JP2010125524A - Method of manufacturing granular mold flux using liquid free carbon, and apparatus for manufacturing and supplying liquid free carbon - Google Patents

Method of manufacturing granular mold flux using liquid free carbon, and apparatus for manufacturing and supplying liquid free carbon Download PDF

Info

Publication number
JP2010125524A
JP2010125524A JP2009113409A JP2009113409A JP2010125524A JP 2010125524 A JP2010125524 A JP 2010125524A JP 2009113409 A JP2009113409 A JP 2009113409A JP 2009113409 A JP2009113409 A JP 2009113409A JP 2010125524 A JP2010125524 A JP 2010125524A
Authority
JP
Japan
Prior art keywords
free carbon
mold flux
suspension
production
liquid free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009113409A
Other languages
Japanese (ja)
Other versions
JP4977735B2 (en
Inventor
Seung Man Yang
スン マン ヤン
Dong Young Lee
ドン ヨン イ
Hoon Gyu Kim
フン ギュ キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stollberg & Samil Co Ltd
Original Assignee
Stollberg & Samil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stollberg & Samil Co Ltd filed Critical Stollberg & Samil Co Ltd
Publication of JP2010125524A publication Critical patent/JP2010125524A/en
Application granted granted Critical
Publication of JP4977735B2 publication Critical patent/JP4977735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/07Lubricating the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/18Plants for preparing mould materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the new technique where the charging method of free carbon is renewed in a method of manufacturing granular mold flux so as to improve the dispersibility of free carbon in a product, wherein, by developing a method in which, upon manufacture of a suspension during the conventional granular mold flux manufacturing process, particulate free carbon is charged in a liquid state, the free carbon in the manufacture is uniformly distributed compared with the conventional manufacturing method. <P>SOLUTION: Regarding the apparatus and method where, in a process for manufacturing granular mold flux as by-product materials charged to the upper part of a molten steel within a mold in a continuous casting stage for steel, free carbon is charged in a liquid state upon manufacture of a suspension, the apparatus and method are applied to a continuous casting process, and uniform warm keeping effect is exhibited, thus they have the effects of improving the quality of a solidified slab as an intermediate finished product and solving the overgrowth problem of a slag bear which can be made into the cause of an operational problem. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶鋼の連続鋳造工程において消耗性副資材として用いられるモールドフラックスの製造方法、及び前記製造方法に用いられる液状遊離炭素の製造供給設備に関する。   The present invention relates to a method for producing mold flux used as a consumable secondary material in a continuous casting process of molten steel, and a production and supply facility for liquid free carbon used in the production method.

一般的に、モールドフラックスは、連続鋳造設備である鋳型(Mold:(1))内の溶鋼(6)上部に投入(塗布)され、図1のような構成となる。これは、溶鋼(6)の熱を受けて、下部は溶融層(5)、中部は焼結層(4)、上部は未溶融層(3)に分類される。このうち、溶融層(5)は鋳型(1)と鋳片(Solidified steel shell)との間に流入され、鋳片の潤滑及び熱伝達制御の機能を行った後、凝固した鋳片に固体状態で付着され、鋳型(1)下部から鋳片に噴射される冷却水により除去されながら消耗される。鋳型(1)上部に設けられた溶鋼の貯蔵器であるレードル(Ladle)から鋳型(1)を経て中間完成品である鋳片が凝固されながら通り過ぎる経路をストランド(Strand)といい、連鋳機の仕様に応じてレードル1個当たり2〜6個のストランドが構成されている。モールドフラックスは、このように鋳片がストランドを通り過ぎる過程のうち鋳型(1)内での初期凝固過程に添加され、鋳造作業の状況及び冷却された鋳片製品の品質に重要な影響を及ぼす役割をすることになる。   In general, the mold flux is charged (applied) onto the molten steel (6) in a mold (Mold: (1)), which is a continuous casting facility, and has a configuration as shown in FIG. In response to the heat of the molten steel (6), the lower part is classified as a molten layer (5), the middle part as a sintered layer (4), and the upper part as an unmelted layer (3). Among these, the molten layer (5) flows between the mold (1) and the slab (Solidified steel shell), performs the lubrication and heat transfer control functions of the slab, and then solidifies the solidified slab. It is worn out while being removed by the cooling water sprayed onto the slab from the lower part of the mold (1). The path through which the slab, which is an intermediate finished product, passes through the mold (1) through the mold (1) and is solidified, is called a strand. Depending on the specifications, 2-6 strands are configured per ladle. The mold flux is added to the initial solidification process in the mold (1) in the process of the slab passing through the strands in this way, and has an important influence on the status of the casting operation and the quality of the cooled slab product. Will do.

溶鋼注入口(7)を介して鋳型(1)内に流入した溶鋼(6)は、鋳型(1)を通過しながら均一な厚みで凝固がなされなければならない。鋳片の表面欠陥の殆どは、鋳片の凝固速度が適度でなかったり、不均一に凝固したりしたとき、鋳片の各部分での凝固速度の偏差により応力が発生して生じるクラックや他の欠陥により生じることになる。かかる欠陥問題を解決するためのモールドフラックスの課題は、溶融されて鋳型(1)と鋳片との間に流入されたスラグが、適度な潤滑機能及び熱伝達機能を行わなければならないだけでなく、鋳型(1)内に流入した溶鋼(6)が適正温度を維持するように保温機能を行わなければならない。   The molten steel (6) flowing into the mold (1) through the molten steel inlet (7) must be solidified with a uniform thickness while passing through the mold (1). Most of the surface defects of the slab are cracks caused by stress caused by deviations in the solidification rate at each part of the slab when the solidification rate of the slab is not appropriate or solidifies unevenly. This is caused by a defect. The problem of mold flux to solve this defect problem is not only that the slag that has been melted and flowed between the mold (1) and the slab must perform proper lubrication and heat transfer functions. In order to maintain the proper temperature, the molten steel (6) flowing into the mold (1) must be kept warm.

本発明の内容は、モールドフラックスが溶融された後の構成成分として現れる物性である鋳型(1)への熱伝達制御や潤滑機能に関する内容ではなく、未溶融状態や溶融過程中に溶鋼(6)の上部で行われることになる役割である保温機能に関する内容である。   The contents of the present invention are not related to the heat transfer control and lubrication function to the mold (1), which is a physical property that appears as a constituent component after the mold flux is melted, but to the molten steel (6) in an unmolten state or during the melting process. It is the content regarding the heat retention function which is a role to be performed in the upper part of.

