JP2010125639A - Liquid-droplet ejecting head, liquid-droplet ejecting apparatus, method of manufacturing the liquid-droplet ejecting head, and method of manufacturing the liquid-droplet ejecting apparatus - Google Patents

Liquid-droplet ejecting head, liquid-droplet ejecting apparatus, method of manufacturing the liquid-droplet ejecting head, and method of manufacturing the liquid-droplet ejecting apparatus Download PDF

Info

Publication number
JP2010125639A
JP2010125639A JP2008300525A JP2008300525A JP2010125639A JP 2010125639 A JP2010125639 A JP 2010125639A JP 2008300525 A JP2008300525 A JP 2008300525A JP 2008300525 A JP2008300525 A JP 2008300525A JP 2010125639 A JP2010125639 A JP 2010125639A
Authority
JP
Japan
Prior art keywords
electrode
substrate
droplet discharge
film
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008300525A
Other languages
Japanese (ja)
Inventor
Seiji Yamazaki
成二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008300525A priority Critical patent/JP2010125639A/en
Publication of JP2010125639A publication Critical patent/JP2010125639A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid-droplet ejecting head or the like excellent in dielectric strength. <P>SOLUTION: The liquid droplet ejecting head has at least a second substrate 2 in which electrodes A are formed on a plurality of gap steps 20, respectively, and a first substrate 1 which has a plurality of ejection chambers 13 the wall surfaces of which are partly comprised of diaphragms 12 and in which insulating films 15 are formed on a surface of a side opposite to the ejection chambers of the diaphragms 12. The diaphragm 12 and the insulating film 15 are opposed via a gap G to the electrodes A. The liquid droplet ejecting head has electrode extraction portions 29 which extract the electrodes A from the gap steps 20. An insulating protecting film 25 with a tolerance to etching is formed in the vicinity of the electrode extraction portion 29 of the gap step 20. The insulating protecting film 25 is formed in the vicinity of an end of a lead 22 of the electrode A. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、液滴吐出ヘッド、液滴吐出装置、液滴吐出ヘッドの製造方法、及び液滴吐出装置の製造方法に関する。   The present invention relates to a droplet discharge head, a droplet discharge device, a method for manufacturing a droplet discharge head, and a method for manufacturing a droplet discharge device.

従来の液滴吐出ヘッドの電極取り出し部の開口エッチング工程では、貫通穴形成の際に、事前に、エッチングカバー膜として、絶縁性が高く、エッチング耐性の強固な絶縁膜を成膜しておき、ドライエッチングによる電極部及び基板へのダメージを防止していた(例えば、特許文献1参照)。   In the opening etching process of the electrode extraction part of the conventional droplet discharge head, when forming the through hole, an insulating film having high insulation and strong etching resistance is formed in advance as an etching cover film, Damage to the electrode part and the substrate due to dry etching was prevented (for example, see Patent Document 1).

特開2001−63072号公報(第4頁、図1)JP 2001-63072 A (page 4, FIG. 1)

特許文献1記載の技術によれば、事前に、エッチングカバー膜として絶縁膜を成膜しておくので、ドライエッチングによる電極部及び基板へのダメージを防止することができるが、後工程において絶縁膜を除去しなければならず、絶縁膜で覆われていない部分で、インクジェットの駆動時に放電してしまう場合があった。このため、絶縁耐圧や長期駆動に対する耐久性が充分ではなかった。   According to the technique described in Patent Document 1, since an insulating film is formed in advance as an etching cover film, damage to the electrode portion and the substrate due to dry etching can be prevented. There is a case where discharge occurs at the time of driving the ink jet in a portion not covered with the insulating film. For this reason, the dielectric strength and durability against long-term driving were not sufficient.

本発明は上記のような課題を解決するためになされたもので、絶縁耐圧や長期駆動に対する耐久性に優れ、信頼性が高い液滴吐出ヘッド及びその製造方法、並びに液滴吐出装置及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a droplet ejection head that has excellent withstand voltage and durability against long-term driving and has high reliability, a method for producing the same, and a droplet ejection device and the production thereof. It aims to provide a method.

本発明に係る液滴吐出ヘッドは、複数のギャップ段差部に電極部がそれぞれ形成された第2の基板と、壁面の一部が振動板からなる複数の吐出室を有し、振動板の吐出室と反対側の面上に絶縁膜が成膜された第1の基板とを少なくとも備え、振動板及び絶縁膜をギャップを介して電極部と対向させ、ギャップ段差部から電極部を取り出す電極取り出し部を備えた液滴吐出ヘッドであって、
ギャップ段差部の電極取り出し部の近傍にエッチング耐性を有する絶縁保護膜を形成したものである。
第2の基板のギャップ段差部の電極取り出し部の近傍に絶縁保護膜を成膜したので、第1の基板に成膜した絶縁膜と併せて、電極取り出し部の近傍で絶縁膜が厚くなり、絶縁耐圧に優れる。
The droplet discharge head according to the present invention includes a second substrate having electrode portions formed on a plurality of gap stepped portions, and a plurality of discharge chambers each having a part of a wall surface made of a vibration plate. At least a first substrate on which an insulating film is formed on a surface opposite to the chamber, with the diaphragm and the insulating film opposed to the electrode portion through the gap, and taking out the electrode portion from the gap stepped portion A droplet discharge head comprising a portion,
An insulating protective film having etching resistance is formed in the vicinity of the electrode extraction portion of the gap step portion.
Since the insulating protective film is formed in the vicinity of the electrode extraction portion of the gap step portion of the second substrate, the insulating film becomes thick in the vicinity of the electrode extraction portion together with the insulating film formed on the first substrate, Excellent withstand voltage.

また、本発明に係る液滴吐出ヘッドは、絶縁保護膜を電極部のリード部の端部近傍に形成したものである。
第2の基板の電極部のリード部の端部近傍に絶縁保護膜を成膜したので、第1の基板に成膜した絶縁膜と併せて、リード部の端部近傍で絶縁膜が厚くなり、絶縁耐圧に優れる。
In the droplet discharge head according to the present invention, an insulating protective film is formed in the vicinity of the end portion of the lead portion of the electrode portion.
Since the insulating protective film is formed in the vicinity of the end portion of the lead portion of the electrode portion of the second substrate, the insulating film becomes thick in the vicinity of the end portion of the lead portion together with the insulating film formed on the first substrate. Excellent in withstand voltage.

また、本発明に係る液滴吐出ヘッドは、絶縁保護膜をギャップ段差部の深さとほぼ同じ高さに成膜したものである。
電極部のリード部の端部で絶縁膜がギャップ段差部の深さとほぼ同じ高さだけ厚くなり、絶縁耐圧が非常に優れる。
In the droplet discharge head according to the present invention, an insulating protective film is formed at a height substantially equal to the depth of the gap step portion.
The insulating film becomes thick at almost the same height as the gap stepped portion at the end portion of the lead portion of the electrode portion, and the withstand voltage is very excellent.

また、本発明に係る液滴吐出ヘッドは、絶縁保護膜がSiO2 膜、Si3 4 膜、及びAl2 3 膜のいずれかからなる膜である。
SiO2 膜、Si3 4 膜、及びAl2 3 膜のいずれかから絶縁保護膜が形成されるため、絶縁耐圧が非常に優れる。
In the droplet discharge head according to the present invention, the insulating protective film is a film made of any one of a SiO 2 film, a Si 3 N 4 film, and an Al 2 O 3 film.
Since the insulating protective film is formed from any one of the SiO 2 film, the Si 3 N 4 film, and the Al 2 O 3 film, the withstand voltage is very excellent.

本発明に係る液滴吐出装置は、上記のいずれかに記載の液滴吐出ヘッドを搭載したものである。
長期駆動に対する耐久性に優れて信頼性が高い液滴吐出装置を提供することができる。
A droplet discharge apparatus according to the present invention is equipped with any of the droplet discharge heads described above.
It is possible to provide a droplet discharge device that has excellent durability with respect to long-term driving and high reliability.

