JP2010122076A - Decontamination method and device of heat exchanger - Google Patents

Decontamination method and device of heat exchanger Download PDF

Info

Publication number
JP2010122076A
JP2010122076A JP2008296155A JP2008296155A JP2010122076A JP 2010122076 A JP2010122076 A JP 2010122076A JP 2008296155 A JP2008296155 A JP 2008296155A JP 2008296155 A JP2008296155 A JP 2008296155A JP 2010122076 A JP2010122076 A JP 2010122076A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
port
jet
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008296155A
Other languages
Japanese (ja)
Inventor
Noboru Kurokawa
登 黒川
Toshiya Komuro
敏也 小室
Ryuichi Matsubara
龍一 松原
Osamu Fukushige
治 福重
Hiroyuki Mizuma
裕之 水磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008296155A priority Critical patent/JP2010122076A/en
Publication of JP2010122076A publication Critical patent/JP2010122076A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a generation amount of secondary waste by preventing excessive grinding during decontamination. <P>SOLUTION: This decontamination method of a heat exchanger for decontaminating the inside of a heat transfer tube of the heat exchanger includes: steps (step S51-step S53) for allowing a jet mixed with an abrasive to reach the second port from the first port of the heat transfer tube, and to flow to the inside of the heat transfer tube through a normal inflow circuit; and a step (step S55) for allowing the jet mixed with the abrasive to reach the first port from the second port of the heat transfer tube, and to flow to the inside of the heat transfer tube through a reverse inflow circuit, with elapse of a half of a set time required until the inner surface of the first port side and the inner surface of the second port side of the heat transfer tube reach a target grinding amount simultaneously by switching the second port side of the heat transfer tube from the downstream to the upstream of the jet (step S54: Yes). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、原子力プラントで一次冷却水の熱交換を行う熱交換器にかかり、この熱交換器の伝熱管を除染するための除染方法および除染装置に関するものである。   The present invention relates to a decontamination method and a decontamination apparatus for decontaminating heat transfer tubes of a heat exchanger, for example, in a heat exchanger that performs heat exchange of primary cooling water in a nuclear power plant.

原子力プラントである原子力発電設備では、発電器に接続されたタービンを駆動させるための蒸気を得るための蒸気発生器(熱交換器)が採用されている。蒸気発生器は、例えば、縦置で逆U字形とされた複数の伝熱管を円筒形の胴部内に配置している。原子力発電設備では、蒸気発生器の伝熱管内に原子炉で加熱された一次冷却水を通過させつつ再び原子炉に戻す循環系を有している。蒸気発生器の胴部の中程には、二次冷却水の入口が設けられており、1次冷却水が伝熱管内を流通する間に二次冷却水と熱交換する。この熱交換により発生した蒸気は、胴部内に配置された気水分離器および湿分分離器を経て胴部の最上部から排出されタービンに送られる。また、原子力発電設備では、上記循環系を循環する一次冷却水に含まれる不純物を除去するため、脱塩塔が設けられている。一次冷却水の脱塩処理系は、循環系から取り出した一次冷却水を、再生熱交換器および非再生熱交換器を介して脱塩塔に供給する。そして、脱塩塔にて脱塩処理された一次冷却水を、再生熱交換器を介して再び循環系に戻す。この脱塩処理系においても、再生熱交換器および非再生熱交換器により一次冷却水が熱交換される。   In a nuclear power generation facility that is a nuclear power plant, a steam generator (heat exchanger) for obtaining steam for driving a turbine connected to the generator is employed. In the steam generator, for example, a plurality of heat transfer tubes that are vertically U-shaped are arranged in a cylindrical body. The nuclear power generation facility has a circulation system in which the primary cooling water heated in the reactor is passed through the heat transfer tubes of the steam generator and returned to the reactor again. An inlet of secondary cooling water is provided in the middle of the body of the steam generator, and heat exchange with the secondary cooling water is performed while the primary cooling water flows through the heat transfer pipe. The steam generated by this heat exchange is discharged from the uppermost part of the trunk through a steam-water separator and a moisture separator arranged in the trunk and sent to the turbine. Further, in the nuclear power generation facility, a desalting tower is provided to remove impurities contained in the primary cooling water circulating in the circulation system. The primary cooling water desalination system supplies the primary cooling water taken out from the circulation system to the desalting tower via the regenerative heat exchanger and the non-regenerative heat exchanger. And the primary cooling water desalted in the desalting tower is returned to the circulation system again through the regenerative heat exchanger. Also in this desalination treatment system, the primary cooling water is heat-exchanged by the regenerative heat exchanger and the non-regenerative heat exchanger.

上記原子力プラントにおいて、蒸気発生器、再生熱交換器および非再生熱交換器などの熱交換器では、熱交換を行う伝熱管内に一次冷却水が通過することから、伝熱管の内面が放射線により汚染される。そして、このような熱交換器を経年劣化などにより交換した場合には、使用済みとなった熱交換器を解体する際の作業員への放射線照射を軽減するため、伝熱管内を除染する必要がある。   In the above nuclear power plant, in the heat exchanger such as the steam generator, the regenerative heat exchanger, and the non-regenerative heat exchanger, the primary cooling water passes through the heat transfer tubes that perform heat exchange. Contaminated. When such a heat exchanger is replaced due to aging, etc., the inside of the heat transfer tube is decontaminated in order to reduce radiation irradiation to workers when disassembling the used heat exchanger. There is a need.

従来、原子力発電設備において、点検を行う際、作業員が近づく機器を予め除染する除染方法および装置が知られている。かかる除染方法および装置では、研磨材(ガラス、ビーズ、金属またはセラミックなどの粒状体)が混合された噴流を被除染物の表面に衝突させるものである(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a decontamination method and apparatus for decontaminating equipment that an operator approaches in advance when performing an inspection in a nuclear power generation facility are known. In such a decontamination method and apparatus, a jet mixed with an abrasive (a granular material such as glass, beads, metal, or ceramic) is made to collide with the surface of an object to be decontaminated (see, for example, Patent Document 1).

すなわち、例えば、蒸気発生器の伝熱管内を除染する場合、伝熱管の第一の口から第二の口に至り伝熱管の内部に研磨材が混合された噴流を通過させることが考えられる。   That is, for example, when the inside of the heat transfer tube of the steam generator is decontaminated, it is conceivable that a jet mixed with an abrasive is passed through the heat transfer tube from the first port to the second port. .

特開昭61−176895号公報JP-A 61-176895

蒸気発生器の伝熱管は、管内径が20mmほどの細管であって、全長が20mである。そして、このような伝熱管の第一の口から噴流を流入させた場合、流入当初では噴流の空気の流速に研磨材が乗り難く研磨材の速度が遅い。その後、伝熱管の第二の口側に噴流が進むに連れて次第に研磨材が噴流の流速に乗り研磨材の速度が増すことになる。このため、噴流の流入当初の伝熱管の第一の口側(上流側)では、伝熱管の内面への研磨材の衝突力が弱く、そこから第二の口側(下流側)に向かうに連れて次第に研磨材の衝突力が上がることから、下流側が上流側よりも研削量が多くなる。この結果、上流側を目標まで除染するように研削すると、下流側が目標を超えて過研削となり、放射性を有する二次廃棄物が大量に発生してしまう(図8(a)参照)。   The heat transfer tube of the steam generator is a thin tube having an inner diameter of about 20 mm and has a total length of 20 m. And when a jet is made to flow in from the 1st opening | mouth of such a heat exchanger tube, at the beginning of inflow, it is difficult for an abrasive to get to the flow velocity of the air of a jet, and the speed of an abrasive is slow. Thereafter, as the jet proceeds toward the second mouth side of the heat transfer tube, the abrasive gradually gets on the flow velocity of the jet and the speed of the abrasive increases. For this reason, on the first mouth side (upstream side) of the heat transfer tube at the beginning of the inflow of the jet, the impact force of the abrasive on the inner surface of the heat transfer tube is weak, and from there toward the second mouth side (downstream side) Accordingly, since the impact force of the abrasive gradually increases, the grinding amount on the downstream side becomes larger than that on the upstream side. As a result, if grinding is performed so that the upstream side is decontaminated to the target, the downstream side exceeds the target and overgrinds, and a large amount of radioactive secondary waste is generated (see FIG. 8A).

本発明は上述した課題を解決するものであり、過研削を防止して二次廃棄物の発生量を抑えることのできる熱交換器の除染方法および装置を提供することを目的とする。   This invention solves the subject mentioned above, and it aims at providing the decontamination method and apparatus of a heat exchanger which can suppress overgrinding and can suppress the generation amount of a secondary waste.

上述の目的を達成するために、本発明の熱交換器の除染方法では、熱交換器の伝熱管内を除染する熱交換器の除染方法において、研磨材が混合された噴流を前記伝熱管の第一の口から第二の口に至り前記伝熱管の内部に流入させる工程と、次に、前記伝熱管の第二の口側が噴流の下流から上流に切り換えられることで前記伝熱管の第一の口側の内面および第二の口側の内面が同時に目標研削量になるまでの設定時間の半分を経過したとき、研磨材が混合された前記噴流を前記伝熱管の第二の口から第一の口に至り前記伝熱管の内部に流入させる工程と、を含むことを特徴とする。   In order to achieve the above-mentioned object, in the heat exchanger decontamination method of the present invention, in the heat exchanger decontamination method for decontaminating the inside of the heat transfer tube of the heat exchanger, the jet mixed with the abrasive is the above-mentioned A step of flowing from the first port of the heat transfer tube to the second port and flowing into the inside of the heat transfer tube; and then, the second port side of the heat transfer tube is switched from the downstream side to the upstream side of the jet flow so that the heat transfer tube When half of the set time until the inner surface of the first mouth side and the inner surface of the second mouth side at the same time reach the target grinding amount has passed, the jet flow mixed with the abrasive is passed through the second heat transfer tube. And a step of flowing from the mouth to the first mouth and flowing into the heat transfer tube.

この熱交換器の除染方法によれば、除染工程の途中で噴流の上流側と下流側と切り換えており、このタイミングを伝熱管の第二の口側が噴流の下流から上流に切り換えられることで伝熱管の第一の口側の内面および第二の口側の内面が同時に目標研削量になるまでの設定時間の半分を経過したときとした。このため、伝熱管の第一の口から第二の口までの全体の研削量を目標研削量までの除染としたので、過研削を防止して二次廃棄物の発生量を抑えられる。   According to this heat exchanger decontamination method, the upstream side and the downstream side of the jet are switched during the decontamination process, and this timing is switched from the downstream side of the jet to the upstream side of the second port of the heat transfer tube. Then, when the half of the set time until the inner surface of the first mouth side and the inner surface of the second mouth side of the heat transfer tube reach the target grinding amount has elapsed. For this reason, since the entire grinding amount from the first port to the second port of the heat transfer tube is decontaminated to the target grinding amount, over-grinding can be prevented and the amount of secondary waste generated can be suppressed.