モールドフラックスの保温機能を説明するために、モールドフラックスが覆っている溶鋼(6)の上部面で起こる熱放出過程を説明すると次の通りである。溶鋼(6)の場合、鋳型(1)への熱伝達を除く大気への熱放出は、溶鋼(6)から発散される光の輻射波による輻射熱と空気粒子間の熱伝達とに分けられる。溶鋼(6)の表層にモールドフラックスを投入する場合、溶鋼(6)と接触する溶融層(5)は透明なため、輻射波が容易に通過して輻射熱が放出されるが、焼結層(4)と未溶融層(3)は不透明なため、輻射波が遮断されて保温され、未溶融層(3)と焼結層(4)での熱伝達による放出は、モールドフラックスの粒子間の隙間を介した熱の対流と粒子間の熱伝達を通じてなされると共に、モールドフラックスの溶融を進行させる。モールドフラックスを通じた熱伝達及び溶融過程は前記と同じであり、投入された層の保温機能について詳細な説明を補充すると次の通りである。   In order to explain the heat retaining function of the mold flux, the heat release process occurring on the upper surface of the molten steel (6) covered by the mold flux will be described as follows. In the case of molten steel (6), heat release to the atmosphere, excluding heat transfer to the mold (1), can be divided into radiant heat due to the radiation of light emitted from the molten steel (6) and heat transfer between air particles. When mold flux is introduced into the surface layer of the molten steel (6), the molten layer (5) in contact with the molten steel (6) is transparent, so the radiant heat easily passes through and radiant heat is released, but the sintered layer ( Since 4) and the unmelted layer (3) are opaque, the radiation wave is blocked and the temperature is kept, and the release by heat transfer in the unmelted layer (3) and the sintered layer (4) is between the mold flux particles. It is done through convection of heat through the gap and heat transfer between the particles, and the mold flux is melted. The heat transfer and melting process through the mold flux is the same as described above, and a detailed description of the heat retaining function of the input layer is as follows.

溶鋼(6)上部に新たなモールドフラックスが投入されると、溶鋼(6)からの熱と酸素の供給で燃焼温度の低い遊離炭素がまず燃焼され、その燃焼熱と溶鋼(6)からの熱供給で構成原料のうち溶融点の低い原料から溶融が進行しながら高融点原料へ熱が伝達され、次第に溶融が進行する。モールドフラックスに用いられる遊離炭素の燃焼温度は、400℃以上700℃以下の範囲にある。遊離炭素の燃焼過程には熱が必要なため、モールドフラックス内の遊離炭素の含量が多くなるほど、他原料の溶融点より低い温度で燃焼が起こる遊離炭素に熱がまず供給されるようになり、全遊離炭素の燃焼時間も長くなる。その結果として、溶融速度もまた遅くなるのである。のみならず、遊離炭素の含量が増加すると、燃焼時に発生する燃焼熱量が多くなり、保温効果は増す。   When a new mold flux is introduced into the upper part of the molten steel (6), free carbon having a low combustion temperature is first burned by the supply of heat and oxygen from the molten steel (6), and the combustion heat and heat from the molten steel (6) Heat is transferred from the raw material having a low melting point to the high-melting-point raw material during the supply, and the melting gradually proceeds. The combustion temperature of free carbon used for the mold flux is in the range of 400 ° C. or higher and 700 ° C. or lower. Since heat is required for the combustion process of free carbon, as the free carbon content in the mold flux increases, heat is first supplied to free carbon where combustion occurs at a temperature lower than the melting point of other raw materials, The burning time of total free carbon is also increased. As a result, the melting rate is also slowed. In addition, when the free carbon content increases, the amount of heat generated during combustion increases and the heat retention effect increases.

遊離炭素は、このようにモールドフラックスの溶融速度を調節して、溶鋼(6)上に形成された不透明層の厚みを維持することにより輻射熱を遮断し、鋳造速度に適当な溶融スラグ層を維持し、燃焼時の発熱によって溶鋼(6)を保温する作用を行うものである。   Free carbon controls the melting rate of the mold flux in this way, maintains the thickness of the opaque layer formed on the molten steel (6), blocks radiant heat, and maintains a molten slag layer appropriate for the casting speed. In addition, the molten steel (6) is kept warm by the heat generated during combustion.

モールドフラックス内の遊離炭素が前記の機能を発揮するためには、製品の適正な投入含量と均一な分散が非常に重要である。   In order for the free carbon in the mold flux to exert the above-mentioned function, it is very important to have an appropriate content and uniform dispersion of the product.

モールドフラックス内に投入された遊離炭素の含量が少なすぎると、溶融が過度に起こるようになり、不透明な未溶融層(3)が不足して、輻射熱の放出が増加するので、鋳型(1)内の溶鋼(6)上部が凝固するという問題を引き起こしもする。逆に、遊離炭素の含量が余りにも多いときには、溶融速度が遅くなりすぎるため、潤滑をするための溶融層(5)が不足して、鋳片が固着する問題である拘束性ブレークアウト(breakout)が発生する。   If the free carbon content in the mold flux is too low, melting will occur excessively, the opaque unmelted layer (3) will be insufficient, and the release of radiant heat will increase. It also causes a problem that the upper part of the molten steel (6) solidifies. On the other hand, when the free carbon content is too high, the melting rate becomes too slow, so there is not enough molten layer (5) to lubricate, and the constraining breakout (breakout) ) Occurs.

モールドフラックス内での遊離炭素の均一分散の重要性について説明すると次のとおりである。遊離炭素の分散が均一でなくなると、モールドフラックスの溶融速度が不均一になり、溶鋼(6)を覆っている溶融層(5)の厚みも部分的に不均一になる。結果的に、溶鋼(6)に対する保温効果も不均一になるということを意味する。   The importance of uniform dispersion of free carbon in the mold flux will be described as follows. If the dispersion of free carbon is not uniform, the melting rate of the mold flux becomes nonuniform, and the thickness of the molten layer (5) covering the molten steel (6) also becomes partially nonuniform. As a result, it means that the heat retention effect on the molten steel (6) is also non-uniform.

