JP2008207458A - Droplet discharge head, droplet discharge device, droplet discharge head manufacturing method, and droplet discharge device manufacturing method - Google Patents

Droplet discharge head, droplet discharge device, droplet discharge head manufacturing method, and droplet discharge device manufacturing method Download PDF

Info

Publication number
JP2008207458A
JP2008207458A JP2007046520A JP2007046520A JP2008207458A JP 2008207458 A JP2008207458 A JP 2008207458A JP 2007046520 A JP2007046520 A JP 2007046520A JP 2007046520 A JP2007046520 A JP 2007046520A JP 2008207458 A JP2008207458 A JP 2008207458A
Authority
JP
Japan
Prior art keywords
substrate
common electrode
droplet discharge
electrode portion
discharge head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007046520A
Other languages
Japanese (ja)
Inventor
Seiji Yamazaki
成二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007046520A priority Critical patent/JP2008207458A/en
Publication of JP2008207458A publication Critical patent/JP2008207458A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a droplet discharge head etc. which each allow easy and positive wire connection, are high in mounting reliability, low in cost, and high in productivity. <P>SOLUTION: The droplet discharge head comprises at least: a first substrate 1 having one or more discharge rooms 5 formed therein, each of which is at least partially changed in shape by external force to discharge droplets from a nozzle hole 30 communicating therewith; and a second substrate 2 which is anodic-bonded to the first substrate 1, and has one or more individual electrode parts B that apply forces to selected ones or all of the discharge chambers 5 when electric power is fed. The second substrate 2 is provided with a common electrode part A which has a contact point 50 abutting on the first substrate 1 in a manner capable of energizing the same. A terminal part of the common electrode part A is provided in the same plane as that of each individual electrode part B, and by applying a voltage to the terminal parts of the common electrode part A and the individual electrode parts B, the shapes of the discharge chambers 5 are changed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液滴吐出ヘッド、液滴吐出装置、液滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法に関するものである。   The present invention relates to a droplet discharge head, a droplet discharge device, a method for manufacturing a droplet discharge head, and a method for manufacturing a droplet discharge device.

静電駆動方式のインクジェットヘッドでは、キャビティ基板(シリコン基板)を共通電極とし、各静電アクチュエータに形成されている個別電極部と共通電極部との間に電圧を加えることでアクチュエータを駆動させる。
従来、共通電極部はキャビティ基板の各部を形成後、キャビティ基板の表面に白金(Pt)を成膜して、かかる白金を共通電極部の端子部としている。個別電極部はアクチュエータから横に引き回し、その端部を端子部とし、共通電極部の端子部と個別電極部の端子部にFPCを実装している。
In an electrostatic drive type inkjet head, a cavity substrate (silicon substrate) is used as a common electrode, and an actuator is driven by applying a voltage between an individual electrode portion and a common electrode portion formed in each electrostatic actuator.
Conventionally, after forming each part of the cavity substrate in the common electrode portion, a platinum (Pt) film is formed on the surface of the cavity substrate, and the platinum is used as a terminal portion of the common electrode portion. The individual electrode part is routed laterally from the actuator, its end is used as a terminal part, and the FPC is mounted on the terminal part of the common electrode part and the terminal part of the individual electrode part.

従来の液滴吐出ヘッドに、キャビティ基板と個別電極部を等電位にするため、共通電極部がキャビティ基板上に形成され、ワイヤを介して発振回路と接続するようにしたものがある(例えば、特許文献1参照)。   Some conventional droplet discharge heads have a common electrode portion formed on the cavity substrate in order to make the cavity substrate and the individual electrode portion have the same potential, and are connected to the oscillation circuit via a wire (for example, Patent Document 1).

また、従来のインクジェットヘッドに、共通電極部の端子部が、キャビティ基板に設けた貫通孔に充填した導電性ペーストを介して、個別電極部の端子部と同一表面上に形成された共通電極接続用の電極部に導通させるようにしたものがある。そして、個別電極部、共通電極部の端子部が同一平面上に位置するように引き出し、これらを配線基板に形成されている接合部に重ね合わせて通電可能に接続し、当該配線基板を外部接続用のフレキシブル配線基板等に接合するようにしている(例えば、特許文献2参照)。   In addition, the common electrode connection is formed on the same surface as the terminal part of the individual electrode part through the conductive paste filled in the through hole provided in the cavity substrate in the conventional ink jet head. There is one which is made to conduct to the electrode part for use. Then, the individual electrode part and the terminal part of the common electrode part are drawn out so that they are located on the same plane, and these are superposed on the joint part formed on the wiring board so as to be energized, and the wiring board is externally connected. It is made to join to a flexible wiring board or the like (see, for example, Patent Document 2).

特開2004−306443号公報(第8頁、図2)JP 2004-306443 A (page 8, FIG. 2) 特開2001−96741号公報(第5頁、図3)JP 2001-96741 A (Page 5, FIG. 3)

特許文献1の液滴吐出ヘッドの共通電極部の構造は最も広く使われているタイプであるが、共通電極部と個別電極部は同一平面上になく、配線フレキシブル基板を接続する際に、共通電極部と個別電極部とを別々に加熱加圧する必要があり、構造が複雑で製造が面倒である。   The structure of the common electrode portion of the droplet discharge head of Patent Document 1 is the most widely used type, but the common electrode portion and the individual electrode portion are not on the same plane and are common when connecting the wiring flexible substrate. It is necessary to heat and press the electrode part and the individual electrode part separately, and the structure is complicated and the manufacturing is troublesome.

特許文献2のインクジェットヘッドは、導電性ペーストを充填する手間がかかり、生産性が低い。   The inkjet head of Patent Document 2 takes time and effort to fill the conductive paste, and the productivity is low.

本発明は上記の課題を解決するためになされたもので、簡単かつ確実に配線接続を行うことができて実装信頼性が高く、低コストで生産性が高い液滴吐出ヘッド、液滴吐出装置、液滴吐出ヘッドの製造方法及び液滴吐出装置の製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and a droplet discharge head and a droplet discharge device that can perform wiring connection easily and reliably, have high mounting reliability, low cost, and high productivity. An object of the present invention is to provide a method for manufacturing a droplet discharge head and a method for manufacturing a droplet discharge device.

本発明に係る液滴吐出ヘッドは、
外部の力により少なくとも一部分が形状変化して、連通するノズルから液滴が吐出される1または複数の吐出室が形成された第1の基板(キャビティ基板)と、
前記第1の基板と陽極接合し、電力が供給されると、選択された又はすべての前記吐出室に力を加えて形状変化させる1又は複数の個別電極部を有する第2の基板(ガラス基板9)とを少なくとも備えた液滴吐出ヘッドであって、
前記第2の基板に前記第1の基板と通電可能に当接する接点を備えた共通電極部が設けられ、前記共通電極部の端子部を前記個別電極部の端子部と同一平面上に設け、前記共通電極部及び個別電極部の端子部に電圧を印加して前記吐出室の形状を変化させるようにしたものである。
The droplet discharge head according to the present invention is
A first substrate (cavity substrate) in which one or a plurality of discharge chambers are formed in which at least a part changes shape by an external force and droplets are discharged from a communicating nozzle;
A second substrate (glass substrate) having one or a plurality of individual electrode portions that are anodically bonded to the first substrate and change the shape by applying force to selected or all of the discharge chambers when power is supplied. 9) a droplet discharge head comprising at least
A common electrode portion provided with a contact that contacts the first substrate so as to be energized is provided on the second substrate, and the terminal portion of the common electrode portion is provided on the same plane as the terminal portion of the individual electrode portion; A voltage is applied to the terminal portions of the common electrode portion and the individual electrode portions to change the shape of the discharge chamber.

従来のように、共通電極部を第1の基板に形成するとシリコンマスク等を用いて白金膜等の金属膜を共通電極部に成膜しなければならず複雑であり、また、共通電極部の端子部を充填された導電性ペーストを介して個別電極部と同一平面上に引き出す場合は手間がかかり生産性も低いが、本発明では第2の基板に第1の基板と通電可能に接続する接点を備えた共通電極部が設けられ、かかる共通電極部の端子部を個別電極部の端子部と同一平面上に設けたので、簡単かつ確実に配線接続を行うことができて実装信頼性が高く、そのうえ、コストがかからず、生産性も高い。   Conventionally, when the common electrode portion is formed on the first substrate, a metal film such as a platinum film must be formed on the common electrode portion using a silicon mask or the like, and the common electrode portion is complicated. In the case where the terminal part is drawn out on the same plane as the individual electrode part through the conductive paste filled, it takes time and the productivity is low, but in the present invention, the second board is connected to the first board so as to be energized. Since a common electrode part with contacts is provided and the terminal part of the common electrode part is provided on the same plane as the terminal part of the individual electrode part, wiring connection can be performed easily and reliably and mounting reliability is improved. In addition, it is cost-effective and productive.

また、本発明に係る液滴吐出ヘッドは、
前記共通電極部が前記個別電極部を収容する溝部と連通する溝部内に収容され、前記共通電極部の接点が前記第2の基板の表面より突出して設けられたものである。
このため、簡単かつ確実に配線接続を行うことができて実装信頼性が高く、コストがかからず、生産性も高い。
Further, the liquid droplet ejection head according to the present invention is:
The common electrode portion is accommodated in a groove portion that communicates with the groove portion that accommodates the individual electrode portion, and a contact point of the common electrode portion is provided so as to protrude from the surface of the second substrate.
For this reason, wiring connection can be performed easily and reliably, mounting reliability is high, cost is low, and productivity is high.

また、本発明に係る液滴吐出ヘッドは、
前記共通電極部が前記個別電極部の端子部が位置する溝部近傍の段差部にまたがって配置されるとともに、前記共通電極部の接点が段差部近傍の基板表面に該基板表面よりも突出して設けられたものである。
このため、簡単かつ確実に配線接続を行うことができて実装信頼性が高く、コストがかからず、生産性も高い。
Further, the liquid droplet ejection head according to the present invention is:
The common electrode portion is arranged over a step portion near the groove portion where the terminal portion of the individual electrode portion is located, and a contact point of the common electrode portion is provided on the substrate surface near the step portion so as to protrude from the substrate surface. It is what was done.
For this reason, wiring connection can be performed easily and reliably, mounting reliability is high, cost is low, and productivity is high.

また、本発明に係る液滴吐出ヘッドは、
前記第2の基板に設けられた共通電極部の接点に対向して、前記第1の基板に成膜された絶縁膜に窓部を設け、前記共通電極部の接点を前記窓部を介して前記第1の基板に電通可能に当接させたものである。
このため、簡単かつ確実に配線接続を行うことができて実装信頼性が高く、コストがかからず、生産性も高い。
Further, the liquid droplet ejection head according to the present invention is:
A window is provided in the insulating film formed on the first substrate so as to face the contact of the common electrode provided on the second substrate, and the contact of the common electrode is provided via the window. The first substrate is brought into contact with the first substrate so as to be electrically conductive.
For this reason, wiring connection can be performed easily and reliably, mounting reliability is high, cost is low, and productivity is high.

また、本発明に係る液滴吐出ヘッドは、
前記第2の基板に設けられた共通電極部の接点の高さと、前記第1の基板に形成した窓部の深さが同じになるようにしたものである。
このため、電気的接続が確実に行われる。
Further, the liquid droplet ejection head according to the present invention is:
The height of the contact point of the common electrode portion provided on the second substrate is the same as the depth of the window portion formed on the first substrate.
For this reason, electrical connection is reliably performed.

また、本発明に係る液滴吐出ヘッドは、
前記第2の基板に設けられた共通電極部の接点に対向して、前記第1の基板に成膜された絶縁膜に窓部を設けるとともに、該窓部の第1の基板側に耐酸化性の金属膜を設け、前記共通電極部の接点を前記金属膜を介して前記第1の基板に電通可能に当接させたものである。
このため、耐酸化性の金属膜によりコンタクト抵抗を低減させることができる。
Further, the liquid droplet ejection head according to the present invention is:
A window is provided in the insulating film formed on the first substrate so as to face the contact of the common electrode provided on the second substrate, and oxidation resistance is provided on the first substrate side of the window. A conductive metal film is provided, and the contact of the common electrode portion is brought into contact with the first substrate through the metal film so as to be electrically conductive.
For this reason, contact resistance can be reduced by an oxidation-resistant metal film.

また、本発明に係る液滴吐出ヘッドは、
前記第2の基板に設けられた共通電極部の接点と前記第1の基板側に設けられた耐酸化性の金属膜とを合わせた高さが、前記第1の基板に成膜された絶縁膜に設けられた窓部の深さと同じになるようにしたものである。
このため、電気的接続が確実に行われるとともに、耐酸化性の金属膜によりコンタクト抵抗を低減させることができる。
Further, the liquid droplet ejection head according to the present invention is:
The height of the contact of the common electrode portion provided on the second substrate and the oxidation-resistant metal film provided on the first substrate side is the insulation formed on the first substrate. The depth of the window provided in the film is the same.
For this reason, the electrical connection is reliably performed, and the contact resistance can be reduced by the oxidation-resistant metal film.