しかも、研削量の少ない噴流の上流側を、途中で研削量の多く下流側に切り換えたことで、伝熱管の全長において、研削量を平均化されるので、伝熱管全長での除染効果を平均化できる。   In addition, by switching the upstream side of the jet with a small amount of grinding to the downstream side with a large amount of grinding on the way, the grinding amount is averaged over the entire length of the heat transfer tube. Can be averaged.

しかも、研削量の少ない噴流の上流側を、途中で研削量の多く下流側に切り換えたことで、従来の除染時間と比較して、除染時間を短縮できる。   Moreover, the decontamination time can be shortened compared to the conventional decontamination time by switching the upstream side of the jet with a small grinding amount to the downstream side with a large grinding amount in the middle.

また、本発明の熱交換器の除染方法では、研磨材が混合された前記噴流を前記伝熱管の内部に流入させているとき、前記噴流の下流側から出た前記研磨材を回収する工程と、次に、回収した前記研磨材を前記噴流の上流側に戻す工程と、を含むことを特徴とする。   Further, in the heat exchanger decontamination method of the present invention, when the jet mixed with the abrasive is flowing into the heat transfer tube, the abrasive recovered from the downstream side of the jet is recovered. And then returning the recovered abrasive to the upstream side of the jet.

この熱交換器の除染方法によれば、噴流の下流側から出た研磨材を再び除染に用いることで、二次廃棄物の発生量をさらに抑えられる。   According to this heat exchanger decontamination method, the amount of secondary waste generated can be further suppressed by using the abrasive material from the downstream side of the jet again for decontamination.

上述の目的を達成するために、本発明の熱交換器の除染装置では、熱交換器の伝熱管内を除染する熱交換器の除染装置において、研磨材が混合された噴流を前記伝熱管の第一の口から第二の口に至り前記伝熱管の内部に流入させる正流入回路と、研磨材が混合された前記噴流を前記伝熱管の第二の口から第一の口に至り前記伝熱管の内部に流入させる逆流入回路と、前記正流入回路または前記逆流入回路に選択的に切り換える切換部と、前記伝熱管の第二の口側が噴流の下流から上流に切り換えられることで前記伝熱管の第一の口側の内面および第二の口側の内面が同時に目標研削量になるまでの設定時間を予め記憶し、前記切換部を前記正流入回路に選択してから前記設定時間の半分を経過したとき、前記逆流入回路に前記切換部を切り換える制御手段と、を備えたことを特徴とする。   In order to achieve the above-described object, in the heat exchanger decontamination apparatus of the present invention, in the heat exchanger decontamination apparatus for decontaminating the inside of the heat transfer tube of the heat exchanger, the jet mixed with the abrasive material A positive inflow circuit that leads from the first port of the heat transfer tube to the second port and flows into the heat transfer tube, and the jet mixed with the abrasive from the second port of the heat transfer tube to the first port A reverse inflow circuit that flows into the heat transfer tube, a switching unit that selectively switches to the forward inflow circuit or the reverse inflow circuit, and the second port side of the heat transfer tube is switched from downstream to upstream of the jet flow. The preset time until the inner surface on the first mouth side and the inner surface on the second mouth side of the heat transfer tube reach the target grinding amount at the same time is stored in advance, and the switching unit is selected as the positive inflow circuit. When half of the set time has elapsed, the switching unit is switched to the reverse inflow circuit. And control means that, characterized by comprising a.

この熱交換器の除染装置によれば、上記除染方法を実施することができ、過研削を防止して二次廃棄物の発生量を抑えられる。しかも、伝熱管の全長において研削量を平均化され、伝熱管全長での除染効果を平均化できる。しかも、従来の除染時間と比較して、除染時間を短縮できる。   According to this heat exchanger decontamination apparatus, the decontamination method can be carried out, and over-grinding can be prevented and the amount of secondary waste generated can be suppressed. Moreover, the grinding amount is averaged over the entire length of the heat transfer tube, and the decontamination effect over the entire length of the heat transfer tube can be averaged. Moreover, the decontamination time can be shortened as compared with the conventional decontamination time.

また、本発明の熱交換器の除染装置では、前記正流入回路と前記逆流入回路とに共通して設けられ、前記噴流の下流側から出た前記研磨材を回収し、この回収した前記研磨材を前記噴流の上流側に戻す研磨材循環手段を備えたことを特徴とする。   Further, in the heat exchanger decontamination apparatus of the present invention, the polishing material that is provided in common to the forward inflow circuit and the reverse inflow circuit is recovered from the downstream side of the jet, and the recovered A polishing material circulating means for returning the polishing material to the upstream side of the jet is provided.

この熱交換器の除染装置によれば、噴流の下流側から出た研磨材を再び除染に用いることで、二次廃棄物の発生量をさらに抑えられる。   According to this heat exchanger decontamination apparatus, the amount of secondary waste generated can be further suppressed by using the abrasive material from the downstream side of the jet again for decontamination.

本発明によれば、過研削を防止して二次廃棄物の発生量を抑えられる。しかも、伝熱管の全長において研削量を平均化され、伝熱管全長での除染効果を平均化できる。しかも、従来の除染時間と比較して、除染時間を短縮できる。   According to the present invention, overgrinding can be prevented and the amount of secondary waste generated can be suppressed. Moreover, the grinding amount is averaged over the entire length of the heat transfer tube, and the decontamination effect over the entire length of the heat transfer tube can be averaged. Moreover, the decontamination time can be shortened as compared with the conventional decontamination time.

以下に、本発明に係る熱交換器の除染方法および装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、下記実施の形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。   Embodiments of a heat exchanger decontamination method and apparatus according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

図1は、本発明の実施の形態にかかる熱交換器の除染方法および装置が適用される原子力プラントの概略図である。本実施の形態において、原子力プラント1は、原子力発電設備であり、原子炉2は、PWR(Pressurized Water Reactor:加圧水型原子炉)である。   FIG. 1 is a schematic diagram of a nuclear power plant to which a heat exchanger decontamination method and apparatus according to an embodiment of the present invention is applied. In the present embodiment, the nuclear power plant 1 is a nuclear power generation facility, and the nuclear reactor 2 is a PWR (Pressurized Water Reactor).

原子力プラント1は、格納容器1W内に原子炉2、蒸気発生器3、加圧器4、一次冷却水ポンプ5、再生熱交換器11が配置されている。また、格納容器1Wの外には、タービン8、復水器9および発電器10が配置されている。原子炉2は、圧力容器の内部に核燃料2Cが配置されている。また、前記圧力容器の内部には、一次冷却水(例えば、軽水)C1が満たされている。一次冷却水ポンプ5と原子炉2とは、一次冷却水第一供給通路6Aで接続されている。また、原子炉2と蒸気発生器3とは、一次冷却水第二供給通路6Bで接続されている。さらに、蒸気発生器3と一次冷却水ポンプ5とは、一次冷却水回収通路6Cで接続されている。   In the nuclear power plant 1, a nuclear reactor 2, a steam generator 3, a pressurizer 4, a primary cooling water pump 5, and a regenerative heat exchanger 11 are arranged in a containment vessel 1W. Moreover, the turbine 8, the condenser 9, and the generator 10 are arrange | positioned outside the storage container 1W. In the nuclear reactor 2, nuclear fuel 2C is arranged inside the pressure vessel. Further, the inside of the pressure vessel is filled with primary cooling water (for example, light water) C1. The primary cooling water pump 5 and the nuclear reactor 2 are connected by a primary cooling water first supply passage 6A. Further, the nuclear reactor 2 and the steam generator 3 are connected by a primary cooling water second supply passage 6B. Further, the steam generator 3 and the primary cooling water pump 5 are connected by a primary cooling water recovery passage 6C.

このような構成により、一次冷却水ポンプ5から吐出された一次冷却水C1は、一次冷却水第一供給通路6Aを通って原子炉2の圧力容器内へ供給される。そして、圧力容器の内部に配置される核燃料2Cの核分裂反応によって発生した熱エネルギーで一次冷却水C1が加熱される。加熱された一次冷却水C1は、一次冷却水第二供給通路6Bを通って蒸気発生器3へ供給される。そして、一次冷却水C1は、蒸気発生器3の伝熱管304を通過した後、蒸気発生器3から流出し、一次冷却水回収通路6Cを通って一次冷却水ポンプ5へ戻り、再び一次冷却水第一供給通路6Aから原子炉2の圧力容器内へ吐出される。   With such a configuration, the primary cooling water C1 discharged from the primary cooling water pump 5 is supplied into the pressure vessel of the nuclear reactor 2 through the primary cooling water first supply passage 6A. And the primary cooling water C1 is heated with the thermal energy which generate | occur | produced by the fission reaction of the nuclear fuel 2C arrange | positioned inside a pressure vessel. The heated primary cooling water C1 is supplied to the steam generator 3 through the primary cooling water second supply passage 6B. The primary cooling water C1 passes through the heat transfer pipe 304 of the steam generator 3, and then flows out of the steam generator 3, returns to the primary cooling water pump 5 through the primary cooling water recovery passage 6C, and again returns to the primary cooling water. It is discharged into the pressure vessel of the reactor 2 from the first supply passage 6A.

蒸気発生器3は、伝熱管304を複数備えており、伝熱管304内を流れる一次冷却水C1によって伝熱管304外側の二次冷却水C2が加熱されて沸騰し、二次冷却水C2の高温高圧の蒸気が生成される。蒸気発生器3とタービン8とは、蒸気供給通路7Sで接続されており、復水器9と蒸気発生器3とは、二次冷却水回収通路7Rで接続されている。これによって、蒸気発生器3で生成された二次冷却水C2の高温高圧の蒸気は、蒸気供給通路7Sを通ってタービン8へ供給されてこれを駆動する。そして、タービン8の駆動軸に連結された発電器10によって電力を発生させる。タービン8を駆動した後の二次冷却水C2は、復水器9で液体となり、二次冷却水回収通路7Rを通って再び蒸気発生器3へ送られる。   The steam generator 3 includes a plurality of heat transfer tubes 304. The secondary cooling water C2 outside the heat transfer tubes 304 is heated and boiled by the primary cooling water C1 flowing through the heat transfer tubes 304, and the high temperature of the secondary cooling water C2 is reached. High pressure steam is generated. The steam generator 3 and the turbine 8 are connected by a steam supply passage 7S, and the condenser 9 and the steam generator 3 are connected by a secondary cooling water recovery passage 7R. As a result, the high-temperature and high-pressure steam of the secondary cooling water C2 generated by the steam generator 3 is supplied to the turbine 8 through the steam supply passage 7S and drives it. Then, electric power is generated by the generator 10 connected to the drive shaft of the turbine 8. The secondary cooling water C2 after driving the turbine 8 becomes liquid in the condenser 9, and is sent to the steam generator 3 again through the secondary cooling water recovery passage 7R.