本発明に係る液滴吐出ヘッドの製造方法は、第2の基板に複数のギャップ段差部を形成してそれぞれのギャップ段差部に電極部を形成し、ギャップ段差部の電極取り出し部となる部分の近傍にエッチング耐性を有する絶縁保護膜を形成する工程と、第1の基板に振動板となる部分を形成しその上に絶縁膜を成膜する工程と、第2の基板と第1の基板とを、電極部と、振動板となる部分及び絶縁膜とが、ギャップを介して対向するように接合して、絶縁保護膜と絶縁膜とを対向して配置させる工程と、第1、第2の接合基板をウエットエッチングによりエッチングして、第1の基板に振動板を壁面の一部とする吐出室を含む液体流路及び電極取り出し用貫通穴部を形成し、電極取り出し用貫通穴部をさらにドライエッチングして貫通させ電極取り出し部を形成する工程とを含むものである。
第2の基板のギャップ段差部の電極取り出し部の近傍、詳しくは、電極部のリード部の端部近傍に絶縁保護膜を成膜したので、電極取り出し用貫通穴部の開口エッチング工程で、エッチングガスの回り込みによって絶縁膜がわずかにエッチングされても、絶縁耐圧を十分確保することができる。
In the method for manufacturing a droplet discharge head according to the present invention, a plurality of gap step portions are formed on a second substrate, an electrode portion is formed on each gap step portion, and a portion serving as an electrode extraction portion of the gap step portion is formed. A step of forming an insulating protective film having etching resistance in the vicinity, a step of forming a portion to be a vibration plate on the first substrate and forming an insulating film thereon, a second substrate and a first substrate; Bonding the electrode part, the part to be the diaphragm and the insulating film so as to face each other with a gap therebetween, and disposing the insulating protective film and the insulating film opposite to each other; The bonding substrate is etched by wet etching to form a liquid flow path including a discharge chamber having the diaphragm as a part of the wall surface and an electrode extraction through hole portion on the first substrate, and the electrode extraction through hole portion is formed. Furthermore, dry etching is performed to penetrate the electrode. It is intended to include the step of forming the out unit.
Since an insulating protective film is formed in the vicinity of the electrode extraction portion of the gap step portion of the second substrate, more specifically, in the vicinity of the end portion of the lead portion of the electrode portion, etching is performed in the opening etching process of the electrode extraction through hole portion. Even if the insulating film is slightly etched due to the gas flowing in, sufficient withstand voltage can be ensured.

本発明に係る液滴吐出装置の製造方法は、上記の液滴吐出ヘッドの製造方法を適用して液滴吐出装置を製造するものである。
長期駆動に対する耐久性に優れて信頼性が高い液滴吐出装置を提供することができる。
A method for manufacturing a droplet discharge device according to the present invention is a method for manufacturing a droplet discharge device by applying the method for manufacturing a droplet discharge head described above.
It is possible to provide a droplet discharge device that has excellent durability with respect to long-term driving and high reliability.

実施の形態1.
図1は本発明の実施の形態1に係る液滴吐出ヘッドの分解斜視図、図2は図1の液滴吐出ヘッドを組み立てた状態の縦断面図である。なお、本実施の形態1では、液滴を基板の面部に設けたノズル孔から吐出させるフェイス型の液滴吐出ヘッドの場合を示している。
図1、図2に示すように、液滴吐出ヘッドは、振動板を有するキャビティ基板(第1の基板)1と、電極部を有するガラス基板(第2の基板)2と、ノズル孔を有するノズル基板(第3の基板)3とが積層された3層構造になっている。
Embodiment 1 FIG.
1 is an exploded perspective view of a droplet discharge head according to Embodiment 1 of the present invention, and FIG. 2 is a longitudinal sectional view of the assembled droplet discharge head of FIG. The first embodiment shows a case of a face-type droplet discharge head that discharges droplets from nozzle holes provided in the surface portion of the substrate.
As shown in FIGS. 1 and 2, the droplet discharge head has a cavity substrate (first substrate) 1 having a vibration plate, a glass substrate (second substrate) 2 having an electrode portion, and a nozzle hole. It has a three-layer structure in which a nozzle substrate (third substrate) 3 is laminated.

3層構造の中間に位置するキャビティ基板1は、例えば厚み約50μmの、(110)を面方位とするシリコン(Si)単結晶基板(以下、シリコン基板ともいう)で構成されている。このキャビティ基板1は、シリコン基板に異方性ウェットエッチングを施して形成したもので、底壁が振動板12となる吐出室13、及び各ノズル孔30に共通して吐出するための液体を溜めておくリザーバ14を有する。   The cavity substrate 1 located in the middle of the three-layer structure is formed of, for example, a silicon (Si) single crystal substrate (hereinafter also referred to as a silicon substrate) having a surface orientation of (110) having a thickness of about 50 μm. The cavity substrate 1 is formed by performing anisotropic wet etching on a silicon substrate, and stores a liquid for discharging in common to the discharge chamber 13 whose bottom wall is the diaphragm 12 and each nozzle hole 30. It has a reservoir 14 to keep.

振動板12は、例えば厚みが約0.8μmであって、同じ厚みの高濃度のボロンドープ層により形成されている。そして、アルカリ性水溶液でシリコン基板の異方性ウェットエッチングを行った場合、ボロンをドーパントとしたときには、高濃度(約5×1019atoms・cm-3以上)の領域で極端にエッチングレートが小さくなるので、このことを利用したいわゆるエッチングストップ技術を用いて、振動板12の厚みや、吐出室13の容積を精度よく形成する。 The diaphragm 12 has a thickness of, for example, about 0.8 μm and is formed of a high-concentration boron-doped layer having the same thickness. When anisotropic wet etching of a silicon substrate is performed with an alkaline aqueous solution, when boron is used as a dopant, the etching rate becomes extremely small in a high concentration region (about 5 × 10 19 atoms · cm −3 or more). Therefore, the thickness of the diaphragm 12 and the volume of the discharge chamber 13 are accurately formed by using a so-called etching stop technique utilizing this.

キャビティ基板1の下面(振動板12となるボロンドープ層の下面)には、絶縁膜15となるTEOS(Tetraethyl orthosilicate Tetraethoxysilane:テトラエトキシシラン、珪酸エチル)膜0.1μmが、プラズマCVD(Chemical Vapor Deposition )により成膜されている。これは、液滴吐出ヘッドを駆動させたときの絶縁膜破壊及び短絡を防止するためである。
なお、リザーバ14には液滴供給孔16が形成され、キャビティ基板1上には共通電極の端子部17が形成されている。
On the lower surface of the cavity substrate 1 (the lower surface of the boron doped layer serving as the vibration plate 12), a TEOS (Tetraethyl orthosilicate Tetraethoxysilane) film 0.1 μm serving as the insulating film 15 is formed by plasma CVD (Chemical Vapor Deposition). Is formed. This is to prevent breakdown and short circuit of the insulating film when the droplet discharge head is driven.
A droplet supply hole 16 is formed in the reservoir 14, and a common electrode terminal portion 17 is formed on the cavity substrate 1.

キャビティ基板1の下面に陽極接合されるガラス基板2は、例えば厚みが約1mmであり、ホウ珪酸系の耐熱硬質ガラスよりなる。ガラス基板2には、キャビティ基板1に形成されている各吐出室13に合わせて、エッチングにより深さ約0.2μmの電極凹部(ギャップ段差部)20が設けられており、その内部には、個別電極21、リード部22及び端子部23(以下、これらを合わせて電極部Aという)を設けているので、電極凹部20のパターン形状は電極部Aの形状よりも少し大きめに作製してある。   The glass substrate 2 to be anodically bonded to the lower surface of the cavity substrate 1 has a thickness of about 1 mm, for example, and is made of borosilicate heat-resistant hard glass. The glass substrate 2 is provided with an electrode recess (gap step portion) 20 having a depth of about 0.2 μm by etching in accordance with each discharge chamber 13 formed in the cavity substrate 1. Since the individual electrode 21, the lead portion 22, and the terminal portion 23 (hereinafter collectively referred to as the electrode portion A) are provided, the pattern shape of the electrode recess 20 is made slightly larger than the shape of the electrode portion A. .