また、本発明に係る液滴吐出ヘッドは、
前記耐酸化性の金属膜が白金により形成された金属膜である。
このため、電気的接続が確実に行われるとともに、耐酸化性の白金金属膜によりコンタクト抵抗を低減させることができる。
Further, the liquid droplet ejection head according to the present invention is:
The oxidation-resistant metal film is a metal film formed of platinum.
For this reason, the electrical connection is reliably performed, and the contact resistance can be reduced by the oxidation-resistant platinum metal film.

また、本発明に係る液滴吐出ヘッドは、
前記第1の基板の絶縁膜に設けた窓部の面積を、前記第2の基板に設けた接点の面積よりも大きくした。
このため、大きい面積の窓部の内側では共通電極部の接点が確実にしかも余裕を持って当接する。
Further, the liquid droplet ejection head according to the present invention is:
The area of the window provided in the insulating film of the first substrate was made larger than the area of the contact provided in the second substrate.
For this reason, the contact of the common electrode portion reliably contacts with a sufficient margin inside the window portion having a large area.

また、本発明に係る液滴吐出ヘッドは、
前記第2の基板に前記第1の基板と通電可能に接続する接点を有する陽極接合部が設けられ、陽極接合時に前記陽極接合部の接点を前記第1の基板及びすべての個別電極部と通電可能に接続させておき、ダイシング時に前記陽極接合部の接点とすべての個別電極部との接続を絶つようにしたものである。
陽極接合後は、個別電極部と第1の基板とを等電位にする必要はないため、液滴吐出ヘッドを各ヘッドに分離する際に電気的接続を断つ。こうして、個別電極部と第1の基板との間に電位差を確保し、液滴吐出ヘッドを駆動することが可能になる。
Further, the liquid droplet ejection head according to the present invention is:
The second substrate is provided with an anodic bonding portion having a contact for connecting the first substrate so as to be energized, and the anodic bonding portion is energized with the first substrate and all the individual electrode portions during anodic bonding. In other words, the contacts of the anodic bonding portion and all the individual electrode portions are disconnected during dicing.
After the anodic bonding, the individual electrode portion and the first substrate do not need to be equipotential, and thus the electrical connection is cut when the droplet discharge head is separated into each head. In this way, it is possible to secure a potential difference between the individual electrode portion and the first substrate and drive the droplet discharge head.

また、本発明に係る液滴吐出ヘッドは、
ダイシングにより各個別電極部と分離したあとの陽極接合部を共通電極部として用いるものである。
ダイシングにより個別電極部と分離した陽極接合部を共通電極部として利用するようにしたので、低コスト化が可能である。
Further, the liquid droplet ejection head according to the present invention is:
The anodic bonding part after being separated from each individual electrode part by dicing is used as a common electrode part.
Since the anodic bonding portion separated from the individual electrode portion by dicing is used as the common electrode portion, the cost can be reduced.

また、本発明に係る液滴吐出ヘッドは、
同一平面上に配線接合部が形成された配線フレキシブル基板を、前記個別電極部及び共通電極部の端子部に取り付けるものである。
配線フレキシブル基板を、共通電極部及び個別電極部の端子部に導電性接着剤を介し重ね合わせて加熱加圧するだけで、簡単かつ確実に配線接続を行うことができ、配線フレキシブル基板の実装信頼性を向上させることができる。
Further, the liquid droplet ejection head according to the present invention is:
A wiring flexible board having wiring joint portions formed on the same plane is attached to the terminal portions of the individual electrode portion and the common electrode portion.
Wiring flexible boards can be connected easily and reliably by simply superimposing and heating and pressing the wiring flexible board on the common electrode part and individual electrode part via a conductive adhesive. Can be improved.

また、本発明に係る液滴吐出ヘッドは、
個別電極部、共通電極部及び陽極接合部の材料がITOよりなるものである。
透明電極となるITOを材料とするので、陽極接合後に放電したかどうかを容易に確認することができる。
Further, the liquid droplet ejection head according to the present invention is:
The material of the individual electrode part, the common electrode part and the anodic bonding part is made of ITO.
Since ITO used as a transparent electrode is used as a material, it can be easily confirmed whether or not the discharge has occurred after anodic bonding.

また、本発明に係る液滴吐出装置は、
外部の力により少なくとも一部分が形状変化して、連通するノズルから液滴が吐出される1または複数の吐出室が形成された第1の基板と、
前記第1の基板と陽極接合し、電力が供給されると、選択された又はすべての前記吐出室に力を加えて形状変化させる1又は複数の個別電極部を有する第2の基板とを少なくとも備え、前記第2の基板に前記第1の基板と通電可能に接続する接点を備えた共通電極部が設けられ、前記共通電極部の端子部を前記個別電極部の端子部と同一平面上に設け、前記共通電極部及び個別電極部の端子部に電圧を印加し前記吐出室の形状を変化させるようにした液滴吐出ヘッドを有し、
前記液滴吐出ヘッドに液滴を供給する液滴供給手段と、
ヘッド位置制御信号に基づいて前記液滴吐出ヘッドを移動させる走査駆動手段と、
記録対象となる記録部材と前記液滴吐出ヘッドとの相対位置を変化させる位置制御手段とを少なくとも備えたものである。
簡単かつ確実に配線接続を行うことができ実装信頼性も高い液滴吐出ヘッドを備えた液滴吐出装置を低コストで提供することができる。
In addition, the droplet discharge device according to the present invention includes:
A first substrate on which one or a plurality of discharge chambers are formed in which at least a part is changed in shape by an external force and droplets are discharged from a communicating nozzle;
At least a second substrate having one or a plurality of individual electrode portions that are anodically bonded to the first substrate and apply a force to selected or all of the discharge chambers when the power is supplied. And a common electrode portion provided with a contact for connecting to the first substrate so as to be energized is provided on the second substrate, and the terminal portion of the common electrode portion is flush with the terminal portion of the individual electrode portion. A droplet discharge head configured to change the shape of the discharge chamber by applying a voltage to the terminal portions of the common electrode portion and the individual electrode portion;
Droplet supply means for supplying droplets to the droplet discharge head;
Scanning drive means for moving the droplet discharge head based on a head position control signal;
It comprises at least position control means for changing the relative position between the recording member to be recorded and the droplet discharge head.
A droplet discharge apparatus including a droplet discharge head that can be simply and surely connected to a wiring and has high mounting reliability can be provided at low cost.

本発明に係る液滴吐出ヘッドの製造方法は、
重ね合わせた基板に複数の液滴吐出ヘッドを一体成形する液滴吐出ヘッドの製造方法であって、
シリコンを材料とし液体を吐出させるための部材が形成される第1の基板と、
前記部材を加圧して吐出液体を吐出させる1又は複数の個別電極部が形成された第2の基板とを陽極接合するときに、
前記個別電極部と同一平面上に設けられ前記第1の基板と当接する共通電極部の接点と、前記第1の基板とを、通電可能に接続させる工程を少なくとも有する。
信頼性が高く、コストがかからず、生産性も高い液滴吐出ヘッドを提供することができる。
A method for manufacturing a droplet discharge head according to the present invention includes:
A method for manufacturing a droplet discharge head, in which a plurality of droplet discharge heads are integrally formed on an overlapped substrate,
A first substrate on which a member for discharging liquid is formed using silicon;
When anodic bonding with the second substrate formed with one or a plurality of individual electrode portions for pressurizing the member to discharge the discharge liquid,
At least a step of connecting the first substrate to a contact point of a common electrode unit that is provided on the same plane as the individual electrode unit and contacts the first substrate is provided.
A liquid droplet ejection head with high reliability, low cost, and high productivity can be provided.

本発明に係る液滴吐出装置の製造方法は、
重ね合わせた基板に複数の液滴吐出ヘッドを一体成形する液滴吐出ヘッドの製造方法を用いた液滴吐出装置の製造方法であって、
シリコンを材料とし液体を吐出させるための部材が形成される第1の基板と、
前記部材を加圧して吐出液体を吐出させる1又は複数の個別電極部が形成された第2の基板とを陽極接合するときに、
前記個別電極部と同一平面上に設けられ前記第1の基板と当接する共通電極部の接点と、前記第1の基板とを、通電可能に接続させる工程を少なくとも有する。
信頼性が高く、コストがかからず、生産性も高い液滴吐出ヘッドを備えた高精度の液滴吐出装置を提供することができる。
A method for manufacturing a droplet discharge device according to the present invention includes:
A method of manufacturing a droplet discharge device using a method of manufacturing a droplet discharge head in which a plurality of droplet discharge heads are integrally formed on an overlapped substrate,
A first substrate on which a member for discharging liquid is formed using silicon;
When anodic bonding with the second substrate formed with one or a plurality of individual electrode portions for pressurizing the member to discharge the discharge liquid,
At least a step of connecting the first substrate to a contact point of a common electrode unit that is provided on the same plane as the individual electrode unit and contacts the first substrate is provided.
A highly accurate droplet discharge apparatus including a droplet discharge head that is highly reliable, inexpensive, and highly productive can be provided.

実施の形態1.
図1は本発明の実施の形態1に係る液滴吐出ヘッドの分解斜視図、図2は図1の液滴吐出ヘッドを組み立てた状態の縦断面図、図3は図1のガラス基板をダイシングする前に上面より見た概略説明図、図4は図3のイ−イ断面図である。なお、本実施の形態1では、液滴を基板の面部に設けたノズル孔から吐出させるフェイス型の液滴吐出ヘッドの場合を示している。
図1、図2に示すように、液滴吐出ヘッドは、振動板を有する第1の基板としてのキャビティ基板1と、電極部を有する第2の基板としてのガラス基板2と、ノズル孔を有する第3の基板としてのノズル基板3が積層された3層構造になっている。
Embodiment 1 FIG.
1 is an exploded perspective view of a droplet discharge head according to Embodiment 1 of the present invention, FIG. 2 is a longitudinal sectional view of the assembled droplet discharge head of FIG. 1, and FIG. 3 is a dicing of the glass substrate of FIG. FIG. 4 is a cross-sectional view taken along the line II in FIG. 3. The first embodiment shows a case of a face-type droplet discharge head that discharges droplets from nozzle holes provided in the surface portion of the substrate.
As shown in FIGS. 1 and 2, the droplet discharge head has a cavity substrate 1 as a first substrate having a vibration plate, a glass substrate 2 as a second substrate having an electrode portion, and a nozzle hole. It has a three-layer structure in which a nozzle substrate 3 as a third substrate is laminated.

中間に位置する第1の基板としてのキャビティ基板1は、例えば厚さ約50μmの(110)面方位のシリコン(Si)単結晶基板(以下、シリコン基板という)で構成されている。このキャビティ基板1は、キャビティ基材(シリコン基材)に異方性ウェットエッチングを施したもので、底壁が振動板4(厚さ0.8μm程度)となる吐出室5、及び各ノズル孔30に共通して吐出する液体を溜めておくためのリザーバ6を形成する。なお、リザーバ6には液滴供給孔7が設けられている。   The cavity substrate 1 as the first substrate located in the middle is composed of, for example, a silicon (Si) single crystal substrate (hereinafter referred to as a silicon substrate) having a (110) plane orientation of about 50 μm in thickness. The cavity substrate 1 is obtained by subjecting a cavity base material (silicon base material) to anisotropic wet etching, a discharge chamber 5 whose bottom wall is a diaphragm 4 (thickness of about 0.8 μm), and each nozzle hole. A reservoir 6 for storing liquid to be ejected in common is formed. The reservoir 6 is provided with a droplet supply hole 7.

振動板4は、同じ厚さの高濃度のボロンドープ層により構成されている。そして、アルカリ性水溶液でキャビティ基材の異方性ウェットエッチングを行った場合、ボロンをドーパントとしたときには、高濃度(約5×1019atoms・cm-3以上)の領域で極端にエッチングレートが小さくなることを利用した、いわゆるエッチングストップ技術を用いて、振動板4の厚さや、吐出室5の容積を精度よく形成する。 The diaphragm 4 is composed of a high-concentration boron-doped layer having the same thickness. When anisotropic wet etching of the cavity base material is performed with an alkaline aqueous solution, when boron is used as a dopant, the etching rate is extremely small in a high concentration region (about 5 × 10 19 atoms · cm −3 or more). The thickness of the vibration plate 4 and the volume of the discharge chamber 5 are accurately formed by using a so-called etching stop technique.

キャビティ基板1の下面(ガラス基板2と対向する側の面)には、絶縁膜8となるTEOS(Tetraethyl orthosilicate Tetraethoxysilane:テトラエトキシシラン、珪酸エチル)膜が、プラズマCVD(Chemical Vapor Deposition)法によって約0.1μmの厚さで成膜されている。これは、液滴吐出ヘッドを駆動させたときに、絶縁破壊や短絡を防止するためのものである。
なお、キャビティ基板1の絶縁膜8には陽極接合用の窓部と共通電極用の窓部53(図4)が設けられており、これらの窓部53等の面積はこれらに対向して当接する陽極接合部Cの等電位接点70及び共通電極部Aの等電位接点50の面積よりも大きく形成されている。そしてそれぞれの等電位接点70、50は、陽極接合時に、キャビティ基板1の窓部53等を介して、キャビティ基板1の主たる材料であるシリコンと接触し、通電可能となるようにしてある。
On the lower surface of the cavity substrate 1 (the surface facing the glass substrate 2), a TEOS (Tetraethyl orthosilicate Tetraethoxysilane) film serving as an insulating film 8 is formed by a plasma CVD (Chemical Vapor Deposition) method. The film is formed with a thickness of 0.1 μm. This is to prevent dielectric breakdown or short circuit when the droplet discharge head is driven.
The insulating film 8 of the cavity substrate 1 is provided with an anodic bonding window portion and a common electrode window portion 53 (FIG. 4). The areas of these window portions 53 and the like are opposite to each other. It is formed larger than the area of the equipotential contact 70 of the anodic bonding portion C and the equipotential contact 50 of the common electrode portion A that are in contact with each other. The equipotential contacts 70 and 50 are brought into contact with silicon, which is the main material of the cavity substrate 1, through the window 53 of the cavity substrate 1 and the like, and can be energized during anodic bonding.

