JP2010127072A - Rotary blade of wind turbine and wind turbine keeping rotation speed constant - Google Patents

Rotary blade of wind turbine and wind turbine keeping rotation speed constant Download PDF

Info

Publication number
JP2010127072A
JP2010127072A JP2008299014A JP2008299014A JP2010127072A JP 2010127072 A JP2010127072 A JP 2010127072A JP 2008299014 A JP2008299014 A JP 2008299014A JP 2008299014 A JP2008299014 A JP 2008299014A JP 2010127072 A JP2010127072 A JP 2010127072A
Authority
JP
Japan
Prior art keywords
blade
wing
support arm
wind turbine
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299014A
Other languages
Japanese (ja)
Inventor
Masahiko Suzuki
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Global Energy Co Ltd
Original Assignee
Global Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Global Energy Co Ltd filed Critical Global Energy Co Ltd
Priority to JP2008299014A priority Critical patent/JP2010127072A/en
Publication of JP2010127072A publication Critical patent/JP2010127072A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary blade and wind turbine which keep rotation speed constant even if wind speed changes by making the blade serving as a brake to reduce rotation speed when exceeding a certain rotation speed. <P>SOLUTION: A rotary blade 8 of a wind turbine having a lift type blade at a tip of a blade support arm 10, swingably pivots a blade 12 on the tip of the blade support arm 10 through the medium of a vertical spindle 11 and has between the blade 12 and blade support arm 10, a blade opening/closing control member 15 which allows the blade 12 to swing in response to a load when the certain load or more is applied to the blade 12 during rotation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、風車の回転翼並びに回転数を一定に維持させる風車に係り、特に風速が変化しても、回転数を一定数に維持させることの出来る風車の回転翼、並びに風車に関する。   TECHNICAL FIELD The present invention relates to a wind turbine rotor blade and a wind turbine that keeps the rotation speed constant, and more particularly to a wind turbine rotor blade that can keep the rotation speed constant even when the wind speed changes, and the wind turbine.

従来、縦軸風車の揚力型翼は、翼支持腕に固定されたままで回転される。揚力型翼は、例えば特許文献1のようなものが開示されているが、風速の2乗で回転速度をたかめるため、低風速では回転数が少なく、台風などの高速風には高速で、高い回転数を示し、翼の破損につながるため、回転速度の制御対策は大きな課題となっている。
特開2005−171852号公報
Conventionally, the lift type wing of the vertical wind turbine is rotated while being fixed to the wing support arm. For example, Patent Document 1 discloses a lift-type wing, but in order to increase the rotational speed by the square of the wind speed, the rotational speed is low at low wind speeds, and high speed and high speed for high speed winds such as typhoons. Since the rotational speed is indicated and the blade is damaged, the countermeasure for controlling the rotational speed is a big issue.
JP 2005-171852 A

従来の縦軸風車は、揚力型翼が翼支持腕に固定されたままで回転するため、低風速の時は低速回転で、高速風が吹く時は、高速回転をし、風任せで回転している。従って強い風が吹くと、翼が折損し、或いは翼支持腕が折損することがある。
風速の計測により、ブレーキを作用させる装置もあるが、風は瞬間的に風速が変化するため、その変化にブレーキが機械的に反応しにくく、羽根が折損する。
この発明は、一定の回転速度を越えた時は、翼自体がブレーキとなって回転速度を低下させ、風速の変化にも回転数を一定に維持させる、風車の回転翼並びに風車を、提供することを目的としている。
The conventional vertical wind turbine rotates with the lifting wings fixed to the wing support arm, so it rotates at a low speed when the wind speed is low, and rotates at a high speed when the high speed wind blows. Yes. Therefore, when a strong wind blows, the wing may break or the wing support arm may break.
There is also a device that applies a brake by measuring the wind speed. However, since the wind speed changes momentarily, the brake is less likely to react mechanically to the change, and the blades break.
The present invention provides a wind turbine rotor blade and a wind turbine which, when exceeding a certain rotational speed, cause the blade itself to act as a brake to reduce the rotational speed and maintain the rotational speed constant even when the wind speed changes. The purpose is that.

この発明の具体的な内容は次の通りである。   The specific contents of the present invention are as follows.

(1) 翼支持腕の先端部に、揚力型翼が装着された、風車の回転翼において、翼支持腕の先端部に、垂直な支軸を介して翼がスイング可能に枢着され、翼と翼支持腕との間には、回転時に一定以上の負荷が翼にかかった時に、翼が負荷に応じてスイング可能となる、翼開閉制御部材が配設されている、風車の回転翼。   (1) In a wind turbine rotor blade having a lift-type blade attached to the tip of the blade support arm, the blade is pivotally attached to the tip of the blade support arm via a vertical support shaft. A rotor blade of a windmill in which a blade opening / closing control member is provided between the blade and the blade support arm, which allows the blade to swing in accordance with the load when a certain load or more is applied to the blade during rotation.

(2) 前記翼支持腕は、先端部における回転時の前部に、スイングする翼を枢着させる垂直な支軸が配設され、翼の回転時の前部を枢着する、前記(1)に記載された風車の回転翼。   (2) The wing support arm is provided with a vertical support shaft for pivotally attaching a swinging wing to a front portion at the time of rotation at the tip, and pivotally attached to the front portion at the time of rotation of the wing. ) The rotor blades of the windmill described in).

(3) 前記翼支持腕は、先端部において、回転時の前部に、上下二叉状の軸受腕が形成され、各軸受腕に、それぞれ垂直な支軸を介して、翼における上下の軸部が枢着される、前記(1)に記載された風車の回転翼。   (3) The wing support arm is formed with a bifurcated bearing arm at the front portion at the tip portion, and the upper and lower shafts of the wing via a vertical support shaft. The rotor blade of the windmill described in the above (1), wherein the part is pivotally attached.

(4) 前記翼支持腕は、回転時の前部の板厚が厚い断面翼形に形成され、回転時の後部に中空状の格納部が形成され、該格納部内に前記翼開閉制御部材が配設されている、前記(1)に記載された風車の回転翼。   (4) The wing support arm is formed in a cross-sectional airfoil having a thick front portion during rotation, a hollow storage portion is formed in the rear portion during rotation, and the blade opening / closing control member is provided in the storage portion. The rotor blade of the windmill described in (1) above.