電極凹部20に設ける電極部Aの材料としては、酸化錫を不純物としてドープした透明のITO(Indium Tin Oxide:インジウム錫酸化物)を用い、例えば0.1μmの厚みにスパッタ法を用いて成膜する。
したがって、振動板12と個別電極21との間で形成されるギャップGは、電極凹部20の深さ、個別電極21の厚みにより決まることになる。このギャップGは吐出特性に大きく影響する。
ここで、電極部Aの材料はITOに限定するものではなく、クロム等の金属等を材料に用いてもよいが、本実施の形態1では、透明であるので放電したかどうかの確認が行い易い等の理由でITOを用いている。
As the material of the electrode part A provided in the electrode recess 20, transparent ITO (Indium Tin Oxide) doped with tin oxide as an impurity is used, and the film is formed by sputtering, for example, to a thickness of 0.1 μm. To do.
Therefore, the gap G formed between the diaphragm 12 and the individual electrode 21 is determined by the depth of the electrode recess 20 and the thickness of the individual electrode 21. This gap G greatly affects the ejection characteristics.
Here, the material of the electrode part A is not limited to ITO, but a metal such as chrome may be used as the material, but in the first embodiment, since it is transparent, it is confirmed whether or not it has been discharged. ITO is used for reasons such as ease.

電極凹部20の電極取り出し部29の近傍、詳しくは、電極部Aのリード部22の端部近傍には、絶縁保護膜25が成膜されており、液滴吐出ヘッド駆動時の絶縁破壊及び短絡を防止している。この絶縁保護膜25は、例えば、電極凹部20の深さとほぼ同じ高さに形成する。絶縁保護膜25を構成する材料は、SiO2、Si3 4 、Al2 3 などの絶縁性の高い材料である。これは、電極取り出し部29を形成する際に、シリコン基板(キャビティ基板1)の貫通穴となる部分(電極取り出し用貫通穴部)29a(図13(h)参照)に残っているシリコン薄膜及びTEOS絶縁膜をドライエッチングにより除去するとき、エッチングガスが回り込み、電極部Aのリード部22の端部近傍に位置する絶縁膜15が薄くなって、絶縁耐圧が低下するのを防ぐためである。 An insulating protective film 25 is formed in the vicinity of the electrode take-out portion 29 of the electrode recess 20, more specifically, in the vicinity of the end portion of the lead portion 22 of the electrode portion A. Is preventing. For example, the insulating protective film 25 is formed at a height substantially equal to the depth of the electrode recess 20. The material constituting the insulating protective film 25 is a highly insulating material such as SiO 2, Si 3 N 4 , or Al 2 O 3 . This is because when forming the electrode extraction portion 29, the silicon thin film remaining in the portion (through hole portion for electrode extraction) 29a (see FIG. 13 (h)) that becomes a through hole of the silicon substrate (cavity substrate 1) and This is because when the TEOS insulating film is removed by dry etching, an etching gas is introduced to prevent the insulating film 15 located in the vicinity of the end portion of the lead portion 22 of the electrode portion A from being thinned and lowering the withstand voltage.

ガラス基板2には液滴供給穴24が設けられており、サンドブラスト加工または切削加工により形成されて、キャビティ基板1のリザーバ14に設けられた液滴供給穴16と連通している。   The glass substrate 2 is provided with a droplet supply hole 24, which is formed by sandblasting or cutting, and communicates with the droplet supply hole 16 provided in the reservoir 14 of the cavity substrate 1.

キャビティ基板1の上面(図2の上側面)に接合されるノズル基板3は、例えば厚み約180μmのシリコン基板からなり、ガラス基板2とは反対の面でキャビティ基板1に接合されている。ノズル基板3には、吐出室13と連通するノズル孔30が形成されており、下面にはオリフィス31が設けられ、吐出室13とリザーバ14とを連通している。リザーバ14と接する部分には、リザーバ14のコンプライアンスを高め、液滴吐出ヘッド駆動時のクロストークを吸収するため、ダイヤフラム32が形成されている。
ここでは、ノズル孔30を有するノズル基板3を上面とし、ガラス基板2を下面として説明しているが、実際に用いられる場合には、ノズル基板3の方が下面になることが多い。
The nozzle substrate 3 bonded to the upper surface (the upper side surface in FIG. 2) of the cavity substrate 1 is made of, for example, a silicon substrate having a thickness of about 180 μm, and is bonded to the cavity substrate 1 on the surface opposite to the glass substrate 2. A nozzle hole 30 that communicates with the discharge chamber 13 is formed in the nozzle substrate 3, and an orifice 31 is provided on the lower surface to communicate the discharge chamber 13 and the reservoir 14. A diaphragm 32 is formed in a portion in contact with the reservoir 14 in order to increase the compliance of the reservoir 14 and absorb crosstalk when the droplet discharge head is driven.
Here, the nozzle substrate 3 having the nozzle holes 30 is described as the upper surface, and the glass substrate 2 is described as the lower surface. However, when actually used, the nozzle substrate 3 is often the lower surface.

上記の液滴吐出ヘッドにおいて、振動板12と固定電極21とからなるアクチュエータは、封止材50によって個別電極21毎に封止されている。これにより、アクチュエータを駆動させた際の個別電極21と振動板12との貼り付き等を防止することができる。
なお、ガラス基板2上に形成した電極部Aの端子部23は、キャビティ基板1上に形成した共通電極の端子部17とともに、発振回路40に接続されている。
In the above droplet discharge head, the actuator composed of the diaphragm 12 and the fixed electrode 21 is sealed for each individual electrode 21 by a sealing material 50. Thereby, sticking between the individual electrode 21 and the diaphragm 12 when the actuator is driven can be prevented.
The terminal part 23 of the electrode part A formed on the glass substrate 2 is connected to the oscillation circuit 40 together with the terminal part 17 of the common electrode formed on the cavity substrate 1.

上記のように構成した液滴吐出ヘッドの動作を説明する。
図2に示すように、吐出室13にはノズル孔30から吐出する吐出液体を溜めておく。そして、吐出室13の底壁である振動板12を撓ませ、吐出室13内の圧力を高めて、ノズル孔30から液滴を吐出させる。
The operation of the droplet discharge head configured as described above will be described.
As shown in FIG. 2, the discharge liquid discharged from the nozzle hole 30 is stored in the discharge chamber 13. Then, the diaphragm 12 which is the bottom wall of the discharge chamber 13 is bent, the pressure in the discharge chamber 13 is increased, and droplets are discharged from the nozzle holes 30.

この際、発振回路40は、個別電極21への電荷の供給及び停止を制御する。例えば、24kHzで発振し、個別電極21に0Vと30Vのパルス電位を印加して電荷供給を行う。
個別電極21に電荷を供給して正に帯電させると、振動板12は負に帯電し、静電気力により個別電極21に引き寄せられて撓む。これにより吐出室13の体積は広がる。そして個別電極21への電荷供給を止めると振動板12は元に戻るが、そのときの吐出室13の体積も元に戻って縮小されるため、その圧力により差分の液滴がノズル孔30から吐出し、例えば液滴がインクである場合は、記録対象となる記録紙に着弾することによって記録が行われる。
なお、このような方法は引き打ちと呼ばれるものであるが、バネ等を用いて液滴を吐出する押し打ちと呼ばれる方法もある。
At this time, the oscillation circuit 40 controls the supply and stop of charge to the individual electrode 21. For example, it oscillates at 24 kHz, and charges are supplied by applying pulse potentials of 0 V and 30 V to the individual electrodes 21.
When an electric charge is supplied to the individual electrode 21 to be positively charged, the diaphragm 12 is negatively charged and is attracted to the individual electrode 21 by an electrostatic force to bend. As a result, the volume of the discharge chamber 13 increases. When the charge supply to the individual electrode 21 is stopped, the vibration plate 12 returns to its original state, but the volume of the discharge chamber 13 at that time also returns to its original size and is reduced. For example, when the droplet is ink, the recording is performed by landing on the recording paper to be recorded.
Such a method is called pulling, but there is also a method called pushing that discharges droplets using a spring or the like.

本発明によれば、ガラス基板2の電極凹部20の電極取り出し部29の近傍、詳しくは、電極部Aのリード部22の端部近傍に絶縁保護膜25を成膜したので、キャビティ基板3上に成膜した絶縁膜15と併せて、リード部22の端部で絶縁膜が厚くなり、絶縁耐圧に優れた液滴吐出ヘッドを得ることができる。   According to the present invention, since the insulating protective film 25 is formed in the vicinity of the electrode extraction portion 29 of the electrode recess 20 of the glass substrate 2, specifically, in the vicinity of the end portion of the lead portion 22 of the electrode portion A, In addition to the insulating film 15 formed in the above, the insulating film is thickened at the end portion of the lead portion 22, and a droplet discharge head having an excellent withstand voltage can be obtained.

