JP2010121907A - Absorption-type refrigerating device - Google Patents

Absorption-type refrigerating device Download PDF

Info

Publication number
JP2010121907A
JP2010121907A JP2008298103A JP2008298103A JP2010121907A JP 2010121907 A JP2010121907 A JP 2010121907A JP 2008298103 A JP2008298103 A JP 2008298103A JP 2008298103 A JP2008298103 A JP 2008298103A JP 2010121907 A JP2010121907 A JP 2010121907A
Authority
JP
Japan
Prior art keywords
refrigerant
generator
solution
temperature
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008298103A
Other languages
Japanese (ja)
Other versions
JP5338272B2 (en
Inventor
Mitsushi Kawai
満嗣 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008298103A priority Critical patent/JP5338272B2/en
Publication of JP2010121907A publication Critical patent/JP2010121907A/en
Application granted granted Critical
Publication of JP5338272B2 publication Critical patent/JP5338272B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower concentration of the absorption solution in a generator by lowering pressure of an absorber and allowing low evaporation temperature while lowering saturated solution temperature so as to lower temperature of a heating source of the generator without enlarging a device. <P>SOLUTION: The absorption-type refrigerating device, composed to feed absorption solution Lc cooled by a water-cooling type supercooling heat exchanger 2 to the absorber A, includes: a coolant reservoir 1 for storing unevaporated components of liquid coolant Rw dispersed on a heat transfer surface of an evaporator E, provided at a lower part of the evaporator E; and a cooling means X for using the liquid coolant Rw in the coolant reservoir 1 as a cooling heat source of the supercooling heat exchanger 2, for lowering the pressure of the absorber A to obtain the low evaporation temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、吸収式冷凍装置に関し、さらに詳しくは発生器の加熱源温度を低下できるようにした吸収式冷凍装置に関するものである。   The present invention relates to an absorption refrigeration apparatus, and more particularly to an absorption refrigeration apparatus that can lower the temperature of a heating source of a generator.

吸収式冷凍装置(例えば、LiBr式吸収式冷凍装置)においては、図6および図7に示すように、希溶液(例えば、LiBr希溶液)を発生器Gで加熱濃縮させることにより得られる冷媒蒸気Rsを水冷式の凝縮器Cで冷却液化し、液化した液冷媒Rwを蒸発器Eの伝熱面に散布させることで内部の被冷却流体を冷却し、蒸発した冷媒蒸気Rsを吸収器Aにて前記発生器Gより送られる濃溶液Lcで吸収させた後、濃度の低下した溶液(即ち、希溶液Ld)を前記発生器Gに送ることで、吸収サイクルを形成することとなっている。ここで、図6には、凝縮器Cからの液冷媒Rwが蒸発器Eの上部から伝熱面に散布される冷媒一過性方式の蒸発器Eを用いた吸収サイクルが示されており、図7には、凝縮器Cからの液冷媒Rwが蒸発器Eの下部に設けられた冷媒溜まり1に供給され、該冷媒溜まり1の液冷媒Rwが冷媒ポンプPrにより蒸発器Eの上部から伝熱面に循環散布される冷媒循環方式の蒸発器Eを用いた吸収サイクルが示されている。図6および図7において、符号Tcは冷却塔、Plは吸収器Aからの溶液を圧送する溶液ポンプ、Pwは冷却塔Tcからの冷却水Wcを圧送する冷却水ポンプ、Haは発生器Gからの濃溶液Lcと発生器Gへ送られる希溶液Ldとを熱交換させる溶液熱交換器、2は吸収器Aに入る吸収溶液を過冷却する水冷式の過冷却用熱交換器、5は冷却塔Tcからの冷却水Wcを凝縮器Cおよび過冷却用熱交換器2に循環させる冷却水回路である。   In an absorption refrigeration apparatus (for example, LiBr absorption refrigeration apparatus), as shown in FIGS. 6 and 7, refrigerant vapor obtained by heating and concentrating a dilute solution (for example, LiBr dilute solution) with a generator G Rs is cooled and liquefied by a water-cooled condenser C, and the liquefied liquid refrigerant Rw is sprayed on the heat transfer surface of the evaporator E to cool the fluid to be cooled, and the evaporated refrigerant vapor Rs is sent to the absorber A. Then, after absorbing with the concentrated solution Lc sent from the generator G, a solution having a reduced concentration (ie, dilute solution Ld) is sent to the generator G, thereby forming an absorption cycle. Here, FIG. 6 shows an absorption cycle using the refrigerant transient type evaporator E in which the liquid refrigerant Rw from the condenser C is sprayed on the heat transfer surface from the upper part of the evaporator E. In FIG. 7, the liquid refrigerant Rw from the condenser C is supplied to the refrigerant reservoir 1 provided in the lower part of the evaporator E, and the liquid refrigerant Rw in the refrigerant reservoir 1 is transmitted from the upper part of the evaporator E by the refrigerant pump Pr. An absorption cycle using a refrigerant circulation type evaporator E circulating and sprayed on the hot surface is shown. 6 and 7, reference numeral Tc is a cooling tower, Pl is a solution pump for pumping the solution from the absorber A, Pw is a cooling water pump for pumping the cooling water Wc from the cooling tower Tc, and Ha is from the generator G. 2 is a solution heat exchanger for exchanging heat between the concentrated solution Lc and the dilute solution Ld sent to the generator G, 2 is a water-cooled supercooling heat exchanger for supercooling the absorbing solution entering the absorber A, and 5 is cooling. The cooling water circuit circulates the cooling water Wc from the tower Tc to the condenser C and the supercooling heat exchanger 2.

従って、発生器Gで希溶液Ldを加熱するための加熱源の温度は、発生器Gの出口における濃溶液Lcの濃度におけるその飽和蒸気温度に等しい溶液温度と熱交換するのに必要な温度から決定されることとなる。つまり、その飽和蒸気温度は、凝縮器Cでの凝縮温度で決まる凝縮圧力と等しい圧力における溶液温度となるので、発生器Gでの加熱源温度を低下するためには、凝縮器Cにおける凝縮(圧力)温度を低下させることでもある(図5参照)。   Therefore, the temperature of the heating source for heating the dilute solution Ld in the generator G is from the temperature required for heat exchange with the solution temperature equal to its saturated vapor temperature at the concentration of the concentrated solution Lc at the outlet of the generator G. Will be determined. That is, since the saturated vapor temperature is the solution temperature at a pressure equal to the condensation pressure determined by the condensation temperature in the condenser C, in order to reduce the heating source temperature in the generator G, the condensation in the condenser C ( It is also reducing the pressure) temperature (see FIG. 5).