もう一つの問題は、スラグベア(Slag bear:(2))の問題である。スラグベア(2)は、溶融スラグ層と鋳型(1)の銅板とが接触する部分で形成されるが、正常なものは操業上の問題とならない程度の小さなサイズで生成される。スラグベア(2)は、鋳型(1)の振動幅(Stroke)や溶鋼(6)の流動が大きい場合、溶融スラグが鋳型(1)壁に付着したまま凝固して生成されるもので、鋳片と鋳型(1)との間に流入せず、鋳型(1)壁に付着凝固したスラグをいう。この時、モールドフラックス内の遊離炭素の含量が適正でなかったり不均一な場合に、小さく形成されたスラグベア(2)が過成長するようにする。その過程は、モールドフラックス内の遊離炭素が不均一に分散している場合、遊離炭素の少ない部分は完全に溶融されて、スラグ流入口側に拡散移動をし、この時、遊離炭素の含量が不均一に多い部分は、未溶融状態で拡散されて、小さく形成されたスラグベア(2)に付着する。または、遊離炭素が不均一に多い部分の溶融が遅れて焼結層(4)が厚くなるため、この部分がスラグベア(2)に付着して成長することになる。未溶融の部分は溶融部分より比重が低いため、未溶融部分は上部に形成されたスラグベア(2)に付着することになり、モールドフラックス内での遊離炭素の分散が不均一になるほどスラグベア(2)の成長速度は速くなり、作業者が除去できなかった場合、鋳片の潤滑機能を行う溶融スラグの流入量が不均一になって、表面にクラックが生じたり、更にひどい場合、スラグの流入が遮断され、拘束性ブレークアウト(breakout)の問題を引き起こす。鋳造速度が遅かった過去には、前記のような問題点がもう少し少なかったが、現在のように鋳造速度が速くなっていくと共に、鋳型(1)内への溶鋼(6)の流入が早くなり、溶鋼(6)の流動も多くなっている。このような条件の下、モールドフラックスの溶融速度の制御が不均一になると、前記問題点が深刻に発生するようになるのである。   Another problem is that of Slag bear ((2)). The slag bear (2) is formed at the portion where the molten slag layer and the copper plate of the mold (1) are in contact with each other, but the normal slag bear (2) is produced in a small size that does not cause operational problems. The slag bear (2) is produced by solidifying the molten slag while adhering to the mold (1) wall when the vibration width (Stroke) of the mold (1) and the flow of the molten steel (6) are large. Refers to slag that does not flow between the mold and the mold (1) and has solidified on the mold (1) wall. At this time, if the content of free carbon in the mold flux is not appropriate or non-uniform, the small slag bear (2) is allowed to overgrow. In the process, when the free carbon in the mold flux is unevenly dispersed, the portion with a small amount of free carbon is completely melted and diffused and transferred to the slag inlet side. The unevenly large portion is diffused in an unmelted state and adheres to the slag bear (2) formed small. Or, since the melting of the portion where the amount of free carbon is unevenly large is delayed and the sintered layer (4) becomes thick, this portion adheres to the slag bear (2) and grows. Since the unmelted part has a lower specific gravity than the melted part, the unmelted part adheres to the slag bear (2) formed on the upper part, and the slag bear (2 ) Will grow faster and if the operator cannot remove it, the inflow of molten slag, which performs the lubrication function of the slab, will become uneven, causing cracks on the surface, and if it is even worse, the inflow of slag Is blocked, causing a problem of restrictive breakout. In the past, when the casting speed was slow, the above-mentioned problems were a little less, but as the casting speed became faster as it is now, the inflow of molten steel (6) into the mold (1) became faster. The flow of molten steel (6) is also increasing. Under such conditions, when the control of the melting rate of the mold flux becomes non-uniform, the above problem becomes serious.

実際、モールドフラックス内の遊離炭素含量の不均一及び物性が適さないときに問題が最も敏感に現れる鋼種の鋳造状況について説明すると、鋼中の遊離炭素の含量に応じて分類された中炭素鋼の場合、凝固中に他の鋼種に比べて凝固時の収縮率が高く、初期凝固中にモールドフラックスによる影響が操業状況及び鋳片の品質に敏感に現れる。そして、保温が不均一であれば収縮の偏差が生じ、スラグベア(2)により溶融スラグの流入が不均一になると、クラック発生の恐れが増加することになる。そのような理由で、モールドフラックス内の遊離炭素を均一に分散させようとする方法に対する研究が行われ続けてきた。   In fact, when explaining the casting situation of steel types where the problem is most sensitive when the non-uniformity of the free carbon content in the mold flux and the physical properties are not suitable, the medium carbon steel classified according to the free carbon content in the steel will be described. In this case, the shrinkage rate at the time of solidification is higher than that of other steel types during solidification, and the influence of the mold flux appears sensitively to the operation status and the quality of the slab during the initial solidification. If the heat retention is not uniform, a shrinkage deviation occurs, and if the molten slag flows non-uniformly by the slag bear (2), the risk of cracking increases. For that reason, research on methods for uniformly dispersing free carbon in the mold flux has continued.

遊離炭素を含めて一般的なモールドフラックスの製造に用いられる原料について説明すると、次の通りである。   The raw materials used for producing a general mold flux including free carbon will be described as follows.

構成原料は、通常、物性を示すための役割に応じて分類されるが、モールドフラックスの溶融速度を制御するための骨材(Skeleton material)である遊離炭素(Free Carbon)の種類、構成含量中50重量%以上を占めるCaO-SiO2-Al2O3系列の基材(Base Material)の種類、溶融温度及び粘度を下げる調節のために添加される融材(Melting Material)、並びにその他の添加物で構成される。モールドフラックスの構成の全ての含量は、重量%で表される。 Constituent materials are usually classified according to their role to show physical properties, but the type and constituent content of free carbon, which is an aggregate (skeleton material) for controlling the melting rate of mold flux Types of CaO-SiO 2 -Al 2 O 3 base materials (Base Material) occupying 50% by weight or more, Melting Material added to adjust melting temperature and viscosity, and other additions Composed of things. All contents of the composition of the mold flux are expressed in weight percent.

モールドフラックス内に存在する炭素は、原料のうちCaCO3、Na2CO3、Li2CO3、MgCO3などのように化学的な結合状態で存在する炭素と、前記で言及したように本発明に適用される遊離炭素とに分類できる。モールドフラックスの業種で指称する一般的な炭素とは遊離炭素を言う。遊離炭素は、主に石炭やコークス等から水分、灰分(Ash)、揮発分等を除いた主成分が炭素である固体を粒子サイズによって粉砕して分類したものをいう。 The carbon present in the mold flux is the carbon that exists in a chemically bonded state such as CaCO 3 , Na 2 CO 3 , Li 2 CO 3 , MgCO 3 among the raw materials, and as mentioned above, the present invention. It can be classified into free carbon applied to. The general carbon designated in the mold flux industry refers to free carbon. Free carbon mainly refers to a solid obtained by pulverizing a solid whose main component is carbon, excluding moisture, ash (Ash), volatile matter, etc., from coal or coke according to particle size.

モールドフラックスに用いられる遊離炭素は、粒子のサイズによって粗粒(Coarse particle)遊離炭素と微粒(Fine particle)遊離炭素とに分類するが、種類によって燃焼反応を始める温度と発熱量が異なり、通常、微粒であるほど燃焼温度がより低い。このような特性を利用して、モールドフラックスの溶融を制御する。図2で見られるように、モールドフラックス内の遊離炭素の含量が増加するほど、溶融時間が更に長くかかることが分かる。また、微粒遊離炭素の溶融速度制御の性能が粗粒遊離炭素より優れていることはモールドフラックス関連の資料で容易に知ることができる。   The free carbon used in the mold flux is classified into coarse particle (Coarse particle) free carbon and fine particle (Fine particle) free carbon depending on the size of the particle. The finer the particles, the lower the combustion temperature. Utilizing such characteristics, the melting of the mold flux is controlled. As can be seen in FIG. 2, it can be seen that the melting time takes longer as the free carbon content in the mold flux increases. Moreover, it can be easily known from mold flux-related materials that the performance of controlling the melting rate of fine free carbon is superior to that of coarse free carbon.

通常的なモールドフラックス内の遊離炭素の含量は、鋳造鋼種と速度により決定され、微粒と粗粒をあわせて0〜25重量%である。   The content of free carbon in a normal mold flux is determined by the cast steel type and speed, and the total of fine particles and coarse particles is 0 to 25% by weight.

本発明は、顆粒状モールドフラックスの製造工程において遊離炭素を投入する方法を新たにして、製品内の遊離炭素の分散性を向上させる新技術に関する内容であり、これを説明するより前に一般的なモールドフラックスとその製造工程を説明すると次のとおりである。   The present invention relates to a new technique for improving the dispersibility of free carbon in a product by renewing a method for introducing free carbon in the production process of a granular mold flux. A description will be given of the mold flux and its manufacturing process.