上記のように構成した液滴吐出ヘッドのガラス基板2の製造方法を、図3−図11の製造工程図により説明する。図3−図8はガラス基板2の断面図であり、図9−図11は上面図である。
なお、以下の説明で記載した数値はその一例を示すもので、これに限定するものではない。
A method of manufacturing the glass substrate 2 of the droplet discharge head configured as described above will be described with reference to manufacturing process diagrams of FIGS. 3 to 8 are cross-sectional views of the glass substrate 2, and FIGS. 9 to 11 are top views.
In addition, the numerical value described in the following description shows the example, and is not limited to this.

(a) 図3(a)に示すように、約1mmの厚みのガラス基板2に、エッチングマスクとなるCr膜(クロム膜)201を片面に0.1μm成膜する。 (A) As shown in FIG. 3A, a Cr film (chromium film) 201 serving as an etching mask is formed on one surface of a glass substrate 2 having a thickness of about 1 mm to a thickness of 0.1 μm.

(b) 図3(b)に示すように、成膜したCr膜201の表面にレジスト202を塗布し、凹部Bを作り込むためのレジストパターニングを施す。 (B) As shown in FIG. 3B, a resist 202 is applied to the surface of the formed Cr film 201, and resist patterning for forming the recess B is performed.

(c) 図3(c)に示すように、硝酸セリウムアンモニウム水溶液でエッチングし、Cr膜201をパターニングする。 (C) As shown in FIG. 3C, the Cr film 201 is patterned by etching with an aqueous cerium ammonium nitrate solution.

(d) 図3(d)に示すように、レジスト202を付けた状態でガラス基板2をフッ化アンモニウム水溶液に浸し、凹部(溝部)Bを深さ0.2μmにエッチングする。 (D) As shown in FIG. 3D, the glass substrate 2 is immersed in an aqueous ammonium fluoride solution with the resist 202 attached, and the recess (groove) B is etched to a depth of 0.2 μm.

(e) 図4(e)に示すように、レジスト202を剥離し、次にCr膜201を剥離する。形成された凹部Bは、図9に示すように、電極凹部(ギャップ段差部)20のほか、これと連通する気相処理凹部20aも含む。気相処理凹部20aは、ギャップG内の水分除去を行った後、疎水処理を行うために用いられる。気相処理凹部20aは、点線イ、ロで示すダイシングラインの外側(図の上側及び右側)に位置しており、完成された液滴吐出ヘッドには残らない。
なお、図9の液滴吐出ヘッドでは、電極凹部20を5箇所だけ示してあるが、実際には多くの電極凹部20が存在する(以下の図10、図11においても同様)。
(E) As shown in FIG. 4E, the resist 202 is stripped, and then the Cr film 201 is stripped. As shown in FIG. 9, the formed recess B includes an electrode recess (gap step portion) 20 as well as a gas phase processing recess 20 a communicating with the electrode recess (gap step portion) 20. The gas phase treatment recess 20a is used for performing a hydrophobic treatment after removing moisture in the gap G. The gas phase processing recess 20a is located outside the dicing line indicated by dotted lines a and b (upper side and right side in the figure) and does not remain in the completed droplet discharge head.
In the liquid droplet ejection head of FIG. 9, only five electrode recesses 20 are shown, but in reality there are many electrode recesses 20 (the same applies to FIGS. 10 and 11 below).

(f) 図5(f)に示すように、例えばスパッタリング法を用いて、0.1μmの厚みの電極部Aとなる部材aをパターニング面の全面に成膜する。電極部Aとなる部材aとして、例えばITOを用いる。 (F) As shown in FIG. 5F, a member a to be the electrode portion A having a thickness of 0.1 μm is formed on the entire surface of the patterning surface by using, for example, a sputtering method. For example, ITO is used as the member a to be the electrode part A.

(g) パターニング面にレジスト203を塗布し、図5(g)に示すように、電極凹部20の内部にITOが残るようにレジストパターニングを行う。 (G) A resist 203 is applied to the patterning surface, and resist patterning is performed so that ITO remains in the electrode recess 20 as shown in FIG.

(h) 図6(h)に示すように、硝酸と塩酸の混合液を用いて、ITOからなる部材aをエッチングして、電極部Aを形成する。その後、レジスト203を剥離する。
なお、図10に示すように、電極部Aはその端子部23の端部側で相互に連通しており、この連通した部分はダイシングされるので、完成された液滴吐出ヘッドには残らない。
(H) As shown in FIG. 6 (h), the electrode part A is formed by etching the member a made of ITO using a mixed solution of nitric acid and hydrochloric acid. Thereafter, the resist 203 is peeled off.
As shown in FIG. 10, the electrode portions A communicate with each other on the end portion side of the terminal portion 23, and the communicating portions are diced, so that they do not remain in the completed droplet discharge head. .

(i) パターニング面にレジスト204を塗布し、図7(i)に示すように、電極部Aの絶縁保護膜25(図2参照)を成膜する部分、すなわちリード部22の端部近傍だけが開口するように、レジストパターニングを行う。 (I) A resist 204 is applied to the patterning surface, and as shown in FIG. 7 (i), only the portion where the insulating protective film 25 (see FIG. 2) of the electrode portion A is formed, that is, the vicinity of the end portion of the lead portion 22. The resist patterning is performed so that the openings are opened.

(j) 図7(j)に示すように、例えばスパッタリング法を用いて、0.1μmの厚みの絶縁保護部材250(SiO2 、Si3 4 、Al2 3 などの部材)をパターニング面全面に成膜する。 (J) As shown in FIG. 7 (j), an insulating protective member 250 (a member such as SiO 2 , Si 3 N 4 , Al 2 O 3 ) having a thickness of 0.1 μm is patterned using, for example, a sputtering method. A film is formed on the entire surface.

(k) 絶縁保護部材250の下地のレジスト204を剥離する。これにより、図7(k)に示すように、電極部Aのリード部22の端部近傍にのみ絶縁保護部材250、すなわち絶縁保護膜25が残る。 (K) The resist 204 underlying the insulating protection member 250 is removed. Thereby, as shown in FIG. 7 (k), the insulation protection member 250, that is, the insulation protection film 25 remains only in the vicinity of the end portion of the lead portion 22 of the electrode portion A.

(l) 図8(l)、図11に示すように、インク供給穴24及び大気開放穴26をサンドブラスト法または切削加工により形成する。大気開放穴26は気相処理溝20aに形成され、ガラス基板2の電極凹部20と連通する。 (L) As shown in FIGS. 8 (l) and 11, the ink supply hole 24 and the air release hole 26 are formed by a sandblasting method or a cutting process. The air opening hole 26 is formed in the gas phase processing groove 20 a and communicates with the electrode recess 20 of the glass substrate 2.

次に、上記の図3−図11に示した工程によって製造されたガラス基板2をシリコン基板(キャビティ基板1)と接合して、吐出室13を含む液体流路等を形成する方法を、図12−図14の製造工程図を用いて説明する。   Next, a method of joining the glass substrate 2 manufactured by the steps shown in FIGS. 3 to 11 to a silicon substrate (cavity substrate 1) to form a liquid flow path including the discharge chamber 13 will be described. 12-A description will be given using the manufacturing process diagram of FIG.

(a) 図12(a)に示すように、図3−図7に示す方法で加工したガラス基板2を用意する。 (A) As shown to Fig.12 (a), the glass substrate 2 processed by the method shown in FIGS. 3-7 is prepared.