例えば、ガスエンジン等の冷却水を利用した排温水吸収式の単効用冷凍装置において、発生器Gでの溶液濃度が60%程度の場合、凝縮温度を40℃とすると凝縮圧力下の溶液の飽和蒸気温度に等しい溶液温度は85℃より、熱源温度としては90℃程度、すなわちガスエンジンの排温水温水としてこの温水以上が必要となる(図5のサイクル(A)参照)。発生器Gの溶液を加熱するための熱源温度をより低くできれば、加熱用の温水として太陽熱等が利用可能となり、排熱吸収式冷凍装置の利用範囲を大きく拡大することができる。この凝縮温度を低下させるには、冷却用の空気温度を低下させるか、もしくは発生器Gの出口溶液濃度(LiBr溶液濃度)を薄くして飽和蒸気温度を低下させる必要がある。   For example, in a single-effect refrigeration system using a warm water absorption type that uses cooling water such as a gas engine, when the solution concentration in the generator G is about 60%, the saturation of the solution under the condensation pressure is assumed to be 40 ° C. The solution temperature equal to the steam temperature is 85 ° C., the heat source temperature is about 90 ° C., that is, this hot water or higher is required as the warm water for exhaust gas from the gas engine (see cycle (A) in FIG. 5). If the heat source temperature for heating the solution of the generator G can be lowered, solar heat or the like can be used as the hot water for heating, and the use range of the exhaust heat absorption refrigeration apparatus can be greatly expanded. In order to reduce the condensation temperature, it is necessary to reduce the cooling air temperature or reduce the outlet solution concentration (LiBr solution concentration) of the generator G to lower the saturated vapor temperature.

しかしながら、吸収式冷凍装置の定格運転時の凝縮温度は、水冷式の凝縮器の場合には、冷却塔(クーリングタワー)Tcにおける冷却水と熱交換される温度であり、冷却水の温度は外気温度における蒸発温度により決定され、定格時では32℃程度であることにより、一般的には冷却水は吸収器Aを出た後に凝縮器Cに流入されるため、凝縮温度を40℃以下にすることは、冷却塔Tcや凝縮器Cを大きくする必要があり、実用的でない。仮に、冷却水を吸収器Aと凝縮器Cに並列で流入したとしても、凝縮温度は多少なり低くなるが、大きく熱源温度を低下させることは出来ない。加熱源温度を10℃程度低くするには、凝縮温度で7〜10℃程度低くし、30〜33℃とする必要がある(図5のサイクル(A′)参照)。   However, in the case of a water-cooled condenser, the condensation temperature during rated operation of the absorption refrigeration apparatus is a temperature at which heat is exchanged with the cooling water in the cooling tower (cooling tower) Tc, and the temperature of the cooling water is the outside air temperature. Since the cooling water generally flows out of the absorber A and then flows into the condenser C because it is determined by the evaporation temperature at the rated time and is about 32 ° C., the condensation temperature should be 40 ° C. or lower. Is not practical because the cooling tower Tc and the condenser C need to be enlarged. Even if the cooling water flows into the absorber A and the condenser C in parallel, the condensation temperature is somewhat lowered, but the heat source temperature cannot be greatly reduced. In order to lower the heating source temperature by about 10 ° C., it is necessary to lower the condensation temperature by about 7 to 10 ° C. to 30 to 33 ° C. (see cycle (A ′) in FIG. 5).

また、発生器Gの出口溶液(例えば、LiBr溶液)濃度Lcを大きく低下(薄く)することで、熱源温度を低下させることは、蒸発器Eにおける蒸発温度が、吸収器Aの入口溶液温度と発生器Gの出口溶液濃度Lcとにより決定されるため、同じ低い冷水温度(即ち、被冷却流体温度)を得るには、吸収器Aの入口の濃溶液(例えば、LiBr濃溶液)Lcの濃度が低下するので、同じ蒸発温度にするには吸収器Aの入口の濃溶液Lcの温度を低下する必要があり、その溶液温度は必然的に決まる(図5のサイクル(C)参照)。すなわち、低い加熱源温度における発生器Gの低い(薄い)溶液濃度では、同じ吸収器Aの入口溶液温度では蒸発温度が上昇し(図5のサイクル(B)参照)、定格運転時の蒸発器Eでの冷水温度(被冷却流体温度)を所定通り低くできないことになり、単に発生器Gでの溶液濃度を低くし、加熱源温度を低下させることは困難である。   Moreover, reducing the heat source temperature by greatly reducing (thinning) the outlet solution (for example, LiBr solution) concentration Lc of the generator G means that the evaporation temperature in the evaporator E is equal to the inlet solution temperature of the absorber A. In order to obtain the same low chilled water temperature (that is, cooled fluid temperature), the concentration of the concentrated solution (for example, LiBr concentrated solution) Lc at the inlet of the absorber A is determined by the outlet solution concentration Lc of the generator G. Therefore, the temperature of the concentrated solution Lc at the inlet of the absorber A needs to be lowered to obtain the same evaporation temperature, and the solution temperature is inevitably determined (see the cycle (C) in FIG. 5). That is, at the low (thin) solution concentration of the generator G at a low heating source temperature, the evaporation temperature increases at the inlet solution temperature of the same absorber A (see cycle (B) in FIG. 5). The cold water temperature (cooled fluid temperature) at E cannot be lowered as prescribed, and it is difficult to simply lower the solution concentration at the generator G and lower the heating source temperature.

