric layer 102B and the transparent conductive layer 102C). It can be called a phase shift.

Figure 2010129452
Figure 2010129452

整数mは、その絶対値|m|が大きくなると、素子の発光色の視野角依存性が大きくなったり、発光効率が低下したりするので、|m|=0,1において、数7を満たすように誘電体層102Bの膜厚を調整することが望ましい。 When the absolute value | m 1 | increases, the integer m 1 increases the viewing angle dependency of the light emission color of the device or decreases the light emission efficiency. Therefore, when | m 1 | = 0, 1, It is desirable to adjust the film thickness of the dielectric layer 102 </ b> B to satisfy 7.

なお、これまでは、反射電極102を陽極、光取り出し電極103を陰極とする構成で説明してきたが、反射電極102を陰極、光取り出し電極103を陽極とする構成であっても良い。この場合には、ホール輸送層106と電子輸送層107を発光層105に対して逆に位置する構成にすればよい。   In the above description, the reflection electrode 102 is an anode and the light extraction electrode 103 is a cathode. However, the reflection electrode 102 may be a cathode and the light extraction electrode 103 may be an anode. In this case, the hole transport layer 106 and the electron transport layer 107 may be positioned opposite to the light emitting layer 105.

また、共振部である誘電体層102Bの屈折率nが、共振部と隣り合う2つの層の屈折率と異なる方が、共振器構造で多重干渉する効果が大きくなり、より反射電極102全体の反射率を大きくする効果を奏するので好適である。共振器構造で多重干渉する効果をさらに大きくするには、図1の構成で、透明導電層102Cとホール輸送層106との屈折率比よりも、誘電体層102Bと透明導電層102Cとの屈折率比が大きくなるような材料で、誘電体層102Bを形成することが好ましい。 Further, when the refractive index n 1 of the dielectric layer 102B which is the resonance part is different from the refractive index of the two layers adjacent to the resonance part, the effect of multiple interference in the resonator structure becomes larger, and the reflection electrode 102 as a whole becomes more effective. This is advantageous because it has the effect of increasing the reflectance. In order to further increase the effect of multiple interference in the resonator structure, the refractive index between the dielectric layer 102B and the transparent conductive layer 102C is higher than the refractive index ratio between the transparent conductive layer 102C and the hole transport layer 106 in the configuration of FIG. The dielectric layer 102B is preferably formed of a material that increases the ratio.

これまで、中間層として誘電体層102Bを例にとって述べてきたが、この中間層は、誘電体から成る層でなくても、光透過性を有する層であれば良い。また、中間層を構成する材料の屈折率は、反射層102Aと透明導電層102Cの屈折率と異なることが好ましい。さらに、中間層は、透明導電層102Cとホール輸送層106との屈折率比よりも、中間層と透明導電層102Cとの屈折率比が大きくなるような材料から成る層がよい。   Up to now, the dielectric layer 102B has been described as an example of the intermediate layer. However, the intermediate layer may be a layer having a light transmitting property even if it is not a layer made of a dielectric. The refractive index of the material constituting the intermediate layer is preferably different from the refractive indexes of the reflective layer 102A and the transparent conductive layer 102C. Further, the intermediate layer is preferably a layer made of a material that makes the refractive index ratio between the intermediate layer and the transparent conductive layer 102C larger than the refractive index ratio between the transparent conductive layer 102C and the hole transport layer 106.