モールドフラックスは、その形状に応じて、大きく顆粒状(Granule type)と粉末状(Powder type)とに分類できる。粉末状は、原料を機械的な単純混合過程により製造する。顆粒状は、棒状(Cylinder type)と中空顆粒状(Hollow granule type)とに分けられるが、その製造過程で、原料と水、顆粒状を維持するための結合材(Binder)等を混合して懸濁液にする過程は同じである。その後、中空顆粒状は、高温の空気層のある乾燥機内部に噴射された懸濁液が重力の影響で乾燥機の壁に沿って下に流れ落ちながら球形が形成され、内部の水分が出て行きながら球形の内部が空の状態で製造され、棒状は、懸濁液を押出方式で乾燥させながら押し出されたものを切断して製造する。初期にはモールドフラックスはほとんどが粉末状であったが、作業現場で発生する粉塵問題や単純に機械的に混合するため微粒遊離炭素の分散が均一でないという問題があった。これを改善しようと、顆粒状に製造する方法を開発した。   Mold flux can be roughly classified into granule type and powder type according to its shape. In the powder form, the raw material is produced by a mechanical simple mixing process. Granules are divided into rods (Cylinder type) and hollow granules (Hollow granule type). In the manufacturing process, raw materials, water, and a binder (Binder) to maintain the granular shape are mixed. The process of making a suspension is the same. After that, the hollow granule is formed into a spherical shape while the suspension sprayed into the dryer with a hot air layer flows down along the dryer wall under the influence of gravity, and the moisture in the inside comes out. The spherical shape is produced while the inside of the sphere is empty while going, and the rod-like shape is produced by cutting the extruded material while drying the suspension by an extrusion method. Initially, most of the mold flux was in powder form, but there were problems of dust generated at the work site and dispersion of fine particles of free carbon because of simple mechanical mixing. In order to improve this, a method for producing granules was developed.

顆粒状の製造過程のうち、本発明が属する懸濁液を製造する方法を詳細に説明すると次の通りである。   Among the granular production processes, the method for producing the suspension to which the present invention belongs will be described in detail as follows.

懸濁液の製造時には、まず水に遊離炭素分散剤を入れて混合した後、遊離炭素を投入して分散させる。その次に、原料を投入して混合する過程を通じて懸濁液を製造しなければならない。その理由は、モールドフラックスの製造に用いられる一般的な他の原料は水に溶解したり分散し易いが、遊離炭素は原料粒子に対する水の表面張力が過大で自然に分散せず、塊の状態で存在するため、ここに他の原料を入れることになれば、原料と遊離炭素が均一に混合しない。それで、却って粉末状よりも遊離炭素の分散が更に不均一となる結果を招く。当業界で一般的な遊離炭素分散剤は、遊離炭素に対する水の界面張力を低下させ、水との混合性を向上させる界面活性剤の種類をいう。遊離炭素と水との混合性について説明すると、粗粒は微粒に比べて粒子のサイズが大きく、粒子間の接触表面積が小さいので、表面摩擦力が小さくなる。そのため、混合時に他の原料との衝突のみでもほぼ分散がなされるが、粒子間の表面摩擦力が大きく、水の表面張力も大きい微粒遊離炭素は、分散剤がなくては分散が難しく、製品内に微粒遊離炭素の含量が多い製品であるほど、分散剤と混合時間が長くならなければならず、製品の生産時間もまた長くなる。   At the time of producing the suspension, first, a free carbon dispersant is put in water and mixed, and then free carbon is added and dispersed. Next, the suspension must be manufactured through the process of adding and mixing the raw materials. The reason for this is that other general raw materials used in the production of mold fluxes are easily dissolved or dispersed in water, but free carbon has excessive surface tension of water on the raw material particles and does not disperse naturally, and is in a lump state. Therefore, if other raw materials are put here, the raw materials and free carbon are not mixed uniformly. As a result, the dispersion of free carbon is more uneven than in powder form. Free carbon dispersants common in the industry refer to a type of surfactant that lowers the interfacial tension of water to free carbon and improves the miscibility with water. The miscibility of free carbon and water will be described. The coarse particles have a larger particle size than the fine particles, and the contact surface area between the particles is small, so that the surface friction force becomes small. For this reason, even when only mixed with other raw materials at the time of mixing, it is almost dispersed, but fine free carbon with high surface friction between particles and high surface tension of water is difficult to disperse without a dispersant. The higher the content of fine free carbon in the product, the longer the dispersant and mixing time, and the longer the production time of the product.

顆粒状モールドフラックスの開発で、微粒遊離炭素の分散がより均一になったが、微粒遊離炭素の含有量が増加すれば生産時間が長くなり、生産性を高めようと混合時間を減らせば遊離炭素の分散が不均一となるという問題がしばしば発生した。微粒遊離炭素は、前記の説明のように溶融速度制御の効果が粗粒遊離炭素より更に大きいため、分散が均一でない場合、モールドフラックスが溶融する時に不均一溶融の問題が更にはっきりと現れることになる。   With the development of granular mold flux, the dispersion of fine free carbon has become more uniform, but if the fine free carbon content increases, the production time becomes longer, and if the mixing time is reduced to increase productivity, free carbon The problem of non-uniform dispersion often occurred. As described above, fine free carbon has a greater effect of controlling the melting rate than coarse free carbon, and if the dispersion is not uniform, the problem of non-uniform melting appears more clearly when the mold flux melts. Become.

本発明は、顆粒状モールドフラックスの製造工程において遊離炭素を投入する方法を新たにして、製品内の遊離炭素の分散性を向上させる新技術であって、従来の顆粒状モールドフラックス製造工程中の懸濁液の製造時に微粒状遊離炭素を液体状態にして投入する方法を開発することによって、従来の製造法よりも製造内の遊離炭素が均一に分布するようにすることを目的とする。   The present invention is a new technique for improving the dispersibility of free carbon in a product by renewing the method of introducing free carbon in the manufacturing process of granular mold flux, The object is to make the free carbon in the production more evenly distributed than in the conventional production method by developing a method in which fine free carbon is charged in the liquid state during the production of the suspension.

従来の懸濁液製造方法は、生産性を向上させる問題と遊離炭素の均一分散という問題を同時に解決するのは困難であった。遊離炭素の分散を阻害する原料の投入に留意しなければならず、混合時間や懸濁液の温度、作業者のミスなどの原因により、遊離炭素の分散が不均一な場合がしばしば発生した。   In the conventional suspension manufacturing method, it has been difficult to simultaneously solve the problem of improving productivity and the problem of uniform dispersion of free carbon. Care must be taken in the introduction of raw materials that inhibit the dispersion of free carbon, and the dispersion of free carbon often occurred unevenly due to the mixing time, the temperature of the suspension, the operator's mistake, and the like.