なお、発生器の加熱源の温度を低くする手段としては、この場合、吸収式冷凍装置において、蒸発器と吸収器とを組み合わせたユニットを二つ用意し、一方のユニットを構成する吸収器の出口からの希溶液を一方のユニットを構成する蒸発器の熱交換部、他方のユニットを構成する吸収器の熱交換部を経て一方のユニットを構成する吸収器の上部に還流させる還流回路を付設して、発生器の加熱源の温度を低くできるようにしている(特許文献1参照)。しかしながら、この場合、蒸発器と吸収器とを組み合わせたユニットを二つ用意する必要があり、装置全体の大型化が避けられないというデメリットがある。   As a means for lowering the temperature of the heating source of the generator, in this case, in the absorption refrigeration apparatus, two units in which an evaporator and an absorber are combined are prepared, and the absorber constituting one unit is prepared. A reflux circuit is provided to return the dilute solution from the outlet to the upper part of the absorber constituting one unit through the heat exchange part of the evaporator constituting one unit and the heat exchanging part of the absorber constituting the other unit. Thus, the temperature of the heating source of the generator can be lowered (see Patent Document 1). However, in this case, it is necessary to prepare two units in which an evaporator and an absorber are combined, and there is a demerit that the overall size of the apparatus cannot be avoided.

特開2007−271165JP2007-271165A

本願発明では、蒸発器の伝熱面に散布した液冷媒の未蒸発分を下部の冷媒溜まりに溜め、この未蒸発液冷媒を冷媒ポンプにより吸収器に入る吸収溶液を過冷却する水冷式の過冷却用熱交換器に送液し、この過冷却用熱交換器で吸収器入口溶液温度を下げ、吸収器の圧力を下げることにより、低い蒸発温度が得られるようにしている。その結果、発生器における溶液濃度を低くすることができ、飽和溶液温度を低下させることが可能となり、発生器の加熱源の温度を低下できるようにしている。   In the present invention, an unevaporated portion of the liquid refrigerant sprayed on the heat transfer surface of the evaporator is stored in a lower refrigerant reservoir, and the non-evaporated liquid refrigerant is supercooled by the refrigerant pump into the absorber. The solution is sent to the cooling heat exchanger, and the temperature of the solution at the absorber inlet is lowered by the heat exchanger for supercooling, and the pressure of the absorber is lowered, so that a low evaporation temperature can be obtained. As a result, the solution concentration in the generator can be lowered, the saturated solution temperature can be lowered, and the temperature of the heating source of the generator can be lowered.

本願発明は、上記の点に鑑みてなされたもので、吸収器の圧力を低下させることにより、低い蒸発温度を可能とすることで、発生器における吸収溶液濃度を低くし、飽和溶液温度を低下させ、装置を大型化させるとなく、発生器の加熱源の温度を低くできるようにすることを目的としている。   The present invention has been made in view of the above points, and by reducing the pressure of the absorber, enabling a low evaporation temperature, thereby reducing the concentration of the absorbing solution in the generator and lowering the saturated solution temperature. The object is to reduce the temperature of the heating source of the generator without increasing the size of the apparatus.

本願発明では、上記課題を解決するための第1の手段として、発生器G、該発生器Gから得られた冷媒蒸気Rsを凝縮液化する凝縮器C、該凝縮器Cで凝縮液化された液冷媒Rwを蒸発気化させる蒸発器Eおよび該蒸発器Eで蒸発気化された冷媒蒸気Rsを前記発生器Gで得られた濃溶液Lcに吸収して前記発生器Gへ供給される希溶液Ldを生成する吸収器Aを備え、水冷式の過冷却用熱交換器2により冷却された吸収溶液Ldを前記吸収器Aに送液するように構成した吸収式冷凍装置において、前記蒸発器Eの下部に、該蒸発器Eの伝熱面に散布した液冷媒Rwの未蒸発分を溜める冷媒溜まり1を設けるとともに、該冷媒溜まり1の液冷媒Rwを、前記過冷却用熱交換器2の冷却熱源として使用する冷却手段Xを付設している。   In the present invention, as a first means for solving the above problems, the generator G, the condenser C that condenses and liquefies the refrigerant vapor Rs obtained from the generator G, and the liquid condensed and liquefied by the condenser C An evaporator E for evaporating and evaporating the refrigerant Rw, and a refrigerant solution Rc evaporated and evaporated by the evaporator E is absorbed in the concentrated solution Lc obtained by the generator G, and a dilute solution Ld supplied to the generator G is obtained. In the absorption refrigeration apparatus including the absorber A to be generated and configured to send the absorption solution Ld cooled by the water-cooled supercooling heat exchanger 2 to the absorber A, the lower part of the evaporator E In addition, a refrigerant reservoir 1 for storing the unevaporated liquid refrigerant Rw spread on the heat transfer surface of the evaporator E is provided, and the liquid refrigerant Rw in the refrigerant reservoir 1 is used as a cooling heat source for the supercooling heat exchanger 2. The cooling means X used as is attached.

上記のように構成したことにより、蒸発器Eの伝熱面に散布した液冷媒Rwの未蒸発分が、吸収器Aに入る吸収溶液Ldを過冷却する水冷式の過冷却用熱交換器2の冷却熱源として使用され、吸収器Aの冷却水温度が低下し、吸収器Aの圧力を下げることにより、低い蒸発温度が得られることとなる。その結果、発生器Gにおける溶液濃度を低くすることができ、飽和溶液温度を低下させることが可能となり、発生器Gの加熱源の温度を低下できる。   With the above-described configuration, the water-cooling type supercooling heat exchanger 2 that supercools the absorbing solution Ld that enters the absorber A with the unevaporated liquid refrigerant Rw sprayed on the heat transfer surface of the evaporator E. When the cooling water temperature of the absorber A is lowered and the pressure of the absorber A is lowered, a low evaporation temperature can be obtained. As a result, the solution concentration in the generator G can be lowered, the saturated solution temperature can be lowered, and the temperature of the heating source of the generator G can be lowered.

本願発明では、さらに、上記課題を解決するための第2の手段として、上記第1の手段を備えた吸収式冷凍装置において、前記冷却手段Xを、前記冷媒溜まり1の液冷媒Rwを冷媒ポンプPrを介して前記過冷却用熱交換器2に送給する冷媒循環回路3により構成することもでき、そのように構成した場合、冷媒溜まり1と冷媒循環回路3とを付設するという簡単な構成により、吸収器Aの圧力を下げることが可能となり、蒸発温度を低下させることができる。   In the present invention, as a second means for solving the above problems, in the absorption refrigeration apparatus provided with the first means, the cooling means X is used, the liquid refrigerant Rw in the refrigerant reservoir 1 is used as a refrigerant pump. It can also be constituted by the refrigerant circulation circuit 3 fed to the heat exchanger 2 for supercooling via Pr, and in such a case, a simple arrangement in which the refrigerant reservoir 1 and the refrigerant circulation circuit 3 are provided. Thus, the pressure of the absorber A can be lowered, and the evaporation temperature can be lowered.

