JP2010125465A - Casting analyzer and casting analyzing method - Google Patents

Casting analyzer and casting analyzing method Download PDF

Info

Publication number
JP2010125465A
JP2010125465A JP2008300442A JP2008300442A JP2010125465A JP 2010125465 A JP2010125465 A JP 2010125465A JP 2008300442 A JP2008300442 A JP 2008300442A JP 2008300442 A JP2008300442 A JP 2008300442A JP 2010125465 A JP2010125465 A JP 2010125465A
Authority
JP
Japan
Prior art keywords
analysis
ray
casting
molten metal
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008300442A
Other languages
Japanese (ja)
Other versions
JP5453782B2 (en
Inventor
Ichiro Aoi
一郎 青井
Yasushi Iwata
靖 岩田
Hiroaki Iwabori
弘昭 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008300442A priority Critical patent/JP5453782B2/en
Publication of JP2010125465A publication Critical patent/JP2010125465A/en
Application granted granted Critical
Publication of JP5453782B2 publication Critical patent/JP5453782B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting analyzer and a casting analyzing method which can observe the solidified state of a molten metal in casting using a general X-ray source. <P>SOLUTION: The casting analyzer comprises: an X-ray emission means 1 having an X-ray source; a mold 2 for analysis having a cavity 20 through which X-rays emitted from the X-ray emission means 1 are transmitted and in which a molten metal is filled, and solidifying the molten metal to a direction almost orthogonal to the direction through which the X-rays are transmitted; and an X-ray detection means 3 installed on the side opposite to the X-ray emission means 1 with the mold 2 for analysis held and detecting the X-rays transmitted through the mold 2 for analysis as an image, and analyzes the solidified state of the molten metal in the cavity from the lightness of the transmitted X-ray image obtained by the X-ray detection means 3. In particular, by using at least either selected from the dimensions and material of the mold 2 for analysis in a suitable range, a clear transmitted X-ray image can be obtained, further, the solidification of the molten metal to the transmitting direction of the X-rays is satisfactorily suppressed, and it is made suitable for two-dimensional observation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋳造方案の設計や金属溶湯の評価などに利用することができる鋳造解析装置および鋳造解析方法に関するものである。   The present invention relates to a casting analysis apparatus and a casting analysis method that can be used for designing a casting method and evaluating a molten metal.

鋳造は、金属部材を製造する一般的な方法である。鋳造では、金属溶湯が接触する鋳型の表面からの抜熱により凝固が進行する。このとき、ガス欠陥、引け巣、溶質元素の偏析などの鋳造欠陥が、鋳物の内部に発生することがある。鋳造欠陥は破壊起点となるため、鋳物の品質上問題とされる。このような欠陥は、後の塑性加工により完全に除去することが困難であるため、鋳造により高品質な鋳物を製造する必要がある。そこで、鋳型内における金属溶湯の状態を把握し、鋳物内部での鋳造欠陥の発生を抑制できる鋳型を設計することが望まれている。   Casting is a common method for producing metal parts. In casting, solidification proceeds by heat removal from the surface of the mold that the molten metal contacts. At this time, casting defects such as gas defects, shrinkage cavities, and segregation of solute elements may occur inside the casting. Since a casting defect becomes a starting point of fracture, it is regarded as a problem in casting quality. Such defects are difficult to remove completely by subsequent plastic working, and it is necessary to produce a high-quality casting by casting. Therefore, it is desired to grasp the state of the molten metal in the mold and to design a mold that can suppress the occurrence of casting defects inside the casting.

鋳型内に供給される金属溶湯をX線で撮影してキャビティ内の湯流れを観察する技術は、既にある。たとえば、特許文献1では、鋳型内に供給される金属溶湯に、金属溶湯とは異なるX線透過特性をもつトレーサ粒子を混入して、X線解析装置を用いて溶湯金属の湯流れを可視化している。また、非特許文献1では、高輝度放射光施設(SPring−8)を用い、厚さ100μmの薄膜状の金属溶湯に対して凝固中の核形成・成長を観察している。
特開2007−54873号公報 安田(H.Yasuda)、他8名,「核形成、分断および微細組織変化 (In-situ observation of nucleation, fragmentation and microstructure evolution)」,第10回アジア鋳物会議予稿集(Proceedings of 10th Asian Foundry Congress),2008年5月,p.145−148
There is already a technique for observing the flow of molten metal in the cavity by photographing the molten metal supplied into the mold with X-rays. For example, in Patent Document 1, tracer particles having X-ray transmission characteristics different from that of the molten metal are mixed into the molten metal supplied into the mold, and the molten metal flow is visualized using an X-ray analyzer. ing. Further, in Non-Patent Document 1, nucleation / growth during solidification is observed in a thin metal melt having a thickness of 100 μm using a high-intensity synchrotron radiation facility (SPring-8).
JP 2007-54873 A H. Yasuda and eight others, “In-situ observation of nucleation, fragmentation and microstructure evolution”, Proceedings of 10th Asian Foundry Congress ), May 2008, p. 145-148

特許文献1では、鋳型内での金属溶湯の湯流れを観察できるものの、液相から固相への変化を捉えることはできない。これは、そもそも特許文献1では液相と固相とを判別することを目的としていないからである。湯流れを観察するだけであれば、トレーサ粒子、金属溶湯および気相のコントラストが明確であればよいため、鋳造時に実際に使用する鋳型にX線を照射するだけで、判別可能である。しかし、そのような観察条件では、金属溶湯の凝固状態を観察することは無理である。   In Patent Document 1, although the molten metal flow in the mold can be observed, the change from the liquid phase to the solid phase cannot be captured. This is because, in the first place, Patent Document 1 does not aim to distinguish between the liquid phase and the solid phase. If only the molten metal flow is observed, the contrast between the tracer particles, the molten metal, and the gas phase only needs to be clear. Therefore, the determination can be made only by irradiating the mold actually used during casting with X-rays. However, it is impossible to observe the solidification state of the molten metal under such observation conditions.

一方、非特許文献1では、液相から固相への変化を観察することが可能である。しかし、SPring−8では平行度の高いX線を広い領域に照射することができないため、狭い範囲でしか観察を行うことができない。つまり、SPring−8の利用は、微細構造の観察には好適であるが、巨視的な凝固状態を観察するには不適である。また、SPring−8は極めて特殊な施設であるため、製品の鋳造に用いられる鋳型の解析や金属溶湯の評価などに簡易に使用できないという問題がある。   On the other hand, in Non-Patent Document 1, it is possible to observe a change from a liquid phase to a solid phase. However, since SPring-8 cannot irradiate a wide area with X-rays with high parallelism, it can be observed only in a narrow range. That is, the use of SPring-8 is suitable for observing a fine structure, but is not suitable for observing a macroscopic coagulation state. Further, since SPring-8 is a very special facility, there is a problem that it cannot be easily used for analysis of a mold used for casting a product or evaluation of a molten metal.

本発明は、上記問題点に鑑み、一般的なX線源を用いて鋳造における金属溶湯の凝固状態を観察することができる鋳造解析装置および鋳造解析方法を提供することを目的とする。   An object of this invention is to provide the casting analysis apparatus and casting analysis method which can observe the solidification state of the molten metal in casting using a general X-ray source in view of the said problem.

本発明の鋳造解析装置は、X線源をもつX線照射手段と、
前記X線照射手段より照射されるX線が透過するとともに金属溶湯が充填されるキャビティをもちX線が透過する方向に対してほぼ直交する方向に該金属溶湯を凝固させる解析用鋳型と、
前記解析用鋳型を挟んで前記X線照射手段の反対側に設置され前記解析用鋳型を透過したX線を画像として検出するX線検出手段と、
を備え、前記X線検出手段で得られた透過X線像の少なくとも固相と液相とのX線透過率の違いに起因する明るさの違いから前記金属溶湯の凝固状態を解析することを特徴とする。
The casting analysis apparatus of the present invention includes an X-ray irradiation means having an X-ray source,
An analysis mold for solidifying the molten metal in a direction substantially perpendicular to the direction of transmission of X-rays having a cavity through which X-rays irradiated from the X-ray irradiation means are transmitted and filled with the molten metal;
X-ray detection means for detecting as an image X-rays installed on the opposite side of the X-ray irradiation means across the analysis template, and transmitted through the analysis template;
And analyzing the solidification state of the molten metal from the difference in brightness caused by the difference in the X-ray transmittance between the solid phase and the liquid phase of the transmitted X-ray image obtained by the X-ray detection means. Features.