そこで、本発明は、予め均一に分散させた液体状態の遊離炭素を懸濁液の製造過程に投入することになれば、製品内で分散が更に均一に行われるであろうという概念から出発した。   Therefore, the present invention started from the concept that if the free carbon in the liquid state, which is uniformly dispersed in advance, is introduced into the production process of the suspension, the dispersion will be performed more uniformly in the product. .

即ち、本願発明の第1の形態は、液状遊離炭素を利用した顆粒状モールドフラックスの製造方法に関するものであって、懸濁液製造のための懸濁液製造機(Screw blunger)の外部で液状遊離炭素を製造する段階;及び製造された液状遊離炭素を懸濁液製造機に供給する段階を含むことを特徴とする。   That is, the first aspect of the present invention relates to a method for producing a granular mold flux using liquid free carbon, which is liquid outside a suspension production machine (Screw blunger) for producing suspensions. Producing free carbon; and feeding the produced liquid free carbon to a suspension making machine.

本願発明の第2の形態は、顆粒状モールドフラックスの製造時に用いられる液状遊離炭素の製造及び供給のための設備に関するものであって、液状遊離炭素を製造するための製造容器;前記製造容器内で遊離炭素を分散させるための攪拌器;前記製造容器内の粉末状遊離炭素と遊離炭素分散剤との混合効率を高めるために、混合物を強制循環させる混合循環ポンプ;前記製造容器で製造された液状遊離炭素を貯蔵するための貯蔵器;及び前記貯蔵器から液状遊離炭素を懸濁液製造機へ移送するための移送配管を含むことを特徴とする。   A second aspect of the present invention relates to equipment for producing and supplying liquid free carbon used in the production of a granular mold flux, and a production container for producing liquid free carbon; A stirrer for dispersing free carbon in the mixing vessel; in order to increase the mixing efficiency of the powdered free carbon and the free carbon dispersing agent in the production vessel; a mixing circulation pump for forcibly circulating the mixture; manufactured in the production vessel A storage unit for storing liquid free carbon; and a transfer pipe for transferring liquid free carbon from the storage unit to a suspension production machine.

本発明により顆粒状モールドフラックスを製造する場合、遊離炭素が均一に分散した顆粒状モールドフラックスを得ることができ、この顆粒状モールドフラックスを連続鋳造工程に適用する場合、溶鋼の保温効果が均一となり、且つスラグベアが顕著に減るので、表面品質が向上した鋳片を得ることができる。   When producing a granular mold flux according to the present invention, it is possible to obtain a granular mold flux in which free carbon is uniformly dispersed. When this granular mold flux is applied to a continuous casting process, the heat retaining effect of the molten steel becomes uniform. In addition, since the slag bear is remarkably reduced, a slab having improved surface quality can be obtained.

鋳造作業中の鋳型(1)内での溶鋼(6)とモールドフラックスの溶融、流入を示す模式図である。It is a schematic diagram showing melting and inflow of molten steel (6) and mold flux in the mold (1) during the casting operation. モールドフラックス内の遊離炭素含量と種類による溶融速度との関係図である。It is a relationship figure of the free carbon content in a mold flux, and the melting rate by a kind. 粉末状遊離炭素分散液と液状遊離炭素とにおける遊離炭素の分散度を、顕微鏡を利用して確認した比較図である。It is the comparison figure which confirmed the dispersion degree of the free carbon in a powdered free carbon dispersion liquid and liquid free carbon using the microscope. 従来の粉末状遊離炭素を適用した懸濁液製造時において、微粒遊離炭素の混合時間の差によるモールドフラックスの溶融性の均一度を比較した実験図である。It is the experimental figure which compared the homogeneity of the meltability of the mold flux by the difference in the mixing time of a fine particle free carbon at the time of suspension manufacture which applied the conventional powdery free carbon. 本発明の液状遊離炭素を適用したモールドフラックスの溶融性均一度の実験結果図である。It is an experimental result figure of the meltability uniformity of mold flux to which liquid free carbon of the present invention is applied. 本発明の液状遊離炭素の製造設備と懸濁液製造機への供給を示す経路図である。It is a route figure showing supply to production equipment of liquid free carbon of the present invention, and a suspension production machine.

以下では、本発明の実施形態について詳細に説明する。但し、本発明がこれらの実施形態に限定されるのではない。   Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to these embodiments.

まず、粉末状遊離炭素と水とを混合して液状遊離炭素を製造する。液状遊離炭素の製造時に留意すべき点は、水と粉末状遊離炭素との混合割合の調整である。即ち、水に対する粉末状遊離炭素の割合が低すぎる場合、水の量が多く、懸濁液を1回製造するのに投入される液状遊離炭素の量が多くなるため、製造容器と貯蔵器の体積が大きくならなければならず、混合時間も長くなる。また、水に対する粉末状遊離炭素の割合が高すぎる場合は、液状遊離炭素の濁度が高くなり、分散のための循環及び移送が難しい。従って、水と粉末状遊離炭素との混合割合は4:1(重量比)が好ましい。   First, powder free carbon and water are mixed to produce liquid free carbon. A point to be noted in the production of liquid free carbon is adjustment of the mixing ratio of water and powdered free carbon. That is, if the ratio of powdered free carbon to water is too low, the amount of water is large and the amount of liquid free carbon added to produce a suspension once increases. The volume must be increased and the mixing time is increased. Moreover, when the ratio of the powdered free carbon with respect to water is too high, the turbidity of liquid free carbon will become high, and the circulation and transfer for dispersion | distribution will be difficult. Therefore, the mixing ratio of water and powdered free carbon is preferably 4: 1 (weight ratio).

次に、前記製造された液状遊離炭素を適用して、モールドフラックスの製造のための懸濁液を製造する。   Next, the produced liquid free carbon is applied to produce a suspension for producing a mold flux.

液体状に製造された遊離炭素を懸濁液の製造時に投入する方法においては、貯蔵器に保管した後、計量器を介して液体炭素内に含まれる微粒遊離炭素の含量が既存の製品内に含まれる含量と同じように投入する。   In the method in which free carbon produced in a liquid state is introduced at the time of producing a suspension, after being stored in a reservoir, the content of fine free carbon contained in the liquid carbon is contained in the existing product via a measuring instrument. The same amount as the content is included.

その際用いられる液状遊離炭素の製造供給設備は、図6に示すとおりである。即ち、図6で見るように、本発明の液状遊離炭素の製造供給設備は、液状炭素製造容器と攪拌器、混合循環ポンプ、貯蔵器及び移送配管からなる。粉末状遊離炭素を製造容器内で分散剤と水と共に攪拌器のみ用いて混合する時には、粉末状遊離炭素が水の上に浮遊して分散時間が長くかかった。そのため、製造容器下部に混合循環ポンプを設けて、混合液を強制循環させることによって、固まっていた微粒遊離炭素の塊はポンプを通過しながら破砕され、分散剤との接触効率も向上するため、分散にかかる時間を短縮することができる。   The production and supply equipment for liquid free carbon used at that time is as shown in FIG. That is, as seen in FIG. 6, the production and supply equipment for liquid free carbon of the present invention comprises a liquid carbon production container, a stirrer, a mixing circulation pump, a reservoir, and a transfer pipe. When the powdered free carbon was mixed with the dispersant and water in the production vessel using only the stirrer, the powdered free carbon floated on the water and took a long time to disperse. Therefore, by providing a mixing circulation pump at the lower part of the production container and forcibly circulating the mixed liquid, the lump of solid fine carbon that has solidified is crushed while passing through the pump, and the contact efficiency with the dispersant is also improved. The time required for dispersion can be shortened.