本願発明では、さらに、上記課題を解決するための第3の手段として、上記第2の手段を備えた吸収式冷凍装置において、前記冷媒循環回路3に、前記冷媒溜まり1の液冷媒Rwを前記凝縮器Cの伝熱面内部に送給する冷却用回路4を付設することもでき、そのように構成した場合、冷媒溜まり1の液冷媒Rwの一部が、凝縮器Cに送液されることとなり、凝縮温度も低下することとなって、発生器Gの加熱源の温度をより一層低下させることが可能となる。   In the present invention, as a third means for solving the above-described problem, in the absorption refrigeration apparatus provided with the second means, the liquid refrigerant Rw in the refrigerant reservoir 1 is supplied to the refrigerant circulation circuit 3. A cooling circuit 4 for feeding the inside of the heat transfer surface of the condenser C can also be provided. In such a configuration, a part of the liquid refrigerant Rw in the refrigerant reservoir 1 is sent to the condenser C. As a result, the condensation temperature also decreases, and the temperature of the heating source of the generator G can be further decreased.

本願発明では、さらに、上記課題を解決するための第4の手段として、上記第1、第2又は第3の手段を備えた吸収式冷凍装置において、前記発生器Gの加熱源として排熱を用いることもでき、そのように構成した場合、やや低温の排熱温水を有効に利用できる。   In the present invention, furthermore, as a fourth means for solving the above problems, in the absorption refrigeration apparatus provided with the first, second or third means, exhaust heat is used as a heating source of the generator G. It can also be used, and in such a configuration, a slightly low temperature exhaust heat hot water can be used effectively.

本願発明では、さらに、上記課題を解決するための第5の手段として、上記第4の手段を備えた吸収式冷凍装置において、前記排熱として太陽熱を用いることもでき、そのように構成した場合、吸収式冷凍装置の利用範囲を大幅に拡大することができる。   In the present invention, furthermore, as a fifth means for solving the above problems, in the absorption refrigeration apparatus provided with the fourth means, solar heat can also be used as the exhaust heat, and when configured as such The range of use of the absorption refrigeration apparatus can be greatly expanded.

本願発明の第1の手段によれば、発生器G、該発生器Gから得られた冷媒蒸気Rsを凝縮液化する凝縮器C、該凝縮器Cで凝縮液化された液冷媒Rwを蒸発気化させる蒸発器Eおよび該蒸発器Eで蒸発気化された冷媒蒸気Rsを前記発生器Gで得られた濃溶液Lcに吸収して前記発生器Gへ供給される希溶液Ldを生成する吸収器Aを備え、水冷式の過冷却用熱交換器2により冷却された吸収溶液Ldを前記吸収器Aに送液するように構成した吸収式冷凍装置において、前記蒸発器Eの下部に、該蒸発器Eの伝熱面に散布した液冷媒Rwの未蒸発分を溜める冷媒溜まり1を設けるとともに、該冷媒溜まり1の液冷媒Rwを、前記過冷却用熱交換器2の冷却熱源として使用する冷却手段Xを付設して、蒸発器Eの伝熱面に散布した液冷媒Rwの未蒸発分が、吸収器Aに入る吸収溶液Ldを過冷却する水冷式の過冷却用熱交換器2の冷却熱源として使用され、吸収器Aの圧力を下げることにより、低い蒸発温度が得られるようにしたので、発生器Gにおける溶液濃度を低くすることができ、飽和溶液温度を低下させることが可能となり、発生器Gの加熱源の温度を低下できるという効果がある。   According to the first means of the present invention, the generator G, the condenser C that condenses and liquefies the refrigerant vapor Rs obtained from the generator G, and the liquid refrigerant Rw condensed and liquefied by the condenser C is evaporated. An evaporator A and an absorber A that absorbs the refrigerant vapor Rs evaporated by the evaporator E into the concentrated solution Lc obtained by the generator G to generate a diluted solution Ld supplied to the generator G. In an absorption refrigeration apparatus comprising the absorption solution Ld cooled by the water-cooled supercooling heat exchanger 2, the evaporator E is disposed below the evaporator E. A cooling means X is provided that stores a non-evaporated portion of the liquid refrigerant Rw sprayed on the heat transfer surface, and uses the liquid refrigerant Rw in the refrigerant pool 1 as a cooling heat source for the supercooling heat exchanger 2. Of the liquid refrigerant Rw sprayed on the heat transfer surface of the evaporator E. The evaporated component is used as a cooling heat source for the water-cooled supercooling heat exchanger 2 that supercools the absorbing solution Ld entering the absorber A, so that a low evaporation temperature can be obtained by reducing the pressure of the absorber A. Therefore, the solution concentration in the generator G can be lowered, the saturated solution temperature can be lowered, and the temperature of the heating source of the generator G can be lowered.

本願発明の第2の手段におけるように、上記第1の手段を備えた吸収式冷凍装置において、前記冷却手段Xを、前記冷媒溜まり1の液冷媒Rwを冷媒ポンプPrを介して前記過冷却用熱交換器2に送給する冷媒循環回路3により構成することもでき、そのように構成した場合、冷媒溜まり1と冷媒循環回路3とを付設するという簡単な構成により、吸収器Aの圧力を下げることが可能となり、蒸発温度を低下させることができる。   As in the second means of the present invention, in the absorption refrigeration apparatus provided with the first means, the cooling means X is used for the supercooling of the liquid refrigerant Rw in the refrigerant reservoir 1 via the refrigerant pump Pr. The refrigerant circulation circuit 3 for feeding to the heat exchanger 2 can also be configured. In such a configuration, the pressure of the absorber A is reduced by a simple configuration in which the refrigerant reservoir 1 and the refrigerant circulation circuit 3 are provided. It is possible to lower the evaporation temperature.