キャビティ基板1の下面に陽極接合される第2の基板としてのガラス基板2は、厚さ約1mmであり、ホウ珪酸系の耐熱硬質ガラスよりなる。ガラス基板2には、キャビティ基板1に形成されている各吐出室5に合わせて、エッチングにより深さ約0.2μmの個別電極凹部(溝部)20が設けられている。その内部には、個別電極21、リード部22及び端子部23(以下、これらを合わせて個別電極部Bという)を設けているので、個別電極凹部20のパターン形状は個別電極部Bの形状よりも少し大きめに作製してある。これらの個別電極凹部20は、個別電極Bの端子部23側で共通の端子凹部24を形成する。   A glass substrate 2 as a second substrate that is anodically bonded to the lower surface of the cavity substrate 1 has a thickness of about 1 mm and is made of borosilicate heat-resistant hard glass. The glass substrate 2 is provided with individual electrode recesses (grooves) 20 having a depth of about 0.2 μm by etching in accordance with the respective discharge chambers 5 formed in the cavity substrate 1. Since the individual electrode 21, the lead part 22 and the terminal part 23 (hereinafter collectively referred to as the individual electrode part B) are provided therein, the pattern shape of the individual electrode recess 20 is more than the shape of the individual electrode part B. Is made slightly larger. These individual electrode recesses 20 form a common terminal recess 24 on the terminal part 23 side of the individual electrode B.

個別電極凹部20に設ける個別電極部Bの材料としては、酸化錫を不純物としてドープした透明のITO(Indium Tin Oxide:インジウム錫酸化物)を用い、例えば0.1μmの厚さにスパッタ法を用いて成膜する。ここで、個別電極部Bの材料はITOに限定するものではなく、クロム等の金属等を材料に用いてもよいが、本実施の形態1では、後述するように透明であるので、放電したかどうかの確認が行い易い等の理由でITOを用いている。   As a material of the individual electrode portion B provided in the individual electrode recess 20, transparent ITO (Indium Tin Oxide) doped with tin oxide as an impurity is used, and for example, a sputtering method is used with a thickness of 0.1 μm. To form a film. Here, the material of the individual electrode portion B is not limited to ITO, and a metal such as chromium may be used as the material. However, in the first embodiment, since the material is transparent as described later, it is discharged. ITO is used because it is easy to check whether or not.

ガラス基板2には、個別電極凹部20のほかに、陽極接合凹部25及び共通電極凹部26が設けられ、それぞれの凹部25、26には陽極接合部C及び共通電極部Aが設けられ、陽極接合部Cの等電位接点70は接点配線71によって、また共通電極部Aの等電位接点50は接点配線51によってそれぞれ端子凹部24側に引き出されている。   In addition to the individual electrode recess 20, the glass substrate 2 is provided with an anodic bonding recess 25 and a common electrode recess 26, and each of the recesses 25 and 26 is provided with an anodic bonding portion C and a common electrode portion A. The equipotential contact 70 of the part C is drawn to the terminal recess 24 side by the contact wiring 71 and the equipotential contact 50 of the common electrode part A is drawn by the contact wiring 51, respectively.

陽極接合部Cは導電性を有するITOよりなり、陽極接合部Cの等電位接点70は陽極接合凹部25の先端部において段差部に乗り上げる形で約0.1μmの厚さに成膜してある。従って、陽極接合部Cの等電位接点70は、ガラス基板2の表面よりも約0.1μm突出している。陽極接合部Cの材料としては、酸化錫を不純物としてドープした透明のITOを用い、スパッタ法を用いて成膜する。ここで、陽極接合部Cの材料はITOに限定するものではなく、クロム等の金属等を材料に用いてもよい。   The anodic bonding portion C is made of conductive ITO, and the equipotential contact 70 of the anodic bonding portion C is formed to a thickness of about 0.1 μm so as to run over the step portion at the tip of the anodic bonding recess 25. . Therefore, the equipotential contact 70 of the anodic bonding portion C protrudes from the surface of the glass substrate 2 by about 0.1 μm. As the material of the anode junction C, transparent ITO doped with tin oxide as an impurity is used, and a film is formed by sputtering. Here, the material of the anodic bonding portion C is not limited to ITO, and a metal such as chromium may be used as the material.

陽極接合部Cの等電位接点70は個別電極部Bを陽極接合時にキャビティ基材と等電位にするための等電位接点であり、ウェハに一体形成された複数の液滴吐出ヘッドダイシングによる分離前はすべての個別電極部Bとその端子凹部24側において導通しており、キャビティ基材とガラス基板2を陽極接合するときに、キャビティ基材の窓部を介してキャビティ基材のボロンドープ層(シリコン基材)に接合して、キャビティ基材と個別電極部Bとの間を等電位にする。これは、キャビティ基材とガラス基板2を陽極接合するときに、キャビティ基材とガラス基板2の個別電極部Bとの間で放電が起こるのを防止するためである。そして、複数の液滴吐出ヘッドをダイシングしてチップ化する際にダイシングライン27によって切り離され、個別電極部Bはアクチュエータ毎に分断される。従って、ダイシングによりチップ化すると、図3に示すダイシングライン27よりも右側にある部分は、完成された液滴吐出ヘッドには残らない。   The equipotential contact 70 of the anodic bonding portion C is an equipotential contact for making the individual electrode portion B equipotential with the cavity base material during anodic bonding, and before separation by dicing of a plurality of droplet discharge heads integrally formed on the wafer. Are electrically connected to each individual electrode part B and the terminal recess 24 side, and when the cavity base material and the glass substrate 2 are anodically bonded, the boron doped layer (silicon) of the cavity base material is opened through the window part of the cavity base material. The cavity base material and the individual electrode part B are made equipotential. This is for preventing discharge from occurring between the cavity base material and the individual electrode portion B of the glass substrate 2 when the cavity base material and the glass substrate 2 are anodically bonded. When the plurality of droplet discharge heads are diced into chips, the individual electrode portions B are separated for each actuator. Therefore, when a chip is formed by dicing, the portion on the right side of the dicing line 27 shown in FIG. 3 does not remain in the completed droplet discharge head.

共通電極部Aの等電位接点50は折り曲げられた接点配線51によって端子凹部24側に引き出されており、複数の液滴吐出ヘッドをダイシングしてチップ化する際に、共通電極部Aの接点配線51もその端部側でダイシングライン27によって切り離され、端子凹部24側で共通電極部Aの接点配線51の端子部を取り出すようにしてある。こうして、個別電極部Aの端子部23と同一平面上に共通電極部Aの端子部が位置するようになる。共通電極部Aの等電位接点50はヘッドチップ毎に独立して設けられており、陽極接合時にキャビティ基材と通電可能に接続する。   The equipotential contact 50 of the common electrode portion A is drawn out to the terminal recess 24 side by a bent contact wire 51. When dicing a plurality of droplet discharge heads into a chip, the contact wire of the common electrode portion A is drawn. 51 is also cut off by the dicing line 27 on the end side, and the terminal part of the contact wiring 51 of the common electrode part A is taken out on the terminal recessed part 24 side. Thus, the terminal part of the common electrode part A is positioned on the same plane as the terminal part 23 of the individual electrode part A. The equipotential contact 50 of the common electrode portion A is provided independently for each head chip, and is connected to the cavity substrate so as to be energized at the time of anodic bonding.

なお、ITOを成膜する際の共通電極部Aの等電位接点50を形成する部分については、ガラス基板2の共通電極凹部26を形成する際にその部分をエッチングせずにポスト52として残しておく。そして、共通電極凹部26に沿ってその端部からポスト52まで、導電性であるITOを約0.1μmの厚さに成膜する。従って、共通電極部Aの等電位接点50は、ガラス基板2の表面よりも約0.1μm突出している。   In addition, about the part which forms the equipotential contact 50 of the common electrode part A at the time of forming ITO film, when forming the common electrode recessed part 26 of the glass substrate 2, the part is left as the post 52 without etching. deep. Then, a conductive ITO film is formed to a thickness of about 0.1 μm from the end of the common electrode recess 26 to the post 52. Therefore, the equipotential contact 50 of the common electrode portion A protrudes from the surface of the glass substrate 2 by about 0.1 μm.

共通電極部Aの材料としては、酸化錫を不純物としてドープした透明のITOを用い、スパッタ法を用いて成膜する。ここで、共通電極部Aの材料はITOに限定するものではなく、クロム等の金属等を材料に用いてもよい。   As a material for the common electrode portion A, transparent ITO doped with tin oxide as an impurity is used, and a film is formed by sputtering. Here, the material of the common electrode portion A is not limited to ITO, and a metal such as chromium may be used as the material.

こうして窓部53の内側では、キャビティ基板1のボロンドープ層と、ガラス基板2に設けた共通電極部Aの等電位接点50が直接当接する。この場合、絶縁膜8の厚みと共通電極部Aの厚みは等しい。例えば、絶縁膜8の厚みが0.1μm、共通電極部Aの厚みが0.1μmである。こうして、ガラス基板2の共通電極部Aとキャビティ基板1とは通電可能となっている。このため、従来のように、共通電極部Aをキャビティ基材に形成する場合のように、シリコンマスク等を用いて白金膜等の金属膜を共通電極部に成膜する必要がなく、低コスト化が可能である。   Thus, inside the window portion 53, the boron doped layer of the cavity substrate 1 and the equipotential contact 50 of the common electrode portion A provided on the glass substrate 2 are in direct contact with each other. In this case, the thickness of the insulating film 8 is equal to the thickness of the common electrode portion A. For example, the insulating film 8 has a thickness of 0.1 μm, and the common electrode portion A has a thickness of 0.1 μm. Thus, the common electrode portion A of the glass substrate 2 and the cavity substrate 1 can be energized. For this reason, unlike the conventional case, it is not necessary to form a metal film such as a platinum film on the common electrode portion using a silicon mask or the like as in the case where the common electrode portion A is formed on the cavity base material. Is possible.

なお、キャビティ基板1の絶縁膜8に形成された窓部53の内側には、キャビティ基板1のボロンドープ層とガラス基板2の共通電極部Aの等電位接点50が直接当接するようにせず、コンタクト抵抗を低減させるために、酸化し難い白金膜等の金属膜を成膜するようにしても良い。すなわち、図5に示すように、共通電極部Aの等電位接点50が接触するボロンドープ層側に白金膜等の酸化し難い金属膜50aを成膜して、共通電極部Aの等電位接点50が金属膜50aを介してボロンドープ層に当接するようにしてもよい。この場合、金属膜50aの厚さと等電位接点50の厚さの和が、絶縁膜8の厚さと等しい。例えば、金属膜50aに用いた白金膜は、その厚さが0.03μm、等電位接点50の厚さが0.07μm、絶縁膜8の厚さが0.1μmとなる。この構造であれば、共通電極部Aの等電位接点50とキャビティ基板1の接触抵抗を低減することが可能である。   The equipotential contact 50 of the boron doped layer of the cavity substrate 1 and the common electrode portion A of the glass substrate 2 is not directly in contact with the inner side of the window 53 formed in the insulating film 8 of the cavity substrate 1. In order to reduce the resistance, a metal film such as a platinum film which is difficult to oxidize may be formed. That is, as shown in FIG. 5, a metal film 50a that is difficult to oxidize such as a platinum film is formed on the boron doped layer side where the equipotential contact 50 of the common electrode portion A contacts, and the equipotential contact 50 of the common electrode portion A is formed. May contact the boron doped layer through the metal film 50a. In this case, the sum of the thickness of the metal film 50 a and the thickness of the equipotential contact 50 is equal to the thickness of the insulating film 8. For example, the platinum film used for the metal film 50a has a thickness of 0.03 μm, the equipotential contact 50 has a thickness of 0.07 μm, and the insulating film 8 has a thickness of 0.1 μm. With this structure, the contact resistance between the equipotential contact 50 of the common electrode part A and the cavity substrate 1 can be reduced.

キャビティ基板の上面に接着接合される第3の基板としてのノズル基板3は、例えば厚さ約180μmのシリコン基板である。そして、ガラス基板3とは反対の面でキャビティ基板1と接着している。ノズル基板3の上面には、吐出室5と連通するノズル孔30が形成されており、下面にはオリフィス31が設けられ、吐出室5とリザーバ6とを連通させる。   The nozzle substrate 3 as a third substrate bonded and bonded to the upper surface of the cavity substrate is, for example, a silicon substrate having a thickness of about 180 μm. The cavity substrate 1 is bonded to the surface opposite to the glass substrate 3. A nozzle hole 30 communicating with the discharge chamber 5 is formed on the upper surface of the nozzle substrate 3, and an orifice 31 is provided on the lower surface to connect the discharge chamber 5 and the reservoir 6.