(b) (110)を面方位とする酸素濃度の低いシリコン製のキャビティ基板1の片面を鏡面研磨し、220μmの厚みの基板を作製する。
次に、キャビティ基板1にボロンドープ層120(振動板12)を形成する側の面を、B2 3 を主成分とする固体の拡散源に対向させて石英ボートにセットする。縦型炉に石英ボートをセットし、炉内を窒素雰囲気にし、温度を1050℃に上昇させてそのまま温度を7時間保持し、ボロンをキャビティ基板1中に拡散させてボロンドープ層120を形成する。ボロンドープ工程では、キャビティ基板1の投入温度を800℃とし、キャビティ基板1の取出し温度も800℃とする。これにより、酸素欠陥の成長速度が速い領域(600℃から800℃)をすばやく通過することができるため、酸素欠陥の発生を抑えることができる。ボロンドープ層120の表面にはボロン化合物が形成されるが(図示せず)、酸素及び水蒸気雰囲気中、600℃の条件で1時間30分酸化することで、ふっ酸水溶液によるエッチングが可能なB2 3 +SiO2 に化学変化させることができる。B2 3 +SiO2 に化学変化させた状態で、B2 3 +SiO2 をふっ酸水溶液にてエッチング除去する。こうして、図12(b)に示すように、キャビティ基板1の表面にボロンドープ層120を形成する。
さらに、ボロンドープ層120を形成した側の面に、プラズマCVD法により、TEOSの絶縁膜15を、成膜時の処理温度は360℃、高周波出力は250W、圧力は66.7Pa(0.5Torr)、ガス流量はTEOS流量100cm3 /min(100sccm)、酸素流量1000cm3 /min(1000sccm)の条件で、0.1μm成膜する。
(B) One side of a cavity substrate 1 made of silicon with a low oxygen concentration and having a plane orientation of (110) is mirror-polished to produce a substrate having a thickness of 220 μm.
Next, the surface on which the boron dope layer 120 (vibrating plate 12) is formed on the cavity substrate 1 is set on a quartz boat so as to face a solid diffusion source containing B 2 O 3 as a main component. A quartz boat is set in a vertical furnace, the inside of the furnace is put into a nitrogen atmosphere, the temperature is raised to 1050 ° C., and the temperature is maintained as it is for 7 hours, and boron is diffused into the cavity substrate 1 to form the boron dope layer 120. In the boron doping process, the input temperature of the cavity substrate 1 is set to 800 ° C., and the extraction temperature of the cavity substrate 1 is also set to 800 ° C. Accordingly, it is possible to quickly pass through a region (600 ° C. to 800 ° C.) where the growth rate of oxygen defects is high, so that the generation of oxygen defects can be suppressed. The surface of the boron-doped layer 120 is a boron compound is formed (not shown), in an oxygen and steam atmosphere, 600 to oxidize 1 hour 30 minutes at ℃ conditions, which can be etched by hydrofluoric acid aqueous solution B 2 It can be chemically changed to O 3 + SiO 2 . B 2 O 3 + SiO 2 is removed by etching with a hydrofluoric acid aqueous solution in a state where it is chemically changed to B 2 O 3 + SiO 2 . Thus, a boron doped layer 120 is formed on the surface of the cavity substrate 1 as shown in FIG.
Further, the TEOS insulating film 15 is formed on the surface on which the boron doped layer 120 is formed by plasma CVD, the processing temperature during film formation is 360 ° C., the high frequency output is 250 W, and the pressure is 66.7 Pa (0.5 Torr). The film thickness of 0.1 μm is formed under the conditions of a gas flow rate of TEOS flow rate of 100 cm 3 / min (100 sccm) and oxygen flow rate of 1000 cm 3 / min (1000 sccm).

(c) キャビティ基板1とパターン形成済みのガラス基板2とを360℃に加熱した後、ガラス基板2に負極、キャビティ基板1に正極を接続し、800Vの電圧を印加して、図12(c)に示すように陽極接合する。
陽極接合時には、キャビティ基板1とガラス基板2の界面でガラスが電気化学的に分解され、酸素が発生する。また、加熱によって、表面に吸着していたガスが発生する場合がある。このとき、大気開放穴26は電極凹部20と接続しており(図11参照)、これらのガスは大気開放穴26から逃げるため、ギャップG内が正圧になることはなく、陽極結合後に形成されたギャップGが密閉されて陽極接合時に発生する酸素等によってギャップGが加圧されるのを防ぐ。
(C) After the cavity substrate 1 and the patterned glass substrate 2 are heated to 360 ° C., the negative electrode is connected to the glass substrate 2, the positive electrode is connected to the cavity substrate 1, and a voltage of 800 V is applied, so that FIG. Anodic bonding as shown in FIG.
At the time of anodic bonding, glass is electrochemically decomposed at the interface between the cavity substrate 1 and the glass substrate 2 to generate oxygen. In addition, gas adsorbed on the surface may be generated by heating. At this time, the air opening hole 26 is connected to the electrode recess 20 (see FIG. 11), and these gases escape from the air opening hole 26, so that there is no positive pressure in the gap G and is formed after anodic bonding. The formed gap G is sealed to prevent the gap G from being pressurized by oxygen or the like generated during anodic bonding.

(d) 陽極接合後、図12(d)に示すように、キャビティ基板1の表面を、キャビティ基板1の厚みが約60μmになるまで研削加工する。その後、加工変質層を除去するために、CMP(Chemical Mechanical Polishing)を用いて、キャビティ基板1を約10μm研磨する。これにより、キャビティ基板1の厚みは約50μmとなる。
なお、研削工程及び加工変質層除去工程では、大気開放穴26から液体がギャップG内に入り込まないように、片面保護治具やテープ等を用いて、大気開放穴26を保護する(図11参照)。
(D) After the anodic bonding, as shown in FIG. 12D, the surface of the cavity substrate 1 is ground until the thickness of the cavity substrate 1 becomes about 60 μm. Thereafter, in order to remove the work-affected layer, the cavity substrate 1 is polished by about 10 μm using CMP (Chemical Mechanical Polishing). Thereby, the thickness of the cavity substrate 1 becomes about 50 μm.
In the grinding step and the work-affected layer removal step, the air release hole 26 is protected using a single-sided protective jig, tape, or the like so that liquid does not enter the gap G from the air release hole 26 (see FIG. 11). ).

(e) 図13(e)に示すように、研磨面に、プラズマCVDを用いて、成膜時の処理温度が360℃、高周波出力は700W、圧力は33.3Pa(0.25Torr)、ガス流量はTEOS流量100cm3 /min(100sccm)、酸素流量1000cm3/min(1000sccm)の条件で、TEOSエッチングマスク101を1.0μm成膜する。
次に、大気開放穴26(図11参照)にエポキシ系接着剤を流し込み、穴を封止する。これにより、ギャップGは密閉状態となり、以後の工程で、大気開放穴26から液体が入り込むことがなくなる。この工程は、TEOSエッチングマスク101を成膜した後に行うのが望ましい。成膜前に大気開放穴26を封止すると、閉じ込められたギャップG内の気体が、成膜時に熱膨張し、薄くなったキャビティ基板1を押し上げて、キャビティ基板1が割れてしまうことがある。
(E) As shown in FIG. 13 (e), plasma CVD is used on the polished surface, the processing temperature during film formation is 360 ° C., the high frequency output is 700 W, the pressure is 33.3 Pa (0.25 Torr), and the gas The TEOS etching mask 101 is formed to a thickness of 1.0 μm under the conditions of a TEOS flow rate of 100 cm 3 / min (100 sccm) and an oxygen flow rate of 1000 cm 3 / min (1000 sccm).
Next, an epoxy adhesive is poured into the air opening hole 26 (see FIG. 11) to seal the hole. Thereby, the gap G is hermetically sealed, and the liquid does not enter from the atmosphere opening hole 26 in the subsequent processes. This step is preferably performed after the TEOS etching mask 101 is formed. If the air opening hole 26 is sealed before the film formation, the gas in the confined gap G may thermally expand during the film formation and push up the thinned cavity substrate 1 to break the cavity substrate 1. .