(5) 前記翼支持腕は、回転時の前部の板厚が厚く後部の薄い、断面翼形に形成され、平面は、基部の幅よりも、先端部の幅が広幅に形成されている、前記(1)に記載された風車の回転翼。   (5) The blade support arm is formed in a cross-sectional airfoil having a thick front portion and a thin rear portion at the time of rotation, and the flat surface is formed with a wider width at the tip than at the width of the base. The rotor blade of the windmill described in (1) above.

(6) 前記翼支持腕は、風車の縦主軸に固定される回転体と一体に形成されている、前記(1)に記載された風車の回転翼。   (6) The wind turbine rotor blade according to (1), wherein the blade support arm is formed integrally with a rotating body fixed to the longitudinal main shaft of the wind turbine.

(7) 前記翼開閉制御部材は、翼を一定の力で翼支持腕方へ牽引する発条である、前記(1)に記載された風車の回転翼。   (7) The rotor blade of the wind turbine according to (1), wherein the blade opening / closing control member is a ridge that pulls the blade toward the blade support arm with a constant force.

(8) 前記翼開閉制御部材は、翼を一定の力で翼支持腕方へ牽引する流体圧シリンダである、前記(1)に記載された風車の回転翼。   (8) The rotor blade of the wind turbine according to (1), wherein the blade opening / closing control member is a fluid pressure cylinder that pulls the blade toward the blade support arm with a constant force.

(9) 前記翼は、側面において縦方向に複数の重量調節部が、形成されている、前記(1)に記載された風車の回転翼。   (9) The rotor blade of the windmill described in (1), wherein the blade includes a plurality of weight adjusting portions formed in a vertical direction on a side surface.

(10) 前記翼は、翼基体を発泡樹脂材で形成され、翼基体の表面に繊維層が形成され、その表面に保護層が形成されて、硬質材からなる軸部と一体に形成された骨体が前記翼基体に内装一体に形成されている、前記(1)に記載された、風車の回転翼。   (10) In the wing, the wing base is formed of a foamed resin material, the fiber layer is formed on the surface of the wing base, the protective layer is formed on the surface thereof, and is integrally formed with the shaft portion made of a hard material. The rotor blade of a windmill described in (1) above, wherein a bone body is formed integrally with the blade base.

(11) 翼支持腕の先端部に、揚力型翼が装着された風車の回転翼において、翼支持腕の先端部に、垂直な支軸を介して翼がスイング可能に枢着され、翼と翼支持腕との間には、回転時に一定以上の負荷が翼にかかった時に、翼が負荷に応じてスイング可能となる、翼開閉制御部材が配設されている回転翼を、縦主軸に固定してなる、回転数を一定に維持させる風車。   (11) In a rotor blade of a wind turbine in which a lift type wing is attached to the tip of a wing support arm, the wing is pivotally attached to the tip of the wing support arm via a vertical support shaft. Between the blade support arms, a rotating blade with a blade opening / closing control member that allows the blade to swing according to the load when a certain load or more is applied to the blade when rotating is used as the vertical main shaft. A fixed windmill that maintains a constant rotational speed.

本発明によると、次のような効果がある。   The present invention has the following effects.

(1) 前記(1)に記載された発明の風車の回転翼は、回転しているときに、高速風により回転速度があがり、それに伴い、翼に一定以上の風圧と遠心力がかかると、翼は、翼開閉制御部材の牽引力に抗して、支軸を支点としてスイングしはじめる。翼がスイングすると、揚力型翼の基本設定による、回転性能が低下して減速される。
また翼の一部が遠心方へ突出するために、回転方向に対する抵抗を生じて、ブレーキ作用が生じるので、回転速度が上がらないように制動がかかる。
風速が低下すると、回転に伴う遠心力も低下するため、翼は翼開閉制御部材の牽引力で、翼支持腕の方へ位置を回復する作用が生じる。このように風速の変化に応じて、翼がスイングの幅を変化させて、一定の回転数より上ることがなく、風車の過回転が制御される。
風速の変化に対して、翼の回転数が一定に維持されるので、斑のない安定した発電をさせることができる。
(1) When the rotating blade of the windmill of the invention described in (1) is rotating, the rotational speed is increased by the high-speed wind, and accordingly, when the wind pressure and centrifugal force exceeding a certain level are applied to the blade, The wing begins to swing around the support shaft against the traction force of the wing opening / closing control member. When the wing swings, the rotational performance is reduced due to the basic setting of the lift type wing, and the speed is reduced.
Further, since a part of the wing protrudes in the centrifugal direction, a resistance to the rotation direction is generated and a braking action is generated, so that braking is applied so that the rotation speed does not increase.
When the wind speed is reduced, the centrifugal force accompanying the rotation is also reduced, so that the blades are restored to their position toward the blade support arm by the traction force of the blade opening / closing control member. In this way, the blades change the width of the swing in accordance with the change in the wind speed, and the overspeed of the windmill is controlled without exceeding a certain number of rotations.
Since the rotation speed of the blade is kept constant with respect to the change in the wind speed, stable power generation without spots can be achieved.

(2) 前記(2)に記載された発明の風車の回転翼は、回転時の翼の前部に支軸があるので、翼のスイングは、回転時に翼の後部が遠心方へ突出されるため、回転方向の風圧が翼の外側面にかかり、ブレーキ作用を生じて減速され、翼の損傷が生じにくい。   (2) Since the rotor blade of the windmill according to the invention described in (2) has a support shaft at the front part of the blade during rotation, the rear part of the blade protrudes in the centrifugal direction during rotation of the blade. Therefore, the wind pressure in the rotation direction is applied to the outer surface of the blade, causing a braking action and being decelerated, and the blade is hardly damaged.

(3) 前記(3)に記載された発明の風車の回転翼は、翼支持腕の先端部における二叉状の軸受腕で、翼が支持されるので、翼に強い風圧を受けても、翼に安定した風圧がかかり破損しにくい。   (3) Since the rotor blade of the windmill of the invention described in (3) is supported by the bifurcated bearing arm at the tip of the blade support arm, even if the blade receives strong wind pressure, Stable wind pressure is applied to the wing, making it difficult to break.