原子炉2は、加圧水型原子炉であり、加圧器4が一次冷却水第二供給通路6Bに接続されている。そして、加圧器4が一次冷却水第二供給通路6B内の一次冷却水C1に圧力を与える。このような構造により、一次冷却水C1は、核燃料2Cの核分裂反応によって発生した熱エネルギーで加熱されても沸騰せず、液相の状態で原子炉2およびその冷却系を循環する。ここで、原子炉2の冷却系は、一次冷却水ポンプ5、一次冷却水第一供給通路6A、一次冷却水第二供給通路6B、蒸気発生器3、一次冷却水回収通路6Cで構成され一次冷却水C1が流れる系である。   The nuclear reactor 2 is a pressurized water nuclear reactor, and the pressurizer 4 is connected to the primary cooling water second supply passage 6B. The pressurizer 4 applies pressure to the primary cooling water C1 in the primary cooling water second supply passage 6B. With such a structure, the primary cooling water C1 does not boil even when heated by the thermal energy generated by the nuclear fission reaction of the nuclear fuel 2C, and circulates in the reactor 2 and its cooling system in a liquid phase. Here, the cooling system of the nuclear reactor 2 includes a primary cooling water pump 5, a primary cooling water first supply passage 6A, a primary cooling water second supply passage 6B, a steam generator 3, and a primary cooling water recovery passage 6C. This is a system through which the cooling water C1 flows.

また、原子力プラント1では、一次冷却水C1に含まれる不純物を除去するため、脱塩塔16が設けられている。脱塩塔16は、第一脱塩塔16Aおよび第二脱塩塔16Bで構成されており、格納容器1Wの外側に配置されている。第一脱塩塔16Aは、冷却水温床式脱塩塔であり、第二脱塩塔16Bは、冷却水陽イオン脱塩塔である。原子炉2の冷却系から脱塩塔16へは、一次冷却水ポンプ5の入口側(上流側)から取り出された一次冷却水C1が供給されて脱塩処理が施され、脱塩後の一次冷却水C1は、一次冷却水ポンプ5の出口側(下流側)に戻される。   Moreover, in the nuclear power plant 1, in order to remove impurities contained in the primary cooling water C1, a desalting tower 16 is provided. The desalting tower 16 includes a first desalting tower 16A and a second desalting tower 16B, and is disposed outside the storage container 1W. The first desalting tower 16A is a cooling water hot bed desalting tower, and the second desalting tower 16B is a cooling water cation desalting tower. The primary cooling water C1 taken from the inlet side (upstream side) of the primary cooling water pump 5 is supplied from the cooling system of the nuclear reactor 2 to the desalting tower 16 to be subjected to a desalting treatment, and the primary after the desalting is performed. The cooling water C1 is returned to the outlet side (downstream side) of the primary cooling water pump 5.

一次冷却水C1の脱塩処理系は、一次冷却水取り出し通路13A、再生熱交換器11、一次冷却水通路13B、非再生熱交換器12、一次冷却水通路13C、脱塩塔16、一次冷却水通路13D、体積制御タンク14、一次冷却水戻し通路13E、13Fで構成されている。原子炉2の冷却系を構成する一次冷却水回収通路6Cと再生熱交換器11とは、第一冷却水取り出し通路13Aで接続されている。再生熱交換器11と非再生熱交換器12とは一次冷却水通路13Bで接続されている。非再生熱交換器12と脱塩塔16とは、一次冷却水通路13Cで接続されている。脱塩塔16と体積制御タンク14とは、一次冷却水通路13Dで接続されている。体積制御タンク14と再生熱交換器11とは、一次冷却水戻し通路13Eで接続されている。再生熱交換器11と一次冷却水第一供給通路6Aとは、一次冷却水戻し通路13Fで接続されている。一次冷却水戻し通路13Eには、充填ポンプ15が設けられている。   The demineralization treatment system for the primary cooling water C1 includes a primary cooling water extraction passage 13A, a regenerative heat exchanger 11, a primary cooling water passage 13B, a non-regenerative heat exchanger 12, a primary cooling water passage 13C, a desalting tower 16, and a primary cooling. It is composed of a water passage 13D, a volume control tank 14, and primary cooling water return passages 13E and 13F. The primary cooling water recovery passage 6C and the regenerative heat exchanger 11 constituting the cooling system of the nuclear reactor 2 are connected by a first cooling water extraction passage 13A. The regenerative heat exchanger 11 and the non-regenerative heat exchanger 12 are connected by a primary cooling water passage 13B. The non-regenerative heat exchanger 12 and the desalting tower 16 are connected by a primary cooling water passage 13C. The desalting tower 16 and the volume control tank 14 are connected by a primary cooling water passage 13D. The volume control tank 14 and the regenerative heat exchanger 11 are connected by a primary cooling water return passage 13E. The regenerative heat exchanger 11 and the primary cooling water first supply passage 6A are connected by a primary cooling water return passage 13F. A filling pump 15 is provided in the primary cooling water return passage 13E.

一次冷却水C1は、一次冷却水取り出し通路13A、すなわち、一次冷却水ポンプ5の入口側(上流側)から取り出される。原子炉2の冷却系から取り出された一次冷却水C1は、再生熱交換器11へ導かれた後、一次冷却水通路13B、非再生熱交換器12、一次冷却水通路13Cを通って脱塩塔16へ導かれ、ここで脱塩処理される。脱塩処理された一次冷却水C1は、一次冷却水通路13Dを通って体積制御タンク14へ一時的に貯められた後、一次冷却水戻し通路13Eに設けられる充填ポンプ15によって再生熱交換器11へ送られる。再生熱交換器11を通過した一次冷却水C1は、一次冷却水戻し通路13Fを通って一次冷却水第一供給通路6A、すなわち、一次冷却水ポンプ5の出口側(下流側)に戻される。   The primary cooling water C1 is taken out from the primary cooling water take-out passage 13A, that is, the inlet side (upstream side) of the primary cooling water pump 5. The primary cooling water C1 taken out from the cooling system of the reactor 2 is guided to the regenerative heat exchanger 11, and then desalted through the primary cooling water passage 13B, the non-regenerative heat exchanger 12, and the primary cooling water passage 13C. It is led to the tower 16 where it is desalted. The desalted primary cooling water C1 is temporarily stored in the volume control tank 14 through the primary cooling water passage 13D, and then regenerated heat exchanger 11 by the filling pump 15 provided in the primary cooling water return passage 13E. Sent to. The primary cooling water C1 that has passed through the regenerative heat exchanger 11 is returned to the primary cooling water first supply passage 6A, that is, the outlet side (downstream side) of the primary cooling water pump 5 through the primary cooling water return passage 13F.

本実施の形態において、除染方法および除染装置の適用対象となる熱交換器は、原子炉2の圧力容器の内部に満たされた一次冷却水C1が通過する蒸気発生器3、再生熱交換器11および非再生熱交換器12である。なお、本実施の形態では、蒸気発生器3を主となる対象として説明する。図2は、本発明の実施の形態にかかる蒸気発生器(熱交換器)の概略図である。   In the present embodiment, the heat exchanger to which the decontamination method and the decontamination apparatus are applied is the steam generator 3 through which the primary cooling water C1 filled in the pressure vessel of the nuclear reactor 2 passes, the regenerative heat exchange. A regenerator 11 and a non-regenerative heat exchanger 12. In the present embodiment, the steam generator 3 will be described as a main target. FIG. 2 is a schematic diagram of a steam generator (heat exchanger) according to an embodiment of the present invention.

図2に示すように、蒸気発生器3は、上下方向に延在され、かつ密閉された中空円筒形状をなし、上半部に対して下半部が若干小径とされた胴部301を有している。胴部301の下半部内には、胴部301の内壁面と所定間隔をもって配置された円筒形状を成す管群外筒302が設けられている。管群外筒302は、その下端部が、胴部301の下半部内の下方に配置された管板303まで延設されている。管群外筒302内には、逆U字形状をなす複数の伝熱管304からなる伝熱管群304Aが設けられている。各伝熱管304は、U字形状の円弧部を上方に向けて配置され、下方に向く端部が管板303に支持されていると共に、中間部が複数の管支持板305により支持されている。管支持板305には、多数の貫通孔(図示せず)が形成されており、この貫通孔内に各伝熱管304が非接触状態で貫通されている。   As shown in FIG. 2, the steam generator 3 has a hollow cylindrical shape that extends in the up-down direction and is hermetically sealed, and has a trunk portion 301 whose lower half is slightly smaller in diameter than the upper half. is doing. In the lower half of the body portion 301, a tube group outer tube 302 having a cylindrical shape is provided that is disposed at a predetermined distance from the inner wall surface of the body portion 301. The lower end portion of the tube group outer tube 302 extends to the tube plate 303 disposed below in the lower half of the body portion 301. Inside the tube group outer tube 302, a heat transfer tube group 304A comprising a plurality of heat transfer tubes 304 having an inverted U shape is provided. Each of the heat transfer tubes 304 is arranged with the U-shaped arc portion facing upward, an end portion facing downward is supported by the tube plate 303, and an intermediate portion is supported by a plurality of tube support plates 305. . A large number of through holes (not shown) are formed in the tube support plate 305, and the heat transfer tubes 304 are passed through the through holes in a non-contact state.