製造された液状遊離炭素を懸濁液製造に適用することにあたっての留意点は、微粒遊離炭素の含量が多い製品の場合には、液状遊離炭素の投入量を増やすことになるため、懸濁液製造機(Screw blunger)内に投入される水の量を液状炭素内に含まれる水の量だけ減らさなければならないということである。モールドフラックス製造用の懸濁液製造時に水の投入量が多すぎると、懸濁液の濃度が薄くなり、乾燥過程でノズルを介して噴射する際、粉塵の発生が顕著に増加することになる。また、水の投入量が少なすぎる時には、懸濁液の濃度が高くなりすぎてノズルを介した噴射が難しくなり、噴射の圧力を高めることになれば、燃料の消耗量が増加しノズルの磨耗も早くなる。従って、懸濁液製造時の水の含量は非常に重要である。そのため、本発明のように液体状で遊離炭素を供給する場合、液状遊離炭素に含まれた水の量だけ懸濁液製造時に減らさなければならない。このため、下記の通りの式によって懸濁液製造機(Screw blunger)内に投入する水の量と液状遊離炭素の投入量とを決定する。
(1)液状遊離炭素(100%)=粉末状遊離炭素(20%)+水(80%)
(2)液状遊離炭素の投入量×0.2=既存品の微粒遊離炭素投入量
(3)懸濁液の水の投入量=既存品の水の投入量-液状遊離炭素の投入量×0.8
The point to note when applying the produced liquid free carbon to suspension production is that in the case of products with a high content of fine particulate free carbon, the amount of liquid free carbon input will be increased. This means that the amount of water introduced into the manufacturing machine (Screw blunger) must be reduced by the amount of water contained in the liquid carbon. If there is too much water input when producing a suspension for mold flux production, the concentration of the suspension will be reduced, and the generation of dust will be significantly increased when spraying through the nozzle during the drying process. . Also, when the amount of water input is too small, the concentration of the suspension becomes too high and injection through the nozzle becomes difficult, and if the injection pressure is increased, the amount of fuel consumption increases and the nozzle wears out. Will also be faster. Therefore, the water content at the time of producing the suspension is very important. Therefore, when supplying free carbon in a liquid state as in the present invention, the amount of water contained in the liquid free carbon must be reduced during suspension production. For this reason, the amount of water and the amount of liquid free carbon to be charged into the suspension manufacturing machine (Screw blunger) are determined by the following equation.
(1) Liquid free carbon (100%) = Powdered free carbon (20%) + Water (80%)
(2) Input amount of liquid free carbon x 0.2 = amount of fine particle free carbon input of existing product (3) Input amount of water in suspension = input amount of water of existing product-input amount of liquid free carbon x 0.8

モールドフラックスの製造業者が、製造された製品内の遊離炭素が均一に分散しているかを確認する試験法には、顕微鏡を用いて塊状の遊離炭素が存在するかを確認する方法と、溶融の形状を確認して均一に溶融されるかを確認する方法がある。   The test method for confirming whether or not free carbon in the manufactured product is uniformly dispersed by the manufacturer of the mold flux includes a method for confirming the presence of massive free carbon using a microscope, There is a method for confirming the shape and confirming whether it is uniformly melted.

溶融形状の確認実験法は、溶鋼(6)上部で溶融が行われる溶融スラグの温度に近似する1300℃の高温電気炉内で図4のような形状の容器にモールドフラックス製品を入れて一定時間経過した後、溶融が行われた形状を確認するものであるが、この実験はモールドフラックスが下部から熱の供給を受けて溶融される実際の工程を正確に模写したものではないものの、熱によって均一に溶融されるかを確認することで、遊離炭素の均一分散の程度を確認することができる実験法である。   The experiment for confirming the molten shape was conducted by placing the mold flux product in a container with a shape as shown in Fig. 4 in a 1300 ° C high-temperature electric furnace that approximated the temperature of the molten slag that melted at the top of the molten steel (6). After the lapse of time, the shape that has been melted is confirmed, but this experiment does not accurately replicate the actual process in which the mold flux is melted by receiving heat from the bottom, This is an experimental method in which the degree of uniform dispersion of free carbon can be confirmed by confirming whether it is uniformly melted.

前記実験で、球形のサイズが均一に形成されて分布し成長するというのは、遊離炭素の分布が均一で、溶融速度を制御する機能を均一に発揮しているということを意味する。遊離炭素が完全に分散せず、粒子が固まった状態で存在すれば、溶融速度を制御する効果も不足して、形成された球形が不均一なだけでなく、サイズも更に大きくなる。他の製造業者らの実験法は試料の量や数、電気炉内での維持時間等において異なり得るが、評価する方法は同一である。   In the above experiment, the fact that the spherical size is uniformly formed and distributed and grows means that the distribution of free carbon is uniform and the function of controlling the melting rate is uniformly exhibited. If the free carbon is not completely dispersed and the particles are present in a solid state, the effect of controlling the melting rate is insufficient, and not only the formed sphere is not uniform, but also the size is further increased. The experimental methods of other manufacturers may differ in the amount and number of samples, the maintenance time in the electric furnace, etc., but the evaluation method is the same.

この実験で留意すべき点は、容器の形状を、図4の如く端の部分を丸くしなければならないということである。端の部分を角ばった状態にすると、試料に対する熱の供給が容器中央部と端の部分とで変わることになる。即ち、端の部分は側面から受ける熱の供給がより多く、溶融がより早くなるため、遊離炭素の均一分散を確認するのが難しくなる。また、互いに異なる製品に対して遊離炭素の均一分布の程度を比較しようとする場合、各試料の重さを同一にしなければならない。   The point to be noted in this experiment is that the shape of the container must be rounded at the end as shown in FIG. If the end portion is squared, the supply of heat to the sample will change between the central portion of the container and the end portion. That is, the end portion receives more heat from the side surface, and the melting becomes faster, making it difficult to confirm the uniform dispersion of free carbon. Moreover, when trying to compare the degree of uniform distribution of free carbon for different products, the weight of each sample must be the same.

[実施例]
本発明を実施するのにあたって、進行過程は液状遊離炭素の製造と懸濁液製造の適用における問題点の解決、実験法を通じた均一分散の確認、実際の連鋳操業に製品を適用して、その結果を検証する段階からなる。
[Example]
In carrying out the present invention, the progress process is to solve the problems in the production of liquid free carbon and suspension production, confirm uniform dispersion through experimental methods, apply the product to the actual continuous casting operation, It consists of verifying the results.

まず、粉末状遊離炭素と水とを混合して、液状遊離炭素を製造した。液状遊離炭素の製造時、水と粉末状遊離炭素との混合割合を4:1と規定した。   First, powdered free carbon and water were mixed to produce liquid free carbon. During the production of liquid free carbon, the mixing ratio of water and powdered free carbon was defined as 4: 1.