(4) 前記(4)に記載された発明の風車の回転翼は、翼支持腕における回転時の後部に、翼開閉制御部材が格納されているので、大きな翼開閉制御部材を使用しても、風圧の影響を受けにくい。   (4) Since the blade opening / closing control member of the wind turbine rotor according to the invention described in (4) is housed in the rear portion of the blade support arm during rotation, even if a large blade opening / closing control member is used, Insensitive to wind pressure.

(5) 前記(5)に記載された発明の風車の回転翼は、翼支持腕の平面における幅が、基部よりも先端部が幅広く形成されているので、回転時に翼支持腕の後部から離脱する、高速な負圧気流が内向きに通過し、その結果、それと逆方向へ流れる常圧の気流が、翼の内側面を外前方へ押して、回転力を高める。   (5) Since the rotor blade of the wind turbine according to the invention described in (5) has a width in the plane of the blade support arm that is wider at the tip than at the base, it is detached from the rear of the blade support arm during rotation. Thus, a high-speed negative-pressure airflow passes inward, and as a result, the normal-pressure airflow that flows in the opposite direction pushes the inner surface of the wing outward and increases the rotational force.

(6) 前記(6)に記載された発明の風車の回転翼は、翼支持腕が回転体に連続して一体に形成されているので、強度に優れている。   (6) The rotor blade of the windmill according to the invention described in (6) above is excellent in strength because the blade support arm is formed continuously and integrally with the rotor.

(7) 前記(7)に記載された発明の風車の回転翼は、翼開閉制御部材が発条で形成されているので、遠心力に対応する牽引力を正確に設定し、調節することができる。   (7) Since the blade opening / closing control member of the rotor blade according to the invention described in (7) is formed with a ridge, the tractive force corresponding to the centrifugal force can be accurately set and adjusted.

(8) 前記(8)に記載された発明の風車の回転翼は、翼開閉制御部材が流体圧シリンダであるので、大型な回転翼においても、翼のスイング角度を、正確にコントロールすることができる。   (8) Since the blade opening / closing control member of the invention described in (8) is a fluid pressure cylinder, the swing angle of the blade can be accurately controlled even in a large rotor blade. it can.

(9) 前記(9)に記載された発明の風車の回転翼は、翼の側面に複数の重量調節部が形成されているので、重錘を付加して遠心力に対応させて、翼のスイングをよく作用させることができる。   (9) Since the rotating blade of the wind turbine according to the invention described in (9) has a plurality of weight adjusting portions formed on the side surface of the blade, a weight is added to correspond to the centrifugal force, Swing can work well.

(10) 前記(10)に記載された発明の風車の回転翼は、翼の翼基体が発泡樹脂で形成され、繊維層で被覆されているので、翼を軽量に形成することができ、剛性にも優れている。   (10) In the rotor blade of the windmill according to the invention described in (10), since the blade base of the blade is formed of a foamed resin and covered with a fiber layer, the blade can be formed lightweight and rigid. Also excellent.

(11) 前記(11)に記載された発明の風車は、高速風によって翼が高速回転すると、翼に遠心力が作用して、翼開閉制御部材の牽引力に抗して翼がスイングする。
その結果、翼の持つ回転性能が損なわれ、かつ翼の外側面に風圧の抵抗を受けてブレーキ作用が生じるので、回転速度が低下するため、過回転が抑止される。
風速が衰えると、遠心力も低下するため、翼開閉制御部材の収縮牽引力によって、翼は位置の復元作用が生じる。このため風速の変化によって、翼のスイング幅が変化して、結果的に翼の回転数を、一定に維持させることができる。
(11) In the windmill of the invention described in (11), when the blade rotates at high speed by the high-speed wind, centrifugal force acts on the blade, and the blade swings against the traction force of the blade opening / closing control member.
As a result, the rotational performance of the wing is impaired, and the outer surface of the wing receives a resistance of wind pressure to cause a braking action. Therefore, the rotational speed is reduced, and thus over-rotation is suppressed.
When the wind speed decreases, the centrifugal force also decreases, so that the blades are restored in position by the contraction and traction force of the blade opening / closing control member. For this reason, the swing width of the blade is changed by the change of the wind speed, and as a result, the rotational speed of the blade can be kept constant.

風車の回転翼において、翼支持腕の先端部に、翼をスイング可能に装着させる。     In the rotor blade of the windmill, the blade is swingably attached to the tip of the blade support arm.

この発明の実施例1を、図面を参照して説明する。図1は回転数を一定に維持させる風車(以下単に風車という)の正面図、図2は図1におけるA−A横断面の翼のある回転翼の平面図、図3は回転翼の翼がスイングした状態を示す平面図である。   A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view of a windmill that maintains a constant rotational speed (hereinafter simply referred to as a windmill), FIG. 2 is a plan view of a rotary blade with blades of AA cross section in FIG. 1, and FIG. It is a top view which shows the state which swung.

図において風車1は、風車支柱2上に風車筐体3が支持され、該風車筐体3に縦主軸4が回転自在に支持されている。符号5は支持体、6はベアリング、7は発電コイル、14はキャップである。発電コイル7からは、図示しないコードが風車支柱2の中を通って、下方に延設されて、蓄電池などに接続される。   In the drawing, a windmill 1 has a windmill casing 3 supported on a windmill support 2, and a vertical main shaft 4 is rotatably supported by the windmill casing 3. Reference numeral 5 is a support, 6 is a bearing, 7 is a power generation coil, and 14 is a cap. From the power generating coil 7, a cord (not shown) passes through the wind turbine support 2 and extends downward to be connected to a storage battery or the like.

該縦主軸4の上部に、回転翼8の回転体9が固定されている。回転翼8は、回転体9と翼支持腕10と翼12との、組合わせで一体に構成されている。
回転体9の側部には、複数(図では二)の翼支持腕10が、水平放射方向を向いて、対称に固定されている。
A rotating body 9 of a rotary blade 8 is fixed to the upper part of the vertical main shaft 4. The rotary blade 8 is configured integrally by combining the rotary body 9, the blade support arm 10, and the blade 12.
A plurality (two in the figure) of blade support arms 10 are fixed symmetrically on the side of the rotating body 9 in the horizontal radial direction.