胴部301の下端部には、水室306が設けられている。水室306は、内部が隔壁307により入室306Aと出室306Bとに区画されている。入室306Aには、各伝熱管304の第一の口304aが連通され、出室306Bには、各伝熱管304の第二の口304bが連通されている。また、入室306Aには、胴部301の外部に通じる入口ノズル306AAが形成され、出室306Bには、胴部301の外部に通じる出口ノズル306BBが形成されている。そして、入口ノズル306AAには、原子炉2から一次冷却水C1が送られる一次冷却水第二供給通路6Bが接続される一方、出口ノズル306BBには、熱交換された後の一次冷却水C1を原子炉2に送る一次冷却水回収通路6Cが接続される。   A water chamber 306 is provided at the lower end of the body 301. The water chamber 306 is divided into an entrance chamber 306A and an exit chamber 306B by a partition wall 307. A first port 304a of each heat transfer tube 304 is communicated with the entrance chamber 306A, and a second port 304b of each heat transfer tube 304 is communicated with the exit chamber 306B. In addition, an inlet nozzle 306AA that communicates with the outside of the trunk portion 301 is formed in the entrance chamber 306A, and an outlet nozzle 306BB that communicates with the exterior of the trunk portion 301 is formed in the exit chamber 306B. The inlet nozzle 306AA is connected to the primary cooling water second supply passage 6B through which the primary cooling water C1 is sent from the reactor 2, while the outlet nozzle 306BB receives the primary cooling water C1 after heat exchange. A primary cooling water recovery passage 6C to be sent to the nuclear reactor 2 is connected.

胴部301の上半部には、給水を蒸気と熱水とに分離する気水分離器308、および分離された蒸気の湿分を除去して乾き蒸気に近い状態とする湿分分離器309が設けられている。気水分離器308と伝熱管群304Aとの間には、外部から胴部301内に二次冷却水C2の給水を行う給水管310が挿入されている。さらに、胴部301の上端部には、蒸気排出口311が形成されている。また、胴部301の下半部内には、給水管310からこの胴部301内に給水された二次冷却水C2を、胴部301と管群外筒302との間を流下させて管板303にて折り返えさせ、伝熱管群304Aに沿って上昇させる給水路312が設けられている。なお、蒸気排出口311には、タービン8に蒸気を送る蒸気供給通路7Sが接続され、給水管310には、タービン8で使用された蒸気が復水器9で冷却された二次冷却水C2を供給するための二次冷却水回収通路7Rが接続されている。   In the upper half of the body 301, there are an air / water separator 308 that separates the feed water into steam and hot water, and a moisture separator 309 that removes the moisture from the separated steam and makes it close to dry steam. Is provided. Between the steam separator 308 and the heat transfer tube group 304A, a water supply pipe 310 for supplying the secondary cooling water C2 from the outside into the body 301 is inserted. Further, a steam discharge port 311 is formed at the upper end of the body 301. Further, in the lower half portion of the body portion 301, the secondary cooling water C2 supplied into the body portion 301 from the water supply pipe 310 is caused to flow down between the body portion 301 and the tube group outer tube 302 so as to be a tube sheet. A water supply passage 312 is provided that is folded back at 303 and is raised along the heat transfer tube group 304A. A steam supply passage 7S for sending steam to the turbine 8 is connected to the steam discharge port 311, and secondary cooling water C <b> 2 in which the steam used in the turbine 8 is cooled by the condenser 9 is connected to the water supply pipe 310. Is connected to the secondary cooling water recovery passage 7R.

このような蒸気発生器3では、原子炉2で加熱された一次冷却水C1は、入室306Aに送られ、多数の伝熱管304内を通って循環して出室306Bに至る。一方、復水器9で冷却された二次冷却水C2は、給水管310に送られ、胴部301内の給水路312を通って伝熱管群304Aに沿って上昇する。このとき、胴部301内で、高圧高温の一次冷却水C1と二次冷却水C2との間で熱交換が行われる。そして、冷やされた一次冷却水C1は、出室306Bから原子炉2に戻される。一方、高圧高温の一次冷却水C1と熱交換を行った二次冷却水C2は、胴部301内を上昇し、気水分離器308で蒸気と熱水とに分離される。そして、分離された蒸気は、湿分分離器309で湿分を除去されてからタービン8に送られる。   In such a steam generator 3, the primary cooling water C1 heated in the nuclear reactor 2 is sent to the entrance chamber 306A, circulates through the numerous heat transfer tubes 304, and reaches the exit chamber 306B. On the other hand, the secondary cooling water C2 cooled by the condenser 9 is sent to the water supply pipe 310 and rises along the heat transfer pipe group 304A through the water supply path 312 in the trunk portion 301. At this time, heat exchange is performed between the high-pressure and high-temperature primary cooling water C1 and the secondary cooling water C2 in the body portion 301. Then, the cooled primary cooling water C1 is returned to the reactor 2 from the exit chamber 306B. On the other hand, the secondary cooling water C2 that has exchanged heat with the high-pressure and high-temperature primary cooling water C1 rises in the body 301 and is separated into steam and hot water by the steam / water separator 308. The separated steam is sent to the turbine 8 after the moisture is removed by the moisture separator 309.

なお、蒸気発生器3において、複数の伝熱管304からなる伝熱管群304Aは、その上端部が、伝熱管304の逆U字形状の円弧部により半球形状に形成されている。具体的には、伝熱管群304Aの中心部では、最も曲率の小さい円弧部の伝熱管304が配置され、半球の外側に向けて円弧部の曲率が大きな伝熱管304が順に配列されている。そして、この配列したものを重ねつつ外側の伝熱管304を順に減らすことで、伝熱管群304Aの上端部が半球形状に形成される。   In the steam generator 3, the heat transfer tube group 304 </ b> A composed of a plurality of heat transfer tubes 304 is formed in a hemispherical shape with an inverted U-shaped arc portion of the heat transfer tube 304 at its upper end. Specifically, in the center portion of the heat transfer tube group 304A, a heat transfer tube 304 having the smallest curvature is arranged, and the heat transfer tubes 304 having a larger curvature in the arc portion are sequentially arranged toward the outside of the hemisphere. And the upper end part of 304 A of heat exchanger tube groups is formed in a hemispherical shape by reducing the outer side heat exchanger tube 304 in order, overlapping this arranged thing.

上述したように、蒸気発生器3では、熱交換を行う伝熱管304内に一次冷却水C1が通過することから、伝熱管304の内面が放射線により汚染される。そして、このような蒸気発生器3を経年劣化などにより交換した場合には、使用済みとなった蒸気発生器3を解体する際の作業員への放射線照射を防ぐため、伝熱管304内を除染する必要がある。   As described above, in the steam generator 3, the primary cooling water C <b> 1 passes through the heat transfer tube 304 that performs heat exchange, so that the inner surface of the heat transfer tube 304 is contaminated by radiation. When such a steam generator 3 is replaced due to aging or the like, the inside of the heat transfer tube 304 is removed in order to prevent radiation to workers when disassembling the used steam generator 3. It is necessary to dye.

以下、本実施の形態にかかる除染装置について説明する。図3は、本発明の実施の形態にかかる熱交換器の除染装置の概略斜視図、図4および図5は、本発明の実施の形態にかかる熱交換器の除染装置の概略図である。除染装置100は、正流入回路101と、逆流入回路102と、研磨材循環手段103と、回路接続手段104と、制御手段105とを有している。   Hereinafter, the decontamination apparatus according to the present embodiment will be described. FIG. 3 is a schematic perspective view of a heat exchanger decontamination apparatus according to an embodiment of the present invention, and FIGS. 4 and 5 are schematic views of a heat exchanger decontamination apparatus according to an embodiment of the present invention. is there. The decontamination apparatus 100 includes a normal inflow circuit 101, a reverse inflow circuit 102, an abrasive circulation unit 103, a circuit connection unit 104, and a control unit 105.

正流入回路101は、図4で実線の矢印で示すように、研磨材が混合された噴流を伝熱管304の第一の口304aから第二の口304bに至り伝熱管304の内部に流入させるものである。正流入回路101は、圧縮機106、供給通路107、研磨材供給部108、切換部109、第一供給回収通路110、第二供給回収通路111、回収通路112、および回収分離部113により構成されている。   As shown by the solid line arrow in FIG. 4, the positive inflow circuit 101 causes the jet mixed with the abrasive material from the first port 304 a of the heat transfer tube 304 to the second port 304 b to flow into the heat transfer tube 304. Is. The positive inflow circuit 101 includes a compressor 106, a supply passage 107, an abrasive supply unit 108, a switching unit 109, a first supply recovery passage 110, a second supply recovery passage 111, a recovery passage 112, and a recovery separation portion 113. ing.

圧縮機106は、空気を圧縮して高圧状態とするものである。圧縮機106にて圧縮された空気は、この圧縮機106に接続された供給通路107を介して噴流として送り出される。供給通路107の途中には、研磨材供給部108が介在されている。研磨材供給部108は、例えばホッパとして構成され、所定量の研磨材を供給通路107に供給して噴流に混合させるものである。研磨材としては、セラミックスや金属(ステンレス、鉄など)などの粒状体が用いられ、その粒径は直径0.1〜0.3mm程度である。また、供給通路107は、切換部109を介して第一供給回収通路110に接続されている。切換部109については後述する。第一供給回収通路110は、伝熱管304の第一の口304aに接続されるものである。第二供給回収通路111は、伝熱管304の第二の口304bに接続されるものである。この第二供給回収通路111は、切換部109を介して回収通路112に接続されている。回収通路112は、回収分離部113に接続されている。回収通路112には、伝熱管304内を経た噴流が通過する。回収分離部113は、回収通路112を通過する噴流に混合されている研磨材と研磨材で研削された二次廃棄物とを回収し、これらを分離するものである。分離された二次廃棄物は、回収分離部113に貯留され、分離された研磨材は、研磨材供給部108に戻される。また、研磨材と二次廃棄物とが回収された後の噴流は、回収分離部113からブロア(図示せず)を介して排気される。   The compressor 106 compresses air into a high pressure state. The air compressed by the compressor 106 is sent out as a jet through a supply passage 107 connected to the compressor 106. In the middle of the supply passage 107, an abrasive supply unit 108 is interposed. The abrasive supply unit 108 is configured as a hopper, for example, and supplies a predetermined amount of abrasive to the supply passage 107 and mixes it with the jet. As the abrasive, granular materials such as ceramics and metals (stainless steel, iron, etc.) are used, and the particle size is about 0.1 to 0.3 mm in diameter. The supply passage 107 is connected to the first supply / recovery passage 110 through the switching unit 109. The switching unit 109 will be described later. The first supply / recovery passage 110 is connected to the first port 304 a of the heat transfer tube 304. The second supply / recovery passage 111 is connected to the second port 304 b of the heat transfer tube 304. The second supply / recovery passage 111 is connected to the recovery passage 112 via the switching unit 109. The collection passage 112 is connected to the collection separation unit 113. A jet flowing through the heat transfer tube 304 passes through the recovery passage 112. The recovery / separation unit 113 recovers the abrasive mixed in the jet passing through the recovery passage 112 and the secondary waste ground by the abrasive and separates them. The separated secondary waste is stored in the collection / separation unit 113, and the separated abrasive is returned to the abrasive supply unit 108. Further, the jet after the abrasive and secondary waste are recovered is exhausted from the recovery / separation unit 113 through a blower (not shown).