なお、具体的に「凝固状態」とは、固相の晶出量や固相率などで表される凝固の進行度合、固液界面(凝固界面)の位置、固相の晶出時期、鋳巣の形成過程、金属溶湯に含まれる溶存ガスに起因する気泡の発生、などを含む。   The “solidified state” specifically refers to the degree of solidification progress expressed by the amount of solid phase crystallization and the solid phase rate, the position of the solid-liquid interface (solidification interface), the crystallization time of the solid phase, the casting This includes the formation process of the nest, generation of bubbles due to dissolved gas contained in the molten metal, and the like.

既に述べたように、従来、鋳型内の金属溶湯の凝固状態を解析するという考えは、そもそもなかった。本発明者等は、凝固過程において固相が増加するにつれて、透過X線像が暗くなることに着目した。そこで、金属溶湯を凝固させる解析用鋳型の構成を、透過X線像により金属溶湯の凝固状態を解析するのに適した構成とした。すなわち、本発明の鋳造解析装置は、X線が透過する方向に対してほぼ直交する方向に金属溶湯を凝固させる解析用鋳型を備える。凝固の進行方向はX線の透過方向に対してほぼ直交するため、透過X線像により凝固状態を二次元的に観察できる。特に、解析用鋳型の寸法および材質の少なくとも一方を好適な範囲で使用することにより、鮮明な透過X線像が得られるとともに、X線の透過方向への凝固が良好に抑制され二次元的な観察に好適となる。   As described above, conventionally, the idea of analyzing the solidification state of the molten metal in the mold has never been found. The present inventors have focused on the fact that the transmitted X-ray image becomes darker as the solid phase increases in the solidification process. Therefore, the analysis mold for solidifying the molten metal is suitable for analyzing the solidification state of the molten metal by transmission X-ray images. That is, the casting analysis apparatus of the present invention includes an analysis mold for solidifying a molten metal in a direction substantially orthogonal to a direction through which X-rays are transmitted. Since the solidification progress direction is substantially perpendicular to the X-ray transmission direction, the solidification state can be observed two-dimensionally by a transmission X-ray image. In particular, by using at least one of the dimensions and material of the analysis mold within a suitable range, a clear transmitted X-ray image can be obtained, and solidification in the X-ray transmission direction can be well suppressed and two-dimensional. Suitable for observation.

なお、金属溶湯の凝固過程において固相が増加するにつれて透過X線像が暗くなるのは、液相と固相との密度差に起因する。液相の密度よりも固相の密度の方が高いため、固相が多く存在するほどX線は透過しにくくなる。そのため、透過X線像の明るさの違いから金属溶湯の凝固状態、特に、凝固の進行度合、固液界面(凝固界面)の位置、固相の晶出時期、などを解析することが可能となる。   Note that the transmission X-ray image darkens as the solid phase increases in the solidification process of the molten metal because of the difference in density between the liquid phase and the solid phase. Since the density of the solid phase is higher than the density of the liquid phase, the more the solid phase exists, the more difficult it is to transmit X-rays. Therefore, it is possible to analyze the solidification state of the molten metal, especially the degree of solidification, the position of the solid-liquid interface (solidification interface), the crystallization time of the solid phase, etc. from the difference in the brightness of the transmitted X-ray image. Become.

さらに、前記X線検出手段で得られた前記透過X線像の少なくとも一部から明度を算出する明度算出手段を備えるとよい。明度算出手段により金属溶湯の凝固状態を数値化できるため、さらに詳細な凝固解析が可能となる。さらに、前記明度算出手段で算出された明度が閾値を超えたときに前記金属溶湯の清浄度を判定する判定手段を備えるとよい。   Furthermore, it is good to provide the brightness calculation means which calculates a brightness from at least one part of the said transmission X-ray image obtained by the said X-ray detection means. Since the solidification state of the molten metal can be quantified by the brightness calculation means, a more detailed solidification analysis is possible. Furthermore, it is good to provide the determination means which determines the cleanliness of the said molten metal when the brightness calculated by the said brightness calculation means exceeds a threshold value.

また、本発明は、鋳造解析方法と捉えることもできる。すなわち本発明の鋳造解析方法は、解析用鋳型に充填された金属溶湯をX線により解析する鋳造解析方法であって、
前記解析用鋳型に前記金属溶湯を注湯する注湯工程と、
前記解析用鋳型にX線を照射するX線照射工程と、
前記X線照射工程と並行してX線が透過する方向に対してほぼ直交する方向に前記解析用鋳型に充填された前記金属溶湯を凝固させる凝固工程と、
前記X線照射工程と並行して前記解析用鋳型を透過したX線を画像として検出するX線検出工程と、
前記X線検出工程で得られた透過X線像の少なくとも固相と液相とのX線透過率の違いに起因する明るさの違いから前記金属溶湯の凝固状態を解析する凝固解析工程と、
を含むことを特徴とする。
Further, the present invention can also be regarded as a casting analysis method. That is, the casting analysis method of the present invention is a casting analysis method for analyzing the molten metal filled in the analysis mold by X-ray,
A pouring step of pouring the molten metal into the analysis mold;
An X-ray irradiation step of irradiating the analysis mold with X-rays;
A solidification step of solidifying the molten metal filled in the analysis mold in a direction substantially orthogonal to a direction through which X-rays pass in parallel with the X-ray irradiation step;
An X-ray detection step for detecting, as an image, X-rays transmitted through the analysis template in parallel with the X-ray irradiation step;
A solidification analysis step of analyzing a solidification state of the molten metal from a difference in brightness caused by a difference in X-ray transmittance between at least a solid phase and a liquid phase of a transmission X-ray image obtained in the X-ray detection step;
It is characterized by including.

以下に、本発明の鋳造解析装置および鋳造解析方法を実施するための最良の形態を説明する。   The best mode for carrying out the casting analysis apparatus and the casting analysis method of the present invention will be described below.

[鋳造解析装置]
本発明の鋳造解析装置は、主として、X線照射手段、解析用鋳型およびX線検出手段を備える。そして、X線検出手段で得られた透過X線像の明るさの違いから金属溶湯の凝固状態を解析する。本発明の鋳造解析装置により解析される金属溶湯としては、X線を透過しやすいアルミニウム合金またはマグネシウム合金が好適である。
[Casting analysis equipment]
The casting analysis apparatus of the present invention mainly includes an X-ray irradiation means, an analysis mold, and an X-ray detection means. And the solidification state of a molten metal is analyzed from the difference in the brightness of the transmitted X-ray image obtained by the X-ray detection means. As the molten metal analyzed by the casting analysis apparatus of the present invention, an aluminum alloy or a magnesium alloy that easily transmits X-rays is preferable.

X線照射手段は、X線源をもつ。X線照射手段は、一般的なX線源をもち透視写真法に用いることができ、工場などに設置可能な簡易なものであればよい。あえて規定するのであれば、X線を発生させる加速電圧が50keV〜200keVである。加速電圧が高すぎると透過X線像にコントラストが付きにくく、固相と液相との差が明確に表れないため、金属溶湯の凝固状態を解析するのに不適である。   The X-ray irradiation means has an X-ray source. The X-ray irradiating means may be a simple one that has a general X-ray source, can be used for fluoroscopic photography, and can be installed in a factory or the like. If stipulated, the acceleration voltage for generating X-rays is 50 keV to 200 keV. If the acceleration voltage is too high, the transmitted X-ray image is hardly contrasted, and the difference between the solid phase and the liquid phase does not appear clearly, so that it is unsuitable for analyzing the solidification state of the molten metal.