該翼支持腕10の先端部に、垂直な支軸11を介して、揚力型の翼12の軸部12aが枢着されて、翼12が水平方向でスイング可能に装着されている。符号12bは、翼12の先端部が、回転体9の方向へ傾斜された傾斜部である。該傾斜部12bは、翼の内側面にあたって、翼端方へ拡散される風流を抑止して、回転力を高める作用がある。   A shaft portion 12a of a lift-type wing 12 is pivotally attached to the tip portion of the wing support arm 10 via a vertical support shaft 11, and the wing 12 is mounted so as to be swingable in the horizontal direction. Reference numeral 12 b is an inclined portion in which the tip of the blade 12 is inclined in the direction of the rotating body 9. The inclined portion 12b has an effect of increasing the rotational force by suppressing the wind flow diffused toward the blade tip on the inner surface of the blade.

図1において、回転体9の上部は、平坦な底を持つ深鉢状の容器状に形成され、内部に前記発電コイル7と対応するように、磁石13が環状に配設されている。すなわち、磁石13の磁力線が発電コイル7に作用し、磁石13が、回転体9と共に回転することによって、発電コイル7に作用している磁力線が、間歇的に分断されることにより、発電コイル7に電流が生じて発電される。   In FIG. 1, the upper portion of the rotating body 9 is formed in a deep bowl-like container shape having a flat bottom, and a magnet 13 is annularly arranged inside the rotating body 9 so as to correspond to the power generating coil 7. That is, the magnetic lines of force of the magnet 13 act on the power generating coil 7, and the magnetic line acting on the power generating coil 7 is intermittently divided by rotating the magnet 13 together with the rotating body 9. An electric current is generated and power is generated.

図2に示すように、回転翼8の翼支持腕10の先端部であって、回転時の後部に格納部10aが空胴に形成されている。該格納部10aに、発条からなる翼開閉制御部材15が配設され、その基部は、翼支持腕10に長さ調節可能に固定され、先端部は、翼12の牽引部12cに連結されている。   As shown in FIG. 2, a storage portion 10a is formed in the cavity at the tip of the blade support arm 10 of the rotary blade 8 and at the rear of the blade during rotation. A wing opening / closing control member 15 made of a spring is disposed in the storage portion 10 a, a base portion thereof is fixed to the wing support arm 10 so that the length thereof can be adjusted, and a tip portion is connected to a pulling portion 12 c of the wing 12. Yes.

前記翼開閉制御部材15は、翼12にかかる風圧と遠心力による、一定の負荷には耐えられるもので、当該一定の負荷以上の負荷が翼12にかかると、当該負荷に応じて遠心方向へ、翼12をスイングさせる作用を持つもので、その形態は何でもよい。
発条はコイルバネ、ヒゲバネ、板バネ、などを常法により使用することができる。また、流体シリンダ等による流体圧、或いは、サーボモータで回転制御される送りネジ棒を、利用することができる。
The blade opening / closing control member 15 can withstand a certain load due to wind pressure and centrifugal force applied to the blade 12. When a load exceeding the certain load is applied to the blade 12, the blade opening / closing control member 15 moves in the centrifugal direction according to the load. It has the effect | action which makes the wing | wing 12 swing, and the form may be what.
For the staking, a coil spring, a mustache spring, a leaf spring, etc. can be used in a conventional manner. Further, fluid pressure by a fluid cylinder or the like, or a feed screw rod whose rotation is controlled by a servo motor can be used.

風車1の回転時に、翼開閉制御部材15の牽引力を越える、強い風圧と遠心力の負荷が翼12にかかると、翼12の回転時の後部は、図3に示すように、翼開閉制御部材15の収縮牽引力に抗して、遠心方向へスイングすることができる。   When the wind turbine 1 is rotated, if a strong wind pressure and centrifugal force load exceeding the traction force of the blade opening / closing control member 15 is applied to the blade 12, the rear portion of the blade 12 is rotated as shown in FIG. It can swing in the centrifugal direction against 15 contraction traction forces.

風速が弱まって遠心力が低下すると、翼12は、翼開閉制御部材15の牽引力に対応して、スイング角度を小さくする。図3における符号10bは、翼開閉制御部材15が配設される、格納部10aの開閉扉である。この開閉扉10bを開いて、中の翼開閉制御部材15の強弱調節などの、作業をすることができる。   When the wind speed weakens and the centrifugal force decreases, the blade 12 reduces the swing angle corresponding to the traction force of the blade opening / closing control member 15. Reference numeral 10b in FIG. 3 is an opening / closing door of the storage portion 10a in which the blade opening / closing control member 15 is disposed. The opening / closing door 10b can be opened to perform operations such as adjusting the strength of the inner blade opening / closing control member 15.

風速の強弱に従って、翼12にかかる遠心力も強弱となり、翼12のスイングの幅は、変化する。翼12の回転時の後部が、遠心方へ突出すればするほど、揚力型翼のもつ回転性能が減退し、かつ回転に伴う風圧抵抗を、翼12の外側面に受けるので、ブレーキ作用が生じて、風車1の回転数は低下する。   As the wind speed increases or decreases, the centrifugal force applied to the blade 12 also increases and decreases, and the swing width of the blade 12 changes. The more the rear part of the blade 12 rotates, the more it protrudes in the centrifugal direction, the lower the rotational performance of the lift-type blade, and the wind pressure resistance that accompanies the rotation is applied to the outer surface of the blade 12 so that braking action occurs. Thus, the rotational speed of the windmill 1 decreases.