図1の構成において、誘電体層102Bを構成しない場合には、共振部を透明導電層102Cとし、その透明導電層102Cの膜厚を適宜設定することによって、本発明の効果が得られる。具体的には、この透明導電層102Cの膜厚dが、透明導電層102Cの屈折率n、発光層105で発光した光が共振部の両端で反射する際に生じる位相シフトφ、整数mに対して、数8を満たすようにすればよい。この場合、共振部の両端は、透明導電層102Cと有機化合物層101との界面と透明導電層102Cと反射層102Aとの界面である。 In the configuration of FIG. 1, when the dielectric layer 102B is not configured, the effect of the present invention can be obtained by setting the resonance portion as the transparent conductive layer 102C and appropriately setting the film thickness of the transparent conductive layer 102C. Specifically, the film thickness d 2 of the transparent conductive layer 102C is such that the refractive index n 2 of the transparent conductive layer 102C, the phase shift φ t generated when the light emitted from the light emitting layer 105 is reflected at both ends of the resonance part, for integer m 2, it is sufficient to satisfy the number 8. In this case, both ends of the resonance part are an interface between the transparent conductive layer 102C and the organic compound layer 101 and an interface between the transparent conductive layer 102C and the reflective layer 102A.

Figure 2010129452
Figure 2010129452

また、図1において、誘電体層102Bと透明導電層102Cを共に反射電極102内の共振部とする構成も可能である。この場合、誘電体層102Bの膜厚dが数7を満たし、さらに、透明導電層102Cの膜厚dが数8を満たすようにすれば、より本発明の効果が高くなる。この構成の場合、数8において、位相シフトφは、透明導電層102Cと有機化合物層101との界面と透明導電層102Cと誘電体層102Bとの界面で光が反射される際に生じるものであることに注意する。また、共振部は、中間層である誘電体層102Bと透明導電層102Cである。 In FIG. 1, the dielectric layer 102 </ b> B and the transparent conductive layer 102 </ b> C may both be a resonance part in the reflective electrode 102. In this case, satisfying the thickness d 1 is the number 7 of the dielectric layer 102B, furthermore, if such thickness d 2 of the transparent conductive layer 102C satisfies Equation 8, more effect of the present invention is high. In this configuration, in Equation 8, the phase shift φ t occurs when light is reflected at the interface between the transparent conductive layer 102C and the organic compound layer 101 and at the interface between the transparent conductive layer 102C and the dielectric layer 102B. Note that Further, the resonance part is a dielectric layer 102B and a transparent conductive layer 102C which are intermediate layers.

一方、図1において、誘電体層102Bは共振部とせず、透明導電層102Cのみを共振部としても本発明の効果を奏する。   On the other hand, in FIG. 1, the dielectric layer 102 </ b> B is not used as a resonating part, and only the transparent conductive layer 102 </ b> C is used as the resonating part.

また、図2に示すように、反射電極102が、有機化合物層101側から、透明導電層102C、金属薄膜層102D、誘電体層102B、反射層102Aの順にある構成であってもよい。図1の構成では、「発光層105より反射電極102側にある反射面」とは、透明導電層102Cと有機化合物層101との界面であったが、図2の構成では、透明導電層102Cと金属薄膜層102Dとの界面である。この構成の場合、共振部は、誘電体層102Bであり、この誘電体層102Bの膜厚dが数7を満たすように、誘電体層102Bを形成すれば、本発明の効果を奏する。この際、数7において、位相シフトφは、誘電体層102Bと金属薄膜層102Dとの界面と誘電体層102Bと反射層102Aとの界面で光が反射される際に生じるものであることに注意する。そして、この金属薄膜層102Dとして、Al合金やAg合金を用いることことが好ましく、その厚さは10〜20nmが好ましい。この構成でも誘電体層102Bと金属薄膜層102Dの屈折率が異なる。 Further, as shown in FIG. 2, the reflective electrode 102 may have a structure in which the transparent conductive layer 102C, the metal thin film layer 102D, the dielectric layer 102B, and the reflective layer 102A are arranged in this order from the organic compound layer 101 side. In the configuration of FIG. 1, the “reflecting surface on the reflective electrode 102 side from the light emitting layer 105” is the interface between the transparent conductive layer 102C and the organic compound layer 101. However, in the configuration of FIG. And the metal thin film layer 102D. In this configuration, the resonance unit is a dielectric layer 102B, as the thickness d 1 of the dielectric layer 102B satisfies Expression 7, by forming the dielectric layer 102B, the effect of the present invention. In this case, in Equation 7, the phase shift φ is generated when light is reflected at the interface between the dielectric layer 102B and the metal thin film layer 102D and the interface between the dielectric layer 102B and the reflective layer 102A. warn. And as this metal thin film layer 102D, it is preferable to use Al alloy and Ag alloy, and the thickness has preferable 10-20 nm. Even in this configuration, the refractive indexes of the dielectric layer 102B and the metal thin film layer 102D are different.