解析用鋳型は、X線照射手段より照射されるX線が透過する。そのため、解析用鋳型は、X線が透過しやすい寸法および材質からなるのが好ましい。解析用鋳型は、X線照射手段に対向する正面壁およびX線検出手段(後述)と対向する背面壁をもち、正面壁および背面壁は80keVの加速電圧で発生するX線に対する質量吸収係数μ/ρが0.25cm/g以下さらには0.1〜0.2cm/gである材料からなるとよい。質量吸収係数が0.25cm/gを超えると、解析用鋳型を透過するX線が十分ではなく、金属溶湯の凝固状態を解析するのに十分な透過X線像が得られないため好ましくない。具体的には、黒鉛(0.160cm/g)、珪酸カルシウム(ニチアス株式会社製ルミボード:0.242cm/g)、アルミナ(0.185cm/g)、ムライト(0.187cm/g)等が挙げられる。なお、括弧内の質量吸収係数μ/ρは、いずれも80keVの加速電圧で発生するX線に対する値である。 The analysis mold transmits X-rays irradiated from the X-ray irradiation means. Therefore, it is preferable that the analysis mold is made of a size and a material that allow easy transmission of X-rays. The analysis mold has a front wall facing the X-ray irradiation means and a back wall facing the X-ray detection means (described later). The front wall and the back wall have a mass absorption coefficient μ for X-rays generated at an acceleration voltage of 80 keV. / [rho is 0.25 cm 2 / g or less further may consists of a material which is 0.1~0.2cm 2 / g. If the mass absorption coefficient exceeds 0.25 cm 2 / g, X-rays that pass through the analysis mold are not sufficient, and a transmission X-ray image sufficient to analyze the solidification state of the molten metal cannot be obtained. . Specifically, graphite (0.160cm 2 / g), calcium silicate (Nichias Co. Rumibodo: 0.242cm 2 / g), alumina (0.185cm 2 / g), mullite (0.187cm 2 / g ) And the like. The mass absorption coefficient μ / ρ in parentheses is a value for X-rays generated at an acceleration voltage of 80 keV.

正面壁および背面壁のX線が透過する方向の厚さに特に限定はないが、正面壁、背面壁ともに1〜20mmさらには5〜15mmであるとよい。厚さが20mmを超えると解析用鋳型を透過するX線が十分ではなく、金属溶湯の凝固状態を解析するのに十分な透過X線像が得られないため好ましくない。そのため、正面壁および背面壁の厚さは薄い方が好ましいが、1mm未満では金属溶湯を保持するための強度が不足するため好ましくない。なお、正面壁および背面壁の厚さは均一であるのが好ましい。   There is no particular limitation on the thickness of the front wall and the rear wall in the direction in which X-rays are transmitted, but both the front wall and the rear wall are preferably 1 to 20 mm, and more preferably 5 to 15 mm. If the thickness exceeds 20 mm, X-rays that pass through the analysis mold are not sufficient, and a transmission X-ray image sufficient to analyze the solidification state of the molten metal cannot be obtained. Therefore, it is preferable that the thickness of the front wall and the back wall is thin, but less than 1 mm is not preferable because the strength for holding the molten metal is insufficient. In addition, it is preferable that the thickness of a front wall and a back wall is uniform.

また、解析用鋳型は、金属溶湯が充填されるキャビティをもちX線が透過する方向に対してほぼ直交する方向に金属溶湯を凝固させる。換言すれば、解析用鋳型では、X線の透過方向への凝固が抑制される。この構成により、透過X線像により金属溶湯の凝固状態を二次元的に解析することが可能となる。解析用鋳型は、X線照射手段に対向する正面壁と、X線検出手段と対向する背面壁と、正面壁および背面壁とともにキャビティを区画する側壁と、からなるとよい。このとき、正面壁および背面壁の熱伝導率を側壁の熱伝導率よりも低くすることで、X線の透過方向への凝固が効果的に抑制される。具体的には、断熱材からなる正面壁および背面壁、金属のなかでも熱伝導性の高い銅、銅合金、アルミニウムまたはアルミニウム合金などからなる金属製の側壁、を使用するとよい。断熱材としては、X線を透過しやすい黒鉛や珪酸カルシウムが使用可能である。あるいは、側壁を強制的に冷却して、X線が透過する方向に対してほぼ直交する方向へ、金属溶湯の凝固を促進させてもよい。このとき、側壁が、熱伝導率の高い材質からなれば、さらに効果的である。   The analysis mold has a cavity filled with the molten metal and solidifies the molten metal in a direction substantially perpendicular to the direction through which X-rays pass. In other words, in the analysis mold, solidification in the X-ray transmission direction is suppressed. With this configuration, it is possible to two-dimensionally analyze the solidified state of the molten metal from the transmitted X-ray image. The analysis mold may include a front wall facing the X-ray irradiation unit, a back wall facing the X-ray detection unit, and a side wall that divides the cavity together with the front wall and the back wall. At this time, by making the thermal conductivity of the front wall and the rear wall lower than the thermal conductivity of the side walls, solidification in the X-ray transmission direction is effectively suppressed. Specifically, it is preferable to use front and rear walls made of a heat insulating material, and metal side walls made of copper, copper alloy, aluminum, aluminum alloy, or the like having high thermal conductivity among metals. As the heat insulating material, graphite or calcium silicate that easily transmits X-rays can be used. Alternatively, the side wall may be forcibly cooled to promote solidification of the molten metal in a direction substantially perpendicular to the direction through which X-rays pass. At this time, it is more effective if the side wall is made of a material having high thermal conductivity.

また、解析用鋳型のキャビティは、X線が透過する方向の厚さが3〜20mmさらには5〜15mmであるとよい。3mm未満では、X線の透過方向への凝固が支配的となりやすく、凝固状態を観察するのに不適である。一方、20mmを超えると、解析用鋳型を透過するX線が十分ではなく、金属溶湯の凝固状態を解析するのに十分な透過X線像が得られないため好ましくない。なお、キャビティの厚さは均一であるのが好ましい。   Further, the cavity of the analysis mold is preferably 3 to 20 mm, more preferably 5 to 15 mm, in the direction in which X-rays are transmitted. If it is less than 3 mm, solidification in the X-ray transmission direction tends to be dominant, and it is not suitable for observing the solidification state. On the other hand, if it exceeds 20 mm, X-rays that pass through the analysis mold are not sufficient, and a transmission X-ray image sufficient for analyzing the solidification state of the molten metal cannot be obtained, which is not preferable. Note that the thickness of the cavity is preferably uniform.

解析用鋳型は、さらに、前述のように側壁を冷却するための冷却手段、溶湯の温度を測定する温度測定手段、などを備えてもよい。温度測定手段で所定の位置の温度を測定することで、その位置での固相率を算出し、透過X線像と比較検討することも可能である。   The analysis mold may further include a cooling means for cooling the side wall as described above, a temperature measuring means for measuring the temperature of the molten metal, and the like. By measuring the temperature at a predetermined position with the temperature measuring means, the solid phase ratio at that position can be calculated and compared with a transmission X-ray image.

X線検出手段は、解析用鋳型を挟んでX線照射手段の反対側に設置され、解析用鋳型を透過したX線を画像として検出する。X線検出手段の具体例として、イメージインテンシファイア(I.I.)が挙げられる。I.I.は、微弱な光でも検知し増幅して、コントラストの高い像として可視化することが可能である。さらに、X線検出手段は、検出した透過X線像を断続的あるいは連続的に撮影する撮影装置を備えてもよい。   The X-ray detection unit is installed on the opposite side of the X-ray irradiation unit with the analysis template interposed therebetween, and detects X-rays transmitted through the analysis template as an image. A specific example of the X-ray detection means is an image intensifier (II). I. I. It is possible to detect and amplify even weak light and visualize it as an image with high contrast. Furthermore, the X-ray detection means may include an imaging device that images the detected transmitted X-ray image intermittently or continuously.