すなわち、正流入回路101は、圧縮機106で圧縮された空気の噴流を、供給通路107→切換部109→第一供給回収通路110→伝熱管304→第二供給回収通路111→切換部109→回収通路112→回収分離部113の順で送ることにより、研磨材供給部108で研磨材が混合された噴流を伝熱管304の第一の口304aから第二の口304bに至り伝熱管304の内部に流入させる。   That is, the positive inflow circuit 101 converts the jet of air compressed by the compressor 106 into the supply passage 107 → the switching portion 109 → the first supply / recovery passage 110 → the heat transfer pipe 304 → the second supply / recovery passage 111 → the switching portion 109 →. By sending the recovery passage 112 in the order of the recovery / separation unit 113, the jet mixed with the abrasive in the abrasive supply unit 108 reaches the second port 304 b from the first port 304 a of the heat transfer tube 304 to the heat transfer tube 304. Let it flow inside.

逆流入回路102は、図4で一点鎖線の矢印で示すように、研磨材が混合された噴流を伝熱管304の第二の口304bから第一の口304aに至り伝熱管304の内部に流入させるものである。逆流入回路102は、正流入回路101と同様に、圧縮機106、供給通路107、研磨材供給部108、切換部109、第一供給回収通路110、第二供給回収通路111、回収通路112、および回収分離部113により構成されている。   As shown by the one-dot chain line arrow in FIG. 4, the reverse inflow circuit 102 flows the jet mixed with the abrasive from the second port 304 b of the heat transfer tube 304 to the first port 304 a and flows into the heat transfer tube 304. It is something to be made. Similarly to the normal inflow circuit 101, the reverse inflow circuit 102 includes a compressor 106, a supply passage 107, an abrasive supply unit 108, a switching unit 109, a first supply recovery passage 110, a second supply recovery passage 111, a recovery passage 112, And a recovery / separation unit 113.

ここで、切換部109は、供給通路107を第一供給回収通路110に接続すると共に回収通路112を第二供給回収通路111に接続する一方で、供給通路107を第二供給回収通路111に接続すると共に回収通路112を第一供給回収通路110に接続するように選択的に切り換えるものである。この切換部109により、供給通路107が第一供給回収通路110に接続されると共に回収通路112が第二供給回収通路111に接続された回路が正流入回路101である。一方、切換部109により、供給通路107が第二供給回収通路111に接続されると共に回収通路112が第一供給回収通路110に接続された回路が逆流入回路102である。   Here, the switching unit 109 connects the supply passage 107 to the first supply / recovery passage 110 and connects the recovery passage 112 to the second supply / recovery passage 111, while connecting the supply passage 107 to the second supply / recovery passage 111. At the same time, the recovery passage 112 is selectively switched to connect to the first supply recovery passage 110. A circuit in which the supply passage 107 is connected to the first supply / recovery passage 110 and the recovery passage 112 is connected to the second supply / recovery passage 111 by the switching unit 109 is the positive inflow circuit 101. On the other hand, the reverse inflow circuit 102 is a circuit in which the supply passage 107 is connected to the second supply / recovery passage 111 and the recovery passage 112 is connected to the first supply / recovery passage 110 by the switching unit 109.

すなわち、逆流入回路102は、圧縮機106で圧縮された空気の噴流を、供給通路107→切換部109→第二供給回収通路111→伝熱管304→第一供給回収通路110→切換部109→回収通路112→回収分離部113の順で送ることにより、研磨材供給部108で研磨材が混合された噴流を伝熱管304の第二の口304bから第一の口304aに至り伝熱管304の内部に流入させる。   That is, the reverse inflow circuit 102 converts the jet of air compressed by the compressor 106 into the supply passage 107 → the switching portion 109 → the second supply / recovery passage 111 → the heat transfer pipe 304 → the first supply / recovery passage 110 → the switching portion 109 →. By sending the recovery passage 112 in the order of the recovery separation unit 113, the jet mixed with the abrasive in the abrasive supply unit 108 reaches the first port 304 a from the second port 304 b of the heat transfer tube 304 and reaches the first port 304 a of the heat transfer tube 304. Let it flow inside.

研磨材循環手段103は、上述した研磨材供給部108および回収分離部113により構成されている。上述したように、研磨材供給部108は、所定量の研磨材を供給通路107に供給して噴流に混合させる。また、回収分離部113は、回収通路112を通過する噴流に混合されている研磨材と二次廃棄物とを回収かつ分離し、二次廃棄物を貯留する一方で、研磨材を研磨材供給部108に戻す。すなわち、研磨材循環手段103は、正流入回路101および逆流入回路102に共通して設けられ、噴流の下流側から出た研磨材を回収し、この回収した前記研磨材を前記噴流の上流側に戻し、研磨材を循環して用いるものである。   The abrasive material circulation means 103 includes the above-described abrasive material supply unit 108 and recovery / separation unit 113. As described above, the abrasive supply unit 108 supplies a predetermined amount of abrasive to the supply passage 107 and mixes it with the jet. The recovery / separation unit 113 recovers and separates the abrasive and the secondary waste mixed in the jet passing through the recovery passage 112 and stores the secondary waste while supplying the abrasive to the abrasive. Return to section. That is, the abrasive material circulation means 103 is provided in common to the forward inflow circuit 101 and the reverse inflow circuit 102, collects the abrasive material that has flowed out from the downstream side of the jet flow, and uses the recovered abrasive material to the upstream side of the jet flow. In this case, the abrasive is circulated and used.

なお、研磨材循環手段103は、備えなくてもよい。その場合、図5に示すように、回収分離部113に換え、回収通路112を通過する噴流に混合されている研磨材および二次廃棄物を回収して貯留する回収部120を回収通路112に設ける。   Note that the abrasive circulation means 103 may not be provided. In this case, as shown in FIG. 5, instead of the recovery separation unit 113, a recovery unit 120 that recovers and stores the abrasive and secondary waste mixed in the jet passing through the recovery passage 112 is provided in the recovery passage 112. Provide.

回路接続手段104は、図3に示すように、蒸気発生器3の入室306Aと出室306Bとにそれぞれ設置され、複数並設された何れかの伝熱管304の口に対し、各前記回路101,102の第一供給回収通路110および第二供給回収通路111を接続するものである。回路接続手段104は、接続ノズル114を有している。   As shown in FIG. 3, the circuit connecting means 104 is installed in each of the entrance chamber 306 </ b> A and the exit chamber 306 </ b> B of the steam generator 3. , 102 are connected to the first supply / recovery passage 110 and the second supply / recovery passage 111. The circuit connection means 104 has a connection nozzle 114.

接続ノズル114は、第一供給回収通路110および第二供給回収通路111を伝熱管304の口に接続させる接続部をなす。接続ノズル114は、一本の伝熱管304に対し第一供給回収通路110および第二供給回収通路111を一対一で接続する形態でもよいが、複数本の伝熱管304に対し第一供給回収通路110および第二供給回収通路111を他対一で接続する形態であることが、除染の作業効率を向上するうえで好ましい。この接続ノズル114は、入室306Aと出室306Bとに配置される支持部材(図示せず)に設けられ、例えば、アクチュエータ(図示せず)により伝熱管304の口に対して接続または離脱される。   The connection nozzle 114 forms a connection part that connects the first supply / recovery passage 110 and the second supply / recovery passage 111 to the mouth of the heat transfer tube 304. The connection nozzle 114 may be configured to connect the first supply / recovery passage 110 and the second supply / recovery passage 111 one-to-one to a single heat transfer tube 304, but the first supply / recovery passage may be connected to a plurality of heat transfer tubes 304. 110 and the second supply / recovery passage 111 are preferably connected in a one-to-one manner in order to improve the decontamination work efficiency. The connection nozzle 114 is provided on a support member (not shown) disposed in the entrance chamber 306A and the exit chamber 306B, and is connected to or disconnected from the opening of the heat transfer tube 304 by an actuator (not shown), for example. .

制御手段105は、マイコンなどで構成されている。制御手段105には、記憶部105aおよび計時部105bが設けられている。記憶部105aは、RAMやROMなどから構成され、プログラムやデータが格納されている。計時部105bは、時間を計測するものである。制御手段105は、記憶部105aに予め格納されたプログラムやデータ、および計時部105bからの時間データに従って、上述した圧縮機106、切換部109、および回路接続手段104を統括的に制御する。   The control means 105 is constituted by a microcomputer or the like. The control means 105 is provided with a storage unit 105a and a timer unit 105b. The storage unit 105a includes a RAM, a ROM, and the like, and stores programs and data. The time measuring unit 105b measures time. The control unit 105 comprehensively controls the compressor 106, the switching unit 109, and the circuit connection unit 104 described above according to programs and data stored in advance in the storage unit 105a and time data from the time measuring unit 105b.

記憶部105aに格納されるプログラムやデータは、圧縮機106、切換部109、および回路接続手段104を駆動するためのものである。特に、記憶部105aには、切換部109による正流入回路101と逆流入回路102との切換により、伝熱管304の第二の口304bが噴流の下流から上流に切り換えられることで伝熱管304の第一の口304a側の内面および第二の口304b側の内面が同時に目標研削量になるまでの設定時間のデータが予め記憶されている。この設定時間は、前もって行われた実験結果から得られるものであり、伝熱管304の長さ、伝熱管304の内径、伝熱管304の円弧部の曲率、噴流の流速、および研磨材の種類や粒径などによって異なる。また、設定時間は、キーボードやマウスなどの外部入力手段(図示せず)により制御手段105に入力される。   The programs and data stored in the storage unit 105 a are for driving the compressor 106, the switching unit 109, and the circuit connection unit 104. In particular, in the storage unit 105 a, the second port 304 b of the heat transfer tube 304 is switched from the downstream side to the upstream side of the jet flow by switching between the forward inflow circuit 101 and the reverse inflow circuit 102 by the switching unit 109. Data of a set time until the inner surface on the first port 304a side and the inner surface on the second port 304b side simultaneously reach the target grinding amount is stored in advance. This set time is obtained from the result of an experiment conducted in advance, and the length of the heat transfer tube 304, the inner diameter of the heat transfer tube 304, the curvature of the arc portion of the heat transfer tube 304, the flow velocity of the jet, and the type of abrasive, It depends on the particle size. The set time is input to the control means 105 by an external input means (not shown) such as a keyboard or a mouse.

上述した除染装置100の動作である除染方法について、図6および図7のフローチャートを参照して説明する。   The decontamination method, which is the operation of the decontamination apparatus 100 described above, will be described with reference to the flowcharts of FIGS.