上記の液滴吐出ヘッドにおいて、アクチュエータは、封止材40によって個別電極21毎に封止されている。これにより、アクチュエータを駆動させた際の個別電極21と振動板5の貼り付き等を防止する。なお、上記のアクチュエータにおいて、振動板4と個別電極21との間に形成されるギャップGは、個別電極凹部20の深さ、個別電極21の厚さにより決まり、吐出特性に大きく影響する。   In the above droplet discharge head, the actuator is sealed for each individual electrode 21 by the sealing material 40. This prevents sticking between the individual electrode 21 and the diaphragm 5 when the actuator is driven. In the actuator described above, the gap G formed between the diaphragm 4 and the individual electrode 21 is determined by the depth of the individual electrode recess 20 and the thickness of the individual electrode 21 and greatly affects the ejection characteristics.

個別電極部Bの端子部23と共通電極部Aの端子部が位置する電極取出し口41には、FPC42が実装してある。この場合、同一平面上に配線接合部が形成されている配線フレキシブル基板を、単に、導電性接着剤を介して、個別電極部Bの端子部23と共通電極部Aの端子部に重ね合わせて加熱加圧するだけで、簡単かつ確実に、配線接続を行うことができる。こうして、個別電極部Bの端子部23と共通電極部Aの端子部で、ドライバIC43を搭載したFPC42と接続され、個別電極21への電荷の供給及び停止を制御する。   An FPC 42 is mounted on the electrode outlet 41 where the terminal part 23 of the individual electrode part B and the terminal part of the common electrode part A are located. In this case, the wiring flexible board in which the wiring joint portion is formed on the same plane is simply overlapped with the terminal portion 23 of the individual electrode portion B and the terminal portion of the common electrode portion A through a conductive adhesive. Wiring connection can be performed easily and reliably simply by heating and pressing. In this way, the terminal part 23 of the individual electrode part B and the terminal part of the common electrode part A are connected to the FPC 42 on which the driver IC 43 is mounted, and the supply and stop of the charge to the individual electrode 21 are controlled.

上記のように構成した液滴吐出ヘッドの動作を説明する。
図2に示すように、吐出室5にはノズル孔30から吐出する吐出液体を溜めておく。そして、吐出室5の底壁である振動板4を撓ませ、吐出室5内の圧力を高め、ノズル孔30から液滴を吐出させる。
この際、電極取出し口41に位置し、個別電極部Bの端子部23と共通電極部Aの端子部に接続されたドライバIC43を搭載したFPC42によって、個別電極21への電荷の供給及び停止を制御する。例えば、24kHzで発振し、個別電極21に0Vと30Vのパルス電位を印加して電荷供給を行う。
The operation of the droplet discharge head configured as described above will be described.
As shown in FIG. 2, the discharge liquid discharged from the nozzle hole 30 is stored in the discharge chamber 5. Then, the diaphragm 4 which is the bottom wall of the discharge chamber 5 is bent, the pressure in the discharge chamber 5 is increased, and droplets are discharged from the nozzle holes 30.
At this time, the supply and stop of the charge to the individual electrode 21 are performed by the FPC 42 mounted with the driver IC 43 located at the electrode outlet 41 and connected to the terminal portion 23 of the individual electrode portion B and the terminal portion of the common electrode portion A. Control. For example, it oscillates at 24 kHz, and charges are supplied by applying pulse potentials of 0 V and 30 V to the individual electrodes 21.

個別電極21に電荷を供給して正に帯電させると、振動板4は負に帯電し、静電気力により個別電極21に引き寄せられて撓む。これにより、吐出室5の容積は広がる。そして、個別電極21への電荷供給を止めると振動板4は元に戻るが、そのときの吐出室5の容積も元に戻るから、その圧力により差分の液滴が吐出し、例えば液滴がインクである場合は、記録対象となる記録紙に着弾することによって記録が行われる。
なお、このような方法は引き打ちと呼ばれるものであるが、バネ等を用いて液滴を吐出する押し打ちと呼ばれる方法もある。
When an electric charge is supplied to the individual electrode 21 to be positively charged, the diaphragm 4 is negatively charged and is attracted to the individual electrode 21 by an electrostatic force and bends. Thereby, the volume of the discharge chamber 5 is expanded. When the supply of electric charges to the individual electrode 21 is stopped, the diaphragm 4 returns to its original state, but the volume of the discharge chamber 5 at that time also returns to its original state. In the case of ink, recording is performed by landing on a recording sheet to be recorded.
Such a method is called pulling, but there is also a method called pushing that discharges droplets using a spring or the like.

上記のように構成した液滴吐出ヘッドのガラス基板2の製造方法を、図6〜図8の製造工程図により説明する。なお、以下の説明で記載した数値はその一例を示すもので、これに限定するものではない。
(a) 両面研磨した約1mmのガラス基材200を用意し、このガラス基材200の片面に、エッチングマスクとなるクロム(Cr)膜201を0.1μm成膜する(図6(a))。
A manufacturing method of the glass substrate 2 of the droplet discharge head configured as described above will be described with reference to manufacturing process diagrams of FIGS. In addition, the numerical value described in the following description shows the example, and is not limited to this.
(A) About 1 mm glass substrate 200 polished on both sides is prepared, and a chromium (Cr) film 201 as an etching mask is formed on one side of the glass substrate 200 to a thickness of 0.1 μm (FIG. 6A). .

(b) 成膜したクロム膜201の表面にレジスト202を塗布し、個別電極凹部20、陽極接合凹部25及び共通電極凹部26を作り込むためのレジストパターニングを施す(図6(b))。 (B) A resist 202 is applied to the surface of the formed chromium film 201, and resist patterning for forming the individual electrode recess 20, the anode bonding recess 25, and the common electrode recess 26 is performed (FIG. 6B).

(c) 硝酸セリウムアンモニウム水溶液でエッチングし、クロム膜201をパターニングする(図6(c))。 (C) The chromium film 201 is patterned by etching with a cerium ammonium nitrate aqueous solution (FIG. 6C).

(d) レジスト202を付けた状態でガラス基材200をフッ化アンモニウム水溶液に浸し、個別電極凹部20、陽極接合凹部25及び共通電極凹部26を0.2μmエッチングする。このとき、共通電極凹部26に設けられる共通電極部Aの等電位接点50の高さ部となる部分はエッチングせずにポスト52として残しておく(図6(d))。 (D) The glass substrate 200 is immersed in an aqueous ammonium fluoride solution with the resist 202 attached, and the individual electrode recess 20, the anode bonding recess 25 and the common electrode recess 26 are etched by 0.2 μm. At this time, the portion which becomes the height portion of the equipotential contact 50 of the common electrode portion A provided in the common electrode recess 26 is left as a post 52 without being etched (FIG. 6D).

(e) レジスト202を剥離した後、クロム膜201を硝酸セリウムアンモニウム水溶液を用いて剥離する(図7(e))。 (E) After peeling off the resist 202, the chromium film 201 is peeled off using a cerium ammonium nitrate aqueous solution (FIG. 7 (e)).

(f) 個別電極凹部20、陽極接合凹部25及び共通電極凹部26を形成した後、例えばスパッタ法を用いて、0.1μmの厚さの電極部材であるITO膜203をパターニング面全面に成膜する(図7(f))。 (F) After forming the individual electrode recess 20, the anode bonding recess 25, and the common electrode recess 26, an ITO film 203 as an electrode member having a thickness of 0.1 μm is formed on the entire patterning surface by using, for example, a sputtering method. (FIG. 7 (f)).

(g) 個別電極凹部20内の個別電極部B、陽極接合凹部25内の陽極接合部C、及び共通電極凹部26内の共通電極部Aに、ITO膜203が残るようにレジスト204にレジストパターニングを施す(図7(g))。 (G) Resist patterning on the resist 204 so that the ITO film 203 remains in the individual electrode portion B in the individual electrode recess 20, the anode junction C in the anode junction recess 25, and the common electrode portion A in the common electrode recess 26. (FIG. 7G).

(h) 硝酸と塩酸の混合液を用いてITO膜203をエッチングし、個別電極部B、陽極接合部C及び共通電極部Aを形成する。この場合、共通電極部Aの等電位接点50と陽極接合部Cの等電位接点70は、それぞれ高さ部を形成するポストの上面において、ガラス基材200の表面よりも突出する(図8(h))。 (H) The ITO film 203 is etched using a mixed solution of nitric acid and hydrochloric acid to form the individual electrode portion B, the anode junction portion C, and the common electrode portion A. In this case, the equipotential contact 50 of the common electrode portion A and the equipotential contact 70 of the anodic bonding portion C each protrude from the surface of the glass substrate 200 on the upper surface of the post forming the height portion (FIG. 8 ( h)).

(i) レジスト204を剥離する(図8(i))。 (I) The resist 204 is removed (FIG. 8 (i)).

(j) サンドブラスト加工または切削加工によって、ガラス基材200に液滴供給孔7を形成する。
こうして、ガラス基板2を製造する(図8(j))。
(J) The droplet supply holes 7 are formed in the glass substrate 200 by sandblasting or cutting.
In this way, the glass substrate 2 is manufactured (FIG. 8 (j)).

次に、図6〜図8に示した工程によって製造されたガラス基板2を用いて液滴吐出ヘッドを製造する方法を、図9〜図14の製造工程図を用いて説明する。
なお、実際には、シリコン基材から複数個分の液滴吐出ヘッドの部材を同時形成するが、以下の説明ではその一部分だけを示している。
(a) 図6〜図8に示した製造工程によって、ガラス基材200よりガラス基板2を製造する(図9(a))。
Next, a method of manufacturing a droplet discharge head using the glass substrate 2 manufactured by the steps shown in FIGS. 6 to 8 will be described with reference to manufacturing process diagrams of FIGS.
Actually, a plurality of droplet discharge head members are simultaneously formed from a silicon base material, but only a part thereof is shown in the following description.
(A) The glass substrate 2 is manufactured from the glass substrate 200 by the manufacturing steps shown in FIGS. 6 to 8 (FIG. 9A).

(b) (110)を面方位とする酸素濃度の低いシリコン基材の片面を鏡面研磨し、220μmの厚みを有するシリコン基材(以下、キャビティ基材100という)を作製する。
次に、キャビティ基材100を、酸素及び水蒸気雰囲気中、1075℃の条件で4時間酸化して、キャビティ基材100の両面に約1.2μmのSiO2 膜101を成膜する(図9(b))。
(B) One side of a silicon substrate with a low oxygen concentration having a plane orientation of (110) is mirror-polished to produce a silicon substrate having a thickness of 220 μm (hereinafter referred to as cavity substrate 100).
Next, the cavity base material 100 is oxidized in an oxygen and water vapor atmosphere at 1075 ° C. for 4 hours to form about 1.2 μm SiO 2 films 101 on both surfaces of the cavity base material 100 (FIG. 9 ( b)).

(c) キャビティ基材100の両面にレジスト(図示せず)を塗布し、選択拡散部102のレジストパターニングを施し、ふっ酸水溶液でエッチングして、SiO2 膜101をパターニングする。そして、レジストを剥離する(図9(c))。 (C) A resist (not shown) is applied to both surfaces of the cavity substrate 100, the resist patterning of the selective diffusion portion 102 is performed, and etching is performed with a hydrofluoric acid aqueous solution, thereby patterning the SiO 2 film 101. Then, the resist is peeled off (FIG. 9C).

(d) キャビティ基材100のボロンドープ層を形成する側の面を、B23を主成分とする固体の拡散源に対向させて石英ボートにセットする。縦型炉に石英ボートをセットし、炉内を窒素雰囲気にし、温度を1100℃に上昇させ、そのまま温度を6時間保持し、ボロンをキャビティ基材100中に拡散させ、選択拡散部102にボロンドープ層103を形成する。ボロンドープ工程では、キャビティ基材100の投入温度を800℃とし、キャビティ基材100の取出し温度も800℃とする。これにより、酸素欠陥の成長速度が速い領域(600℃から800℃)をすばやく通過することができるため、酸素欠陥の発生を抑えることができる。
このとき、選択拡散部102以外の部分、及び選択拡散部102と反対側の面には、SiO2 膜101が残っているため、SiO2 膜101がマスクとなってボロンが拡散されることがない(図9(d))。
(D) The surface of the cavity substrate 100 on which the boron doped layer is to be formed is set on a quartz boat so as to face a solid diffusion source mainly composed of B 2 O 3 . A quartz boat is set in a vertical furnace, the inside of the furnace is put into a nitrogen atmosphere, the temperature is raised to 1100 ° C., the temperature is kept as it is for 6 hours, boron is diffused into the cavity base material 100, and boron is doped into the selective diffusion portion 102 Layer 103 is formed. In the boron dope process, the input temperature of the cavity base material 100 is set to 800 ° C., and the extraction temperature of the cavity base material 100 is also set to 800 ° C. Accordingly, it is possible to quickly pass through a region (600 ° C. to 800 ° C.) where the growth rate of oxygen defects is high, so that the generation of oxygen defects can be suppressed.
At this time, since the SiO 2 film 101 remains on the portion other than the selective diffusion portion 102 and the surface opposite to the selective diffusion portion 102, boron may be diffused using the SiO 2 film 101 as a mask. No (FIG. 9D).