本願発明の第3の手段におけるように、上記第2の手段を備えた吸収式冷凍装置において、前記冷媒循環回路3に、前記冷媒溜まり1の液冷媒Rwを前記凝縮器Cの伝熱面内部に送給する冷却用回路4を付設することもでき、そのように構成した場合、冷媒溜まり1の液冷媒Rwの一部が、凝縮器Cに送液されることとなり、凝縮温度も低下することとなって、発生器Gの加熱源の温度をより一層低下させることが可能となる。   As in the third means of the present invention, in the absorption refrigeration apparatus provided with the second means, the liquid refrigerant Rw in the refrigerant reservoir 1 is supplied to the refrigerant circulation circuit 3 inside the heat transfer surface of the condenser C. It is also possible to attach a cooling circuit 4 to be supplied to the refrigerant. In such a configuration, a part of the liquid refrigerant Rw in the refrigerant reservoir 1 is sent to the condenser C, and the condensation temperature also decreases. As a result, the temperature of the heating source of the generator G can be further reduced.

本願発明の第4の手段におけるように、上記第1、第2又は第3の手段を備えた吸収式冷凍装置において、前記発生器Gの加熱源として排熱を用いることもでき、そのように構成した場合、やや低温の排熱温水を有効に利用できる。   As in the fourth means of the present invention, in the absorption refrigeration apparatus provided with the first, second or third means, exhaust heat can be used as a heating source for the generator G, and so on. When configured, a slightly low temperature exhaust heat hot water can be used effectively.

本願発明の第5の手段におけるように、上記第4の手段を備えた吸収式冷凍装置において、前記排熱として太陽熱を用いることもでき、そのように構成した場合、吸収式冷凍装置の利用範囲を大幅に拡大することができる。   As in the fifth means of the present invention, in the absorption refrigeration apparatus provided with the fourth means, solar heat can also be used as the exhaust heat, and in such a case, the utilization range of the absorption refrigeration apparatus Can be greatly expanded.

以下、添付の図面を参照して、本願発明の幾つかの好適な実施の形態について説明する。   Hereinafter, several preferred embodiments of the present invention will be described with reference to the accompanying drawings.

第1の実施の形態
図1には、本願発明の第1の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
First Embodiment FIG. 1 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a first embodiment of the present invention.

この吸収冷凍サイクルは、冷媒(例えば、水)を吸収する能力に優れた吸収剤(例えば、LiBr)の水溶液(以下、単に吸収溶液という)の冷媒吸収能力を回復させるために該溶液を加熱媒体(例えば、排温水)で加熱して濃縮するための発生器Gと、該発生器Gにおいて溶液から分離した蒸気(冷媒)Rsを導入してこれを冷却することによって液化させる水冷式の凝縮器Cと、該凝縮器Cによって液化された冷媒Rwを導入して低圧下で蒸発(気化)させる蒸発器Eと、該蒸発器Eで発生した蒸気(冷媒)Rsを吸収するために前記発生器Gで濃縮された濃溶液Lcを散布する吸収器Aと、該吸収器Aで蒸気(冷媒)Rsを吸収したことによって希釈された溶液(希溶液)Ldを濃縮するために再び発生器Gへ送り込むための溶液ポンプPlと、前記吸収器Aに入る吸収溶液Lcを過冷却する水冷式の過冷却用熱交換器2とを備えて構成されている。符号Haは吸収器Aから出た希溶液Ldの一部(発生器Gへ供給される希溶液Ld)と発生器Gから出た濃溶液Lcとを熱交換する溶液熱交換器、Tcは冷却塔、Pwは冷却塔Tcからの冷却水Wcを凝縮器Cに圧送する冷却水ポンプである。この吸収冷凍サイクルにおいては、凝縮器Cからの液冷媒Rwが蒸発器Eの上部から伝熱面に散布される冷媒一過性方式の蒸発器Eが用いられている。   In this absorption refrigeration cycle, in order to recover the refrigerant absorption capacity of an aqueous solution (hereinafter simply referred to as an absorption solution) of an absorbent (for example, LiBr) having an excellent ability to absorb a refrigerant (for example, water), the solution is heated to a heating medium. A generator G for heating and concentrating with (for example, waste water), and a water-cooled condenser for liquefying by introducing steam (refrigerant) Rs separated from the solution into the generator G and cooling it. C, an evaporator E that introduces the refrigerant Rw liquefied by the condenser C and evaporates (vaporizes) under low pressure, and the generator for absorbing the vapor (refrigerant) Rs generated in the evaporator E. Absorber A spraying concentrated solution Lc concentrated in G, and again to generator G to concentrate solution (dilute solution) Ld diluted by absorbing vapor (refrigerant) Rs in absorber A Solution pump for feeding And pl, and the absorption solution Lc entering the absorber A is configured to include a heat exchanger for supercooling 2 water-cooled supercooling. Reference numeral Ha denotes a solution heat exchanger that exchanges heat between a part of the diluted solution Ld (the diluted solution Ld supplied to the generator G) exiting from the absorber A and the concentrated solution Lc that exits from the generator G, and Tc denotes cooling. The tower Pw is a cooling water pump that pumps the cooling water Wc from the cooling tower Tc to the condenser C. In this absorption refrigeration cycle, a refrigerant transient type evaporator E in which the liquid refrigerant Rw from the condenser C is sprayed from the upper part of the evaporator E to the heat transfer surface is used.

また、この吸収冷凍サイクルにおいては、前記蒸発器Eおよび吸収器Aは一体化されてユニットUを構成している。前記蒸発器Eにおいては、凝縮器Cから供給された凝縮水(液冷媒)Rwが内部を流れる水(被冷却流体)と熱交換して蒸発気化するとともに、利用側の熱源として冷水が得られる一方、前記吸収器Aにおいては、発生器Gから供給され且つ吸収器Aからの溶液と合流した後過冷却用熱交換器2で過冷却された吸収溶液Ldに蒸発器Eから得られた蒸気(冷媒)Rsが吸収されることにより、溶液濃度が希釈されることとなっている。この場合、吸収器Aにおいては、冷媒蒸気Rsを単に吸収させるだけで、吸収熱は過冷却された吸収溶液Ldの顕熱で取り去る間接空冷方式(換言すれば、溶液分離冷却方式)とされる。   In the absorption refrigeration cycle, the evaporator E and the absorber A are integrated to form a unit U. In the evaporator E, the condensed water (liquid refrigerant) Rw supplied from the condenser C exchanges heat with the water (cooled fluid) flowing inside, evaporates, and cold water is obtained as a heat source on the use side. On the other hand, in the absorber A, the vapor obtained from the evaporator E into the absorption solution Ld supplied from the generator G and joined with the solution from the absorber A and then supercooled by the supercooling heat exchanger 2. (Refrigerant) The solution concentration is diluted by absorbing Rs. In this case, in the absorber A, an indirect air cooling method (in other words, a solution separation cooling method) in which the absorption heat is removed by sensible heat of the supercooled absorption solution Ld simply by absorbing the refrigerant vapor Rs. .