本実施の形態では、熱交換器を経年劣化などにより交換した場合において、使用済みとなった熱交換器を解体する際の作業員への放射線照射を防ぐため、伝熱管内を除染する作業にかかり除染装置および除染方法が適用される。   In the present embodiment, when the heat exchanger is replaced due to aging, etc., work to decontaminate the inside of the heat transfer tube in order to prevent radiation irradiation to workers when dismantling the used heat exchanger A decontamination apparatus and a decontamination method are applied.

除染作業を行う場合、図6の除染作業のフローチャートに示すように、まず、使用済みの蒸気発生器3の水室306側を覆うようにグリーンハウス118(図3参照)を設置する(ステップS1)。これにより、水室306の周囲を隔離して放射線の飛散を防ぐ。   When performing the decontamination work, as shown in the flowchart of the decontamination work in FIG. 6, first, the green house 118 (see FIG. 3) is installed so as to cover the water chamber 306 side of the used steam generator 3 (see FIG. 3). Step S1). Thereby, the periphery of the water chamber 306 is isolated to prevent radiation from being scattered.

次に、蒸気発生器3外部の除染装置100を用意する(ステップS2)。すなわち、グリーンハウス118の外側にて、上述した除染装置100を設置する。具体的には、圧縮機106に供給通路107を接続し、この供給通路107に研磨材供給部108を接続すると共に、供給通路107を切換部109に接続する。また、回収分離部113に回収通路112を接続すると共に、回収通路112を切換部109に接続する。さらに、第一供給回収通路110および第二供給回収通路111を切換部109に接続する。   Next, the decontamination apparatus 100 outside the steam generator 3 is prepared (step S2). That is, the decontamination apparatus 100 described above is installed outside the green house 118. Specifically, the supply passage 107 is connected to the compressor 106, the abrasive supply unit 108 is connected to the supply passage 107, and the supply passage 107 is connected to the switching unit 109. In addition, the recovery passage 112 is connected to the recovery separation unit 113 and the recovery passage 112 is connected to the switching unit 109. Further, the first supply recovery passage 110 and the second supply recovery passage 111 are connected to the switching unit 109.

次に、蒸気発生器3の水室306のマンホールを開け、入室306Aの入口ノズル306AA、および出室306Bの出口ノズル306BBを開放する(ステップS3)。   Next, the manhole in the water chamber 306 of the steam generator 3 is opened, and the inlet nozzle 306AA in the entrance chamber 306A and the exit nozzle 306BB in the exit chamber 306B are opened (step S3).

次に、蒸気発生器3内部の除染装置100を用意する(ステップS4)。すなわち、回路接続手段104を入室306Aと出室306Bとに設置する。この際、作業者は、放射線に曝されることを防ぐために放射線防護衣を着用する。   Next, the decontamination apparatus 100 inside the steam generator 3 is prepared (step S4). That is, the circuit connecting means 104 is installed in the entrance room 306A and the exit room 306B. At this time, the worker wears radiation protective clothing to prevent exposure to radiation.

次に、除染を行う(ステップS5)。このステップS5において、本実施の形態の除染装置100を作動させ、除染方法が適用される。   Next, decontamination is performed (step S5). In this step S5, the decontamination apparatus 100 of this Embodiment is operated and the decontamination method is applied.

最後に、除染終了に伴い、除染装置100を撤去する(ステップS6)。このステップS6の後は、伝熱管304内部が除染されているので蒸気発生器3の解体が可能になる。   Finally, with the completion of decontamination, the decontamination apparatus 100 is removed (step S6). After step S6, since the inside of the heat transfer tube 304 is decontaminated, the steam generator 3 can be disassembled.

上記ステップS5における除染装置100の動作(除染方法)では、図7の本発明の実施の形態にかかる除染装置の動作(除染方法)のフローチャートに示すように、まず、制御手段105は、回路接続手段104により第一供給回収通路110を所望の伝熱管304の第一の口304aに、第二供給回収通路111を所望の伝熱管304の第二の口304bに接続する(ステップS51)。これと同時に、制御手段105は、正流入回路101をなすように切換部109を切り換える(ステップS52)。次に、制御手段105は、圧縮機106を稼働する(ステップS53)。これにより、正流入回路101において、研磨材が混合された噴流が、伝熱管304の第一の口304aから第二の口304bに至り伝熱管304の内部に流入され、伝熱管304の内部が除染される。   In the operation (decontamination method) of the decontamination apparatus 100 in step S5, as shown in the flowchart of the operation (decontamination method) of the decontamination apparatus according to the embodiment of the present invention in FIG. The circuit connecting means 104 connects the first supply / recovery passage 110 to the first port 304a of the desired heat transfer tube 304 and the second supply / recovery passage 111 to the second port 304b of the desired heat transfer tube 304 (step). S51). At the same time, the control means 105 switches the switching unit 109 so as to form the positive inflow circuit 101 (step S52). Next, the control means 105 operates the compressor 106 (step S53). Thereby, in the positive inflow circuit 101, the jet mixed with the abrasive reaches the second port 304b from the first port 304a of the heat transfer tube 304 and flows into the heat transfer tube 304, and the inside of the heat transfer tube 304 is Decontaminated.

次に、切換部109による正流入回路101と逆流入回路102との切換により伝熱管304の第二の口304bが噴流の下流から上流に切り換えられることで伝熱管304の第一の口304a側の内面および第二の口304b側の内面が同時に目標研削量になるまでの設定時間の半分を経過したとき(ステップS54:Yes)、制御手段105は、逆流入回路102に切換部109を切り換える(ステップS55)。これにより、逆流入回路102において、研磨材が混合された噴流が、伝熱管304の第二の口304bから第一の口304aに至り伝熱管304の内部に流入され、引き続き伝熱管304の内部が除染される。   Next, the second port 304b of the heat transfer tube 304 is switched from the downstream side to the upstream side of the jet flow by the switching of the forward inflow circuit 101 and the reverse inflow circuit 102 by the switching unit 109, whereby the first port 304a side of the heat transfer tube 304 is switched. When the half of the set time until the inner surface of the second and the inner surface on the second port 304b side simultaneously reaches the target grinding amount has elapsed (step S54: Yes), the control means 105 switches the switching unit 109 to the reverse inflow circuit 102. (Step S55). As a result, in the reverse inflow circuit 102, the jet mixed with the abrasive reaches the first port 304a from the second port 304b of the heat transfer tube 304 and flows into the heat transfer tube 304, and continues to the inside of the heat transfer tube 304. Is decontaminated.

最後に、設定時間の残りの半分を経過したとき(ステップS56:Yes)、制御手段105は、圧縮機106を停止する(ステップS57)。これにより、除染が終了する。   Finally, when the remaining half of the set time has elapsed (step S56: Yes), the control means 105 stops the compressor 106 (step S57). Thereby, decontamination is completed.

なお、ステップS51〜ステップS57は、蒸気発生器3の全ての伝熱管304の除染が終わるまで、回路接続手段104により第一供給回収通路110および第二供給回収通路111を次の伝熱管304に接続しつつ、繰り返し行う。   In steps S51 to S57, the circuit connection means 104 passes the first supply recovery passage 110 and the second supply recovery passage 111 to the next heat transfer tube 304 until the decontamination of all the heat transfer tubes 304 of the steam generator 3 is completed. Repeat while connecting to

このように、本実施の形態にかかる除染方法では、研磨材が混合された噴流を伝熱管304の第一の口304aから第二の口304bに至り伝熱管304の内部に流入させる工程と、次に、伝熱管304の第二の口304b側が噴流の下流から上流に切り換えられることで伝熱管304の第一の口304a側の内面および第二の口304b側の内面が同時に目標研削量になるまでの設定時間の半分を経過したとき、研磨材が混合された噴流を伝熱管304の第二の口304bから第一の口304aに至り伝熱管304の内部に流入させる工程とを含む。   As described above, in the decontamination method according to the present embodiment, the step of causing the jet mixed with the abrasive to flow from the first port 304a of the heat transfer tube 304 to the second port 304b and to flow into the heat transfer tube 304; Next, the second port 304b side of the heat transfer tube 304 is switched from the downstream side to the upstream side of the jet flow, so that the inner surface of the heat transfer tube 304 on the first port 304a side and the inner surface on the second port 304b side are simultaneously targeted grinding amounts. And a step of causing the jet mixed with the abrasive material to flow from the second port 304b of the heat transfer tube 304 to the first port 304a and to flow into the heat transfer tube 304 when half of the set time has elapsed. .

すなわち、図8(a)に示すように、従来では、全研削工程において、研磨材が混合された噴流を伝熱管304の第一の口304aから第二の口304bに至り伝熱管304の内部に流入させ、噴射の上流側(伝熱管304の第一の口304a側)が目標研削量に至るまで除染を行っていたので、噴射の下流側(伝熱管304の第二の口304b側)が過研削となって二次廃棄物を大量に発生させていた。   That is, as shown in FIG. 8A, conventionally, in the entire grinding process, the jet mixed with the abrasive material reaches the second port 304b from the first port 304a of the heat transfer tube 304, and the inside of the heat transfer tube 304. Since the decontamination is performed until the upstream side of the injection (the first port 304a side of the heat transfer tube 304) reaches the target grinding amount, the downstream side of the injection (the second port 304b side of the heat transfer tube 304) ) Was overgrinded and a large amount of secondary waste was generated.

これに対し、図8(b)に示すように本実施の形態の除染方法では、全研削工程において、途中で研磨材が混合された噴流を伝熱管304の第二の口304bから第一の口304aに至り伝熱管304の内部に流入するように切り換えており、このタイミングを伝熱管304の第二の口304b側が噴流の下流から上流に切り換えられることで伝熱管304の第一の口304a側の内面および第二の口304b側の内面が同時に目標研削量になるまでの設定時間の半分を経過したときとした。このため、伝熱管304の第一の口304aから第二の口304bまでの全体の研削量を目標研削量までの除染としたので、過研削を防止して二次廃棄物の発生量を抑えることが可能になる。   On the other hand, as shown in FIG. 8B, in the decontamination method of the present embodiment, in the entire grinding process, a jet mixed with an abrasive material in the middle is sent from the second port 304b of the heat transfer tube 304 to the first. The second port 304b side of the heat transfer tube 304 is switched from the downstream side to the upstream side of the jet flow so that the first port of the heat transfer tube 304 is switched. It is assumed that half of the set time until the inner surface on the 304a side and the inner surface on the second port 304b side simultaneously reach the target grinding amount has elapsed. For this reason, since the entire grinding amount from the first port 304a to the second port 304b of the heat transfer tube 304 is decontaminated to the target grinding amount, overgrinding is prevented and the amount of secondary waste generated is reduced. It becomes possible to suppress.