(e) ボロンドープ層103の表面にはボロン化合物(SiB6 )が形成されるが(図示せず)、酸素及び水蒸気雰囲気中、600℃の条件で1時間30分酸化して、ふっ酸水溶液によるエッチングが可能なB23+SiO2 に化学変化させる。
選択拡散した面と反対側の面にレジストを塗布し、キャビティ基材100をふっ酸水溶液に10分間浸すと、選択拡散部102のB23+SiO2 膜、及び拡散面側のSiO2 膜がエッチング除去される。そして、レジストを剥離する(図10(e))。
(E) A boron compound (SiB 6 ) is formed on the surface of the boron-doped layer 103 (not shown), but it is oxidized in an oxygen and water vapor atmosphere at 600 ° C. for 1 hour and 30 minutes, and a hydrofluoric acid aqueous solution is used. Chemical change to B 2 O 3 + SiO 2 which can be etched.
When a resist is applied to the surface opposite to the selectively diffused surface and the cavity base material 100 is immersed in a hydrofluoric acid aqueous solution for 10 minutes, the B 2 O 3 + SiO 2 film of the selective diffusion portion 102 and the SiO 2 film on the diffusion surface side Are removed by etching. Then, the resist is peeled off (FIG. 10E).

(f) 工程(d)と同様に、キャビティ基材100のボロンドープ層103を形成する面を、B23を主成分とする固体の拡散源に対向させて石英ボートにセットする。縦型炉に石英ボートをセットし、炉内を窒素雰囲気にし、温度を1050℃に上昇させ、そのまま温度を7時間保持し、ボロンをキャビティ基材100中に拡散させ、拡散面側全面にボロンドープ層103を形成する。ボロンドープ工程では、キャビティ基材100の投入温度を800℃とし、キャビティ基材100の取出し温度も800℃とする。これにより、酸素欠陥の成長速度が速い領域(600℃から800℃)をすばやく通過することができるため、酸素欠陥の発生を抑えることができる。このとき、拡散面と反対側の面にはSiO2 膜101が残っているため、ボロンが反対面に回り込んでも、SiO2 膜101がマスクとなって反対面に拡散されることはない。
先に選択拡散した部分のボロン濃度は他の部分に比べて濃くなり、キャビティ基材100のより内部へボロンが拡散される(図10(f))。
(F) Similarly to the step (d), the surface of the cavity base material 100 on which the boron doped layer 103 is formed is set on a quartz boat so as to face a solid diffusion source containing B 2 O 3 as a main component. A quartz boat is set in a vertical furnace, the inside of the furnace is put into a nitrogen atmosphere, the temperature is raised to 1050 ° C., the temperature is kept for 7 hours, boron is diffused into the cavity base material 100, and boron is doped on the entire diffusion surface side. Layer 103 is formed. In the boron dope process, the input temperature of the cavity base material 100 is set to 800 ° C., and the extraction temperature of the cavity base material 100 is also set to 800 ° C. Accordingly, it is possible to quickly pass through a region (600 ° C. to 800 ° C.) where the growth rate of oxygen defects is high, so that the generation of oxygen defects can be suppressed. At this time, since the SiO 2 film 101 remains on the surface opposite to the diffusion surface, even if boron wraps around the opposite surface, the SiO 2 film 101 does not diffuse into the opposite surface using the mask.
The boron concentration in the portion selectively diffused first becomes thicker than the other portions, and boron is diffused further into the cavity base material 100 (FIG. 10 (f)).

(g) 工程(e)と同様に、ボロンドープ層103の表面にはボロン化合物(SiB6 )が形成されるが(図示せず)、酸素及び水蒸気雰囲気中、600℃の条件で1時間30分酸化させ、ふっ酸水溶液によるエッチングが可能なB23+SiO2 に化学変化させる。そして、キャビティ基材100をふっ酸水溶液に10分間浸し、拡散面のB23+SiO2 膜及び反対面のSiO2 膜101をエッチング除去する(図10(g))。 (G) As in the step (e), a boron compound (SiB 6 ) is formed on the surface of the boron doped layer 103 (not shown), but in an oxygen and water vapor atmosphere at 600 ° C. for 1 hour 30 minutes. Oxidized and chemically changed to B 2 O 3 + SiO 2 which can be etched with a hydrofluoric acid aqueous solution. Then, the cavity base material 100 is immersed in an aqueous hydrofluoric acid solution for 10 minutes, and the B 2 O 3 + SiO 2 film on the diffusion surface and the SiO 2 film 101 on the opposite surface are removed by etching (FIG. 10 (g)).

(h) ボロンドープ層103を形成した面に、プラズマCVD法によりTEOS絶縁膜104を成膜する。成膜時の処理温度は360℃、高周波出力は250W、圧力は66.7Pa(0.5Torr)、ガス流量はTEOS流量100cm3 /min(100sccm)、酸素流量1000cm3 /min(1000sccm)であって、この条件で、TEOS絶縁膜104を0.1μm成膜する(図10(h))。 (H) A TEOS insulating film 104 is formed on the surface on which the boron doped layer 103 is formed by plasma CVD. The processing temperature during film formation was 360 ° C., the high frequency output was 250 W, the pressure was 66.7 Pa (0.5 Torr), the gas flow rate was TEOS flow rate 100 cm 3 / min (100 sccm), and the oxygen flow rate was 1000 cm 3 / min (1000 sccm). Under this condition, the TEOS insulating film 104 is formed to a thickness of 0.1 μm (FIG. 10H).

(i) キャビティ基材100の拡散面側にレジストを塗布し、陽極接合部Cの等電位接点70に対応する窓部、及び共通電極部Aの等電位接点50に対応する窓部53にレジストパターニングを施し、ふっ酸水溶液でエッチングして、TEOS絶縁膜104をパターニングし、陽極接合部Cの等電位接点70に対応する窓部、及び共通電極部Aの等電位接点50に対応する窓部53を形成する。そして、レジストを剥離する。
なお、共通電極部Aの等電位接点50との接触部に白金(Pt)膜等の金属膜50aを設ける場合(図5参照)は、上記工程ののち、金属膜50aを全面に0.03μmスパッタ法により成膜し、フォトリソ技術によりパターニングして、金属膜50aが残るようにする(図11(i))。
(I) A resist is applied to the diffusion surface side of the cavity substrate 100, and the resist is applied to the window portion corresponding to the equipotential contact 70 of the anodic bonding portion C and the window portion 53 corresponding to the equipotential contact 50 of the common electrode portion A. The TEOS insulating film 104 is patterned by performing patterning and etching with a hydrofluoric acid aqueous solution, and a window portion corresponding to the equipotential contact 70 of the anode junction C and a window portion corresponding to the equipotential contact 50 of the common electrode portion A 53 is formed. Then, the resist is peeled off.
In the case where a metal film 50a such as a platinum (Pt) film is provided at the contact portion of the common electrode portion A with the equipotential contact 50 (see FIG. 5), the metal film 50a is 0.03 μm over the entire surface after the above process. A film is formed by sputtering and patterned by photolithography so that the metal film 50a remains (FIG. 11 (i)).

(j) キャビティ基材100とガラス基板2を360℃に加熱した後、ガラス基板2に負極、キャビティ基材100に正極を接続して、800Vの電圧を印加して陽極接合する。陽極接合の際、個別電極部Bとキャビティ基材100は、陽極接合部Cの等電位接点70がキャビティ基材100に設けた窓部を介してボロンドープ層103と通電可能に接続するため、放電が起こることはない。また、上記の陽極接合の際、同時に、共通電極部Aとキャビティ基材100もまた、共通電極部Aの等電位接点50がキャビティ基材100の窓部53を介してボロンドープ層103と通電可能に接続する(図11(j))。 (J) After the cavity base material 100 and the glass substrate 2 are heated to 360 ° C., a negative electrode is connected to the glass substrate 2 and a positive electrode is connected to the cavity base material 100, and a voltage of 800 V is applied to perform anodic bonding. At the time of anodic bonding, the individual electrode part B and the cavity base material 100 are electrically connected to the boron doped layer 103 through the window provided in the cavity base material 100 so that the equipotential contact 70 of the anodic joint part C is electrically connected. Will never happen. Further, at the same time as the anodic bonding, the common electrode portion A and the cavity base material 100 can also be energized with the boron doped layer 103 through the window 53 of the cavity base material 100 at the equipotential contact 50 of the common electrode portion A. (FIG. 11 (j)).

(k) 陽極接合後、キャビティ基材100を研削加工し、約60μmの厚さにする。その後、32w%の濃度の水酸化カリウム溶液でキャビティ基材100を約10μmエッチングし、加工変質層を除去する。これにより、キャビティ基材100の厚さは約50μmとなる(図11(k))。   (K) After the anodic bonding, the cavity base material 100 is ground to a thickness of about 60 μm. Thereafter, the cavity base material 100 is etched by about 10 μm with a potassium hydroxide solution having a concentration of 32 w% to remove the work-affected layer. Thereby, the thickness of the cavity base material 100 becomes about 50 μm (FIG. 11 (k)).

(l) エッチング面に、プラズマCVDを用いてTEOSエッチングマスク105を成膜する。成膜時の処理温度は360℃、高周波出力は700W、圧力は33.3Pa(0.25Torr)、ガス流量はTEOS流量100cm3 /min(100sccm)、酸素流量1000cm3 /min(1000sccm)であって、この条件で、TEOSエッチングマスク105を1.0μm成膜する(図11(l))。 (L) A TEOS etching mask 105 is formed on the etching surface using plasma CVD. The processing temperature during film formation was 360 ° C., the high frequency output was 700 W, the pressure was 33.3 Pa (0.25 Torr), the gas flow rate was TEOS flow rate 100 cm 3 / min (100 sccm), and the oxygen flow rate was 1000 cm 3 / min (1000 sccm). Under these conditions, a TEOS etching mask 105 is formed to a thickness of 1.0 μm (FIG. 11L).

(m) TEOSエッチングマスク105にレジストパターニングを施し、ふっ酸水溶液でエッチングし、吐出室となる部分5a、及び貫通穴となる部分44aのパターニングを行う。そして、レジストを剥離する(図12(m))。 (M) Resist patterning is performed on the TEOS etching mask 105, and etching is performed with an aqueous hydrofluoric acid solution, thereby patterning the portion 5a serving as a discharge chamber and the portion 44a serving as a through hole. Then, the resist is peeled off (FIG. 12 (m)).

(n) TEOSエッチングマスク105にレジストパターニングを施し、ふっ酸水溶液で0.7μmだけエッチングし、リザーバとなる部分6aをパターニングする。リザーバとなる部分6aのTEOSエッチングマスク105の残りは、0.3μmとする。これは、最終的にリザーバ6に厚みを持たせ、リザーバ6の剛性を高めるためである。そして、レジストを剥離する(図12(n))。 (N) The TEOS etching mask 105 is subjected to resist patterning, and is etched by 0.7 μm with a hydrofluoric acid aqueous solution to pattern the portion 6a serving as a reservoir. The remainder of the TEOS etching mask 105 in the portion 6a serving as a reservoir is 0.3 μm. This is because the reservoir 6 is finally thickened and the rigidity of the reservoir 6 is increased. Then, the resist is removed (FIG. 12 (n)).

(o) 接合済み基板を35wt%の濃度の水酸化カリウム水溶液に浸し、吐出室となる部分5a及び貫通穴となる部分44aの厚みが約10μmになるまで行う。このとき、リザーバとなる部分6aはエッチングがまだ始まらない。しかし、ガラス基板2に設けられた液滴供給孔7に対応する部分は、水酸化カリウム水溶液の濃度が高いため、ボロンドープ層103におけるエッチングレートが低下するものの、接合面側からエッチングが進行していく(図12(o))。 (O) The bonded substrate is immersed in a 35 wt% potassium hydroxide aqueous solution until the thickness of the portion 5a serving as the discharge chamber and the portion 44a serving as the through hole reaches about 10 μm. At this time, the etching of the portion 6a serving as the reservoir has not yet started. However, the portion corresponding to the droplet supply hole 7 provided in the glass substrate 2 has a high concentration of the aqueous potassium hydroxide solution, so that the etching rate in the boron doped layer 103 decreases, but the etching proceeds from the bonding surface side. (FIG. 12 (o)).

(p) ふっ酸水溶液に接合済み基板を浸し、リザーバとなる部分6aのTEOSエッチングマスク105を除去する(図12(p))。 (P) The bonded substrate is immersed in a hydrofluoric acid aqueous solution, and the TEOS etching mask 105 of the portion 6a to be the reservoir is removed (FIG. 12 (p)).