そして、本実施の形態においては、前記蒸発器Eの下部には、該蒸発器Eの伝熱面に散布した液冷媒Rwの未蒸発分を溜める冷媒溜まり1が設けられており、該冷媒溜まり1の液冷媒Rwを冷媒ポンプPrを介して前記過冷却用熱交換器2に送給する冷媒循環回路3が付設されている。該冷媒循環回路3は、前記過冷却用熱交換器2の冷却熱源として使用する冷却手段Xを構成することとなっている。   In the present embodiment, the lower part of the evaporator E is provided with a refrigerant reservoir 1 for accumulating the unevaporated liquid refrigerant Rw sprayed on the heat transfer surface of the evaporator E. A refrigerant circulation circuit 3 for supplying one liquid refrigerant Rw to the supercooling heat exchanger 2 via a refrigerant pump Pr is attached. The refrigerant circulation circuit 3 constitutes a cooling means X used as a cooling heat source for the supercooling heat exchanger 2.

上記のように構成したことにより、蒸発器Eの伝熱面に散布した液冷媒Rwの未蒸発分が、吸収器Aに入る吸収溶液Ldを過冷却する水冷式の過冷却用熱交換器2の冷却熱源として使用され、吸収器Aの冷却水温度が低下し、吸収器Aの圧力を下げることにより、低い蒸発温度が得られることとなる。その結果、発生器Gにおける溶液濃度を低くすることができ、飽和溶液温度を低下させることが可能となり、発生器Gの加熱源の温度を低下できる。つまり、従来の吸収式冷凍装置(図6および図7図示)における発生器Gの加熱源温度は、図5のサイクル(A)に示すように、冷水を得るために蒸発器Eの蒸発温度を5℃とすれば、90℃程度が必要であったが、本実施の形態の場合、図3のサイクル(B)、(C)に示すように、溶液濃度を低く(薄く)することで、加熱源温度を80℃程度とすることが可能となり、発生器Gの加熱源として、排熱温水(例えば、太陽熱による温水)を利用することができるのである。   With the above-described configuration, the water-cooling type supercooling heat exchanger 2 that supercools the absorbing solution Ld that enters the absorber A with the unevaporated liquid refrigerant Rw sprayed on the heat transfer surface of the evaporator E. When the cooling water temperature of the absorber A is lowered and the pressure of the absorber A is lowered, a low evaporation temperature can be obtained. As a result, the solution concentration in the generator G can be lowered, the saturated solution temperature can be lowered, and the temperature of the heating source of the generator G can be lowered. That is, the heating source temperature of the generator G in the conventional absorption refrigeration apparatus (shown in FIG. 6 and FIG. 7) is equal to the evaporation temperature of the evaporator E to obtain cold water as shown in the cycle (A) of FIG. Assuming 5 ° C., about 90 ° C. was necessary. In the case of the present embodiment, as shown in cycles (B) and (C) of FIG. The heating source temperature can be set to about 80 ° C., and as the heating source of the generator G, exhaust hot water (for example, hot water by solar heat) can be used.

しかしながら、図5のサイクル(A)における蒸発温度は、吸収器入口の飽和蒸気温度より、5℃であるが、図5のサイクル(B)では、溶液濃度が56.5%時、吸収器Aの入口温度が同じ場合には、蒸発温度は10℃まで高くなってしまう。   However, the evaporation temperature in the cycle (A) in FIG. 5 is 5 ° C. from the saturated vapor temperature at the absorber inlet, but in the cycle (B) in FIG. 5, when the solution concentration is 56.5%, the absorber A If the inlet temperature is the same, the evaporation temperature will increase to 10 ° C.

そこで、本実施の形態においては、図5のサイクル(C)に示すように、サイクル(B)の吸収器入口温度を低くすることで、蒸発温度をサイクル(A)と同等にすることができるようにしているのである。尚、吸収器Aの入口温度を図5のサイクル(C)よりも更に低くすることも可能であり、吸収器A入口の溶液濃度を更に低く(薄く)できるので、発生器Gの加熱源温度を更に低下することができる。   Therefore, in the present embodiment, as shown in the cycle (C) of FIG. 5, the evaporation temperature can be made equal to the cycle (A) by lowering the absorber inlet temperature of the cycle (B). It is doing so. The inlet temperature of the absorber A can be made lower than the cycle (C) in FIG. 5 and the solution concentration at the inlet of the absorber A can be made lower (thinner). Can be further reduced.

第2の実施の形態
図2には、本願発明の第2の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Second Embodiment FIG. 2 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a second embodiment of the present invention.

この場合、蒸発器Eは冷媒循環方式とされている。つまり、凝縮器Cからの液冷媒Rwは、冷媒溜まり1の未蒸発冷媒が過冷却用熱交換器2内を循環する冷媒循環回路3における過冷却用熱交換器2の出口側において合流し、前記冷媒循環回路3における過冷却用熱交換器2の入口側から分岐した液冷媒Rwが蒸発器Eの上部から伝熱面に散布されることとなっているのである。このようにすると、冷媒循環方式の蒸発器Eの場合、冷媒溜まり1が既に付設されているため、構成がより簡素化できる。その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   In this case, the evaporator E is a refrigerant circulation system. That is, the liquid refrigerant Rw from the condenser C merges at the outlet side of the supercooling heat exchanger 2 in the refrigerant circulation circuit 3 in which the unevaporated refrigerant in the refrigerant pool 1 circulates in the supercooling heat exchanger 2. The liquid refrigerant Rw branched from the inlet side of the supercooling heat exchanger 2 in the refrigerant circuit 3 is sprayed from the upper part of the evaporator E to the heat transfer surface. In this case, in the case of the refrigerant circulation type evaporator E, since the refrigerant reservoir 1 is already attached, the configuration can be further simplified. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第3の実施の形態
図3には、本願発明の第3の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Third Embodiment FIG. 3 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a third embodiment of the present invention.