従って風速の変化があっても、高速風で回転数が上がろうとすると、翼12がブレーキ作用を生じて、翼12の回転速度を制御するので、風車の回転数が一定範囲に維持される。
高速風があたっても、回転翼8の回転数があがらなければ、翼12にかかる遠心力による負荷が、かかり過ぎることがなく、翼12が高速風で破壊されることが防止される。また過回転による発電器の加熱や、風車1の揺れなどの被害が防止される。
Therefore, even if there is a change in the wind speed, if the rotational speed is increased by high-speed wind, the blade 12 causes a braking action and controls the rotational speed of the blade 12, so that the rotational speed of the windmill is maintained within a certain range. .
Even if high-speed wind is applied, if the rotational speed of the rotary blade 8 does not increase, a load due to the centrifugal force applied to the blade 12 is not excessively applied, and the blade 12 is prevented from being broken by the high-speed wind. In addition, damage such as heating of the generator due to over-rotation and shaking of the windmill 1 is prevented.

図1において、風車1が回転すると、普通の風速では、翼12が破損することはない。風力発電は風速4m/sの風が、年間2000時間以上吹かなければ、採算に合わないとされている。風速4m/sの風は、木の小枝や葉が絶えず動く状態である。   In FIG. 1, when the windmill 1 rotates, the blades 12 are not damaged at a normal wind speed. Wind power generation is said to be unprofitable unless winds with a wind speed of 4 m / s blow for more than 2000 hours per year. Wind with a wind speed of 4 m / s is a state in which twigs and leaves of trees constantly move.

風速11m/s〜13m/sでは、木の大枝が動き、電線がうなり、傘は差しにくくなる。一般の風力発電機は、風速13m/sで定格を表示したものが多いが、このような風速は、年間を通して多くはないから、この定格を標準にした風力発電機は実用性がない。 そのことは、低風速でも効率のよい発電が出来る風車が要求されるが、本願風車は、風速4m/s以下の低風速でも、効率の良い発電をさせることができる。   At wind speeds of 11 m / s to 13 m / s, the tree branches move, the electric wires beat and the umbrella becomes difficult to put in. Many common wind power generators display ratings at a wind speed of 13 m / s. However, since such wind speeds are not high throughout the year, wind generators based on this rating are not practical. This means that a wind turbine capable of generating power efficiently even at low wind speeds is required, but the present wind turbine can generate power efficiently even at low wind speeds of 4 m / s or less.

風速14m/sを越えると、人は風に向って歩けなくなる。自動車は横揺れをして運転が困難になる。ビニールハウスは壊れはじめる。
風速20m/s〜24m/sになると、人は転倒し、鋼製のシャッターがこわれたり、いわゆる暴風となり、看板が飛ばされたり、ブロック塀が壊れたりする。
If the wind speed exceeds 14 m / s, people cannot walk toward the wind. Cars roll and become difficult to drive. The greenhouse starts to break.
When the wind speed reaches 20 m / s to 24 m / s, the person falls down, the steel shutter is broken, a so-called windstorm occurs, the signboard is blown, or the block fence is broken.

従って、風車の翼は、風速24m/sまでは耐えられるような剛性(風圧32kg重/m2)に設計されるが、風速は絶えず強弱があり、瞬間風速はこれら平均値の1.5倍から3倍を越えることがあるので、設計の予測を上回る風速を受けて、翼1の破壊が生じる虞がある。 Therefore, the blades of the windmill are designed to have rigidity (wind pressure 32 kgf / m 2 ) that can withstand wind speeds up to 24 m / s, but the wind speed is constantly strong and the instantaneous wind speed is 1.5 times the average value. Since there is a possibility that the blade 1 will be broken by receiving a wind speed exceeding the design prediction.

この発明の風車1は、このような実情から、風速10m/s以下で効率のよい発電ができて、一定の負荷、例えば風速20m/s(風圧20kg重/m2)までは耐えられて、それを越える負荷が翼12にかかった時は、自然に翼12がスイングして、翼の回転性能を自ら低下させ、ブレーキ作用で回転速度が減退する。 From such a situation, the windmill 1 of the present invention can efficiently generate power at a wind speed of 10 m / s or less, can withstand a certain load, for example, a wind speed of 20 m / s (wind pressure 20 kgf / m 2 ), When a load exceeding that is applied to the wing 12, the wing 12 swings naturally, and the rotation performance of the wing is reduced by itself, and the rotation speed is reduced by the braking action.

翼12のスイング幅は風速に対応するため、回転数が上がるとブレーキがかかり、風車1の回転数は、高速風に遭っても一定数の範囲で維持される。
前記一定の負荷値は、前記に限定されるものではなく、風車個々の剛性、形態、等から、その風車個々に合わせて設定される。
Since the swing width of the blade 12 corresponds to the wind speed, the brake is applied when the rotational speed increases, and the rotational speed of the windmill 1 is maintained within a certain number of ranges even when high speed wind is encountered.
The constant load value is not limited to the above, and is set according to the individual windmill from the rigidity, form, etc. of the individual windmill.

風車の翼の、高速風による破損は、過回転が主な原因である。過回転により、翼に遠心力が付加されるため、風圧と遠心力の総合負荷が、翼12の一部にかかることにより、翼12の脆弱部分が破壊される。翼は停止していれば、風は翼12の表面形に沿って通過する。適度の回転をしていると、翼12にかかる負荷が一時的なので、大きなダメージを受けることは少ない。   Damage to wind turbine blades caused by high-speed wind is mainly caused by over-rotation. Since the centrifugal force is applied to the blade due to the excessive rotation, the fragile portion of the blade 12 is destroyed by applying a total load of wind pressure and centrifugal force to a portion of the blade 12. If the wing is stopped, the wind will pass along the surface shape of the wing 12. If the rotation is moderate, the load applied to the wing 12 is temporary, so that it is unlikely to receive significant damage.

図2に示す翼支持腕10は、図4に示すような、回転時の前部の板厚は厚く、後部へかけて、次第に薄くした略翼形に形成されている。従って回転翼8の回転時に、この翼支持腕10にあたる気流は、コアンダ効果で表面形状なりに通過する。翼支持腕10の上面に沿って通過する気流は、下面に沿う気流よりも高速となって、回転後部の下方へ通過する。   The blade support arm 10 shown in FIG. 2 is formed in a substantially airfoil shape having a thick plate at the front part during rotation as shown in FIG. 4 and gradually becoming thinner toward the rear part. Therefore, when the rotary blade 8 rotates, the airflow that hits the blade support arm 10 passes through the surface shape due to the Coanda effect. The airflow passing along the upper surface of the wing support arm 10 becomes faster than the airflow along the lower surface and passes below the rotating rear part.