さらに、図3のように、金属半透明電極103B(光取り出し電極)の発光層105側と反対側(光取り出し側)に、共振部(例えば、誘電体層104)を有する構成で、その共振部の膜厚を規定するようにしても、本発明の効果を奏する。この場合、共振部の屈折率をn、素子の外部に取り出される光のスペクトルの最大ピーク波長をλ、発光層105で発光した光が共振部の両端で反射する際に生じる位相シフトをφとすると、整数mに対して、数7を満たす膜厚dで共振部を形成すればよい。このとき、位相シフトφは、共振部と金属半透明電極103Bとの界面、および、共振部と金属半透明電極103Bとは反対側の面で光が反射される際に生じるものであることに注意する。 Further, as shown in FIG. 3, the metal translucent electrode 103 </ b> B (light extraction electrode) has a resonance part (for example, the dielectric layer 104) on the side opposite to the light emitting layer 105 side (light extraction side), and the resonance Even if the film thickness of the portion is defined, the effect of the present invention is obtained. In this case, the refractive index of the resonance part is n 1 , the maximum peak wavelength of the spectrum of light extracted outside the element is λ, and the phase shift that occurs when the light emitted from the light emitting layer 105 is reflected at both ends of the resonance part is φ Then, the resonance part may be formed with a film thickness d 1 that satisfies Equation 7 with respect to the integer m 1 . At this time, the phase shift φ occurs when light is reflected at the interface between the resonance part and the metal translucent electrode 103B and the surface opposite to the resonance part and the metal translucent electrode 103B. warn.

また、図1、図2、図3では、基板100と反対側から光を取り出すトップエミッション型の有機発光素子を例に説明してきたが、基板100側から光を取り出すボトムエミッション型の有機発光素子であっても本発明の効果が得られる。この場合には、反射電極102と光取り出し電極103の基板100に対する積層順を入れ替えればよい。つまり、基板100側から、光取り出し側の光取り出し電極103、有機化合物層101、反射電極102が順に積層された構成となる。   1, 2, and 3, the top emission type organic light emitting element that extracts light from the side opposite to the substrate 100 has been described as an example. However, the bottom emission type organic light emitting element that extracts light from the substrate 100 side is described. Even so, the effects of the present invention can be obtained. In this case, the stacking order of the reflective electrode 102 and the light extraction electrode 103 with respect to the substrate 100 may be changed. That is, the light extraction electrode 103, the organic compound layer 101, and the reflection electrode 102 on the light extraction side are sequentially stacked from the substrate 100 side.

また、有機化合物層101の各層に用いられる有機化合物としては、低分子材料、高分子材料若しくはその両方により構成され、特に限定されるものではない。さらに、必要に応じて無機化合物のみから成る層を含んでいても良い。   The organic compound used in each layer of the organic compound layer 101 is composed of a low molecular material, a high molecular material, or both, and is not particularly limited. Furthermore, a layer made of only an inorganic compound may be included as necessary.

また、必要に応じて、反射層102Aと誘電体層102Bとの間に、劣化防止やスパッタプロセスのダメージ防止などのために光透過性の保護層を積層しても良い。   If necessary, a light-transmitting protective layer may be laminated between the reflective layer 102A and the dielectric layer 102B in order to prevent deterioration and damage in the sputtering process.