この場合、冷媒循環回路3には、冷媒溜まり1の液冷媒Rwを凝縮器Cの伝熱面内部に送給する冷却用回路4が付設されている。該冷却用回路4は、前記冷媒循環回路3において過冷却用熱交換器2の上流側において分岐されている。この場合、第1の実施の形態における冷却塔および冷却水ポンプは省略されている。このようにすると、冷媒溜まり1の液冷媒Rwの一部が、凝縮器Cに送液されることとなり、凝縮温度も低下することとなって、発生器Gの加熱源の温度をより一層低下させることが可能となる。その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   In this case, the refrigerant circulation circuit 3 is provided with a cooling circuit 4 for feeding the liquid refrigerant Rw in the refrigerant reservoir 1 into the heat transfer surface of the condenser C. The cooling circuit 4 is branched on the upstream side of the supercooling heat exchanger 2 in the refrigerant circulation circuit 3. In this case, the cooling tower and the cooling water pump in the first embodiment are omitted. If it does in this way, a part of liquid refrigerant | coolant Rw of the refrigerant | coolant pool 1 will be sent to the condenser C, a condensation temperature will also fall, and the temperature of the heating source of the generator G will fall further. It becomes possible to make it. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

第4の実施の形態
図4には、本願発明の第4の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルが示されている。
Fourth Embodiment FIG. 4 shows an absorption refrigeration cycle in an absorption refrigeration apparatus according to a fourth embodiment of the present invention.

この場合、冷媒循環回路3には、冷媒溜まり1の液冷媒Rwを凝縮器Cの伝熱面内部に送給する冷却用回路4が付設されている。該冷却用回路4は、前記冷媒循環回路3において過冷却用熱交換器2の上流側において分岐されている。この場合、第1の実施の形態における冷却塔および冷却水ポンプは省略されている。このようにすると、冷媒溜まり1の液冷媒Rwの一部が、凝縮器Cに送液されることとなり、凝縮温度も低下することとなって、発生器Gの加熱源の温度をより一層低下させることが可能となる。   In this case, the refrigerant circulation circuit 3 is provided with a cooling circuit 4 for feeding the liquid refrigerant Rw in the refrigerant reservoir 1 into the heat transfer surface of the condenser C. The cooling circuit 4 is branched on the upstream side of the supercooling heat exchanger 2 in the refrigerant circulation circuit 3. In this case, the cooling tower and the cooling water pump in the first embodiment are omitted. If it does in this way, a part of liquid refrigerant | coolant Rw of the refrigerant | coolant pool 1 will be sent to the condenser C, a condensation temperature will also fall, and the temperature of the heating source of the generator G will fall further. It becomes possible to make it.

さらにまた、この場合、蒸発器Eは冷媒循環方式とされている。つまり、凝縮器Cからの液冷媒Rwは、冷媒溜まり1の未蒸発冷媒が過冷却用熱交換器2内を循環する冷媒循環回路3における過冷却用熱交換器2の出口側において合流し、前記冷媒循環回路3における過冷却用熱交換器2の入口側から分岐した液冷媒Rwが蒸発器Eの上部から伝熱面に散布されることとなっているのである。このようにすると、冷媒循環方式の蒸発器Eの場合、冷媒溜まり1が既に付設されているため、構成がより簡素化できる。その他の構成および作用効果は、第1の実施の形態におけると同様なので説明を省略する。   Furthermore, in this case, the evaporator E is a refrigerant circulation system. That is, the liquid refrigerant Rw from the condenser C merges at the outlet side of the supercooling heat exchanger 2 in the refrigerant circulation circuit 3 in which the unevaporated refrigerant in the refrigerant pool 1 circulates in the supercooling heat exchanger 2. The liquid refrigerant Rw branched from the inlet side of the supercooling heat exchanger 2 in the refrigerant circuit 3 is sprayed from the upper part of the evaporator E to the heat transfer surface. In this case, in the case of the refrigerant circulation type evaporator E, since the refrigerant reservoir 1 is already attached, the configuration can be further simplified. Since other configurations and operational effects are the same as those in the first embodiment, the description thereof is omitted.

本願発明は、上記各実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲において適宜設計変更可能なことは勿論である。   The invention of the present application is not limited to the above-described embodiments, and it goes without saying that the design can be changed as appropriate without departing from the scope of the invention.

本願発明の第1の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルである。It is an absorption refrigeration cycle in the absorption refrigeration apparatus according to the first embodiment of the present invention. 本願発明の第2の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルである。It is an absorption refrigerating cycle in the absorption refrigeration apparatus concerning 2nd Embodiment of this invention. 本願発明の第3の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルである。It is an absorption refrigerating cycle in the absorption refrigeration apparatus concerning 3rd Embodiment of this invention. 本願発明の第4の実施の形態にかかる吸収式冷凍装置における吸収冷凍サイクルである。It is an absorption refrigeration cycle in an absorption refrigeration apparatus according to a fourth embodiment of the present invention. 従来の吸収式冷凍装置および本願発明の各実施の形態にかかる吸収式冷凍装置における溶液サイクル線図である。It is a solution cycle diagram in the absorption refrigeration apparatus concerning the conventional absorption refrigeration apparatus and each embodiment of this invention. 冷媒一過性方式の蒸発器を備えた従来の間接水冷式の吸収式冷凍装置の吸収冷凍サイクルである。It is an absorption refrigeration cycle of a conventional indirect water-cooled absorption refrigeration apparatus equipped with a refrigerant transient type evaporator. 冷媒循環方式の蒸発器を備えた従来の間接水冷式の吸収式冷凍装置の吸収冷凍サイクルである。It is an absorption refrigeration cycle of a conventional indirect water-cooled absorption refrigeration apparatus including a refrigerant circulation type evaporator.