しかも、研削量の少ない噴流の上流側を、途中で研削量の多く下流側に切り換えたことで、伝熱管304の全長において、研削量を平均化されるので、伝熱管304全長での除染効果を平均化することが可能になる。特に、蒸気発生器3の伝熱管304は、逆U字形状に形成されて円弧部分を有しており、この円弧部分の曲がり口では研磨材の衝突力が大きく過研削が懸念されるが、本実施の形態の研削方法によれば、円弧部分での検索量もほぼ平均化して、除染効果を平均化することが可能になる。   In addition, since the upstream side of the jet with a small grinding amount is switched to the downstream side with a large grinding amount on the way, the grinding amount is averaged over the entire length of the heat transfer tube 304. Therefore, decontamination over the entire length of the heat transfer tube 304 is achieved. The effect can be averaged. In particular, the heat transfer tube 304 of the steam generator 3 has an arcuate portion formed in an inverted U shape, and there is a concern about overgrinding due to the large impact force of the abrasive at the bend of the arc portion. According to the grinding method of the present embodiment, it is possible to average the search amount in the arc portion and average the decontamination effect.

しかも、研削量の少ない噴流の上流側を、途中で研削量の多く下流側に切り換えたことで、従来の除染時間と比較して、除染時間を短縮することが可能になる。   Moreover, the decontamination time can be shortened compared to the conventional decontamination time by switching the upstream side of the jet with a small grinding amount to the downstream side with a large grinding amount in the middle.

また、本実施の形態の除染方法では、研磨材が混合された噴流を伝熱管304の内部に流入させているとき、噴流の下流側から出た研磨材を回収する工程と、次に、回収した研磨材を噴流の上流側に戻す工程とを含む。   Further, in the decontamination method of the present embodiment, when the jet mixed with the abrasive is caused to flow into the heat transfer pipe 304, the step of recovering the abrasive that has come out from the downstream side of the jet, Returning the recovered abrasive to the upstream side of the jet.

かかる除染方法によれば、噴流の下流側から出た研磨材を再び除染に用いることで、二次廃棄物の発生量をさらに抑えることが可能になる。   According to this decontamination method, it is possible to further reduce the amount of secondary waste generated by using the abrasive material that has come out from the downstream side of the jet for decontamination again.

また、上述した本実施の形態にかかる除染装置100では、研磨材が混合された噴流を伝熱管304の第一の口304aから第二の口304bに至り伝熱管304の内部に流入させる正流入回路101と、研磨材が混合された噴流を伝熱管304の第二の口304bから第一の口304aに至り伝熱管304の内部に流入させる逆流入回路102と、正流入回路101または逆流入回路102に選択的に切り換える切換部109と、伝熱管304の第二の口304b側が噴流の下流から上流に切り換えられることで伝熱管304の第一の口304a側の内面および第二の口304b側の内面が同時に目標研削量になるまでの設定時間を予め記憶し、切換部109を正流入回路101に選択してから設定時間の半分を経過したとき、逆流入回路102に切換部109を切り換える制御手段105とを備えている。   Further, in the decontamination apparatus 100 according to the present embodiment described above, the jet flow mixed with the abrasive material reaches the second port 304b from the first port 304a of the heat transfer tube 304 and flows into the heat transfer tube 304. The inflow circuit 101, the reverse inflow circuit 102 that causes the jet mixed with the abrasive material from the second port 304b of the heat transfer tube 304 to the first port 304a to flow into the heat transfer tube 304, and the forward inflow circuit 101 or the reverse flow The switching unit 109 that selectively switches to the inlet circuit 102, and the inner surface and the second port on the first port 304a side of the heat transfer tube 304 by switching the second port 304b side of the heat transfer tube 304 from downstream to upstream. When the set time until the inner surface on the side of 304b reaches the target grinding amount at the same time is stored in advance and half of the set time has elapsed since the switching unit 109 was selected as the normal inflow circuit 101, the reverse inflow circuit And a control unit 105 for switching the switching portion 109 to 02.

かかる除染装置100によれば、上記除染方法を実施することができ、過研削を防止して二次廃棄物の発生量を抑えることが可能になる。しかも、伝熱管304の全長において研削量を平均化され、伝熱管304全長での除染効果を平均化することが可能になる。しかも、従来の除染時間と比較して、除染時間を短縮することが可能になる。   According to this decontamination apparatus 100, the said decontamination method can be implemented, and it becomes possible to prevent overgrinding and to suppress the generation amount of secondary waste. Moreover, the grinding amount is averaged over the entire length of the heat transfer tube 304, and the decontamination effect over the entire length of the heat transfer tube 304 can be averaged. In addition, the decontamination time can be shortened as compared with the conventional decontamination time.

また、本実施の形態の除染装置100は、噴流の下流側から出た研磨材を回収し、この回収した研磨材を噴流の上流側に戻す研磨材循環手段を備えている。   Moreover, the decontamination apparatus 100 of this Embodiment is equipped with the abrasive | polishing material circulation means which collect | recovers the abrasives which came out from the downstream of a jet, and returns this collect | recovered abrasive to the upstream of a jet.

かかる構成によれば、噴流の下流側から出た研磨材を再び除染に用いることで、二次廃棄物の発生量をさらに抑えることが可能になる。   According to such a configuration, it is possible to further suppress the amount of secondary waste generated by using the abrasive that has come out from the downstream side of the jet for decontamination again.

また、本実施の形態の除染装置100は、伝熱管304が複数配列され、上記回路101,102を選択された伝熱管304の口に接続する回路接続手段104を備えている。   In addition, the decontamination apparatus 100 according to the present embodiment includes a circuit connection unit 104 in which a plurality of heat transfer tubes 304 are arranged and the circuits 101 and 102 are connected to the mouths of the selected heat transfer tubes 304.

蒸気発生器3では、約3000本を超える伝熱管304が配設されており、各口は2倍の数となり、かつ水室306の内部に入っての作業となるので、伝熱管304の口に各回路101,102を接続するのは容易ではない。かかる構成によれば、伝熱管304の口に各回路101,102を接続するのが容易となる。   In the steam generator 3, more than about 3000 heat transfer tubes 304 are arranged, and each port is doubled and the work is performed inside the water chamber 306. It is not easy to connect the circuits 101 and 102 to each other. According to this configuration, it becomes easy to connect the circuits 101 and 102 to the mouth of the heat transfer tube 304.

以上のように、本発明にかかる熱交換器の除染方法および除染装置は、過研削を防止して二次廃棄物の発生量を抑えることに適している。   As described above, the heat exchanger decontamination method and the decontamination apparatus according to the present invention are suitable for preventing over-grinding and suppressing the generation amount of secondary waste.

本発明の実施の形態にかかる熱交換器の除染方法および装置が適用される原子力プラントの概略図である。It is the schematic of the nuclear power plant to which the decontamination method and apparatus of the heat exchanger concerning embodiment of this invention are applied. 発明の実施の形態にかかる蒸気発生器(熱交換器)の概略図である。It is the schematic of the steam generator (heat exchanger) concerning embodiment of invention. 本発明の実施の形態にかかる熱交換器の除染装置の概略斜視図である。It is a schematic perspective view of the decontamination apparatus of the heat exchanger concerning embodiment of this invention. 本発明の実施の形態にかかる熱交換器の除染装置の概略図である。It is the schematic of the decontamination apparatus of the heat exchanger concerning embodiment of this invention. 本発明の実施の形態にかかる熱交換器の除染装置の概略図である。It is the schematic of the decontamination apparatus of the heat exchanger concerning embodiment of this invention. 除染作業のフローチャートである。It is a flowchart of decontamination work. 本発明の実施の形態にかかる除染装置の動作(除染方法)のフローチャートである。It is a flowchart of operation | movement (decontamination method) of the decontamination apparatus concerning embodiment of this invention. 従来と本発明とを比較する研削量−研削時間の関係を示す図である。It is a figure which shows the relationship of the grinding amount-grinding time which compares the past and this invention.

符号の説明Explanation of symbols

1 原子力プラント(原子力発電設備)
3 蒸気発生器(熱交換器)
11 再生熱交換器
12 非再生熱交換器
100 除染装置
101 正流入回路
102 逆流入回路
103 研磨材循環手段
104 回路接続手段
105 制御手段
105a 記憶部
105b 計時部
106 圧縮機
107 供給通路
108 研磨材供給部
109 切換部
110 第一供給回収通路
111 第二供給回収通路
112 回収通路
113 回収分離部
114 接続ノズル
118 グリーンハウス
120 回収部
301 胴部
302 管群外筒
303 管板
304 伝熱管
304a 第一の口
304b 第二の口
304A 伝熱管群
305 管支持板
306 水室
306A 入室
306AA 入口ノズル
306B 出室
306BB 出口ノズル
307 隔壁
308 気水分離器
309 湿分分離器
310 給水管
311 蒸気排出口
312 給水路
C1 一次冷却水
C2 二次冷却水
1 Nuclear power plant (nuclear power generation equipment)
3 Steam generator (heat exchanger)
DESCRIPTION OF SYMBOLS 11 Regenerative heat exchanger 12 Non-regenerative heat exchanger 100 Decontamination apparatus 101 Forward inflow circuit 102 Reverse inflow circuit 103 Abrasive material circulation means 104 Circuit connection means 105 Control means 105a Storage part 105b Timekeeping part 106 Compressor 107 Supply path 108 Abrasive Supply portion 109 Switching portion 110 First supply / recovery passage 111 Second supply / recovery passage 112 Recovery passage 113 Recovery / separation portion 114 Connection nozzle 118 Greenhouse 120 Recovery portion 301 Body portion 302 Tube group outer tube 303 Tube plate 304 Heat transfer tube 304a First 304b Second port 304A Heat transfer tube group 305 Tube support plate 306 Water chamber 306A Inlet chamber 306AA Inlet nozzle 306B Outlet chamber 306BB Outlet nozzle 307 Bulkhead 308 Air / water separator 309 Moisture separator 310 Water supply pipe 311 Steam outlet 312 Water supply Road C1 Primary cooling Water C2 secondary cooling water

Claims (4)