また、本発明の有機発光素子は、表示装置を構成する発光素子として利用することができる。具体的には、表示装置とは、テレビ受像機、パーソナルコンピュータのディスプレイ、撮像装置の背面表示部、携帯電話の表示部、携帯ゲーム機の表示部等の電子機器のディプレイで挙げられる。この表示装置は、複数の有機発光素子と、その複数の有機発光素子の各々の発光を制御する駆動回路とを備えており、その複数の有機発光素子のうち少なくとも一つとして本発明の有機発光素子を用いれば、発光特性の視野角依存が小さな表示装置が得られる。   The organic light emitting device of the present invention can be used as a light emitting device constituting a display device. Specifically, the display device is a display of an electronic device such as a television receiver, a display of a personal computer, a rear display unit of an imaging device, a display unit of a mobile phone, a display unit of a portable game machine. The display device includes a plurality of organic light emitting elements and a drive circuit that controls light emission of each of the plurality of organic light emitting elements, and the organic light emitting device of the present invention is used as at least one of the plurality of organic light emitting elements. If the element is used, a display device in which the light emission characteristics have a small viewing angle dependency can be obtained.

(実施例1)
図4に、反射層102AがAl合金、誘電体層102BがSiO(屈折率1.46)、透明導電層102CがIZO(膜厚60nm、屈折率1.95)で構成される反射電極102を有する緑色を発光する有機発光素子を示す。この素子において、誘電体層102Bの膜厚変化に対する輝度と色度ずれの計算結果例を示す。このとき、λ=520nm、φ/(2π)=−0.3951+0.5=0.1049としている。また、誘電体層102Bの膜厚を0nmから160nmまで変化させている。輝度による発光効率を比較するために、CIE色度が(0.21、0.70)で一定となるように、ホール輸送層106(屈折率1.80)の膜厚を調整している。誘電体層102B、ホール輸送層106以外の各層の膜厚は同一である。図4の実線は誘電体層102Bの膜厚dに対する輝度変化を示しており、誘電体層102Bの膜厚dが0の値を基準としている。図4の破線は誘電体層102Bの膜厚dに対する素子外に取り出される発光色の色度ずれΔxyを示している。この色度ずれΔxyは、光が取り出される角度をθ°として、θ=0(正面)のCIE色度座標を(x0、y0)、θ°≦60°のある角度のCIE色度座標を(xθ、yθ)として、数9により定義されている。色度ずれΔxyが小さいほど、発光色の色度の視野角変化が少ない。
Example 1
In FIG. 4, the reflective electrode 102A is made of an Al alloy, the dielectric layer 102B is made of SiO 2 (refractive index 1.46), and the transparent conductive layer 102C is made of IZO (film thickness 60 nm, refractive index 1.95). The organic light emitting element which light-emits green which has this. In this element, an example of calculation results of luminance and chromaticity deviation with respect to a change in film thickness of the dielectric layer 102B is shown. At this time, λ = 520 nm and φ / (2π) = − 0.3951 + 0.5 = 0.1049. Further, the thickness of the dielectric layer 102B is changed from 0 nm to 160 nm. In order to compare the luminous efficiency by luminance, the film thickness of the hole transport layer 106 (refractive index 1.80) is adjusted so that the CIE chromaticity is constant at (0.21, 0.70). The thickness of each layer other than the dielectric layer 102B and the hole transport layer 106 is the same. The solid line in FIG. 4 shows a change in luminance with respect to the film thickness d 1 of the dielectric layer 102B, the thickness d 1 of the dielectric layer 102B is a reference value of 0. Broken line in FIG. 4 shows a chromaticity shift Δxy luminous color to be taken out to outside the element with respect to the film thickness d 1 of the dielectric layer 102B. This chromaticity shift Δxy is defined as CIE chromaticity coordinates of θ = 0 (front), (x0, y0), and CIE chromaticity coordinates of an angle of θ ° ≦ 60 °, where θ is the angle at which light is extracted (θ). xθ, yθ) is defined by Equation 9. The smaller the chromaticity shift Δxy, the smaller the viewing angle change of the chromaticity of the emitted color.