X線検出手段で検出された透過X線像から、金属溶湯の凝固状態を解析することが可能である。前述のように、凝固が進行して金属溶湯に固相が多く存在すると、X線は透過しにくくなる。つまり、固相と液相とでは、X線透過率が異なる。そのため、透過X線像の明るさから、金属溶湯の凝固状態を解析することができる。具体的には、解析用鋳型全体の透過X線像のコントラストから固液界面がわかるため、透過X線像を連続的に解析することで、凝固の過程を観察することができる。また、固相と液相とのコントラストに加え、金属と気相とのコントラストも明確に得られるため、鋳巣の発生挙動の直接観察も可能である。したがって、本発明の鋳造解析装置は、鋳造方案の設計に好適である。   It is possible to analyze the solidification state of the molten metal from the transmitted X-ray image detected by the X-ray detection means. As described above, when solidification progresses and there are many solid phases in the molten metal, X-rays are hardly transmitted. That is, the X-ray transmittance differs between the solid phase and the liquid phase. Therefore, the solidification state of the molten metal can be analyzed from the brightness of the transmitted X-ray image. Specifically, since the solid-liquid interface is known from the contrast of the transmission X-ray image of the entire analysis mold, the solidification process can be observed by continuously analyzing the transmission X-ray image. In addition to the contrast between the solid phase and the liquid phase, the contrast between the metal and the gas phase can be clearly obtained, so that it is possible to directly observe the generation behavior of the cast hole. Therefore, the casting analysis apparatus of the present invention is suitable for designing a casting plan.

さらに、X線検出手段で得られた透過X線像の少なくとも一部から明度を算出する明度算出手段を備えるのが好ましい。明度算出手段により金属溶湯の凝固状態を数値化するには、たとえば、解析用鋳型を透過したX線をMビット(bit:Mは整数)で受光して画像とすればよい。あるいは、透過X線像がアナログデータであれば、Mビット(bit:Mは整数)のデジタルデータに変換すればよい。これにより明度は2階調で表され、数値が大きいほど明るい。Mの値としては、10以上16以下が好ましい。10bit未満では、固相と液相とのコントラストが明確に得られないことがある。ここで、金属溶湯の凝固状態を解析するのに好適なコントラストは、共晶相の晶出前後での明度差がMビットで2M−8以上さらには1.25×2M−8以上(12bitで16以上さらには20以上)であるとよい。共晶相の晶出前後での明度差が2M−8未満では、透過X線を受光するときに生じる明度の「ゆらぎ」に埋もれて明度差が認識できないことがあるためである。また、Mの値が大きい方が透過X線像に即した正確なデータが得られるが、16bitを超えると得られるデータサイズが大きくなるため好ましくない。なお、透過X線をデジタル処理することで、各種ソフトウェアを用いた鋳造解析が可能となる。 Furthermore, it is preferable to provide a brightness calculation means for calculating the brightness from at least a part of the transmitted X-ray image obtained by the X-ray detection means. In order to quantify the solidification state of the molten metal by the brightness calculation means, for example, X-rays transmitted through the analysis template may be received with M bits (bit: M is an integer) to form an image. Alternatively, if the transmitted X-ray image is analog data, it may be converted into digital data of M bits (bit: M is an integer). Thus, the brightness is expressed in 2M gradation, and the larger the value, the brighter. The value of M is preferably 10 or more and 16 or less. If it is less than 10 bits, the contrast between the solid phase and the liquid phase may not be clearly obtained. Here, the contrast suitable for analyzing the solidified state of the molten metal is that the brightness difference before and after eutectic phase crystallization is 2 M−8 or more in M bits, and further 1.25 × 2 M−8 or more ( It is good that it is 16 or more, more preferably 20 or more in 12 bits. This is because if the brightness difference before and after eutectic phase crystallization is less than 2 M−8 , the brightness difference may be unrecognizable because it is buried in brightness “fluctuation” that occurs when receiving transmitted X-rays. In addition, when the value of M is large, accurate data conforming to the transmitted X-ray image can be obtained. However, if the value exceeds 16 bits, the obtained data size becomes large, which is not preferable. Note that by performing digital processing on the transmitted X-rays, casting analysis using various software becomes possible.

さらに、明度算出手段で算出された明度が閾値を超えたときに金属溶湯の清浄度を判定する判定手段を備えるのが好ましい。判定手段により判定される金属溶湯の清浄度とは、金属溶湯に含まれるガス量である。金属溶湯に溶存ガスが存在すると、凝固の進行中に気泡となって発生する。気泡の発生が多い、つまり溶存ガス量が多い金属溶湯は、鋳造には不適である。液相に気泡が発生すると、透過X線像の明度は高くなることから、溶湯清浄度の判定が可能となる。なお、液相から固相への相変態に起因する引け巣が発生しても、透過X線像の明度は高くなる。しかし、本発明の鋳造解析装置であれば、透過X線像を経時的に観察することで、明度の上昇の原因となった空隙が、液相中に発生した気泡であるのか、引け巣であるのか、を判別することは容易である。   Furthermore, it is preferable to include a determination unit that determines the cleanliness of the molten metal when the lightness calculated by the lightness calculation unit exceeds a threshold value. The cleanliness of the molten metal determined by the determination means is the amount of gas contained in the molten metal. When dissolved gas exists in the molten metal, it is generated as bubbles during the progress of solidification. A metal melt with a large amount of bubbles, that is, a large amount of dissolved gas, is not suitable for casting. When bubbles are generated in the liquid phase, the brightness of the transmitted X-ray image is increased, so that the purity of the molten metal can be determined. Even if shrinkage cavities are generated due to phase transformation from the liquid phase to the solid phase, the brightness of the transmitted X-ray image is increased. However, with the casting analysis apparatus of the present invention, by observing a transmission X-ray image over time, whether the void that caused the increase in brightness is a bubble generated in the liquid phase, It is easy to determine whether there is.

また、本発明の鋳造解析装置を用いることで、鋳造時に実際に使用する鋳型(製造用鋳型)の内部における凝固状態を解析することが可能となる。具体的には、解析用鋳型のX線の透過する方向に垂直の断面を、鋳物を製造する製造用鋳型の一部である解析部位の断面と同一の形状とする。解析用鋳型は、既に述べたように、X線の透過方向への凝固が抑制される。そのため、解析用鋳型では解析部位における凝固過程が再現され、X線検出手段で得られた透過X線像の明るさから、製造用鋳型の内部での金属溶湯の凝固状態を解析することができる。したがって、製造用鋳型全体の凝固状態を解析したい場合には、製造用鋳型の各位置に対応する断面形状の複数の解析用鋳型を作製する。複数の解析用鋳型を準備して本発明の鋳造解析装置により金属溶湯の凝固状態を解析することで、製造用鋳型における凝固状態を三次元的に捉えることが可能となる。   Further, by using the casting analysis apparatus of the present invention, it is possible to analyze the solidification state inside the mold (manufacturing mold) actually used at the time of casting. Specifically, the cross section perpendicular to the X-ray transmission direction of the analysis mold is set to the same shape as the cross section of the analysis site that is a part of the production mold for manufacturing the casting. As described above, the analysis mold is suppressed from solidifying in the X-ray transmission direction. Therefore, in the analysis mold, the solidification process at the analysis site is reproduced, and the solidification state of the molten metal inside the production mold can be analyzed from the brightness of the transmitted X-ray image obtained by the X-ray detection means. . Therefore, when it is desired to analyze the solidification state of the entire production mold, a plurality of analysis molds having a cross-sectional shape corresponding to each position of the production mold are produced. By preparing a plurality of analysis molds and analyzing the solidification state of the molten metal using the casting analysis apparatus of the present invention, it is possible to capture the solidification state in the production mold three-dimensionally.

[鋳造解析方法]
本発明の鋳造解析方法は、解析用鋳型に充填された金属溶湯をX線により解析する鋳造解析方法であって、主として、注湯工程、X線照射工程、凝固工程、X線検出工程および凝固解析工程とを含む。
[Casting analysis method]
The casting analysis method of the present invention is a casting analysis method for analyzing a molten metal filled in an analysis mold by X-rays, and mainly includes a pouring step, an X-ray irradiation step, a solidification step, an X-ray detection step, and a solidification step. Analysis process.