(f) TEOSエッチングマスク101にレジストパターニングを施し、ふっ酸水溶液でエッチングし、後述する吐出室13及び第2封止部(図示せず)に対応する部分をパターニングする。そして、レジストを剥離する。
さらに、TEOSエッチングマスク101にレジストパターニングを施し、ふっ酸水溶液で0.7μmだけエッチングし、図13(f)に示すように、後述のリザーバ14及び貫通穴となる部分(電極取り出し用貫通穴部)29aに対応する部分をパターニングする。リザーバ14及び貫通穴となる部分29aに対応する部分のTEOSエッチングマスク101の残りは0.3μmとなる。これは、最終的にリザーバ14及び貫通穴となる部分29aに厚みを持たせ、剛性を高めるためである。そして、レジストを剥離する。
(F) The TEOS etching mask 101 is subjected to resist patterning and etched with a hydrofluoric acid aqueous solution, and a portion corresponding to a discharge chamber 13 and a second sealing portion (not shown) to be described later is patterned. Then, the resist is peeled off.
Further, resist patterning is performed on the TEOS etching mask 101, and etching is performed by 0.7 μm with a hydrofluoric acid aqueous solution. As shown in FIG. 13 (f), a reservoir 14 and a portion to be described later (through-hole portion for extracting an electrode) ) Pattern the portion corresponding to 29a. The remainder of the TEOS etching mask 101 corresponding to the reservoir 14 and the portion 29a to be the through hole is 0.3 μm. This is to increase the rigidity by giving the reservoir 14 and the portion 29a which finally becomes the through hole thick. Then, the resist is peeled off.

(g) 接合基板を35wt%の濃度の水酸化カリウム水溶液に浸し、図13(g)に示すように、吐出室13の厚みが約5μmになるまでエッチングを行う。このとき、リザーバ14及び貫通穴となる部分29aのエッチングはまだ始まらない。 (G) The bonded substrate is immersed in a 35 wt% potassium hydroxide aqueous solution, and etching is performed until the thickness of the discharge chamber 13 becomes about 5 μm, as shown in FIG. At this time, the etching of the reservoir 14 and the portion 29a to be the through hole has not started yet.

(h) リザーバ14及び貫通穴となる部分29aに対応する部分のTEOSエッチングマスク101を除去するため、ふっ酸水溶液に接合基板を浸す。そして接合基板を3wt%の濃度の水酸化カリウム水溶液に約20分間浸し、ボロンドープ層120でのエッチングレート低下によるエッチングストップをさせる。前記2種類の濃度の異なる水酸化カリウム水溶液を用いたエッチングを行うことによって、図13(h)に示すように、ボロンドープ層120から形成される振動板12の面荒れを抑制し、振動板12の厚み精度を0.80±0.05μm以下にすることができ、液滴吐出ヘッドの吐出性能を安定化することができる。
リザーバ14、及び貫通穴となる部分29aの深さは約30μmとなる。従って、リザーバ14及び貫通穴となる部分29aの厚みは約20μmとなる。このため、強度が向上し、キャビティ基板1のエッチング中に、広い面積を持つリザーバ14や貫通穴となる部分29aが割れることがなくなり、歩留まりを向上することができる。
(H) In order to remove the TEOS etching mask 101 in the portion corresponding to the reservoir 14 and the portion 29a to be the through hole, the bonding substrate is immersed in a hydrofluoric acid aqueous solution. Then, the bonding substrate is immersed in a 3 wt% potassium hydroxide aqueous solution for about 20 minutes to stop etching due to a decrease in the etching rate in the boron doped layer 120. By performing etching using the two types of potassium hydroxide aqueous solutions having different concentrations, as shown in FIG. 13 (h), the surface roughness of the diaphragm 12 formed from the boron dope layer 120 is suppressed, and the diaphragm 12 The thickness accuracy can be 0.80 ± 0.05 μm or less, and the discharge performance of the droplet discharge head can be stabilized.
The depth of the reservoir 14 and the portion 29a serving as the through hole is about 30 μm. Accordingly, the thickness of the reservoir 14 and the portion 29a serving as the through hole is about 20 μm. Therefore, the strength is improved, and the reservoir 14 having a large area and the portion 29a serving as the through hole are not broken during the etching of the cavity substrate 1, and the yield can be improved.

(i) キャビティ基板1のエッチングが終了したら、キャビティ基板1をふっ酸水溶液に浸し、キャビティ基板1表面のTEOSエッチングマスク101を剥離する。
第2封止部となる部分(図示せず)、及び貫通穴となる部分29aに残っているシリコン薄膜(図13(h)参照)を除去するために、貫通穴部のみ開口したSiマスクをキャビティ基板1の表面に取り付け、RFパワー200W、圧力40Pa(0.3Torr)、SF6 流量30cm3 /min(30sccm)の条件で、RIEドライエッチングを1時間行い、貫通穴部のみにプラズマを当てる。次に、TEOSの絶縁膜15のみ残るため、RFパワー200W、圧力40Pa(0.3Torr)、CF4 流量30cm3 /min(30sccm)の条件で、RIEドライエッチングを10分間行う。こうして、第2封止部となる部分(図示せず)及び貫通穴となる部分29aが貫通し、第2封止部(図示せず)及び貫通穴が形成され、ギャップG内は大気開放される。図14(i)に示すように、貫通穴となる部分29aが貫通して、電極取り出し部29が形成される。
この開口エッチング工程では、キャビティ基板1の端部近傍(ガラス基板2のリード部22の端部近傍の上側に相当)に位置するTEOSの絶縁膜15や、ガラス基板2の絶縁保護膜25にもエッチングガスが回り込む。しかしながら、図14(i)に示すように絶縁保護膜25を予め成膜しているため、TEOSの絶縁膜15や絶縁保護膜25がわずかにエッチングされても、絶縁耐圧を十分に確保することができる。
(I) When the etching of the cavity substrate 1 is completed, the cavity substrate 1 is immersed in a hydrofluoric acid aqueous solution, and the TEOS etching mask 101 on the surface of the cavity substrate 1 is peeled off.
In order to remove the silicon thin film (see FIG. 13 (h)) remaining in the portion (not shown) to be the second sealing portion and the portion 29a to be the through hole, an Si mask opened only in the through hole portion is used. Attach to the surface of the cavity substrate 1, perform RIE dry etching for 1 hour under the conditions of RF power 200W, pressure 40Pa (0.3 Torr), SF 6 flow rate 30cm 3 / min (30sccm), and apply plasma only to the through hole . Next, since only the TEOS insulating film 15 remains, RIE dry etching is performed for 10 minutes under the conditions of an RF power of 200 W, a pressure of 40 Pa (0.3 Torr), and a CF 4 flow rate of 30 cm 3 / min (30 sccm). In this way, a portion (not shown) that becomes the second sealing portion and a portion 29a that becomes the through hole penetrate, a second sealing portion (not shown) and the through hole are formed, and the gap G is opened to the atmosphere. The As shown in FIG. 14 (i), a portion 29 a that becomes a through hole penetrates to form an electrode extraction portion 29.
In this opening etching process, the TEOS insulating film 15 located near the end of the cavity substrate 1 (corresponding to the upper side near the end of the lead portion 22 of the glass substrate 2) and the insulating protective film 25 of the glass substrate 2 are also applied. Etching gas goes around. However, since the insulating protective film 25 is formed in advance as shown in FIG. 14 (i), a sufficient withstand voltage is ensured even if the TEOS insulating film 15 and the insulating protective film 25 are slightly etched. Can do.

(j) 個別電極封止部のみ開口したSiマスクをキャビティ基板1の表面に取り付け、プラズマCVDを用いてガラス裏面から無機材料を堆積し、図14(j)に示すように、ギャップGを封止材50によって封止する。封止材50に用いる無機材料として、例えば、TEOS膜を用いる。 (J) An Si mask having an opening only for the individual electrode sealing portion is attached to the surface of the cavity substrate 1, and an inorganic material is deposited from the rear surface of the glass using plasma CVD, and the gap G is sealed as shown in FIG. Sealing is performed with a stopper 50. As the inorganic material used for the sealing material 50, for example, a TEOS film is used.

(k) 接合基板を真空チャンバーに入れた後、図14(k)に示すように、360℃の高温下で真空引きし、ギャップG内の水分を除去する。そして、第2封止部にエポキシ系樹脂を盛り、硬化させることで(図示せず)、ギャップGは再び密閉状態になる。 (K) After the bonding substrate is placed in the vacuum chamber, as shown in FIG. 14 (k), a vacuum is drawn at a high temperature of 360 ° C. to remove moisture in the gap G. Then, by filling and curing the epoxy resin in the second sealing portion (not shown), the gap G is again sealed.