Figure 2010129452
Figure 2010129452

図4において、ドットで示された領域がm=0の場合に数7の条件を満たす領域であり、発光効率(輝度)が向上すると同時に、発光色の色度ずれが抑制され、素子の発光特性の視野角依存性が軽減されることがわかる。 In FIG. 4, the region indicated by the dot is a region that satisfies the condition of Equation 7 when m 1 = 0, and the luminous efficiency (luminance) is improved and at the same time, the chromaticity shift of the emitted color is suppressed, and the element It can be seen that the viewing angle dependence of the emission characteristics is reduced.

(実施例2)
図5に、反射層102AがAg合金、誘電体層102BがSiO、透明導電層102CがIZO(50nm)で構成される反射電極102を有する青色を発光する有機発光素子の場合の、誘電体層102Bの膜厚変化に対する輝度と色度ずれの計算結果例を示す。このとき、λ=460nm、φ/(2π)=−0.3012+0.5=0.1988としている。また、本実施形態では、誘電体層102Bの膜厚dを0nmから100nmまで変化させている。また、輝度による発光効率を比較するために、CIE色度が(0.135、0.09)で一定となるように、ホール輸送層106の膜厚を調整している。誘電体層102B、ホール輸送層106以外の各層の膜厚は同一である。図5の実線は誘電体層102Bの膜厚dに対する輝度変化を、破線は誘電体層102Bの膜厚dに対する素子外に取り出される発光色の色度ずれΔxyを示している。図5においても、ドットで示された領域がm=0の場合に数7の条件を満たす領域であり、発光効率(輝度)が向上すると同時に、発光色の色度変化が抑制されることがわかる。
(Example 2)
FIG. 5 shows a dielectric in the case of an organic light emitting device that emits blue light having a reflective electrode 102 in which the reflective layer 102A is made of an Ag alloy, the dielectric layer 102B is made of SiO 2 , and the transparent conductive layer 102C is made of IZO (50 nm). An example of calculation results of luminance and chromaticity deviation with respect to a change in film thickness of the layer 102B is shown. At this time, λ = 460 nm, φ / (2π) = − 0.3012 + 0.5 = 0.10988. Further, in this embodiment, by changing the thickness d 1 of the dielectric layer 102B from 0nm to 100 nm. In addition, in order to compare the luminous efficiency by luminance, the film thickness of the hole transport layer 106 is adjusted so that the CIE chromaticity is constant at (0.135, 0.09). The thickness of each layer other than the dielectric layer 102B and the hole transport layer 106 is the same. The solid line in FIG. 5 is a luminance change with respect to the film thickness d 1 of the dielectric layer 102B, a broken line indicates a chromaticity deviation Δxy luminous color to be taken out to outside the element with respect to the film thickness d 1 of the dielectric layer 102B. In FIG. 5 as well, the region indicated by the dot is a region that satisfies the condition of Equation 7 when m 1 = 0, and the luminous efficiency (luminance) is improved, and at the same time, the change in chromaticity of the emitted color is suppressed. I understand.

したがって、本発明によれば、有機発光素子の発光効率を向上すると同時に、素子外に取り出される光の発光特性の視野角依存性を少なくすることが可能となる。   Therefore, according to the present invention, it is possible to improve the light emission efficiency of the organic light emitting device and reduce the viewing angle dependency of the light emission characteristics of the light extracted outside the device.

本発明の有機発光素子の概略断面図である。It is a schematic sectional drawing of the organic light emitting element of this invention. 本発明の有機発光素子の他の例の概略断面図である。It is a schematic sectional drawing of the other example of the organic light emitting element of this invention. 本発明の有機発光素子の他の例の概略断面図である。It is a schematic sectional drawing of the other example of the organic light emitting element of this invention. 図1に示した有機発光素子における誘電体層の膜厚変化に対する緑色を発光する有機発光素子の輝度と色度ずれの計算結果例である。2 is a calculation result example of luminance and chromaticity deviation of an organic light emitting element that emits green light with respect to a change in film thickness of a dielectric layer in the organic light emitting element shown in FIG. 1. 図1に示した有機発光素子における誘電体層の膜厚変化に対する青色を発光する有機発光素子の輝度と色度ずれの計算結果例である。3 is a calculation result example of luminance and chromaticity shift of an organic light emitting element that emits blue light with respect to a change in film thickness of a dielectric layer in the organic light emitting element shown in FIG.