(q) 接合済み基板を3wt%の濃度の水酸化カリウム水溶液に浸し、ボロンドープ層103でのエッチングレート低下によるエッチングストップが十分効くまでエッチングを続ける。前記2種類の濃度の異なる水酸化カリウム水溶液を用いたエッチングを行うことによって、振動板4となる部分(振動板となる部分のボロンドープ層103)の面荒れを抑制し、厚み精度を0.80±0.05μm以下にすることができ、液滴吐出ヘッドの吐出性能を安定化することができる。
選択拡散されている貫通穴となる部分44a(貫通後は電極取出し口41となる部分)は高濃度で深いボロンドープ層103が形成されているため、エッチングストップが振動板4となる部分のボロンドープ層103に比べ早く効き始め、貫通穴となる部分44aの厚みは約3μmとなる。このため、強度が向上し、シリコンエッチング中に広い面積を持つ貫通穴となる部分44aが割れることがなくなり、歩留まりを向上することができる(図13(q))。
(Q) The bonded substrate is immersed in an aqueous potassium hydroxide solution having a concentration of 3 wt%, and etching is continued until an etching stop due to a decrease in the etching rate in the boron doped layer 103 is sufficiently effective. By performing etching using the two types of aqueous potassium hydroxide solutions having different concentrations, the surface roughness of the portion that becomes the diaphragm 4 (the boron doped layer 103 of the portion that becomes the diaphragm) is suppressed, and the thickness accuracy is 0.80. The ejection performance of the droplet ejection head can be stabilized.
Since the portion 44a (the portion that becomes the electrode extraction port 41 after the penetration) that is selectively diffused is formed with the deep boron doped layer 103 at a high concentration, the boron doped layer in the portion where the etching stop becomes the vibration plate 4 The effect begins faster than 103, and the thickness of the portion 44a serving as a through hole is about 3 μm. Therefore, the strength is improved, and the portion 44a that becomes a through hole having a large area during silicon etching is not broken, and the yield can be improved (FIG. 13 (q)).

(r) キャビティ基材100のエッチングが終了したら、接合済み基板をふっ酸水溶液に浸し、キャビティ基材100表面のTEOSエッチングマスク105を剥離する。そして、エッチングを行った面にプラズマCVD法によりTEOS液滴保護膜106を成膜する。成膜時の処理温度は360℃、高周波出力は250W、圧力は66.7Pa(0.5Torr)、ガス流量はTEOS流量100cm3 /min(100sccm)、酸素流量1000cm3 /min(1000sccm)であって、この条件で、0.1μm成膜する(図13(r))。 (R) When the etching of the cavity base material 100 is completed, the bonded substrate is immersed in a hydrofluoric acid aqueous solution, and the TEOS etching mask 105 on the surface of the cavity base material 100 is peeled off. Then, a TEOS droplet protective film 106 is formed on the etched surface by plasma CVD. The processing temperature during film formation was 360 ° C., the high frequency output was 250 W, the pressure was 66.7 Pa (0.5 Torr), the gas flow rate was TEOS flow rate 100 cm 3 / min (100 sccm), and the oxygen flow rate was 1000 cm 3 / min (1000 sccm). Under these conditions, a film having a thickness of 0.1 μm is formed (FIG. 13 (r)).

(s) 貫通穴となる部分44a及び第1封止部28(図3参照)にそれぞれ残っているシリコン薄膜及びTEOS液滴保護膜を除去するために、シリコンマスクをキャビティ基材100の表面に取り付け、RFパワー200W、圧力40Pa(0.3Torr)、CF4流量30cm3 /min(30sccm)の条件で、RIEドライエッチングを1時間行い、貫通穴となる部分44aのみにプラズマを当て、貫通させて開口し、貫通穴44を形成する。このとき、ギャップG内は大気開放される(図13(s))。 (S) In order to remove the silicon thin film and the TEOS droplet protective film remaining in the through hole 44a and the first sealing portion 28 (see FIG. 3), a silicon mask is formed on the surface of the cavity base 100. Mounting, RF power 200 W, pressure 40 Pa (0.3 Torr), CF 4 flow rate 30 cm 3 / min (30 sccm), RIE dry etching is performed for 1 hour, and plasma is applied only to the portion 44 a to be a through hole to penetrate. The through hole 44 is formed. At this time, the gap G is opened to the atmosphere (FIG. 13 (s)).

(t) 第1封止部28にエポキシ系樹脂を盛り、第1の封止材40とし、個別電極21毎に封止を行う。エポキシ系樹脂の代わりに、TEOS膜等の無機材料を成膜して封止してもよい。この時点では、ギャップGは密閉されていない。そして、第2封止部29を介してギャップG内の水分除去を行う。その後、疎水処理を行うため、接合済み基板をHMDS(Hexa Methyl Disilazane、ヘキサメチルジシラザン)ガスをギャップ内に充填させ、第2封止部29にエポキシ系樹脂を盛り、第2の封止材46とし、ギャップG内を封止する。これによって、ギャップGは再び密閉状態になる(図13(t))。 (T) An epoxy resin is placed on the first sealing portion 28 to form the first sealing material 40, and sealing is performed for each individual electrode 21. Instead of the epoxy resin, an inorganic material such as a TEOS film may be formed and sealed. At this point, the gap G is not sealed. Then, moisture in the gap G is removed through the second sealing portion 29. Thereafter, in order to perform a hydrophobic treatment, the bonded substrate is filled with HMDS (Hexa Methyl Disilazane) gas in the gap, and the second sealing portion 29 is filled with an epoxy resin, and the second sealing material 46, and the gap G is sealed. As a result, the gap G is again sealed (FIG. 13 (t)).

(u) ノズル基材300を、エポキシ系接着剤によりキャビティ基材100に接着する(図14(u))。 (U) The nozzle substrate 300 is bonded to the cavity substrate 100 with an epoxy adhesive (FIG. 14 (u)).

(v) ダイシングライン27(図3参照)に沿ってダイシングを行い、個々のヘッドに切断する。ダイシングにより個別電極部Bは陽極接合部Cと分離され、独立する(図14(v))。 (V) Dicing is performed along the dicing line 27 (see FIG. 3) and cut into individual heads. The individual electrode part B is separated from the anodic bonding part C by dicing and is independent (FIG. 14 (v)).

従来のように、共通電極部をキャビティ基材に形成する場合は、シリコンマスク等を用いて白金膜等の金属膜を共通電極部に成膜しなければならず複雑であり、また、共通電極部の端子部を充填された導電性ペーストを介してガラス基板の個別電極部と同一の平面上に引き出す場合は、手間がかかり生産性も低い。
本実施の形態1によれば、ガラス基板2にキャビティ基板1と通電可能に接続する等電位接点50を備えた共通電極部Aが設けられ、かかる共通電極部Aの端子部51を個別電極部Bの端子部23と同一平面上に設け、陽極接合時に共通電極部Aの等電位接点50をキャビティ基材と接合するようにしたので、従来のようにシリコンマスク等を用いて白金膜等の金属膜をわざわざ共通電極部に成膜する必要がなく、低コスト化が可能である。また、同一平面上に配線接合部が形成されている配線フレキシブル基板を、単に、導電性接着剤を介してそれぞれの端子部に重ね合わせて加熱加圧するだけで、簡単かつ確実に配線接続を行うことができ、実装信頼性が向上し、生産性も高い。
When the common electrode part is formed on the cavity base material as in the past, a metal film such as a platinum film must be formed on the common electrode part using a silicon mask or the like, and the common electrode part is complicated. When drawing out on the same plane as the individual electrode part of a glass substrate through the electrically conductive paste with which the terminal part of the part was filled, it takes time and productivity is also low.
According to this Embodiment 1, the common electrode part A provided with the equipotential contact 50 connected to the cavity board | substrate 1 so that electricity supply is possible is provided in the glass substrate 2, and the terminal part 51 of this common electrode part A is made into an individual electrode part. Since the equipotential contact 50 of the common electrode portion A is joined to the cavity base material at the time of anodic bonding, the platinum film or the like using a silicon mask or the like is provided. There is no need to bother forming a metal film on the common electrode portion, and the cost can be reduced. In addition, wiring flexible boards with wiring joints formed on the same plane can be simply and reliably connected by simply superposing and heating and pressing each terminal part via a conductive adhesive. This improves mounting reliability and increases productivity.

実施の形態2.
図15は本発明の実施の形態2に係る液滴吐出ヘッドのガラス基板の斜視図、及び図16は図15のガラス基板をダイシング前に上面より見た概略説明図、図17は図16のロ−ロ断面図である。
実施の形態1では、共通電極部Aの等電位接点50を個別電極部Bが収納された端子凹部24とは異なる共通電極凹部26内に設けたが、本実施の形態2では、共通電極部Aを個別電極部Bの端子部23が位置する端子凹部24の幅方向の段差部にまたがるようにして設け、段差部の高い位置、すなわち段差部近傍のガラス基板2の表面に、共通電極部Aの等電位接点50が位置するようにしたものである。すなわち、端子凹部24の底面から段差部を介して段差部近傍のガラス基板2の表面にかけて、ITO膜を0.1μmに成膜する。したがって、共通電極部Aの等電位接点50は、ガラス基板2の表面よりも0.1μm突出する。
Embodiment 2. FIG.
15 is a perspective view of a glass substrate of a droplet discharge head according to Embodiment 2 of the present invention, FIG. 16 is a schematic explanatory view of the glass substrate of FIG. 15 as viewed from above before dicing, and FIG. FIG.
In the first embodiment, the equipotential contact 50 of the common electrode portion A is provided in the common electrode recess 26 different from the terminal recess 24 in which the individual electrode portion B is housed. A is provided so as to straddle the step portion in the width direction of the terminal recess 24 where the terminal portion 23 of the individual electrode portion B is located, and the common electrode portion is formed on the surface of the glass substrate 2 near the step portion, ie, at a high position A equipotential contact 50 of A is located. That is, an ITO film is formed to a thickness of 0.1 μm from the bottom surface of the terminal recess 24 through the step portion to the surface of the glass substrate 2 near the step portion. Therefore, the equipotential contact 50 of the common electrode portion A protrudes by 0.1 μm from the surface of the glass substrate 2.

キャビティ基板1側には、共通電極部Aの等電位接点50に対向する部分の絶縁膜8(0.1μm)を一部取り除いて窓部53を形成し、ガラス基板2の共通電極部Aの等電位接点50をキャビティ基板1のボロンドープ層と接触させることで、共通電極部Aとの等電位を確保する。
その他の、構成、作用及び効果は、実施の形態1で示した場合と実質的に同様なので、説明を省略する。
On the cavity substrate 1 side, a part of the insulating film 8 (0.1 μm) facing the equipotential contact 50 of the common electrode portion A is partially removed to form a window portion 53, and the common electrode portion A of the glass substrate 2 is formed. By bringing the equipotential contact 50 into contact with the boron doped layer of the cavity substrate 1, the equipotential with the common electrode portion A is ensured.
Other configurations, operations, and effects are substantially the same as in the case of the first embodiment, and a description thereof will be omitted.

実施の形態3.
図18は本発明の実施の形態3に係る液滴吐出ヘッドのガラス基板の斜視図、図19は図18のガラス基板をダイシング前に上面より見た概略説明図である。
実施の形態1では、共通電極部Aの等電位接点50を個別電極部Bが収納された端子凹部24とは異なる共通電極凹部26内に設けたが、本実施の形態3では、ダンシングにより個別電極部Bと分離した後の陽極接合部Cをそのまま共通電極部Aとして利用したものである。
Embodiment 3 FIG.
18 is a perspective view of a glass substrate of a droplet discharge head according to Embodiment 3 of the present invention, and FIG. 19 is a schematic explanatory view of the glass substrate of FIG. 18 as viewed from above before dicing.
In the first embodiment, the equipotential contact 50 of the common electrode portion A is provided in the common electrode concave portion 26 different from the terminal concave portion 24 in which the individual electrode portion B is accommodated. The anodic bonding part C after being separated from the electrode part B is used as the common electrode part A as it is.

すなわち、共通電極部Aの等電位接点50はダイシング後の陽極接合部Cの等電位接点70をそのまま利用するものであり、共通電極部Aの接点配線51はダイシング後の陽極接合部Cの接点配線71をそのまま利用するものであって、ダイシング前には、共通電極部A(すなわち陽極接合部C)は個別電極部Bの全ての個別電極21と導通している。これは、ダイシング前の陽極接合時に、キャビティ基材100と個別電極部Bとの間で放電が起こるのを防ぐためである。そして、ダイシングによりチップ化する際に、個別電極部Bの個別電極21はアクチュエータ毎に分断される。そして、分断したあとの陽極接合部Cの等電位接点70を、共通電極部Aの等電位接点50として利用するものである。
その他の、構成、作用及び効果は、実施の形態1で示した場合と実質的に同様なので、説明を省略する。
That is, the equipotential contact 50 of the common electrode portion A uses the equipotential contact 70 of the anodic bonding portion C after dicing as it is, and the contact wiring 51 of the common electrode portion A serves as the contact of the anodic bonding portion C after dicing. The wiring 71 is used as it is, and the common electrode portion A (that is, the anodic bonding portion C) is electrically connected to all the individual electrodes 21 of the individual electrode portion B before dicing. This is to prevent discharge from occurring between the cavity base material 100 and the individual electrode part B during anodic bonding before dicing. Then, when dicing into chips, the individual electrodes 21 of the individual electrode portion B are divided for each actuator. Then, the equipotential contact 70 of the anodic bonding portion C after the division is used as the equipotential contact 50 of the common electrode portion A.
Other configurations, operations, and effects are substantially the same as in the case of the first embodiment, and a description thereof will be omitted.