注湯工程は、解析用鋳型に金属溶湯を注湯する工程である。解析用鋳型は、既に述べた通りである。溶湯温度、注湯速度など、注湯する条件は適宜選択すればよい。   The pouring step is a step of pouring molten metal into the analysis mold. The analysis template is as described above. What is necessary is just to select suitably conditions for pouring, such as molten metal temperature and pouring speed.

X線照射工程は、解析用鋳型にX線を照射する工程である。X線の照射は、少なくとも注湯工程が終了するまでに、あるいは終了後直ちに開始するとよい。しかし、金属溶湯が解析用鋳型に充填される際の湯流れを観察したい場合には、注湯工程と並行して行ってもよい。   The X-ray irradiation step is a step of irradiating the analysis template with X-rays. X-ray irradiation may be started at least by the end of the pouring process or immediately after the end. However, when it is desired to observe the hot water flow when the molten metal is filled in the analysis mold, it may be performed in parallel with the pouring step.

凝固工程は、X線照射工程と並行して、X線が透過する方向に対してほぼ直交する方向に金属溶湯を凝固させる工程である。既に説明した解析用鋳型を用いることで、注湯後の金属溶湯は、X線が透過する方向に対してほぼ直交する方向に凝固する。   The solidification step is a step of solidifying the molten metal in a direction substantially perpendicular to the direction through which X-rays pass in parallel with the X-ray irradiation step. By using the analysis mold already described, the molten metal after pouring is solidified in a direction substantially orthogonal to the direction through which X-rays pass.

X線検出工程は、X線照射工程と並行して解析用鋳型を透過したX線を画像として検出する工程である。また、凝固解析工程は、X線検出手段で得られた透過X線像の少なくとも固相と液相とのX線透過率の違いに起因する明るさの違いから金属溶湯の凝固状態を解析する工程である。X線検出工程および凝固解析工程は、[鋳造解析装置]の欄で既に述べた通りである。   The X-ray detection step is a step of detecting, as an image, X-rays that have passed through the analysis template in parallel with the X-ray irradiation step. In the solidification analysis step, the solidification state of the molten metal is analyzed from at least the brightness difference caused by the difference in X-ray transmittance between the solid phase and the liquid phase in the transmitted X-ray image obtained by the X-ray detection means. It is a process. The X-ray detection process and the solidification analysis process are as already described in the section of “Casting analysis apparatus”.

本発明の鋳造解析方法は、さらに、透過X線像の少なくとも一部から明度を算出する明度算出工程、また、明度算出手段で算出された明度が閾値を超えたときに金属溶湯の清浄度を判定する判定工程を含んでもよい。明度算出工程および判定工程は、[鋳造解析装置]の欄で既に述べた通りである。   The casting analysis method of the present invention further includes a brightness calculation step for calculating brightness from at least a part of the transmitted X-ray image, and the cleanliness of the molten metal when the brightness calculated by the brightness calculation means exceeds a threshold value. A determination step for determining may be included. The brightness calculation step and the determination step are as already described in the section of “Casting analysis device”.

以上、本発明の鋳造解析装置および鋳造解析方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the casting analysis apparatus and casting analysis method of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、本発明の鋳造解析装置および鋳造解析方法の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples of the casting analysis apparatus and the casting analysis method of the present invention.

図1は、鋳造解析装置の概略図である。鋳造解析装置は、X線発生器1、解析用鋳型2、イメージインテンシファイア(I.I.)3およびテレビカメラ4を備える。X線発生器1として、X−Tek社(米)製HMX225、I.I.3としてThalesElectronDevices社(仏)製TH49432QX H681 VR33を用いた。X線発生器1およびI.I.3は、解析用鋳型2を挟んで対向して配置されている。つまり、X線発生器1から照射されたX線は、解析用鋳型2を透過し、I.I.3に入力される。テレビカメラ4は、I.I.3によって変換出力された解析用鋳型2の透過X線の光学画像を映像化するため、I.I.3の出力側に配置されている。テレビカメラ4の画像データは12bitのデジタルデータであって、解析用鋳型2を透過したX線は、4096階調(=212階調)の明度により表される。以下に、解析用鋳型2の構成を説明する。 FIG. 1 is a schematic diagram of a casting analysis apparatus. The casting analysis apparatus includes an X-ray generator 1, an analysis mold 2, an image intensifier (II) 3, and a television camera 4. As the X-ray generator 1, HMX225 manufactured by X-Tek (USA), I.D. I. As TH 3, TH49432QX H681 VR33 manufactured by Thales Electronics Devices (France) was used. X-ray generator 1 and I.I. I. 3 are arranged opposite to each other with the analysis mold 2 interposed therebetween. In other words, the X-rays irradiated from the X-ray generator 1 pass through the analysis template 2 and I.I. I. 3 is input. The TV camera 4 is an I.I. I. In order to visualize the optical image of the transmitted X-ray of the analysis template 2 converted and output by the I. 3 on the output side. Image data of the TV camera 4 is a digital data of 12bit, X-rays transmitted through the analysis mold 2 is represented by the lightness of the 4096 gradations (= 2 12 gradations). Hereinafter, the configuration of the analysis mold 2 will be described.

図2および図3は、解析用鋳型2の中央部の断面図である。図2は、X線が透過する方向に対して垂直方向の断面を示す。図3は、X線が透過する方向と平行な断面を示す。解析用鋳型2は、X線発生器1に対向する正面壁21と、I.I.3に対向する背面壁23と、正面壁21および背面壁23とともにキャビティ20を区画する側壁22と、から構成される。正面壁21および背面壁23はともに、110mm×100mm×10mmの黒鉛板である。また、側壁22は、110mm×100mm×10mmの銅板の中央部がキャビティ20の側面22sの形状に合わせて切り抜かれるとともに、その中央部と連通する湯口20aが形成されてなる。さらに、側壁22の周縁部には、冷却水が循環する流路22aが形成されている。正面壁21、側壁22および背面壁23は、X線の透過する方向に順に積層されて固定されている。つまり、正面壁21および背面壁23の対向する面が、キャビティ20を区画する前面21sおよび背面23sとなる。なお、正面壁21、側壁22および背面壁23の寸法よりわかるように、解析用鋳型2は、X線が透過する方向に対して、T=10mmの厚さのキャビティ20、t=10mmの厚さの正面壁21および背面壁23を備える。また、キャビティ20の最大幅は90mm、キャビティ20の最大高さ(湯口20aを含む)は90mmとした。   2 and 3 are cross-sectional views of the central portion of the analysis mold 2. FIG. 2 shows a cross section perpendicular to the direction through which X-rays pass. FIG. 3 shows a cross section parallel to the direction through which X-rays pass. The analysis mold 2 includes a front wall 21 facing the X-ray generator 1, I.V. I. 3 and a side wall 22 that defines the cavity 20 together with the front wall 21 and the back wall 23. Both the front wall 21 and the rear wall 23 are 110 mm × 100 mm × 10 mm graphite plates. The side wall 22 is formed by cutting out a central portion of a 110 mm × 100 mm × 10 mm copper plate in accordance with the shape of the side surface 22s of the cavity 20 and forming a gate 20a communicating with the central portion. Furthermore, a flow path 22 a through which cooling water circulates is formed at the peripheral edge of the side wall 22. The front wall 21, the side wall 22, and the back wall 23 are laminated and fixed in order in the direction in which X-rays are transmitted. That is, the opposing surfaces of the front wall 21 and the back wall 23 become the front surface 21 s and the back surface 23 s that define the cavity 20. As can be seen from the dimensions of the front wall 21, the side wall 22, and the back wall 23, the analysis mold 2 has a cavity 20 with a thickness T = 10 mm and a thickness t = 10 mm with respect to the direction in which X-rays are transmitted. A front wall 21 and a back wall 23 are provided. The maximum width of the cavity 20 was 90 mm, and the maximum height of the cavity 20 (including the gate 20a) was 90 mm.