熱交換器の伝熱管内を除染する熱交換器の除染方法において、
研磨材が混合された噴流を前記伝熱管の第一の口から第二の口に至り前記伝熱管の内部に流入させる工程と、
次に、前記伝熱管の第二の口側が噴流の下流から上流に切り換えられることで前記伝熱管の第一の口側の内面および第二の口側の内面が同時に目標研削量になるまでの設定時間の半分を経過したとき、研磨材が混合された前記噴流を前記伝熱管の第二の口から第一の口に至り前記伝熱管の内部に流入させる工程と、
を含むことを特徴とする熱交換器の除染方法。
In the heat exchanger decontamination method for decontaminating the inside of the heat exchanger tube of the heat exchanger,
A step of flowing a jet mixed with abrasive material from the first port of the heat transfer tube to the second port and flowing into the heat transfer tube;
Next, the second mouth side of the heat transfer tube is switched from the downstream side to the upstream side of the jet flow until the inner surface on the first mouth side and the inner surface on the second mouth side of the heat transfer tube become the target grinding amount at the same time. When half of the set time has elapsed, the step of causing the jet mixed with the abrasive material to flow from the second port of the heat transfer tube to the first port and flow into the heat transfer tube;
A heat exchanger decontamination method comprising:
研磨材が混合された前記噴流を前記伝熱管の内部に流入させているとき、
前記噴流の下流側から出た前記研磨材を回収する工程と、
次に、回収した前記研磨材を前記噴流の上流側に戻す工程と、
を含むことを特徴とする請求項1に記載の熱交換器の除染方法。
When the jet mixed with abrasive is flowing into the heat transfer tube,
Recovering the abrasive from the downstream side of the jet;
Next, returning the recovered abrasive to the upstream side of the jet,
The heat exchanger decontamination method according to claim 1, comprising:
熱交換器の伝熱管内を除染する熱交換器の除染装置において、
研磨材が混合された噴流を前記伝熱管の第一の口から第二の口に至り前記伝熱管の内部に流入させる正流入回路と、
研磨材が混合された前記噴流を前記伝熱管の第二の口から第一の口に至り前記伝熱管の内部に流入させる逆流入回路と、
前記正流入回路または前記逆流入回路に選択的に切り換える切換部と、
前記伝熱管の第二の口側が噴流の下流から上流に切り換えられることで前記伝熱管の第一の口側の内面および第二の口側の内面が同時に目標研削量になるまでの設定時間を予め記憶し、前記切換部を前記正流入回路に選択してから前記設定時間の半分を経過したとき、前記逆流入回路に前記切換部を切り換える制御手段と、
を備えたことを特徴とする熱交換器の除染装置。
In a heat exchanger decontamination device that decontaminates the inside of a heat exchanger tube,
A positive inflow circuit for flowing a jet mixed with abrasive material from the first port of the heat transfer tube to the second port and into the heat transfer tube;
A reverse inflow circuit for flowing the jet mixed with abrasive material from the second port of the heat transfer tube to the first port and flowing into the heat transfer tube;
A switching unit that selectively switches to the forward inflow circuit or the reverse inflow circuit;
By setting the second port side of the heat transfer tube from the downstream side to the upstream side of the jet, the set time until the inner surface of the first port side and the inner surface of the second port side of the heat transfer tube simultaneously reach the target grinding amount is increased. Control means for storing in advance and switching the switching unit to the reverse inflow circuit when half of the set time has elapsed since the switching unit was selected as the forward inflow circuit;
A heat exchanger decontamination apparatus comprising:
前記正流入回路と前記逆流入回路とに共通して設けられ、前記噴流の下流側から出た前記研磨材を回収し、この回収した前記研磨材を前記噴流の上流側に戻す研磨材循環手段を備えたことを特徴とする請求項3に記載の熱交換器の除染装置。   A polishing material circulating means that is provided in common to the forward inflow circuit and the reverse inflow circuit, collects the abrasive that has come out from the downstream side of the jet, and returns the recovered abrasive to the upstream side of the jet The heat exchanger decontamination apparatus according to claim 3, comprising:
JP2008296155A 2008-11-19 2008-11-19 Decontamination method and device of heat exchanger Pending JP2010122076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008296155A JP2010122076A (en) 2008-11-19 2008-11-19 Decontamination method and device of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008296155A JP2010122076A (en) 2008-11-19 2008-11-19 Decontamination method and device of heat exchanger

Publications (1)

Publication Number Publication Date
JP2010122076A true JP2010122076A (en) 2010-06-03

Family

ID=42323544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008296155A Pending JP2010122076A (en) 2008-11-19 2008-11-19 Decontamination method and device of heat exchanger

Country Status (1)

Country Link
JP (1) JP2010122076A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286374A (en) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd Method and device for decontamination of heat exchanger
KR20210156609A (en) * 2020-06-18 2021-12-27 한국수력원자력 주식회사 System decontamination facilities

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100331A (en) * 1975-01-27 1976-09-04 American Water Services
JPS5835398A (en) * 1981-08-25 1983-03-02 ロザイ築炉株式会社 Removal of adhered substance in pipe
JPS59109793A (en) * 1982-11-26 1984-06-25 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Method and device for continuously purifying heat exchanger under operation
JPS60178399A (en) * 1984-01-26 1985-09-12 エルンスト シユミユツツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and device for decontaminating facility part contaminated by radioactive substance
JPH032697A (en) * 1989-05-31 1991-01-09 Science & Tech Agency Fluidized grinding decontamination method and apparatus for removing radioactive corrosion product and contaminant strongly stuck to inner surface of piping by fine abrasive
JPH06186395A (en) * 1992-12-21 1994-07-08 Ishikawajima Harima Heavy Ind Co Ltd Decontamination device in tubing line
JPH08285996A (en) * 1995-02-14 1996-11-01 Kawasaki Heavy Ind Ltd Device for cutting high-level radioactive solid waste in water
JPH09251095A (en) * 1996-03-18 1997-09-22 Hitachi Ltd Method for cleaning pipe line
JP2000075095A (en) * 1998-08-28 2000-03-14 Toshiba Corp Decontamination device of radioactivity contaminated matter and recovery method for abrasive
JP2004333032A (en) * 2003-05-08 2004-11-25 Kyudenko Corp Automatic cleaning device for air conditioner
JP2006112844A (en) * 2004-10-13 2006-04-27 Yuushin Kk Contaminated pipe treatment method and contaminated pipe treating device
JP2007130613A (en) * 2005-11-14 2007-05-31 Nax Co Ltd Cleaning apparatus
JP2007155544A (en) * 2005-12-06 2007-06-21 Mitsubishi Heavy Ind Ltd Decontaminating apparatus and method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100331A (en) * 1975-01-27 1976-09-04 American Water Services
JPS5835398A (en) * 1981-08-25 1983-03-02 ロザイ築炉株式会社 Removal of adhered substance in pipe
JPS59109793A (en) * 1982-11-26 1984-06-25 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Method and device for continuously purifying heat exchanger under operation
JPS60178399A (en) * 1984-01-26 1985-09-12 エルンスト シユミユツツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and device for decontaminating facility part contaminated by radioactive substance
JPH032697A (en) * 1989-05-31 1991-01-09 Science & Tech Agency Fluidized grinding decontamination method and apparatus for removing radioactive corrosion product and contaminant strongly stuck to inner surface of piping by fine abrasive
JPH06186395A (en) * 1992-12-21 1994-07-08 Ishikawajima Harima Heavy Ind Co Ltd Decontamination device in tubing line
JPH08285996A (en) * 1995-02-14 1996-11-01 Kawasaki Heavy Ind Ltd Device for cutting high-level radioactive solid waste in water
JPH09251095A (en) * 1996-03-18 1997-09-22 Hitachi Ltd Method for cleaning pipe line
JP2000075095A (en) * 1998-08-28 2000-03-14 Toshiba Corp Decontamination device of radioactivity contaminated matter and recovery method for abrasive
JP2004333032A (en) * 2003-05-08 2004-11-25 Kyudenko Corp Automatic cleaning device for air conditioner
JP2006112844A (en) * 2004-10-13 2006-04-27 Yuushin Kk Contaminated pipe treatment method and contaminated pipe treating device
JP2007130613A (en) * 2005-11-14 2007-05-31 Nax Co Ltd Cleaning apparatus
JP2007155544A (en) * 2005-12-06 2007-06-21 Mitsubishi Heavy Ind Ltd Decontaminating apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010286374A (en) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd Method and device for decontamination of heat exchanger
EP2264716A3 (en) * 2009-06-12 2011-07-06 Mitsubishi Heavy Industries, Ltd. Decontamination method of heat exchanger and decontamination method
KR20210156609A (en) * 2020-06-18 2021-12-27 한국수력원자력 주식회사 System decontamination facilities
KR102482934B1 (en) * 2020-06-18 2022-12-28 한국수력원자력 주식회사 System decontamination facilities

Similar Documents

Publication Publication Date Title
JP5645283B2 (en) High temperature gas cooled reactor steam power generation system and method
US10811148B2 (en) Self-diagnosis and accident-handling unmanned nuclear reactor
JP5843492B2 (en) Radiation shielding method and structure processing method
RU2015107005A (en) PROTECTIVE PROTECTIVE SHELL SYSTEM FOR NUCLEAR TECHNICAL INSTALLATION AND THE APPROPRIATE METHOD OF OPERATION
JPH0359322B2 (en)
JP4796173B2 (en) Heat exchanger decontamination method and decontamination apparatus
WO2016127527A1 (en) Heat exchange system and nuclear reactor system
JP2010256322A (en) Emergency core cooling system and nuclear reactor facility
CN107112059A (en) Stop cooling system and the nuclear facilities with the stopping cooling system
JP2010122076A (en) Decontamination method and device of heat exchanger
TW201714184A (en) Method for decommissioning nuclear power plant
JP2007147163A (en) Steam generator, and flow resistance adjusting method for cooling water in steam generator
KR101250516B1 (en) passive auxiliary condensing apparatus for nuclear power plant
CN206595042U (en) Nuclear power station steam generator is cooled down and EGR
JP2004520586A (en) Radiation decontamination method and apparatus for a surface located inside a hollow object
JP2009198400A (en) Cooling structure and method of control rod drive unit and nuclear reactor
KR101513140B1 (en) Descale device of heat exchanger and descale method thereof
US5517539A (en) Method of decontaminating a PWR primary loop
JPS614671A (en) Treater for u-shaped pipe bend region
JP6504869B2 (en) Heat exchanger capillary washing apparatus and method
JP2011145057A (en) Condenser
KR20130023964A (en) Apparatus for preventing thermal shock having a condensate mixing storage tank on condensate return line
WO2012067039A1 (en) Hole drilling device, and method
US20230138837A1 (en) Apparatus and method of removing foreign substances from steam generator
KR101421209B1 (en) Equipment for coke dry quenching

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111025