実施の形態4.
図20は本発明の実施の形態1〜3のいずれかに係る液滴吐出ヘッドを搭載した液滴吐出装置を示す斜視図である。図20に示す液滴吐出装置400は、一般的なインクジェットプリンタである。
実施の形態1〜3に示す液滴吐出ヘッドは、個別電極部Bの端子部23と共通電極部Aの端子部を同一平面上に形成する構造になっており、また、配線フレキシブル基板を、単に、電極端子部に重ね合わせて加熱加圧するだけで、簡単にかつ確実に、配線接続を行うことができるため、かかる液滴吐出ヘッドを備えた液滴吐出装置は、高精度で信頼性が高く、しかも低コストで製造することができる。
なお、実施の形態1〜3に示す液滴吐出ヘッドは、図20に示すインクジェットプリンタの他に、液滴を種々変更することで、液晶ディスプレイのカラーフィルタの製造、有機EL表示装置の発光部分の形成、生体液体の吐出等にも適用することができる。
Embodiment 4 FIG.
FIG. 20 is a perspective view showing a droplet discharge apparatus equipped with the droplet discharge head according to any one of Embodiments 1 to 3 of the present invention. A droplet discharge device 400 shown in FIG. 20 is a general inkjet printer.
The droplet discharge heads shown in the first to third embodiments have a structure in which the terminal part 23 of the individual electrode part B and the terminal part of the common electrode part A are formed on the same plane. Since the wiring connection can be easily and reliably performed simply by superimposing the electrode terminal and heating and pressurizing, the droplet discharge apparatus provided with such a droplet discharge head is highly accurate and reliable. It is expensive and can be manufactured at low cost.
In addition to the ink jet printer shown in FIG. 20, the droplet discharge heads shown in the first to third embodiments can be used for variously changing the droplets to produce a color filter for a liquid crystal display and a light emitting portion of an organic EL display device. The present invention can also be applied to the formation of liquid and the discharge of biological liquid.

実施の形態5.
図21は本発明の実施の形態1〜3のいずれかに係る静電アクチュエータを備えたデバイスの要部斜視図である。なお、図21に示すデバイス500は、光スイッチやレーザープリンタ用のレザースキャンミラーとして用いられるミラーデバイスである。
本実施の形態5に係るデバイス500は、駆動基板501に駆動部502、ヒンジ503、ミラー504が形成されている。また、駆動基板501に接合されている電極基板505には、ITO等からなる対向電極506が形成されている。なお、駆動基板501は、実施の形態1に係る液滴吐出ヘッドのキャビティ基板1に相当し、駆動部は振動板4に相当するものである。
Embodiment 5. FIG.
FIG. 21 is a perspective view of a main part of a device including the electrostatic actuator according to any one of Embodiments 1 to 3 of the present invention. A device 500 shown in FIG. 21 is a mirror device used as a laser scan mirror for an optical switch or a laser printer.
In the device 500 according to the fifth embodiment, a drive unit 502, a hinge 503, and a mirror 504 are formed on a drive substrate 501. A counter electrode 506 made of ITO or the like is formed on the electrode substrate 505 bonded to the drive substrate 501. The drive substrate 501 corresponds to the cavity substrate 1 of the droplet discharge head according to Embodiment 1, and the drive unit corresponds to the diaphragm 4.

図21に示すデバイス500では、駆動部502と対向電極506の間に電圧が印加されることにより、駆動部502が揺動する。これにより、ヒンジ503が捻れ、その力がミラー504に伝わることによりミラー504が角度を変化させる。このように本実施の形態5では、主に駆動部502、ヒンジ503、ミラー504及び対向電極506によって静電アクチュエータが構成されている。
本実施の形態5に係るデバイス500においても、電極基板505上にパッシベーション膜(図示せず)を形成し、その上に対向電極506を形成することにより、水蒸気等を遮断して、駆動部502及びミラー504の駆動安定性を向上させることができる。なお、図21に示すデバイス500は、一般的にパッケージング(図示せず)によって真空封止されて、外気と遮断されている。
In the device 500 shown in FIG. 21, when a voltage is applied between the driving unit 502 and the counter electrode 506, the driving unit 502 swings. As a result, the hinge 503 is twisted and the force is transmitted to the mirror 504, whereby the mirror 504 changes the angle. As described above, in the fifth embodiment, the electrostatic actuator is mainly configured by the drive unit 502, the hinge 503, the mirror 504, and the counter electrode 506.
Also in the device 500 according to the fifth embodiment, a passivation film (not shown) is formed on the electrode substrate 505, and a counter electrode 506 is formed thereon, thereby blocking water vapor and the like and driving unit 502. In addition, the driving stability of the mirror 504 can be improved. Note that the device 500 shown in FIG. 21 is generally vacuum-sealed by packaging (not shown) to be shut off from the outside air.

実施の形態1〜3では、本発明に係る静電アクチュエータの製造方法を適用した例として液滴吐出ヘッドを示しているが、実施の形態1〜3に係る静電アクチュエータの製造方法は、その他のデバイスの製造方法にも適用することができる。具体的には、波長可変フィルタ、マイクロポンプ等のMEMSデバイスの製造方法に適用することができる。   In the first to third embodiments, a droplet discharge head is shown as an example to which the manufacturing method of the electrostatic actuator according to the present invention is applied. However, the manufacturing method of the electrostatic actuator according to the first to third embodiments is other The present invention can also be applied to the device manufacturing method. Specifically, it can be applied to a manufacturing method of MEMS devices such as a wavelength tunable filter and a micropump.

本発明の実施の形態1に係る液滴吐出ヘッドの分解斜視図。1 is an exploded perspective view of a droplet discharge head according to Embodiment 1 of the present invention. 図1の液滴吐出ヘッドを組み立てた状態の縦断面図。FIG. 2 is a longitudinal sectional view of a state in which the droplet discharge head of FIG. 1 is assembled. 図1のガラス基板をダイシングする前に上面より見た概略説明図。The schematic explanatory drawing seen from the upper surface before dicing the glass substrate of FIG. 図3のイ−イ断面図。II sectional drawing of FIG. 図3の他の形態を示すイ−イ断面図。The II sectional drawing which shows the other form of FIG. 実施の形態1に係る液滴吐出ヘッドのガラス基板の製造工程を示す断面図。FIG. 4 is a cross-sectional view showing a manufacturing process of the glass substrate of the droplet discharge head according to Embodiment 1. 図6に続く液滴吐出ヘッドのガラス基板の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the glass substrate of the droplet discharge head following FIG. 図7に続く液滴吐出ヘッドのガラス基板の製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the glass substrate of the droplet discharge head following FIG. 実施の形態1に係る液滴吐出ヘッドの製造工程を示す断面図。FIG. 3 is a cross-sectional view showing a manufacturing process of the droplet discharge head according to the first embodiment. 図9に続く液滴吐出ヘッドの製造工程を示す断面図。Sectional drawing which shows the manufacturing process of the droplet discharge head following FIG. 図10に続く液滴吐出ヘッドの製造工程を示す断面図。FIG. 11 is a cross-sectional view illustrating a manufacturing process of the droplet discharge head following FIG. 10. 図11に続く液滴吐出ヘッドの製造工程を示す断面図。FIG. 12 is a cross-sectional view showing a manufacturing process of the droplet discharge head following FIG. 11. 図12に続く液滴吐出ヘッドの製造工程を示す断面図。FIG. 13 is a cross-sectional view illustrating a manufacturing process of the droplet discharge head following FIG. 12. 図13に続く液滴吐出ヘッドの製造工程を示す断面図。FIG. 14 is a cross-sectional view illustrating a manufacturing process of the droplet discharge head following FIG. 13. 本発明の実施の形態2に係る液滴吐出ヘッドのガラス基板の斜視図。The perspective view of the glass substrate of the droplet discharge head which concerns on Embodiment 2 of this invention. 図15のガラス基板をダイシングする前に上面より見た概略説明図。The schematic explanatory drawing seen from the upper surface before dicing the glass substrate of FIG. 図16のロ−ロ断面図。FIG. 17 is a cross sectional view of FIG. 本発明の実施の形態3に係る液滴吐出ヘッドのガラス基板の斜視図。The perspective view of the glass substrate of the droplet discharge head which concerns on Embodiment 3 of this invention. 図18のガラス基板をダイシングする前に上面より見た概略説明図。The schematic explanatory drawing seen from the upper surface before dicing the glass substrate of FIG. 本発明の実施の形態4に係る液滴吐出装置の斜視図。The perspective view of the droplet discharge device which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係るデバイスの要部斜視図。The principal part perspective view of the device which concerns on Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 キャビティ基板(第1の基板)、2 ガラス基板(第2の基板)、3 ノズル基板、4 振動板、5 吐出室、6 リザーバ、8 絶縁膜、20 個別電極凹部(溝部)、21 個別電極、22 リード部、23 端子部、24 端子凹部、25 陽極接合凹部、26 共通電極凹部(溝部)、27 ダイシングライン、30 ノズル孔、31 オリフィス、42 FPC、50 共通電極部の等電位接点(接点)、50a 耐酸化性の金属膜、51 共通電極部の接点配線、53 キャビティ基板の窓部、70 陽極接合部の等電位接点、71 陽極接合部の接点配線、100 ガラス基材、103 ボロンドープ層、200 キャビティ基材、203 ITO膜、A 共通電極部、B 個別電極部、C 陽極接合部。   DESCRIPTION OF SYMBOLS 1 Cavity board | substrate (1st board | substrate) 2 Glass board | substrate (2nd board | substrate) 3 Nozzle board | substrate 4 Vibrating plate 5 Discharge chamber 6 Reservoir 8 Insulating film 20 Individual electrode recessed part (groove part) 21 Individual electrode , 22 Lead part, 23 terminal part, 24 terminal concave part, 25 anode junction concave part, 26 common electrode concave part (groove part), 27 dicing line, 30 nozzle hole, 31 orifice, 42 FPC, 50 equipotential contact (contact point) 50a oxidation resistant metal film, 51 common electrode contact wiring, 53 cavity substrate window, 70 anodic junction equipotential contact, 71 anodic contact wiring, 100 glass substrate, 103 boron doped layer , 200 cavity base material, 203 ITO film, A common electrode part, B individual electrode part, C anodic bonding part.

Claims (16)