符号の説明Explanation of symbols

100 基板
101 有機層
102 反射電極
102A 反射層
102B,104 誘電体層
102C 透明導電層
102D 金属薄膜層
103 光取り出し電極
103B 金属半透明電極
105 発光層
106 ホール輸送層
107 電子輸送層
108 発光点
DESCRIPTION OF SYMBOLS 100 Substrate 101 Organic layer 102 Reflective electrode 102A Reflective layer 102B, 104 Dielectric layer 102C Transparent conductive layer 102D Metal thin film layer 103 Light extraction electrode 103B Metal translucent electrode 105 Light emitting layer 106 Hole transport layer 107 Electron transport layer 108 Light emitting point

Claims (5)

複数の層からなる反射電極と、発光層を有する有機化合物層と、光取り出し電極とが順にあり、
前記発光層から前記光取り出し電極に向かう光と、前記発光層で発光し、前記発光層より前記反射電極側にある反射面によって反射される光とが干渉する有機発光素子であって、
前記反射電極内もしくは前記光取り出し電極の前記発光層側と反対側に、前記発光層で発光した光を共振させる共振部を有し、
前記共振部の膜厚dが、前記共振部の屈折率n、前記有機発光素子の外部に取り出される光のスペクトルの最大ピーク波長λ、前記発光層で発光した光が前記共振部の両端で反射する際に生じる位相シフトφ、整数mに対して、式
Figure 2010129452
を満たすことを特徴とする有機発光素子。
A reflective electrode composed of a plurality of layers, an organic compound layer having a light emitting layer, and a light extraction electrode are in this order.
An organic light emitting device in which light traveling from the light emitting layer toward the light extraction electrode and light emitted from the light emitting layer and reflected by a reflective surface on the reflective electrode side from the light emitting layer interfere with each other,
In the reflective electrode or on the side opposite to the light emitting layer side of the light extraction electrode, there is a resonance part that resonates light emitted from the light emitting layer,
The thickness d 1 of the resonance part is such that the refractive index n 1 of the resonance part, the maximum peak wavelength λ of the spectrum of light extracted outside the organic light emitting device, and the light emitted from the light emitting layer are at both ends of the resonance part For the phase shift φ and integer m 1 that occur when reflecting at
Figure 2010129452
An organic light emitting element characterized by satisfying
前記反射電極が前記有機化合物層側から、透明導電層と、中間層と、反射層とを順に有し、前記共振部が、前記中間層又は/及び前記透明導電層であることを特徴とする請求項1に記載の有機発光素子。   The reflective electrode has a transparent conductive layer, an intermediate layer, and a reflective layer in this order from the organic compound layer side, and the resonance part is the intermediate layer and / or the transparent conductive layer. The organic light emitting device according to claim 1. 前記反射電極が前記発光層側から、透明導電層と、金属薄膜層と、中間層と、反射層とを有し、前記共振部が、前記中間層であることを特徴とする請求項1に記載の有機発光素子。   The reflective electrode has a transparent conductive layer, a metal thin film layer, an intermediate layer, and a reflective layer from the light emitting layer side, and the resonance part is the intermediate layer. The organic light emitting element as described. 前記反射電極が前記有機化合物層側から、透明導電層と、反射層とを順に有し、前記共振部が前記透明導電層であることを特徴とする請求項1に記載の有機発光素子。   The organic light-emitting element according to claim 1, wherein the reflective electrode includes a transparent conductive layer and a reflective layer in order from the organic compound layer side, and the resonance part is the transparent conductive layer. 複数の有機発光素子と、前記複数の有機発光素子の各々の発光を制御する駆動回路とを備えた表示装置であって、
前記複数の有機発光素子のうち少なくとも一つは、請求項1乃至4のいずれかに記載の有機発光素子であることを特徴とする表示装置。
A display device comprising a plurality of organic light emitting elements and a drive circuit for controlling light emission of each of the plurality of organic light emitting elements,
5. The display device according to claim 1, wherein at least one of the plurality of organic light emitting elements is the organic light emitting element according to claim 1.
JP2008304607A 2008-11-28 2008-11-28 Organic light-emitting element, and display device using it Pending JP2010129452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008304607A JP2010129452A (en) 2008-11-28 2008-11-28 Organic light-emitting element, and display device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008304607A JP2010129452A (en) 2008-11-28 2008-11-28 Organic light-emitting element, and display device using it