従来法により懸濁液製造機で粉末状遊離炭素を分散させた後、他原料を投入する前の遊離炭素分散液を採取して、本発明により製造された液状遊離炭素と遊離炭素粒子の分散の程度を電子顕微鏡で比較した。図3での(イ)は従来法による遊離炭素分散液であり、(ロ)は本発明の液状遊離炭素である。図面で比較可能なとおり、従来法による遊離炭素の分散は、粒子があまり分散されずに塊の状態で存在していることが確認できた。   Disperse the free carbon dispersion liquid and the free carbon particles produced according to the present invention by dispersing the free carbon powder in the suspension production machine according to the conventional method and then collecting the free carbon dispersion liquid before introducing other raw materials. The degree of was compared with an electron microscope. In FIG. 3, (a) is a free carbon dispersion by a conventional method, and (b) is liquid free carbon of the present invention. As can be compared in the drawings, it was confirmed that the dispersion of free carbon by the conventional method existed in a lump state without the particles being dispersed so much.

製造された液状遊離炭素を適用して懸濁液を製造した。懸濁液の製造時、懸濁液の製造機内に投入する水の量と液状遊離炭素の投入量は、下記式によって決定した。
(1)液状遊離炭素(100%)=粉末状遊離炭素(20%)+水(80%)
(2)液状遊離炭素の投入量×0.2=既存品の微粒遊離炭素投入量
(3)懸濁液の水の投入量=既存品の水の投入量-液状遊離炭素の投入量×0.8
The liquid free carbon produced was applied to produce a suspension. During the production of the suspension, the amount of water and the amount of liquid free carbon charged into the suspension production machine were determined by the following formula.
(1) Liquid free carbon (100%) = Powdered free carbon (20%) + Water (80%)
(2) Input amount of liquid free carbon x 0.2 = amount of fine particle free carbon input of existing product (3) Input amount of water in suspension = input amount of water of existing product-input amount of liquid free carbon x 0.8

本発明のモールドフラックス製品は、中炭素鋼用製品で、鋳造速度の速い鋳型(1)であるスラブ(Slab)型と薄板(Thin Slab)型に対して適用した。モールドフラックス製品内の遊離炭素の総含量は0〜15重量%であり、このうち微粒遊離炭素の含量は0〜5重量%である。   The mold flux product of the present invention is a product for medium carbon steel, and was applied to a slab mold and a thin slab mold which are molds (1) having a high casting speed. The total content of free carbon in the mold flux product is 0 to 15% by weight, of which the content of fine free carbon is 0 to 5% by weight.

本発明の適用に先立って、図4は、選定製品の溶融形状を、従来の生産法による炭素分散剤と炭素との混合時間ごとに確認したものである。確認可能な通り、混合時間が長くなるほど溶融形状が均一なことを確認することができる。   Prior to the application of the present invention, FIG. 4 shows the confirmation of the molten shape of the selected product for each mixing time of the carbon dispersant and carbon by the conventional production method. As can be confirmed, the longer the mixing time, the more uniform the molten shape can be confirmed.

本発明により製造された製品の溶融形状を実験した。本発明に適用した実験法は、容器に同一量(50gずつ)を入れた試料を3つ準備して、電気炉内でそれぞれ1分、3分、5分間維持した後、その溶融量と均一な溶融の程度を確認した。このような時間に維持した理由は、遊離炭素の燃焼が700℃以下でなされると焼結反応が起きるので、1300℃では1分程経過すると、焼結層(4)が表面に形成されることが確認でき、それ以降は溶融が進行して、球形が形成及び成長することが確認できるためである。   The molten shape of the product produced according to the present invention was tested. The experimental method applied to the present invention is to prepare three samples with the same amount (50g each) in a container and maintain them in an electric furnace for 1 minute, 3 minutes and 5 minutes, respectively, and then the melting amount and uniformity The degree of proper melting was confirmed. The reason for maintaining such a time is that a sintering reaction occurs when the combustion of free carbon is performed at 700 ° C. or less, so that a sintered layer (4) is formed on the surface after about 1 minute at 1300 ° C. This is because it can be confirmed that, after that, melting progresses and a sphere is formed and grown.

その結果は図5の通りであり、従来法による結果である図4と比較すると、溶融が遥かに均一になされているだけでなく、形成される球形の形状がより小さいことがわかる。これにより、本発明を適用した製品が従来法による製品より溶融が均一なだけでなく、溶融速度を制御する効果も向上していることが分かる。   The result is as shown in FIG. 5. Compared with FIG. 4 which is the result of the conventional method, it can be seen that the melting is made much more uniform, and the formed spherical shape is smaller. Thereby, it can be seen that the product to which the present invention is applied is not only more uniformly melted than the product by the conventional method, but also the effect of controlling the melting rate is improved.

本発明により製造された製品を連続鋳造工程に適用して、その効果を検証した。検証方法は、一般的にモールドフラックスの改善品を試験する際に適用する方法であって、同一溶鋼(6)の条件下で従来品と開発品とを互いに異なるストランドに適用して、その作業状況(即ち、スラグベア(2)の除去回数を比較)及び品質結果(即ち、表面品質を比較)を比較するものである。その結果は下記の表の通りである。   The product manufactured according to the present invention was applied to a continuous casting process to verify its effect. The verification method is generally applied when testing a product with improved mold flux, and the conventional product and the developed product are applied to different strands under the same molten steel (6) conditions. It compares the situation (i.e. comparing the number of removals of the slag bear (2)) and the quality result (i.e. comparing the surface quality). The results are shown in the table below.

レードル(Ladle)1回(1 heat)を鋳造する間にスラグベア(2)を除去した回数で作業状況を評価し、表面品質に対する評価は、次の工程である圧延工程で全投入された凝固鋳片の量に対する欠陥が発生した鋳片の量を百分率(%)で比較、評価した。スラブ状の鋳造では、本発明により製造された製品の適用時に小さなスラグベアの発生があったが、除去する必要のない程小さなサイズで形成されていたので、その結果を「良好」と記載した。   The working condition is evaluated by the number of times the slag bear (2) has been removed during the casting of 1 heat of the ladle, and the surface quality is evaluated by the solidification casting that is fully charged in the next rolling process. The amount of slabs in which defects were generated relative to the amount of pieces was compared and evaluated as a percentage (%). In the slab casting, a small slag bear was generated when the product produced according to the present invention was applied. However, the slab casting was formed in such a small size that it did not need to be removed.

前記試験結果で確認できるとおり、本発明の製造方法により製造された顆粒状モールドフラックスを連続鋳造工程に適用すると、スラグベアが顕著に減ったことが分かった。スラグベアが減ると、溶融スラグの均一流入が確保され、これにより鋳片から鋳型へ熱を均一に伝達して均一に凝固がなされるというのは、製鋼工程でよく知られている事実であるが、前記のような効果として鋳片の表面品質が向上する効果を得ることができるということが分かる。   As can be confirmed from the test results, it was found that when the granular mold flux produced by the production method of the present invention was applied to the continuous casting process, the slag bear was remarkably reduced. When slag bears are reduced, a uniform inflow of molten slag is ensured, which means that heat is uniformly transferred from the slab to the mold and solidified uniformly, which is a well-known fact in the steelmaking process. As can be seen from the above, the effect of improving the surface quality of the slab can be obtained.