外部の力により少なくとも一部分が形状変化して、連通するノズルから液滴が吐出される1または複数の吐出室が形成された第1の基板と、
前記第1の基板と陽極接合し、電力が供給されると、選択された又はすべての前記吐出室に力を加えて形状変化させる1又は複数の個別電極部を有する第2の基板とを少なくとも備えた液滴吐出ヘッドであって、
前記第2の基板に前記第1の基板と通電可能に当接する接点を備えた共通電極部が設けられ、前記共通電極部の端子部を前記個別電極部の端子部と同一平面上に設け、前記共通電極部及び個別電極部の端子部に電圧を印加し前記吐出室の形状を変化させるようにしたことを特徴とする液滴吐出ヘッド。
A first substrate on which one or a plurality of discharge chambers are formed in which at least a part is changed in shape by an external force and droplets are discharged from a communicating nozzle;
At least a second substrate having one or a plurality of individual electrode portions that are anodically bonded to the first substrate and apply a force to selected or all of the discharge chambers when the power is supplied. A liquid droplet ejection head comprising:
A common electrode portion provided with a contact that contacts the first substrate so as to be energized is provided on the second substrate, and the terminal portion of the common electrode portion is provided on the same plane as the terminal portion of the individual electrode portion; A droplet discharge head, wherein a voltage is applied to the terminal portions of the common electrode portion and the individual electrode portion to change the shape of the discharge chamber.
前記共通電極部が前記個別電極部を収容する溝部と連通する溝部内に収容され、前記共通電極部の接点が前記第2の基板の表面より突出して設けられたことを特徴とする請求項1記載の液滴吐出ヘッド。   2. The common electrode portion is accommodated in a groove portion that communicates with a groove portion that accommodates the individual electrode portion, and a contact point of the common electrode portion is provided so as to protrude from a surface of the second substrate. The droplet discharge head described. 前記共通電極部が前記個別電極部の端子部が位置する溝部近傍の段差部にまたがって配置されるとともに、前記共通電極部の接点が段差部近傍の基板表面に該基板表面よりも突出して設けられたことを特徴とする請求項1記載の液滴吐出ヘッド。   The common electrode portion is arranged over a step portion near the groove portion where the terminal portion of the individual electrode portion is located, and a contact point of the common electrode portion is provided on the substrate surface near the step portion so as to protrude from the substrate surface. The droplet discharge head according to claim 1, wherein the droplet discharge head is formed. 前記第2の基板に設けられた共通電極部の接点に対向して、前記第1の基板に成膜された絶縁膜に窓部を設け、前記共通電極部の接点を前記窓部を介して前記第1の基板に電通可能に当接させたことを特徴とする請求項1〜3のいずれかに記載の液滴吐出ヘッド。   A window is provided in the insulating film formed on the first substrate so as to face the contact of the common electrode provided on the second substrate, and the contact of the common electrode is provided via the window. The droplet discharge head according to claim 1, wherein the droplet discharge head is brought into contact with the first substrate so as to be electrically conductive. 前記第2の基板に設けられた共通電極部の接点の高さと、前記第1の基板に形成した窓部の深さが同じになるようにしたことを特徴とする請求項4記載の液滴吐出ヘッド。   5. The droplet according to claim 4, wherein the height of the contact point of the common electrode portion provided on the second substrate is the same as the depth of the window portion formed on the first substrate. Discharge head. 前記第2の基板に設けられた共通電極部の接点に対向して、前記第1の基板に成膜された絶縁膜に窓部を設けるとともに、該窓部の第1の基板側に耐酸化性の金属膜を設け、前記共通電極部の接点を前記金属膜を介して前記第1の基板に電通可能に当接させたことを特徴とする請求項1〜3のいずれかに記載の液滴吐出ヘッド。   A window is provided in the insulating film formed on the first substrate so as to face the contact of the common electrode provided on the second substrate, and oxidation resistance is provided on the first substrate side of the window. 4. The liquid according to claim 1, wherein a conductive metal film is provided, and the contact of the common electrode portion is brought into contact with the first substrate through the metal film so as to be electrically conductive. Drop ejection head. 前記第2の基板に設けられた共通電極部の接点と前記第1の基板側に設けられた耐酸化性の金属膜とを合わせた高さが、前記第1の基板に成膜された絶縁膜に設けられた窓部の深さと同じになるようにしたことを特徴とする請求項6記載の液滴吐出ヘッド。   The height of the contact of the common electrode portion provided on the second substrate and the oxidation-resistant metal film provided on the first substrate side is the insulation formed on the first substrate. 7. The droplet discharge head according to claim 6, wherein the depth is the same as the depth of the window provided in the film. 前記耐酸化性の金属膜が白金により形成された金属膜であることを特徴とする請求項6または7記載の液滴吐出ヘッド。   8. The droplet discharge head according to claim 6, wherein the oxidation-resistant metal film is a metal film formed of platinum. 前記第1の基板の絶縁膜に設けられた窓部の面積を、前記第2の基板に設けた接点の面積よりも大きくしたことを特徴とする請求項4〜8のいずれかに記載の液滴吐出ヘッド。   9. The liquid according to claim 4, wherein an area of the window provided in the insulating film of the first substrate is made larger than an area of the contact provided in the second substrate. Drop ejection head. 前記第2の基板に前記第1の基板と通電可能に接続する接点を有する陽極接合部が設けられ、陽極接合時に前記陽極接合部の接点を前記第1の基板及びすべての個別電極部と通電可能に接続させておき、ダイシング時に前記陽極接合部の接点とすべての個別電極部との接続を絶つようにしたことを特徴とする請求項1〜9のいずれかに記載の液滴吐出ヘッド。   The second substrate is provided with an anodic bonding portion having a contact for connecting the first substrate so as to be energized, and the anodic bonding portion is energized with the first substrate and all the individual electrode portions during anodic bonding. The droplet discharge head according to claim 1, wherein the droplet discharge head is connected so as to be able to be disconnected from all the individual electrode portions at the time of dicing. ダイシングにより前記各個別電極部と分離したあとの陽極接合部を共通電極部として用いるものであることを特徴とする請求項10記載の液滴吐出ヘッド。   11. The liquid droplet ejection head according to claim 10, wherein an anode junction portion separated from each individual electrode portion by dicing is used as a common electrode portion. 同一平面上に配線接合部が形成された配線フレキシブル基板を、前記個別電極部及び共通電極部の端子部に取り付けるようにしたことを特徴とする請求項1〜11のいずれかに記載の液滴吐出ヘッド。   12. The liquid droplet according to claim 1, wherein a wiring flexible board having wiring joint portions formed on the same plane is attached to the terminal portions of the individual electrode portion and the common electrode portion. Discharge head. 個別電極部、共通電極部及び陽極接合部の材料がITOよりなることを特徴とする請求項1〜12のいずれかに記載の液滴吐出ヘッド。   The droplet discharge head according to claim 1, wherein the material of the individual electrode portion, the common electrode portion, and the anode junction portion is made of ITO. 外部の力により少なくとも一部分が形状変化して、連通するノズルから液滴が吐出される1または複数の吐出室が形成された第1の基板と、
前記第1の基板と陽極接合し、電力が供給されると、選択された又はすべての前記吐出室に力を加えて形状変化させる1又は複数の個別電極部を有する第2の基板とを少なくとも備え、
前記第2の基板に前記第1の基板と通電可能に接続する接点を備えた共通電極部が設けられ、前記共通電極部の端子部を前記個別電極部の端子部と同一平面上に設け、前記共通電極部及び個別電極部の端子部に電圧を印加して前記吐出室の形状を変化させるようにした液滴吐出ヘッドを有し、
前記液滴吐出ヘッドに液滴を供給する液滴供給手段と、
ヘッド位置制御信号に基づいて前記液滴吐出ヘッドを移動させる走査駆動手段と、
記録対象となる記録部材と前記液滴吐出ヘッドとの相対位置を変化させる位置制御手段とを少なくとも備えたことを特徴とする液滴吐出装置。
A first substrate on which one or a plurality of discharge chambers are formed in which at least a part is changed in shape by an external force and droplets are discharged from a communicating nozzle;
At least a second substrate having one or a plurality of individual electrode portions that are anodically bonded to the first substrate and apply a force to selected or all of the discharge chambers when the power is supplied. Prepared,
A common electrode portion provided with a contact for connecting the first substrate to the first substrate so as to be energized, and a terminal portion of the common electrode portion provided on the same plane as a terminal portion of the individual electrode portion; A droplet discharge head configured to change the shape of the discharge chamber by applying a voltage to the terminal portions of the common electrode portion and the individual electrode portion;
Droplet supply means for supplying droplets to the droplet discharge head;
Scanning drive means for moving the droplet discharge head based on a head position control signal;
A droplet discharge apparatus comprising at least position control means for changing a relative position between a recording member to be recorded and the droplet discharge head.
重ね合わせた基板に複数の液滴吐出ヘッドを一体成形する液滴吐出ヘッドの製造方法であって、
シリコンを材料とし液体を吐出させるための部材が形成される第1の基板と、前記部材を加圧して吐出液体を吐出させる1又は複数の個別電極部が形成された第2の基板とを陽極接合するときに、前記個別電極部と同一平面上に設けられ前記第1の基板と当接する共通電極部の接点と、前記第1の基板とを、通電可能に接続させる工程を少なくとも有することを特徴とする液滴吐出ヘッドの製造方法。
A method for manufacturing a droplet discharge head, in which a plurality of droplet discharge heads are integrally formed on an overlapped substrate,
A first substrate on which a member for discharging a liquid is formed by using silicon as a material, and a second substrate on which one or a plurality of individual electrode portions for discharging discharged liquid by pressurizing the member are formed as an anode When joining, it has at least the process of connecting the contact of the common electrode part which is provided on the same plane as the individual electrode part and abuts on the first substrate, and the first substrate so that energization is possible. A method of manufacturing a droplet discharge head, which is characterized.
重ね合わせた基板に複数の液滴吐出ヘッドを一体成形する液滴吐出ヘッドの製造方法を用いた液滴吐出装置の製造方法であって、
シリコンを材料とし液体を吐出させるための部材が形成される第1の基板と、前記部材を加圧して吐出液体を吐出させる1又は複数の個別電極部が形成された第2の基板とを陽極接合するときに、前記個別電極部と同一平面上に設けられ前記第1の基板と当接する共通電極部の接点と、前記第1の基板とを、通電可能に接続させる工程を少なくとも有する液滴吐出ヘッドの製造方法を用いたことを特徴とする液滴吐出装置の製造方法。
A method of manufacturing a droplet discharge device using a method of manufacturing a droplet discharge head in which a plurality of droplet discharge heads are integrally formed on an overlapped substrate,
A first substrate on which a member for discharging liquid is formed using silicon as a material, and a second substrate on which one or a plurality of individual electrode portions for discharging discharged liquid by pressurizing the member are formed are anodes. A droplet having at least a step of connecting the first substrate to the contact point of the common electrode unit that is provided on the same plane as the individual electrode unit and contacts the first substrate when joining. A method for manufacturing a droplet discharge device, wherein a method for manufacturing a discharge head is used.
JP2007046520A 2007-02-27 2007-02-27 Droplet discharge head, droplet discharge device, droplet discharge head manufacturing method, and droplet discharge device manufacturing method Withdrawn JP2008207458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007046520A JP2008207458A (en) 2007-02-27 2007-02-27 Droplet discharge head, droplet discharge device, droplet discharge head manufacturing method, and droplet discharge device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007046520A JP2008207458A (en) 2007-02-27 2007-02-27 Droplet discharge head, droplet discharge device, droplet discharge head manufacturing method, and droplet discharge device manufacturing method

Publications (1)

Publication Number Publication Date
JP2008207458A true JP2008207458A (en) 2008-09-11

Family

ID=39784175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007046520A Withdrawn JP2008207458A (en) 2007-02-27 2007-02-27 Droplet discharge head, droplet discharge device, droplet discharge head manufacturing method, and droplet discharge device manufacturing method

Country Status (1)

Country Link
JP (1) JP2008207458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034906A (en) 2014-10-20 2017-03-29 미츠비시주코 인사츠시코키카이 가부시키가이샤 Flexographic printer and box-making machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034906A (en) 2014-10-20 2017-03-29 미츠비시주코 인사츠시코키카이 가부시키가이샤 Flexographic printer and box-making machine
US10160195B2 (en) 2014-10-20 2018-12-25 Mitsubishi Heavy Industries Machinery Systems, Ltd. Flexographic printer and box-making machine

Similar Documents

Publication Publication Date Title
JP2007152621A (en) Liquid droplet jet head and method for manufacturing the same
JP4259554B2 (en) Method for manufacturing droplet discharge head and method for manufacturing droplet discharge device
JP2006263933A (en) Liquid droplet discharging head, its manufacturing method, and liquid droplet discharging device
JP2008207458A (en) Droplet discharge head, droplet discharge device, droplet discharge head manufacturing method, and droplet discharge device manufacturing method
JP2007112075A (en) Electrostatic actuator, liquid droplet discharging head, liquid droplet discharging device and methods for manufacturing various electrostatic devices
JP4270258B2 (en) Droplet discharge head, droplet discharge device, method for manufacturing droplet discharge head, and method for manufacturing droplet discharge device
JP2010143055A (en) Nozzle substrate, liquid droplet discharge head, and method of manufacturing nozzle substrate
JP2007185831A (en) Process for manufacturing droplet ejection head, droplet ejection head and droplet ejector
JP4701935B2 (en) Method for manufacturing droplet discharge head
JP2005053066A (en) Manufacturing method for nozzle plate, inkjet head, and inkjet recording device
JP2006198821A (en) Electrostatic actuator, droplet discharge head, droplet discharge device, device, electrostatic actuator manufacturing method, droplet discharge head manufacturing method, droplet discharge device manufacturing method and device manufacturing method
JP2007118535A (en) Manufacturing process of electrostatic actuator, manufacturing process of droplet discharge head, manufacturing process of droplet ejection apparatus, droplet discharge head and droplet ejection apparatus
JP2007290272A (en) Liquid droplet ejection head, liquid droplet ejector, manufacturing method for liquid droplet ejection head and manufacturing method for liquid droplet ejector
JP2007223108A (en) Liquid droplet discharge head, liquid droplet discharge head manufacturing method and liquid droplet discharge device
JP4655807B2 (en) Electrostatic actuator, droplet discharge head, and droplet discharge device
JP2009066947A (en) Liquid droplet discharge head and its manufacturing method
JP2007290270A (en) Liquid droplet ejection head, liquid droplet ejector, manufacturing method for liquid droplet ejection head and manufacturing method for liquid droplet ejector
JP2007307735A (en) Method for manufacturing liquid droplet delivering head and method for manufacturing liquid droplet delivering device
JP2010125681A (en) Liquid-droplet ejecting head, liquid-droplet ejecting apparatus, method of manufacturing the liquid-droplet ejecting head, and method of manufacturing the liquid-droplet ejecting apparatus
JP2010046847A (en) Liquid droplet discharging head, droplet delivering device, method of manufacturing substrate made from silicone, method of manufacturing droplet discharging head, and method of manufacturing droplet delivering device
JP2008055666A (en) Electrostatic actuator, liquid droplet ejection head, and liquid droplet ejection device
JP2008179093A (en) Method for manufacturing liquid droplet discharge head
JP2009029063A (en) Electrostatic actuator, droplet discharge head, droplet discharge device, manufacturing method of electrostatic actuator, and manufacturing method of droplet discharge head
JP2008000982A (en) Liquid droplet delivering head, liquid droplet delivering apparatus, method for manufacturing liquid droplet delivering head and method for manufacturing liquid droplet delivering apparatus
JP2009297953A (en) Method for manufacturing electrostatic actuator, electrostatic actuator, method for manufacturing liquid droplet discharge head, liquid droplet discharge head, method for manufacturing liquid droplet discharge apparatus and liquid droplet discharge apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100511