また図8に示すように、翼支持腕10は平面において、基部の幅よりも先端部の幅が、幅広く形成されている。従って、基部の回転速度よりも、先端部の回転速度の方が早くなり、その先端上部に負圧が生じるので、翼支持腕10の先端後部は、前方へ常圧気流によって押される。符号Rは翼12の回転軌跡である。   Further, as shown in FIG. 8, the blade support arm 10 is formed so that the width of the tip portion is wider than the width of the base portion in the plane. Accordingly, the rotational speed of the tip portion is faster than the rotational speed of the base portion, and negative pressure is generated at the upper portion of the tip portion. Therefore, the rear end portion of the blade support arm 10 is pushed forward by the atmospheric pressure air flow. Reference symbol R is a rotation locus of the blade 12.

翼支持腕10の回転前面線Fと、回転後面線Gとは、回転中心を通る放射線上にないので、翼支持腕10の上面に沿って、回転後面線Gから離脱する風流は、図8に示すように、回転後面線Gに対して略直角方向の、A矢示下方へ抜ける。
その結果、A矢示方向とは逆の方向へ向かって、常圧流が翼支持腕12の後上面に当って、これを押し、翼12の内側面を回転前方へ押す。
Since the rotation front line F and the rotation rear surface line G of the wing support arm 10 are not on the radiation passing through the center of rotation, the wind flow separating from the rotation rear surface line G along the upper surface of the wing support arm 10 is shown in FIG. As shown in FIG. 4, the direction is substantially perpendicular to the rear surface line G, and moves downward in the direction indicated by the arrow A.
As a result, the normal pressure flow hits the rear upper surface of the blade support arm 12 in the direction opposite to the direction indicated by the arrow A, and pushes the inner surface of the blade 12 forward.

すなわち図8において、回転する翼12の内側面に沿って通過する気流よりも、外側面に沿って通過する気流の方が早くなるが、その翼12の内側面よりも、翼支持腕10の方が回転中心に近いために、比較の上では、翼支持腕10よりも翼12の内側面に沿って、後方へ通過する気流の方が早くなって、負圧になっている。   That is, in FIG. 8, the airflow passing along the outer surface is faster than the airflow passing along the inner surface of the rotating wing 12, but the airflow of the wing support arm 10 is faster than the inner surface of the wing 12. Since the direction is closer to the center of rotation, for comparison, the airflow passing rearward along the inner surface of the blade 12 is faster than the blade support arm 10, resulting in a negative pressure.

従って、A矢示流と逆方向に押寄せる常圧気流は、負圧になっている翼12の内側面にも、押寄せて回転力となる。
しかし、図3に示すように、翼12の回転時の後方がスイングしたときは、図8における翼支持腕10の、先端部におけるA矢示の気流は、遠心力の作用によって、翼12の内側部後方へ拡散される。
Therefore, the atmospheric airflow that pushes in the direction opposite to the direction indicated by the arrow A also pushes against the inner surface of the blade 12 that is in a negative pressure and becomes a rotational force.
However, as shown in FIG. 3, when the back of the blade 12 is swung as shown in FIG. 3, the airflow indicated by the arrow A at the tip of the blade support arm 10 in FIG. It diffuses to the inner part rear side.

図4は実施例2を示す回転翼の側面図で、図5は回転翼の要部平面図である。前例と同じ部位には同じ符号を付して説明を省略する。図示するように、回転翼8の翼支持腕10は、前部の板厚が厚く、後部は薄くされた断面翼形に形成されている。該翼支持腕10の先端部における回転時の前部に、上下方へ二叉状に一定長さで突出された、軸受腕10Aが形成されている。   FIG. 4 is a side view of the rotor blade showing the second embodiment, and FIG. 5 is a plan view of the main part of the rotor blade. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted. As shown in the drawing, the blade support arm 10 of the rotor blade 8 is formed in a cross-sectional airfoil shape in which the front part is thick and the rear part is thin. A bearing arm 10 </ b> A is formed at the front part of the blade support arm 10 at the time of rotation, and protrudes upward and downward with a fixed length in a bifurcated manner.

該軸受腕10Aの先端部には、それぞれ翼12の前側部に形成された、上下一対の軸部12aの軸孔と対応するように、支軸11が配設されている。該支軸11を介して、図5に示すように、翼12の前部が枢着され、翼12がスイング可能に、上下二点で強固に装着される。これによって翼12は、安定したスイングをすることができる。   A support shaft 11 is disposed at the tip of the bearing arm 10A so as to correspond to the shaft holes of the pair of upper and lower shaft portions 12a formed on the front side portion of the blade 12 respectively. As shown in FIG. 5, the front portion of the wing 12 is pivotally attached via the support shaft 11, and the wing 12 is swingably attached at two upper and lower points. Thereby, the wing | blade 12 can perform the stable swing.

図6は、実施例3を示す回転翼の側面図である。前例と同じ部位には同じ符号を付して説明を省略する。この回転翼10では、翼12の側面に、上下方へ複数の重量調節部12cが形成されている。該重量調節部12cは、軽量な翼12の回転慣性を高めるとともに、遠心力の作用で、スイングが容易に生じるようにするものである。符号12dは、連結線であり、該連結線12dより先端部は、図1に断面を示すように、取外しが可能に形成されている。   FIG. 6 is a side view of the rotor blade showing the third embodiment. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted. In the rotary blade 10, a plurality of weight adjusting portions 12 c are formed on the side surface of the blade 12 in the upward and downward direction. The weight adjusting unit 12c increases the rotational inertia of the lightweight wing 12 and makes the swing easily occur by the action of centrifugal force. Reference numeral 12d denotes a connecting line, and the tip of the connecting line 12d is detachable as shown in a cross section in FIG.