次に、図12−図14に示した工程によって製造されたガラス基板2とキャビティ基板1との接合基板にノズル基板3を接合して、液滴吐出ヘッドを製造する方法を、図15の製造工程図を用いて説明する。   Next, a method of manufacturing the droplet discharge head by bonding the nozzle substrate 3 to the bonded substrate of the glass substrate 2 and the cavity substrate 1 manufactured by the steps shown in FIGS. This will be described with reference to process drawings.

(a) 図15(a)に示すように、接合基板のキャビティ基板1側に、ノズル基板3をエポキシ系接着剤により接着する。 (A) As shown in FIG. 15A, the nozzle substrate 3 is bonded to the cavity substrate 1 side of the bonding substrate with an epoxy adhesive.

(b) 図15(b)に示すように、ダイシングラインイ、ロに沿ってダイシングを行い、個々のヘッドに切断する。このとき、陽極接合時には短絡していたITOの電極部Aは、インクキャビティ毎に分断される。また大気封止穴26及びそこに連通する気相処理凹部20aも切断される。
こうして、ガラス基板2、キャビティ基板1、及びノズル基板3が積層された液滴吐出ヘッドが完成する。
(B) As shown in FIG. 15 (b), dicing is performed along dicing lines A and B, and the head is cut into individual heads. At this time, the electrode portion A of ITO that was short-circuited at the time of anodic bonding is divided for each ink cavity. Further, the air sealing hole 26 and the gas phase processing recess 20a communicating therewith are also cut.
Thus, a droplet discharge head in which the glass substrate 2, the cavity substrate 1, and the nozzle substrate 3 are laminated is completed.

本発明によれば、ガラス基板2の電極凹部20の電極取り出し部29の近傍、詳しくは、電極部Aのリード部22の端部近傍に絶縁保護膜25を成膜したので、貫通穴となる部分29aの開口エッチング工程で、エッチングガスの回り込みにより絶縁膜15がわずかにエッチングされても、絶縁耐圧を十分に確保することができる。   According to the present invention, since the insulating protective film 25 is formed in the vicinity of the electrode extraction portion 29 of the electrode recess 20 of the glass substrate 2, more specifically, in the vicinity of the end portion of the lead portion 22 of the electrode portion A, it becomes a through hole. Even if the insulating film 15 is slightly etched by the etching gas flowing in the opening etching process of the portion 29a, a sufficient withstand voltage can be secured.

実施の形態2.
図16は、実施の形態1に係る液滴吐出ヘッドを搭載した液滴吐出装置を示す斜視図である。図16に示す液滴吐出装置は、一般的なインクジェットプリンタである。
実施の形態1に示す液滴吐出ヘッドは、ガラス基板2の電極凹部20の電極取り出し部29の近傍、詳しくは、電極部Aのリード部22の端部近傍に絶縁保護膜25を成膜したので、キャビティ基板1上に成膜した絶縁膜15と併せて、リード部22の端部近傍では絶縁膜が厚くなり、絶縁耐圧に優れるので、長期駆動に対する耐久性に優れ、高精度で信頼性が高い液滴吐出ヘッドを備えた液滴吐出装置を得ることができる。
なお、実施の形態1に係る液滴吐出ヘッドは、図16に示すインクジェットプリンタの他に、液滴を種々変更することで、液晶ディスプレイのカラーフィルタの製造、有機EL表示装置の発光部分の形成、生体液体の吐出等にも適用することができる。
Embodiment 2. FIG.
FIG. 16 is a perspective view showing a droplet discharge device equipped with the droplet discharge head according to the first embodiment. The droplet discharge device shown in FIG. 16 is a general ink jet printer.
In the droplet discharge head shown in the first embodiment, an insulating protective film 25 is formed in the vicinity of the electrode extraction portion 29 of the electrode recess 20 of the glass substrate 2, specifically, in the vicinity of the end portion of the lead portion 22 of the electrode portion A. Therefore, in addition to the insulating film 15 formed on the cavity substrate 1, the insulating film is thick in the vicinity of the end portion of the lead portion 22 and has an excellent withstand voltage, so it has excellent durability against long-term driving, high accuracy and reliability. A droplet discharge device having a high droplet discharge head can be obtained.
In addition to the ink jet printer shown in FIG. 16, the droplet discharge head according to Embodiment 1 can be used to manufacture liquid crystal color filters and to form light emitting portions of organic EL display devices by variously changing droplets. It can also be applied to the discharge of biological liquids.

本発明の実施の形態1に係る液滴吐出ヘッドの分解斜視図。1 is an exploded perspective view of a droplet discharge head according to Embodiment 1 of the present invention. 図1の液滴吐出ヘッドを組み立てた状態の縦断面図。FIG. 2 is a longitudinal sectional view of a state in which the droplet discharge head of FIG. 1 is assembled. 実施の形態1に係る液滴吐出ヘッドのガラス基板の製造工程を示す断面図。FIG. 4 is a cross-sectional view showing a manufacturing process of the glass substrate of the droplet discharge head according to the first embodiment. 図2に続く液滴吐出ヘッドのガラス基板の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the glass substrate of the droplet discharge head following FIG. 図4に続く液滴吐出ヘッドのガラス基板の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the glass substrate of the droplet discharge head following FIG. 図5に続く液滴吐出ヘッドのガラス基板の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the glass substrate of the droplet discharge head following FIG. 図6に続く液滴吐出ヘッドのガラス基板の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the glass substrate of the droplet discharge head following FIG. 図7に続く液滴吐出ヘッドのガラス基板の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the glass substrate of the droplet discharge head following FIG. 図4の上面図。FIG. 5 is a top view of FIG. 4. 図6の上面図。FIG. 7 is a top view of FIG. 6. 図8の上面図。FIG. 9 is a top view of FIG. 8. 実施の形態1に係る液滴吐出ヘッドの製造工程を示す断面図。FIG. 6 is a cross-sectional view showing a manufacturing process of the droplet discharge head according to the first embodiment. 図12に続く液滴吐出ヘッドの製造工程を示す断面図。FIG. 13 is a cross-sectional view illustrating a manufacturing process of the droplet discharge head following FIG. 12. 図13に続く液滴吐出ヘッドの製造工程を示す断面図。FIG. 14 is a cross-sectional view illustrating a manufacturing process of the droplet discharge head following FIG. 13. 実施の形態1に係る液滴吐出ヘッドの製造工程を示す断面図。FIG. 6 is a cross-sectional view showing a manufacturing process of the droplet discharge head according to the first embodiment. 本発明の実施の形態2に係る液滴吐出装置の斜視図。The perspective view of the droplet discharge device which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 キャビティ基板(第1の基板)、2 ガラス基板(第2の基板)、3 ノズル基板(第3の基板)、12 振動板、13 吐出室、14 リザーバ、15 絶縁膜、20 電極凹部(ギャップ段差部)、21 個別電極、22 リード部、23 端子部、25 絶縁保護膜、29 電極取り出し部、29a 貫通穴となる部分(電極取り出し用貫通穴部)、30 ノズル孔、A 電極部、G ギャップ。   DESCRIPTION OF SYMBOLS 1 Cavity substrate (1st substrate), 2 Glass substrate (2nd substrate), 3 Nozzle substrate (3rd substrate), 12 Vibration plate, 13 Discharge chamber, 14 Reservoir, 15 Insulating film, 20 Electrode recessed part (gap) Step part), 21 Individual electrode, 22 Lead part, 23 Terminal part, 25 Insulating protective film, 29 Electrode extraction part, 29a Part to be a through hole (through hole part for electrode extraction), 30 Nozzle hole, A electrode part, G gap.