1 鋳型
2 スラグベア
3 未溶融層
4 焼結層
5 溶融層
6 溶鋼
7 溶鋼注入口
1 Mold 2 Slag Bear 3 Unmelted Layer 4 Sintered Layer 5 Molten Layer 6 Molten Steel 7 Molten Steel Injection Port

Claims (2)

懸濁液製造のための懸濁液製造機(Screw blunger)の外部で液状遊離炭素を製造する段階;及び
製造された液状遊離炭素を懸濁液製造機に供給する段階を含むことを特徴とする液状遊離炭素を利用した顆粒状モールドフラックスの製造方法。
Characterized in that it comprises the steps of producing liquid free carbon external to a suspension blender for producing the suspension; and supplying the produced liquid free carbon to the suspension producing machine. A method for producing a granular mold flux using liquid free carbon.
顆粒状モールドフラックスの製造時に用いられる液状遊離炭素の製造及び供給のための設備であって、
液状遊離炭素を製造するための製造容器;
前記製造容器内で遊離炭素を分散させるための攪拌器;
前記製造容器内の粉末状遊離炭素と遊離炭素分散剤との混合割合を高めるため、混合物を強制循環させる混合循環ポンプ;
前記製造容器で製造された液状遊離炭素を貯蔵するための貯蔵器;及び
前記貯蔵器から液状遊離炭素を懸濁液製造機に移送するための移送配管を含むことを特徴とする液状遊離炭素の製造供給設備。
Equipment for the production and supply of liquid free carbon used in the production of granular mold flux,
Production vessel for producing liquid free carbon;
A stirrer for dispersing free carbon in the production vessel;
A mixing circulation pump for forcedly circulating the mixture in order to increase the mixing ratio of the powdered free carbon and the free carbon dispersant in the production container;
A reservoir for storing liquid free carbon produced in the production container; and a transfer pipe for transferring liquid free carbon from the reservoir to a suspension production machine. Manufacturing supply equipment.
JP2009113409A 2008-11-28 2009-05-08 Manufacturing method of granular mold flux using liquid free carbon and manufacturing supply equipment of liquid free carbon Active JP4977735B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0119473 2008-11-28
KR1020080119473A KR100951100B1 (en) 2008-11-28 2008-11-28 Method of manufacturing granular mold flux using liquid free carbon, and apparatus for manufacturing and supplying liquid free carbon

Publications (2)

Publication Number Publication Date
JP2010125524A true JP2010125524A (en) 2010-06-10
JP4977735B2 JP4977735B2 (en) 2012-07-18

Family

ID=42219538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113409A Active JP4977735B2 (en) 2008-11-28 2009-05-08 Manufacturing method of granular mold flux using liquid free carbon and manufacturing supply equipment of liquid free carbon

Country Status (3)

Country Link
JP (1) JP4977735B2 (en)
KR (1) KR100951100B1 (en)
CN (1) CN101745614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130070667A (en) * 2011-12-15 2013-06-28 주식회사 포스코 Continuous casting method of steel with high al content by using hybrid operation of liquid and solid mold flux

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2760608B1 (en) * 2011-09-29 2019-04-03 Stollberg Inc. System and method for monitoring mold flux consumption

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257748A (en) * 1985-09-04 1987-03-13 Kawasaki Steel Corp Granular flux having excellent melt characteristic for continuous casting and its production
JPH09182944A (en) * 1995-12-28 1997-07-15 Nippon Steel Metal Prod Co Ltd Production of mold flux for continuously casting steel and device therefor
JPH10149956A (en) * 1996-11-18 1998-06-02 Elna Co Ltd Electric double layered capacitor and its manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020015572A (en) * 2000-08-22 2002-02-28 정성만 A menufacturing method of mold flux using aqueous solution of dextrin
KR100548703B1 (en) * 2002-01-08 2006-02-02 스톨베르그 앤드 삼일 주식회사 Method of manufacturing hollow granular mold flux applied starch solutions

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257748A (en) * 1985-09-04 1987-03-13 Kawasaki Steel Corp Granular flux having excellent melt characteristic for continuous casting and its production
JPH09182944A (en) * 1995-12-28 1997-07-15 Nippon Steel Metal Prod Co Ltd Production of mold flux for continuously casting steel and device therefor
JPH10149956A (en) * 1996-11-18 1998-06-02 Elna Co Ltd Electric double layered capacitor and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130070667A (en) * 2011-12-15 2013-06-28 주식회사 포스코 Continuous casting method of steel with high al content by using hybrid operation of liquid and solid mold flux
KR101940989B1 (en) * 2011-12-15 2019-04-11 주식회사 포스코 Continuous casting method of steel with high Al content by using hybrid operation of liquid and solid mold flux

Also Published As

Publication number Publication date
CN101745614A (en) 2010-06-23
KR100951100B1 (en) 2010-04-07
JP4977735B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP2008036712A (en) Molding material or molding part and process of producing the same
CN107552720A (en) A kind of steel-casting precoated sand, its preparation method and anti-agglutinatting property detection method
JP7372766B2 (en) Inorganic coated sand
CN104493150B (en) A kind of alumina-silica drainage agent and preparation method thereof
WO2020235391A1 (en) Method for reproducing molding sand
CN106583661A (en) Manufacturing method for rear case body of gear case
JP4977735B2 (en) Manufacturing method of granular mold flux using liquid free carbon and manufacturing supply equipment of liquid free carbon
EP0574280B1 (en) Process for the production of a sintered refractory vitreous silica material
JP2005193267A (en) Molding sand, and production method therefor
KR100944407B1 (en) Mold flux for continuous casting of high al steel grade
CN102161212A (en) Method for manufacturing low-cost slag blocking dam
JPS6037250A (en) Mold additive for continuous casting of steel
JP2010042449A (en) Molding sand, and production method therefor
JP4524416B2 (en) Asphalt mixture, sulfur-containing material manufacturing apparatus, and sulfur-containing material manufacturing method using the apparatus
TWI613178B (en) Method for manufacturing solidified slag, solidified slag, method for manufacturing coarse aggregate for concrete, and coarse aggregate for concrete
RU2510420C2 (en) Copper alloy and method of its production
JP4389057B2 (en) Mold flux for continuous casting of steel
KR20200106271A (en) Method and Automatic System for Manufacturing Flange Based Ceramic
CN1233488C (en) Steel continuous casting method
JP2003053497A (en) Flux for continuous casting
CN1023085C (en) Method to make refractory pot for casting steel billet
CN115464763B (en) Preparation system and preparation method of long-life high-blowing-through-rate twin air brick core
Strobl The fundamentals of green sand preparation and control
JP2022034503A (en) Artificial sand formed by melt air-granulation method, and production method thereof
Nakamura et al. Investigation of Ceramic Firing Processes for Investment Casting Shell Molds

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120416

R150 Certificate of patent or registration of utility model

Ref document number: 4977735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250