重量調節部12の形態としては、目的に合うものなら、どのようなものでもよいが、例えば、ナットをその孔を左右に向けて埋設させる。そのナットに合う、適宜重量の無頭ネジを外から羅合して、翼12全体の重量を調節させることができる。   As a form of the weight adjusting portion 12, any shape may be used as long as it suits the purpose. For example, a nut is embedded with its holes facing left and right. The weight of the blade 12 as a whole can be adjusted by fitting a headless screw of appropriate weight that fits the nut from the outside.

図7は、翼12の軸部12a部分での横断面を示す。軸部12aは金属で形成されるが、翼12における取付強度を高めるために、軸部12aの基部には、縦長の骨体121が固定されている。   FIG. 7 shows a cross section of the shaft portion 12 a of the blade 12. Although the shaft portion 12a is formed of metal, a vertically long bone body 121 is fixed to the base portion of the shaft portion 12a in order to increase the attachment strength of the wing 12.

該骨体121は、翼12の内部で縦長で、かつ翼弦長方へ広くして内装されているので、翼12の芯部が発泡樹脂で、表面がFRPでも堅固に固定され、ぐらつきが生じない剛性を得ることができる。   Since the bone body 121 is vertically long inside the wing 12 and widened in the direction of the chord, the core portion of the wing 12 is made of foamed resin, and the surface is firmly fixed even with FRP, and the wobble is Rigidity that does not occur can be obtained.

この発明は縦軸風車の翼を、風速に応じてスイングするようにしたので、高速風では回転速度が増加すると、スイングした翼がブレーキ作用をして、風車の回転数を減退させるので、高速風の中でも回転数は一定範囲に維持される。風力発電に利用されると、常に風速が変化しても、安全で、かつ安定した回転数により、安定した電力が得られる。   Since the present invention swings the blades of the vertical axis wind turbine according to the wind speed, when the rotational speed increases in the high speed wind, the swinging blade acts as a brake and reduces the rotational speed of the wind turbine. The rotational speed is maintained within a certain range even in the wind. When used for wind power generation, stable power can be obtained with a safe and stable rotational speed even if the wind speed constantly changes.

本発明にかかる風車の正面図である。It is a front view of the windmill concerning this invention. 図1におけるA−A横断面を持つ回転翼の平面図である。It is a top view of the rotary blade which has the AA cross section in FIG. 翼がスイングした回転翼の平面図である。It is a top view of the rotary blade which the wing | swing swung. 翼支持腕の側面先端面図である。It is a side front end view of a wing support arm. 実施例2を示す回転翼の一部正面図である。6 is a partial front view of a rotor blade showing Example 2. FIG. 実施例3を示す回転翼の側面図である。6 is a side view of a rotor blade showing Example 3. FIG. 翼の軸部部分横断平面図である。It is a shaft part partial cross section top view of a wing | blade. 説明用回転翼の平面図である。It is a top view of the rotary blade for description.

符号の説明Explanation of symbols

1.風車
2.風車支柱
3.風車筐体
4.縦主軸
5.支持体
6.ベアリング
7.発電コイル
8.回転翼
9.回転体
9a.軸孔
9b.ボルト孔
10.翼支持腕
10A.軸受腕
10a.格納部
10b.開閉蓋
11.支軸
12.翼
12a.軸部
121.軸部の骨体
12b.傾斜部
12c.牽引部
12d.連結部
13.磁石
14.キャップ
15.翼開閉制御部材
1. Windmill 2. 2. Wind turbine support Windmill housing4. 4. Vertical spindle Support 6. 6. Bearing Generator coil8. Rotor blade 9. Rotating body 9a. Shaft hole 9b. Bolt hole 10. Wing support arm 10A. Bearing arm 10a. Storage unit 10b. Opening / closing lid 11. Support shaft 12. Wings 12a. Shaft part 121. Bone body 12b. Inclined portion 12c. Towing unit 12d. Connecting part 13. Magnet 14. Cap 15. Blade opening / closing control member

Claims (11)