以上説明した鋳造解析装置を用い、アルミニウム合金の鋳造解析を行った。アルミニウム合金としてAC4CおよびADC12(ともにJIS規格)を準備した。   The casting analysis of the aluminum alloy was performed using the casting analysis apparatus described above. AC4C and ADC12 (both JIS standards) were prepared as aluminum alloys.

はじめに、アルミニウム合金の金属溶湯(ADC12:750℃)を、解析用鋳型2へ注湯した。キャビティ20に金属溶湯が充填されたら、X線発生器1(X線管電圧80keV)を作動させ、解析用鋳型2に対してX線の照射を開始した。同時に、I.I.3およびテレビカメラ4を作動させた。また、流路22aに冷却水を循環させることで、キャビティ20に充填された金属溶湯の一方向への凝固を促進した。I.I.3に入力された透過X線は、光学画像に変換出力され、この光学画像をテレビカメラ4により連続的に記録した。   First, a molten aluminum alloy (ADC12: 750 ° C.) was poured into the analysis mold 2. When the cavity 20 was filled with the molten metal, the X-ray generator 1 (X-ray tube voltage 80 keV) was activated, and X-ray irradiation was started on the analysis mold 2. At the same time, I.I. I. 3 and the TV camera 4 were activated. Further, the cooling water was circulated through the flow path 22a to promote the solidification of the molten metal filled in the cavity 20 in one direction. I. I. The transmitted X-rays input to 3 were converted into an optical image, and this optical image was continuously recorded by the television camera 4.

図4に、テレビカメラ4により連続的に記録された透過X線像を示す。なお、図4に示す透過X線像は、凝固の進行とともに連続的に記録された透過X線像のある時点(凝固の途中)での静止画像である。テレビカメラ4の画像では、図4に矢印で示すように、キャビティ20の側面22sからキャビティ20の中央部に向かって暗い領域(固相を多く含む)が、時間の経過とともに広がっていくのが目視により観察された。つまり、上記の鋳造解析装置により、凝固界面が移動するのが観察された。図4において、キャビティ20の側面22s側には暗い領域が見られ、中央に近付くほど明るくなる。中央部にある最も明るい部分は、気相の存在を示し、鋳巣が発生する最終凝固部である。   FIG. 4 shows transmitted X-ray images continuously recorded by the television camera 4. Note that the transmission X-ray image shown in FIG. 4 is a still image at a certain point (in the middle of coagulation) of the transmission X-ray image continuously recorded along with the progress of coagulation. In the image of the television camera 4, as indicated by an arrow in FIG. 4, a dark region (including a large amount of solid phase) spreads from the side surface 22 s of the cavity 20 toward the center of the cavity 20 over time. Observed visually. That is, it was observed that the solidification interface moved by the above casting analysis apparatus. In FIG. 4, a dark region is seen on the side surface 22s side of the cavity 20, and the brighter the closer to the center. The brightest part in the center shows the presence of the gas phase and is the final solidified part where the cast hole is generated.

なお、上記鋳造解析装置において、正面壁21および背面壁23のX線が透過する方向の厚さtまたはキャビティ20のX線が透過する方向の厚さTを変更して同様の透過X線像を撮影したところ、tが20mm以下またはTが20mm以下であれば、凝固界面の移動を目視で容易に観察することができた。また、tが15mm以下またはTが15mm以下であれば、t=10mmかつT=10mmで得られた図4に示す透過X線像と同等の画像が得られた。   In the above casting analysis apparatus, the same transmission X-ray image is obtained by changing the thickness t of the front wall 21 and the rear wall 23 in the direction in which X-rays are transmitted or the thickness T of the cavity 20 in the direction of transmission of X-rays. When t was 20 mm or less or T was 20 mm or less, the movement of the solidification interface could be easily observed visually. When t was 15 mm or less or T was 15 mm or less, an image equivalent to the transmission X-ray image shown in FIG. 4 obtained at t = 10 mm and T = 10 mm was obtained.

次に、得られた透過X線像の所定の部位(キャビティの寸法に換算して5mm×5mm)の範囲の明度を算出した。透過X線像の明度の算出には、米国立衛生研究所製フリーソフトウェアImageJを用いた。固相率に対する明度を図5に示す。なお、固相率は、明度を算出した部位に対応する位置で凝固が進行中の金属溶湯の温度を測定して得られた測定値から算出した。また、同様の解析をAC4Cについても行った。結果を図5にあわせて示す。冷却開始直後(固相率=0)では、ほとんど液相であるため、透過X線像の明度は高かった。しかし、いずれのアルミニウム合金も、固相率が1に近づくにつれて明度が徐々に低下した。なお、ADC12はCuおよびZnを含有するため、透過X線像の明度はAC4Cに比べて全体的に低かった。   Next, the brightness of a predetermined region (5 mm × 5 mm in terms of cavity size) of the obtained transmission X-ray image was calculated. Free software ImageJ manufactured by the National Institutes of Health was used to calculate the brightness of the transmitted X-ray image. The brightness with respect to the solid phase ratio is shown in FIG. The solid phase ratio was calculated from the measured value obtained by measuring the temperature of the molten metal in which solidification is in progress at the position corresponding to the site where the brightness was calculated. A similar analysis was performed for AC4C. The results are shown in FIG. Immediately after the start of cooling (solid phase ratio = 0), the brightness of the transmitted X-ray image was high because the liquid phase was almost liquid. However, the brightness of all the aluminum alloys gradually decreased as the solid phase ratio approached 1. Since ADC12 contains Cu and Zn, the brightness of the transmitted X-ray image was generally lower than that of AC4C.

また、図6は、ADC12およびAC4Cの固相率に対するX線強度比を示すグラフである。縦軸のX線強度比は、X線を単色X線光と仮定し、固相率に対する晶出物の種類と量に応じた公知のX線吸収率から透過X線量を算出して得たものである。たとえばAC4Cでは、図6のグラフ中に示した金属組織の模式図のように、液相中に初晶Alが晶出後、Al−Si共晶相が晶出して完全に凝固する。初晶AlとAl−Si共晶相とでは密度が異なるため、Al−Si共晶相が晶出しはじめると透過X線量は大きく低下する。すなわち、X線強度比が大きく低下する凝固率0.5程度で共晶相の晶出が開始する。また、ADC12では、AC4Cに比べて初晶Alの晶出量が少ない。そのため、ADC12では、固相率が0.1程度で共晶相の晶出の開始を示す透過X線量の低下が見られる。   FIG. 6 is a graph showing the X-ray intensity ratio with respect to the solid phase ratio of ADC12 and AC4C. The X-ray intensity ratio on the vertical axis was obtained by calculating the transmitted X-ray dose from the known X-ray absorption rate corresponding to the type and amount of the crystallized substance with respect to the solid phase rate, assuming that the X-ray is monochromatic X-ray light. Is. For example, in AC4C, as shown in the schematic diagram of the metal structure shown in the graph of FIG. 6, after the primary crystal Al crystallizes in the liquid phase, the Al—Si eutectic phase crystallizes and completely solidifies. Since the primary crystal Al and the Al—Si eutectic phase have different densities, the transmitted X-ray dose greatly decreases when the Al—Si eutectic phase begins to crystallize. That is, the crystallization of the eutectic phase starts at a solidification rate of about 0.5 where the X-ray intensity ratio is greatly reduced. Further, in ADC 12, the amount of primary Al crystallized is smaller than that of AC4C. Therefore, in the ADC 12, a decrease in the transmitted X-ray dose indicating the start of crystallization of the eutectic phase is observed at a solid phase ratio of about 0.1.

ここで、図5と図6とを比較すると、両者はほぼ一致した。つまり、本発明の鋳造解析装置を用いた解析は、理論値にほぼ一致する信頼性の高い解析であった。   Here, when FIG. 5 and FIG. 6 are compared, they are almost the same. That is, the analysis using the casting analysis apparatus of the present invention was a highly reliable analysis that almost coincided with the theoretical value.