Claims (7)

複数のギャップ段差部に電極部がそれぞれ形成された第2の基板と、
壁面の一部が振動板からなる複数の吐出室を有し、前記振動板の前記吐出室と反対側の面上に絶縁膜が成膜された第1の基板とを少なくとも備え、
前記振動板及び絶縁膜をギャップを介して前記電極部と対向させ、前記ギャップ段差部から前記電極部を取り出す電極取り出し部を備えた液滴吐出ヘッドであって、
前記ギャップ段差部の前記電極取り出し部の近傍にエッチング耐性を有する絶縁保護膜を形成したことを特徴とする液滴吐出ヘッド。
A second substrate in which electrode portions are respectively formed in a plurality of gap stepped portions;
A plurality of discharge chambers each having a wall surface made of a diaphragm, and at least a first substrate having an insulating film formed on a surface of the diaphragm opposite to the discharge chamber;
A liquid droplet ejection head comprising an electrode take-out portion that makes the diaphragm and the insulating film face the electrode portion via a gap and takes out the electrode portion from the gap stepped portion;
A droplet discharge head, wherein an insulating protective film having etching resistance is formed in the vicinity of the electrode extraction portion of the gap step portion.
前記絶縁保護膜を前記電極部のリード部の端部近傍に形成したことを特徴とする請求項1記載の液滴吐出ヘッド。   The droplet discharge head according to claim 1, wherein the insulating protective film is formed in the vicinity of an end portion of the lead portion of the electrode portion. 前記絶縁保護膜を前記ギャップ段差部の深さとほぼ同じ高さに成膜したことを特徴とする請求項1又は2記載の液滴吐出ヘッド。   The droplet discharge head according to claim 1, wherein the insulating protective film is formed at a height substantially equal to a depth of the gap step portion. 前記絶縁保護膜は、SiO2 膜、Si3 4 膜、及びAl2 3 膜のいずれかからなる膜であることを特徴とする請求項1〜3のいずれかに記載の液滴吐出ヘッド。 4. The droplet discharge head according to claim 1, wherein the insulating protective film is a film made of any one of a SiO 2 film, a Si 3 N 4 film, and an Al 2 O 3 film. . 請求項1〜4のいずれかに記載の液滴吐出ヘッドを搭載したことを特徴とする液滴吐出装置。   A droplet discharge apparatus comprising the droplet discharge head according to claim 1. 第2の基板に複数のギャップ段差部を形成してそれぞれのギャップ段差部に電極部を形成し、前記ギャップ段差部の電極取り出し部となる部分の近傍にエッチング耐性を有する絶縁保護膜を形成する工程と、
第1の基板に振動板となる部分を形成しその上に絶縁膜を成膜する工程と、
前記第2の基板と前記第1の基板とを、前記電極部と、前記振動板となる部分及び絶縁膜とが、ギャップを介して対向するように接合して、前記絶縁保護膜と前記絶縁膜とを対向して配置させる工程と、
前記の第1、第2の接合基板をウエットエッチングによりエッチングして、前記第1の基板に振動板を壁面の一部とする吐出室を含む液体流路及び電極取り出し用貫通穴部を形成し、前記電極取り出し用貫通穴部をさらにドライエッチングして貫通させ電極取り出し部を形成する工程とを、
含むことを特徴とする液滴吐出ヘッドの製造方法。
A plurality of gap stepped portions are formed on the second substrate, electrode portions are formed on the respective gap stepped portions, and an insulating protective film having etching resistance is formed in the vicinity of the portion of the gap stepped portion serving as the electrode extraction portion. Process,
Forming a portion to be a vibration plate on the first substrate and forming an insulating film thereon;
The second substrate and the first substrate are joined such that the electrode portion, the portion serving as the diaphragm and the insulating film face each other with a gap therebetween, and the insulating protective film and the insulating film A step of arranging the film opposite to each other;
The first and second bonded substrates are etched by wet etching to form a liquid flow path including a discharge chamber having a vibration plate as a part of a wall surface and an electrode extraction through hole in the first substrate. The step of forming the electrode lead-out part by further dry etching the through-hole part for taking out the electrode and penetrating the through-hole part.
A method for manufacturing a droplet discharge head, comprising:
請求項6記載の液滴吐出ヘッドの製造方法を適用して液滴吐出装置を製造することを特徴とする液滴吐出装置の製造方法。   A method for manufacturing a droplet discharge device, wherein the droplet discharge device is manufactured by applying the method for manufacturing a droplet discharge head according to claim 6.
JP2008300525A 2008-11-26 2008-11-26 Liquid-droplet ejecting head, liquid-droplet ejecting apparatus, method of manufacturing the liquid-droplet ejecting head, and method of manufacturing the liquid-droplet ejecting apparatus Withdrawn JP2010125639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300525A JP2010125639A (en) 2008-11-26 2008-11-26 Liquid-droplet ejecting head, liquid-droplet ejecting apparatus, method of manufacturing the liquid-droplet ejecting head, and method of manufacturing the liquid-droplet ejecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300525A JP2010125639A (en) 2008-11-26 2008-11-26 Liquid-droplet ejecting head, liquid-droplet ejecting apparatus, method of manufacturing the liquid-droplet ejecting head, and method of manufacturing the liquid-droplet ejecting apparatus

Publications (1)

Publication Number Publication Date
JP2010125639A true JP2010125639A (en) 2010-06-10

Family

ID=42326358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300525A Withdrawn JP2010125639A (en) 2008-11-26 2008-11-26 Liquid-droplet ejecting head, liquid-droplet ejecting apparatus, method of manufacturing the liquid-droplet ejecting head, and method of manufacturing the liquid-droplet ejecting apparatus

Country Status (1)

Country Link
JP (1) JP2010125639A (en)

Similar Documents

Publication Publication Date Title
JP2007038629A (en) Electrostatic actuator, liquid droplet discharge head, liquid droplet discharge apparatus, electrostatic device, and those manufacturing methods
JP2006263933A (en) Liquid droplet discharging head, its manufacturing method, and liquid droplet discharging device
JP2010125639A (en) Liquid-droplet ejecting head, liquid-droplet ejecting apparatus, method of manufacturing the liquid-droplet ejecting head, and method of manufacturing the liquid-droplet ejecting apparatus
JP2010143055A (en) Nozzle substrate, liquid droplet discharge head, and method of manufacturing nozzle substrate
JP2009012403A (en) Electrostatic actuator, liquid droplet discharge head, manufacturing process of electrostatic actuator, and manufacturing process of liquid droplet discharge head
JP2007038452A (en) Electrostatic actuator, its manufacturing method, liquid droplet delivering head, its manufacturing method, device and liquid droplet delivering apparatus
JP2010240854A (en) Method for manufacturing nozzle substrate and method for manufacturing liquid drop jet head
JP2008044203A (en) Method for manufacturing liquid droplet delivering head, and liquid droplet delivering head
JP4701935B2 (en) Method for manufacturing droplet discharge head
JP2009012211A (en) Electrostatic actuator, liquid droplet discharge head, method for manufacturing electrostatic actuator, and method for manufacturing liquid droplet discharge head
JP2008279707A (en) Manufacturing method for nozzle substrate, liquid droplet ejection head and liquid droplet ejector
JP2007007940A (en) Process for manufacturing liquid drop ejection head and process for manufacturing liquid drop ejector
JP2007182009A (en) Manufacturing method for nozzle base plate, liquid droplet ejection head and liquid droplet ejector
JP4120317B2 (en) Inkjet head manufacturing method
JP2008207458A (en) Droplet discharge head, droplet discharge device, droplet discharge head manufacturing method, and droplet discharge device manufacturing method
JP2006320121A (en) Manufacturing method of electrostatic actuator, droplet discharging head, device, and droplet discharging device
JP2010240912A (en) Liquid droplet delivering head, and liquid droplet delivering device carrying the same
JP2005053066A (en) Manufacturing method for nozzle plate, inkjet head, and inkjet recording device
JP2010240914A (en) Electrostatic actuator, liquid droplet delivering head, liquid droplet delivering device, and method for manufacturing electrostatic actuator
JP2007290272A (en) Liquid droplet ejection head, liquid droplet ejector, manufacturing method for liquid droplet ejection head and manufacturing method for liquid droplet ejector
JP2008055666A (en) Electrostatic actuator, liquid droplet ejection head, and liquid droplet ejection device
JP2007331284A (en) Electrostatic actuator, liquid droplet ejection head, liquid droplet ejector, and manufacturing method for them
JP2007106085A (en) Method for joining anode, method for manufacturing electrostatic actuator, electrostatic actuator, method for manufacturing droplet delivery head, droplet delivery head and droplet delivery apparatus
JP2007185831A (en) Process for manufacturing droplet ejection head, droplet ejection head and droplet ejector
JP2006056211A (en) Manufacturing method of liquid droplet discharge head, liquid droplet discharge head and liquid droplet discharge apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120207