翼支持腕の先端部に、揚力型翼が装着された風車の回転翼において、翼支持腕の先端部に、垂直な支軸を介して翼がスイング可能に枢着され、翼と翼支持腕との間には、回転時に一定以上の負荷が翼にかかった時に、翼が負荷に応じてスイング可能となる、翼開閉制御部材が配設されていること、を特徴とする風車の回転翼。 In a wind turbine rotor blade with a lift-type wing attached to the tip of the wing support arm, the wing is pivotally attached to the tip of the wing support arm via a vertical support shaft. A blade opening / closing control member is provided between which the blade opening and closing control member is arranged so that the blade can swing according to the load when a certain load is applied to the blade during rotation. . 前記翼支持腕は、先端部における回転時の前部に、スイングする翼を枢着させる支軸が配設され、翼の回転時の前部を枢着すること、を特徴とする請求項1に記載された風車の回転翼。 2. The wing support arm is provided with a support shaft for pivotally attaching a swinging wing at a front portion when the tip portion is rotated, and pivotally attaching a front portion when the wing is rotated. Wind turbine rotor described in 1. 前記翼支持腕は、先端部において、回転時の前部に、上下二叉状の軸受腕が形成され、各軸受腕に、それぞれ垂直な支軸を介して、翼における上下の軸部が枢着されること、を特徴とする請求項1に記載された風車の回転翼。 The wing support arm has a bifurcated bearing arm formed at the front part of the blade at the tip, and the upper and lower shaft parts of the wing are pivoted to each bearing arm via a vertical support shaft. The rotor blade of the wind turbine according to claim 1, wherein the rotor blade is worn. 前記翼支持腕は、回転時の前部の板厚が厚く後部が薄い、断面翼形に形成され、回転時の後部に中空状の格納部が形成され、該格納部内に前記翼開閉制御部材が配設されていること、を特徴とする請求項1に記載された風車の回転翼。 The blade support arm is formed in a cross-sectional airfoil having a thick front portion and a thin rear portion during rotation, and a hollow storage portion is formed in the rear portion during rotation, and the blade opening / closing control member is formed in the storage portion. The rotor blade of the wind turbine according to claim 1, wherein the rotor blade is disposed. 前記翼支持腕は、回転時の前部の板厚が厚く後部が薄い、断面翼形に形成され、平面は、基部の幅よりも先端部の幅が、広幅に形成されていること、を特徴とする請求項1に記載された風車の回転翼。 The wing support arm is formed in a cross-sectional airfoil having a thick front part and a thin rear part at the time of rotation, and the flat surface is formed with a wider tip than a base. The rotor blade of the wind turbine according to claim 1, wherein 前記翼支持腕は、風車の縦主軸に固定される回転体と一体に形成されていること、を特徴とする請求項1に記載された風車の回転翼。 The said blade support arm is integrally formed with the rotary body fixed to the vertical main axis | shaft of a windmill, The rotary blade of the windmill described in Claim 1 characterized by the above-mentioned. 前記翼開閉制御部材は、翼を一定の力で翼支持腕方へ牽引する発条であること、を特徴とする請求項1に記載された風車の回転翼。 2. The wind turbine rotor blade according to claim 1, wherein the blade opening / closing control member is a ridge that pulls the blade toward the blade support arm with a constant force. 3. 前記翼開閉制御部材は、翼を一定の力で翼支持腕方へ牽引する、流体圧シリンダであること、を特徴とする請求項1に記載された風車の回転翼。 2. The wind turbine rotor blade according to claim 1, wherein the blade opening / closing control member is a fluid pressure cylinder that pulls the blade toward the blade support arm with a constant force. 3. 前記翼は、側面において縦方向に複数の重量調節部が、形成されていることを特徴とする請求項1に記載された風車の回転翼。 The wind turbine rotor blade according to claim 1, wherein a plurality of weight adjusting portions are formed in a vertical direction on a side surface of the blade. 前記翼は、翼基体を発泡樹脂材で形成され、該翼基体の表面に繊維層が形成され、その表面に保護層が形成されて、硬質材からなる軸部と一体に形成された骨体が、前記翼基体に内装一体に形成されていること、を特徴とする請求項1に記載された、風車の回転翼。 In the wing, the wing base is formed of a foamed resin material, a fiber layer is formed on the surface of the wing base, a protective layer is formed on the surface, and a bone body formed integrally with a shaft portion made of a hard material. The rotor blade of the wind turbine according to claim 1, wherein the blade body is integrally formed with the blade base. 翼支持腕の先端部に揚力型翼が装着された風車の回転翼において、翼支持腕の先端部に、垂直な支軸を介して翼がスイング可能に枢着され、翼と翼支持腕との間には、回転時に一定以上の負荷が翼にかかった時に、翼が負荷に応じてスイング可能となる、翼開閉制御部材が配設されている回転翼を、縦主軸に固定してなること、を特徴とする、回転数を一定に維持させる風車。 In a rotor blade of a wind turbine in which a lift type wing is attached to the tip of the wing support arm, the wing is pivotally attached to the tip of the wing support arm via a vertical support shaft, and the wing, the wing support arm, Between the rotary main shaft, a rotary blade provided with a blade opening / closing control member, which allows the blade to swing according to the load when a certain load is applied to the blade during rotation, is fixed A windmill that maintains a constant rotation speed.
JP2008299014A 2008-11-25 2008-11-25 Rotary blade of wind turbine and wind turbine keeping rotation speed constant Pending JP2010127072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299014A JP2010127072A (en) 2008-11-25 2008-11-25 Rotary blade of wind turbine and wind turbine keeping rotation speed constant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299014A JP2010127072A (en) 2008-11-25 2008-11-25 Rotary blade of wind turbine and wind turbine keeping rotation speed constant

Publications (1)

Publication Number Publication Date
JP2010127072A true JP2010127072A (en) 2010-06-10

Family

ID=42327648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299014A Pending JP2010127072A (en) 2008-11-25 2008-11-25 Rotary blade of wind turbine and wind turbine keeping rotation speed constant

Country Status (1)

Country Link
JP (1) JP2010127072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194724A (en) * 2012-03-23 2013-09-30 Atsushi Shimizu Rotary blade of magnus type wind power generator
KR101502737B1 (en) * 2013-11-19 2015-03-13 케이-테크놀로지 유에스에이, 아이엔씨. Power generating system using wasting energy from moving objects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013194724A (en) * 2012-03-23 2013-09-30 Atsushi Shimizu Rotary blade of magnus type wind power generator
KR101502737B1 (en) * 2013-11-19 2015-03-13 케이-테크놀로지 유에스에이, 아이엔씨. Power generating system using wasting energy from moving objects

Similar Documents

Publication Publication Date Title
US4582013A (en) Self-adjusting wind power machine
ES2269517T3 (en) ACIMUTAL CONTROL OF A WIND ENERGY INSTALLATION IN CASE OF STORM.
JP4041838B2 (en) Wind turbine and wind power generator for wind power generation
CN101622448B (en) Vertical shaft windmill
ES2391332B1 (en) AEROGENERATOR ASSEMBLY-FLOATING PLATFORM AND METHOD FOR THE ORIENTATION OF SUCH ASSEMBLY.
JP4690776B2 (en) Horizontal axis windmill
US20040197188A1 (en) Downstream wind turbine
KR100720287B1 (en) Wind power generator
JP2007064062A (en) Horizontal axis windmill
ES2743739T3 (en) Actuation of load management devices on aerodynamic blades
JPS5920871B2 (en) windmill
JP5200117B2 (en) Wind turbine rotor design method, wind turbine rotor design support device, wind turbine rotor design support program, and wind turbine rotor
JP2010127072A (en) Rotary blade of wind turbine and wind turbine keeping rotation speed constant
JP2007009822A (en) Propeller windmill
JP2005090332A (en) Darrieus wind turbine
JP5110550B1 (en) Propeller windmill for small generator
CN203717235U (en) Multilayer unfolding-wing swinging-blade type vertical shaft wind power generating unit
ES2305248T3 (en) WIND TURBINE WITH SECONDARY ROTORS.
EP2686547B1 (en) Downwind turbine with free yaw system
JP2009002214A (en) Automatic wind direction tracking wind turbine of air power type
JP2021528600A (en) Windmill including rotor assembly and rotor assembly
JP6654821B2 (en) Horizontal axis windmill
JP2001165034A (en) Movable blade windmill with safety valve
KR100979177B1 (en) Wind-turbine apparatus
CN201934261U (en) Small-sized wind power generating device