次に、正面壁21および背面壁23の厚さをt=24mmにした解析用鋳型2を用いて金属溶湯(ADC12)を凝固させ、同様の解析を行った。結果を図7に示す。なお、図7には、比較のために、図5と同様のADC12の固相率に対する明度を「t=10mm」として示した。図7からわかるように、t=24では、共晶相の晶出前後での明度差が10程度であった。一方、t=10では、共晶相の晶出前後での明度差が20を超えた。また、t=24に比べ、全体的に明度が高かった。すなわち、正面壁および背面壁のX線が透過する方向の厚さtが薄い方が、金属溶湯の凝固状態を透過X線像の明度により観察しやすいことがわかった。   Next, the molten metal (ADC12) was solidified using the analysis mold 2 in which the thickness of the front wall 21 and the back wall 23 was t = 24 mm, and the same analysis was performed. The results are shown in FIG. For comparison, FIG. 7 shows the lightness with respect to the solid phase ratio of ADC 12 as in FIG. 5 as “t = 10 mm”. As can be seen from FIG. 7, at t = 24, the brightness difference before and after the eutectic phase was crystallized was about 10. On the other hand, at t = 10, the brightness difference before and after the eutectic phase was crystallized exceeded 20. Moreover, the brightness was high overall as compared with t = 24. That is, it was found that the thinner the thickness t of the front wall and the rear wall in the direction in which X-rays pass, the easier it is to observe the solidified state of the molten metal based on the brightness of the transmitted X-ray image.

鋳造解析装置の概略図である。It is the schematic of a casting analysis apparatus. 解析用鋳型の中央部の断面図であって、X線が透過する方向に対して垂直方向の断面を示す。It is sectional drawing of the center part of the casting_mold | template for analysis, Comprising: The cross section of a perpendicular | vertical direction is shown with respect to the direction which X-ray permeate | transmits. 解析用鋳型の中央部の断面図であって、X線が透過する方向と平行な断面を示す。It is sectional drawing of the center part of the casting_mold | template for analysis, Comprising: A cross section parallel to the direction which X-ray permeate | transmits is shown. 鋳造解析装置を用いた解析により得られた透過X線像である。It is the transmission X-ray image obtained by the analysis using a casting analyzer. ADC12およびAC4Cの固相率(温度測定より算出)に対する透過X線像の明度(実測値)を示すグラフである。It is a graph which shows the brightness (measured value) of the transmission X-ray image with respect to the solid-phase rate (calculated from temperature measurement) of ADC12 and AC4C. ADC12およびAC4Cの固相率に対するX線強度比(計算値)を示すグラフである。It is a graph which shows the X-ray-intensity ratio (calculated value) with respect to the solid-phase rate of ADC12 and AC4C. ADC12の固相率(温度測定より算出)に対する透過X線像の明度(実測値)を示すグラフである。It is a graph which shows the lightness (measured value) of the transmission X-ray image with respect to the solid-phase rate (calculated from temperature measurement) of ADC12.

符号の説明Explanation of symbols

1:X線発生器(X線照射手段)
2:解析用鋳型 20:キャビティ 21:正面壁 22:側面壁 23:背面壁
3:イメージインテンシファイア(X線検出手段)
1: X-ray generator (X-ray irradiation means)
2: Analysis mold 20: Cavity 21: Front wall 22: Side wall 23: Back wall 3: Image intensifier (X-ray detection means)

Claims (11)

X線源をもつX線照射手段と、
前記X線照射手段より照射されるX線が透過するとともに金属溶湯が充填されるキャビティをもちX線が透過する方向に対してほぼ直交する方向に該金属溶湯を凝固させる解析用鋳型と、
前記解析用鋳型を挟んで前記X線照射手段の反対側に設置され前記解析用鋳型を透過したX線を画像として検出するX線検出手段と、
を備え、前記X線検出手段で得られた透過X線像の少なくとも固相と液相とのX線透過率の違いに起因する明るさの違いから前記金属溶湯の凝固状態を解析することを特徴とする鋳造解析装置。
An X-ray irradiation means having an X-ray source;
An analysis mold for solidifying the molten metal in a direction substantially perpendicular to the direction of transmission of X-rays having a cavity through which X-rays irradiated from the X-ray irradiation means are transmitted and filled with the molten metal;
X-ray detection means for detecting as an image X-rays installed on the opposite side of the X-ray irradiation means across the analysis template, and transmitted through the analysis template;
And analyzing the solidification state of the molten metal from the difference in brightness caused by the difference in the X-ray transmittance between the solid phase and the liquid phase of the transmitted X-ray image obtained by the X-ray detection means. Characteristic casting analysis device.
さらに、前記X線検出手段で得られた前記透過X線像の少なくとも一部から明度を算出する明度算出手段を備える請求項1記載の鋳造解析装置。   The casting analysis apparatus according to claim 1, further comprising brightness calculation means for calculating brightness from at least a part of the transmitted X-ray image obtained by the X-ray detection means. さらに、前記明度算出手段で算出された明度が閾値を超えたときに前記金属溶湯の清浄度を判定する判定手段を備える請求項2記載の鋳造解析装置。   Furthermore, the casting analysis apparatus of Claim 2 provided with the determination means which determines the cleanliness of the said molten metal when the brightness calculated by the said brightness calculation means exceeds a threshold value. 前記解析用鋳型は、前記X線照射手段に対向する正面壁および前記X線検出手段と対向する背面壁をもち、該正面壁および該背面壁は80keVの加速電圧で発生するX線に対する質量吸収係数が0.25cm/g以下である材料からなる請求項1〜3のいずれかに記載の鋳造解析装置。 The analysis template has a front wall facing the X-ray irradiation means and a back wall facing the X-ray detection means, and the front wall and the back wall absorb mass with respect to X-rays generated at an acceleration voltage of 80 keV. The casting analysis apparatus according to claim 1, wherein the casting analysis apparatus is made of a material having a coefficient of 0.25 cm 2 / g or less. 前記解析用鋳型は、前記X線照射手段に対向する正面壁および前記X線検出手段と対向する背面壁をもち、該正面壁および該背面壁のX線が透過する方向の厚さが1〜20mmである請求項1〜4のいずれかに記載の鋳造解析装置。   The analysis mold has a front wall facing the X-ray irradiating means and a back wall facing the X-ray detecting means, and the thickness of the front wall and the back wall in the direction in which X-rays pass is 1 to 1. The casting analysis apparatus according to claim 1, which is 20 mm. 前記解析用鋳型の前記キャビティは、X線が透過する方向の厚さが3〜20mmである請求項1〜5のいずれかに記載の鋳造解析装置。   The casting analysis apparatus according to claim 1, wherein the cavity of the analysis mold has a thickness of 3 to 20 mm in a direction in which X-rays are transmitted. 前記解析用鋳型は、前記X線照射手段に対向する正面壁と、前記X線検出手段と対向する背面壁と、該正面壁および該背面壁とともに前記キャビティを区画する側壁と、からなり該正面壁および該背面壁の熱伝導率は該側壁の熱伝導率よりも低い請求項1〜6のいずれかに記載の鋳造解析装置。   The analysis mold includes a front wall facing the X-ray irradiation means, a back wall facing the X-ray detection means, and a side wall that defines the cavity together with the front wall and the back wall. The casting analysis apparatus according to claim 1, wherein the thermal conductivity of the wall and the back wall is lower than the thermal conductivity of the side wall. 前記金属溶湯は、アルミニウム合金またはマグネシウム合金である請求項1記載の鋳造解析装置。   The casting analysis apparatus according to claim 1, wherein the molten metal is an aluminum alloy or a magnesium alloy. 前記解析用鋳型は、前記金属溶湯の温度を測定する温度測定手段を備える請求項1記載の鋳造解析装置。   The casting analysis apparatus according to claim 1, wherein the analysis mold includes temperature measuring means for measuring a temperature of the molten metal. 前記解析用鋳型のX線の透過する方向に垂直の断面は、鋳物を製造する製造用鋳型の一部である解析部位の断面と同一の形状をもち、前記X線検出手段で得られた透過X線像の明度から該解析部位における前記金属溶湯の凝固状態を解析する請求項1〜9のいずれかに記載の鋳造解析装置。   The cross section perpendicular to the X-ray transmission direction of the analysis mold has the same shape as the cross section of the analysis site that is a part of the production mold for manufacturing the casting, and the transmission obtained by the X-ray detection means. The casting analysis apparatus according to claim 1, wherein the solidification state of the molten metal at the analysis site is analyzed from the brightness of an X-ray image. 解析用鋳型に充填された金属溶湯をX線により解析する鋳造解析方法であって、
前記解析用鋳型に前記金属溶湯を注湯する注湯工程と、
前記解析用鋳型にX線を照射するX線照射工程と、
前記X線照射工程と並行してX線が透過する方向に対してほぼ直交する方向に前記解析用鋳型に充填された前記金属溶湯を凝固させる凝固工程と、
前記X線照射工程と並行して前記解析用鋳型を透過したX線を画像として検出するX線検出工程と、
前記X線検出工程で得られた透過X線像の少なくとも固相と液相とのX線透過率の違いに起因する明るさの違いから前記金属溶湯の凝固状態を解析する凝固解析工程と、
を含むことを特徴とする鋳造解析方法。
A casting analysis method for analyzing a molten metal filled in an analysis mold by X-ray,
A pouring step of pouring the molten metal into the analysis mold;
An X-ray irradiation step of irradiating the analysis mold with X-rays;
A solidification step of solidifying the molten metal filled in the analysis mold in a direction substantially orthogonal to a direction through which X-rays pass in parallel with the X-ray irradiation step;
An X-ray detection step for detecting, as an image, X-rays transmitted through the analysis template in parallel with the X-ray irradiation step;
A solidification analysis step of analyzing a solidification state of the molten metal from a difference in brightness caused by a difference in X-ray transmittance between at least a solid phase and a liquid phase of a transmission X-ray image obtained in the X-ray detection step;
A casting analysis method comprising:
JP2008300442A 2008-11-26 2008-11-26 Casting analysis apparatus and casting analysis method Expired - Fee Related JP5453782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008300442A JP5453782B2 (en) 2008-11-26 2008-11-26 Casting analysis apparatus and casting analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008300442A JP5453782B2 (en) 2008-11-26 2008-11-26 Casting analysis apparatus and casting analysis method