Publications (1)

Publication Number Publication Date
JP2010129452A true JP2010129452A (en) 2010-06-10

Family

ID=42329697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008304607A Pending JP2010129452A (en) 2008-11-28 2008-11-28 Organic light-emitting element, and display device using it

Country Status (1)

Country Link
JP (1) JP2010129452A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011266A1 (en) * 2010-07-22 2012-01-26 パナソニック株式会社 Light-emitting element and display apparatus using same
US9184403B2 (en) 2013-10-24 2015-11-10 Samsung Display Co., Ltd. Organic light emitting display apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011266A1 (en) * 2010-07-22 2012-01-26 パナソニック株式会社 Light-emitting element and display apparatus using same
CN103026790A (en) * 2010-07-22 2013-04-03 松下电器产业株式会社 Light-emitting element and display apparatus using same
JP5879613B2 (en) * 2010-07-22 2016-03-08 株式会社Joled Display device
US9184403B2 (en) 2013-10-24 2015-11-10 Samsung Display Co., Ltd. Organic light emitting display apparatus
US9583727B2 (en) 2013-10-24 2017-02-28 Samsung Display Co., Ltd. Organic light emitting display apparatus
US9978973B2 (en) 2013-10-24 2018-05-22 Samsung Display Co., Ltd. Organic light emitting display apparatus
US10236463B2 (en) 2013-10-24 2019-03-19 Samsung Display Co., Ltd. Organic light emitting display apparatus
US10497889B2 (en) 2013-10-24 2019-12-03 Samsung Display Co., Ltd. Organic light emitting display apparatus
US10944068B2 (en) 2013-10-24 2021-03-09 Samsung Display Co., Ltd. Organic light emitting display apparatus
US11527733B2 (en) 2013-10-24 2022-12-13 Samsung Display Co., Ltd. Organic light emitting display apparatus
US11930652B2 (en) 2013-10-24 2024-03-12 Samsung Display Co., Ltd. Organic light emitting display apparatus including sub light emitting layers

Similar Documents

Publication Publication Date Title
JP5219745B2 (en) Light emitting device
JP4730469B2 (en) Display device
JP5219493B2 (en) Light emitting element and light emitting device using the same
KR101056679B1 (en) Organic light emitting device and display device
JP4573672B2 (en) Organic EL panel
JP3508741B2 (en) Display element
EP2017907A2 (en) Display apparatus
US8033675B2 (en) Light emitting device and electronic device
JP2007234253A (en) Organic electroluminescent element
JP5562379B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE AND DISPLAY DEVICE USING THE SAME
US20130082246A1 (en) Display unit
JP4655959B2 (en) Display element
JP2010287524A (en) Display element and display
JP2003123987A (en) Optical resonator
TW201301602A (en) Light emitting device, illumination apparatus and display apparatus
JP4454354B2 (en) Luminescent display device
US20140131679A1 (en) Organic light emitting devices
JP4548404B2 (en) Display device
WO2007004106A1 (en) Light-emitting device
JP2010129452A (en) Organic light-emitting element, and display device using it
JP2010040486A (en) Light-emitting device and light-emitting apparatus
US20090224661A1 (en) Organic Light Emitting Device
Li et al. Significant color space blue-shift of green OLED emitter with sustaining lifetime and substantial efficiency enhancement
JP2007257909A (en) Organic el element
CN111180500B (en) Display substrate and electroluminescent display device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630