Publications (2)

Publication Number Publication Date
JP2010125465A true JP2010125465A (en) 2010-06-10
JP5453782B2 JP5453782B2 (en) 2014-03-26

Family

ID=42326211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008300442A Expired - Fee Related JP5453782B2 (en) 2008-11-26 2008-11-26 Casting analysis apparatus and casting analysis method

Country Status (1)

Country Link
JP (1) JP5453782B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087435A1 (en) * 2017-11-06 2019-05-09 株式会社I2C技研 Casting solidification analysis method, casting method, and electronic program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272556A (en) * 1997-03-31 1998-10-13 Nippon Steel Corp Method for detecting flowing-out of slag and instrument therefor
JPH10325714A (en) * 1997-05-23 1998-12-08 Sumitomo Metal Ind Ltd Method and apparatus for detection of shape of unsolidified part of continuous-casting cast piece
JP2002168805A (en) * 2000-11-28 2002-06-14 Anritsu Corp X-ray foreign matter detector
JP2003340559A (en) * 2002-05-22 2003-12-02 Toyota Motor Corp Die casting method
JP2006162568A (en) * 2004-12-10 2006-06-22 Toyota Motor Corp Molten metal behavior visualization device, and molten metal behavior analytical method
JP2007017457A (en) * 2006-10-25 2007-01-25 Anritsu Sanki System Co Ltd X-ray foreign matter detection device
JP2008207193A (en) * 2007-02-23 2008-09-11 Toyota Motor Corp Casting mold, and method for observing inside of casting mold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272556A (en) * 1997-03-31 1998-10-13 Nippon Steel Corp Method for detecting flowing-out of slag and instrument therefor
JPH10325714A (en) * 1997-05-23 1998-12-08 Sumitomo Metal Ind Ltd Method and apparatus for detection of shape of unsolidified part of continuous-casting cast piece
JP2002168805A (en) * 2000-11-28 2002-06-14 Anritsu Corp X-ray foreign matter detector
JP2003340559A (en) * 2002-05-22 2003-12-02 Toyota Motor Corp Die casting method
JP2006162568A (en) * 2004-12-10 2006-06-22 Toyota Motor Corp Molten metal behavior visualization device, and molten metal behavior analytical method
JP2007017457A (en) * 2006-10-25 2007-01-25 Anritsu Sanki System Co Ltd X-ray foreign matter detection device
JP2008207193A (en) * 2007-02-23 2008-09-11 Toyota Motor Corp Casting mold, and method for observing inside of casting mold

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019087435A1 (en) * 2017-11-06 2019-05-09 株式会社I2C技研 Casting solidification analysis method, casting method, and electronic program
JPWO2019087435A1 (en) * 2017-11-06 2020-11-12 株式会社I2C技研 Solidification analysis method, casting method and electronic program during casting
JP7199668B2 (en) 2017-11-06 2023-01-06 株式会社I2C技研 Solidification analysis method during casting, casting method and electronic program
US11745258B2 (en) 2017-11-06 2023-09-05 I2C Co., Ltd Casting solidification analysis method, casting method, and electronic program

Also Published As

Publication number Publication date
JP5453782B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
Gu et al. Pore formation and evolution in wire+ arc additively manufactured 2319 Al alloy
Zhang et al. Synchrotron X-ray imaging and ultrafast tomography in situ study of the fragmentation and growth dynamics of dendritic microstructures in solidification under ultrasound
Qian et al. The effect of solute on ultrasonic grain refinement of magnesium alloys
Feng et al. In-situ X-ray radiography of primary Fe-rich intermetallic compound formation
Zhao et al. Degassing of aluminum alloys during re-melting
Song et al. Growth dynamics of faceted Al13Fe4 intermetallic revealed by high-speed synchrotron X-ray quantification
Uludag et al. Assessment of mechanism of pore formation in directionally solidified A356 alloy
Lee et al. Direct observation of the effect of strontium on porosity formation during the solidification of aluminium-silicon alloys
Chiang et al. In situ characterization of hot cracking using dynamic x-ray radiography
JP5453782B2 (en) Casting analysis apparatus and casting analysis method
García-Moreno et al. X‐ray Tomography and Tomoscopy on Metals: A Review
Ahmad et al. Effect of pouring temperature on microstructure properties of Al-Si LM6 Alloy sand casting
JP2011131279A (en) Aluminum alloy-made continuously cast bar, method for casting continuously cast bar, and continuous casting apparatus
JP4773796B2 (en) Aluminum alloy continuous casting rod, continuous casting rod casting method, continuous casting equipment
JP6264524B1 (en) Steel continuous casting method
Liu et al. The effect of cross-section geometry of castings on dendrite evolution in MgGd alloys by in situ X-ray radiography
CN109443916A (en) The research method of metal bath Free Surface process of setting information
Park Behaviours of bifilms in A356 alloy during solidification: developing observation techniques with 3-D micro x-ray tomography
Wang et al. In situ synchrotron X-ray diffraction analysis of ultrasonically assisted microstructure refinement during laser melting process
Meylan et al. Re-solidification dynamics and microstructural analysis of laser welded aluminium: Paper presented at the Symposium “Tomographic and Radiographic Imaging with Synchrotron X-rays and Neutrons” of the MSE 2018, 26–28 September 2018, Darmstadt, Germany
JP4274872B2 (en) Electron beam melting method for refractory metal materials
Dimitrova et al. Microstructure and mechanical properties of aluminum and A356 alloy foams crystallized in a thin-walled water-cooled mold
JP5960634B2 (en) Manufacturing method of casting made of Al-Si-Cu eutectic alloy
Zhou et al. The impact of frequency and power on the ultrasonic purification of aluminum alloy
Ahmad et al. Mechanical properties of thixoformed 7075 feedstock produced via the direct thermal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

LAPS Cancellation because of no payment of annual fees