符号の説明Explanation of symbols

1は冷媒溜まり
2は過冷却用熱交換器
3は冷媒循環回路
4は冷却用回路
Aは吸収器
Cは凝縮器
Eは蒸発器
Gは発生器
Lcは吸収溶液(濃溶液)
Ldは希溶液
Plは溶液ポンプ
Prは冷媒ポンプ
Rsは冷媒蒸気
Rwは液冷媒
Xは冷却手段
1 is a refrigerant reservoir 2 is a supercooling heat exchanger 3 is a refrigerant circulation circuit 4 is a cooling circuit A is an absorber C is a condenser E is an evaporator G is a generator Lc is an absorbing solution (concentrated solution)
Ld is dilute solution Pl is solution pump Pr is refrigerant pump Rs is refrigerant vapor Rw is liquid refrigerant X is cooling means

Claims (5)

発生器(G)、該発生器(G)から得られた冷媒蒸気(Rs)を凝縮液化する凝縮器(C)、該凝縮器(C)で凝縮液化された液冷媒(Rw)を蒸発気化させる蒸発器(E)および該蒸発器(E)で蒸発気化された冷媒蒸気(Rs)を前記発生器(G)で得られた濃溶液(Lc)に吸収して前記発生器(G)へ供給される希溶液(Ld)を生成する吸収器(A)を備え、水冷式の過冷却用熱交換器(2)により冷却された吸収溶液(Ld)を前記吸収器(A)に送液するように構成した吸収式冷凍装置であって、前記蒸発器(E)の下部には、該蒸発器(E)の伝熱面に散布した液冷媒(Rw)の未蒸発分を溜める冷媒溜まり(1)を設けるとともに、該冷媒溜まり(1)の液冷媒(Rw)を、前記過冷却用熱交換器(2)の冷却熱源として使用する冷却手段(X)を付設したことを特徴とする吸収式冷凍装置。   Generator (G), condenser (C) for condensing and liquefying refrigerant vapor (Rs) obtained from generator (G), and vaporizing and condensing liquid refrigerant (Rw) condensed and liquefied by condenser (C) The evaporator (E) to be evaporated and the refrigerant vapor (Rs) evaporated by the evaporator (E) are absorbed by the concentrated solution (Lc) obtained by the generator (G) and supplied to the generator (G). An absorber (A) that generates a supplied dilute solution (Ld) is provided, and the absorbent solution (Ld) cooled by the water-cooled supercooling heat exchanger (2) is sent to the absorber (A). In the absorption refrigeration apparatus configured as described above, a refrigerant reservoir for storing an unevaporated portion of the liquid refrigerant (Rw) spread on the heat transfer surface of the evaporator (E) is provided below the evaporator (E). (1) is provided, and the liquid refrigerant (Rw) in the refrigerant reservoir (1) is used as a cooling heat source for the supercooling heat exchanger (2). Absorption refrigerating apparatus characterized by annexed cooling means for use (X). 前記冷却手段(X)を、前記冷媒溜まり(1)の液冷媒(Rw)を冷媒ポンプ(Pr)を介して前記過冷却用熱交換器(2)に送給する冷媒循環回路(3)により構成したことを特徴とする請求項1記載の吸収式冷凍装置。   The cooling means (X) is supplied by a refrigerant circulation circuit (3) that feeds the liquid refrigerant (Rw) in the refrigerant reservoir (1) to the supercooling heat exchanger (2) via a refrigerant pump (Pr). The absorption refrigeration apparatus according to claim 1, wherein the absorption refrigeration apparatus is configured. 前記冷媒循環回路(3)には、前記冷媒溜まり(1)の液冷媒(Rw)を前記凝縮器(C)の伝熱面内部に送給する冷却用回路(4)を付設したことを特徴とする請求項2記載の吸収式冷凍装置。   The refrigerant circuit (3) is provided with a cooling circuit (4) for supplying the liquid refrigerant (Rw) of the refrigerant reservoir (1) into the heat transfer surface of the condenser (C). The absorption refrigeration apparatus according to claim 2. 前記発生器(G)の加熱源として排熱を用いたことを特徴とする請求項1、2および3のいずれか一項記載の吸収式冷凍装置。   The absorption refrigeration apparatus according to any one of claims 1, 2, and 3, wherein exhaust heat is used as a heating source of the generator (G). 前記排熱として太陽熱を用いることを特徴とする請求項4記載の吸収式冷凍装置。   The absorption refrigeration apparatus according to claim 4, wherein solar heat is used as the exhaust heat.
JP2008298103A 2008-11-21 2008-11-21 Absorption refrigeration system Expired - Fee Related JP5338272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008298103A JP5338272B2 (en) 2008-11-21 2008-11-21 Absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008298103A JP5338272B2 (en) 2008-11-21 2008-11-21 Absorption refrigeration system

Publications (2)

Publication Number Publication Date
JP2010121907A true JP2010121907A (en) 2010-06-03
JP5338272B2 JP5338272B2 (en) 2013-11-13

Family

ID=42323395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008298103A Expired - Fee Related JP5338272B2 (en) 2008-11-21 2008-11-21 Absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP5338272B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066502A (en) * 2015-07-31 2015-11-18 上海缔森能源技术有限公司 Direct burning absorption refrigeration method and device for recovering phase change heat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196567A (en) * 1986-02-25 1987-08-29 三洋電機株式会社 Solar-heat utilizing absorption chilling unit
JPH0448171A (en) * 1990-06-15 1992-02-18 Hitachi Ltd Refrigerant mist preventing device for absorption type refrigerating machine
JPH0868570A (en) * 1994-08-30 1996-03-12 Ebara Corp Absorption refrigerator
JP2007248024A (en) * 2006-03-20 2007-09-27 Daikin Ind Ltd Absorption-type refrigerating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196567A (en) * 1986-02-25 1987-08-29 三洋電機株式会社 Solar-heat utilizing absorption chilling unit
JPH0448171A (en) * 1990-06-15 1992-02-18 Hitachi Ltd Refrigerant mist preventing device for absorption type refrigerating machine
JPH0868570A (en) * 1994-08-30 1996-03-12 Ebara Corp Absorption refrigerator
JP2007248024A (en) * 2006-03-20 2007-09-27 Daikin Ind Ltd Absorption-type refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066502A (en) * 2015-07-31 2015-11-18 上海缔森能源技术有限公司 Direct burning absorption refrigeration method and device for recovering phase change heat
CN105066502B (en) * 2015-07-31 2017-09-05 上海缔森能源技术有限公司 A kind of direct-fired absorption refrigeration method and device for reclaiming the heat of transformation

Also Published As

Publication number Publication date
JP5338272B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP3883838B2 (en) Absorption refrigerator
JP2004324977A (en) Absorption type refrigerating machine
JP5338270B2 (en) Absorption refrigeration system
JP2007263515A (en) Evaporation/absorption unit for absorption refrigerating machine
JP4715574B2 (en) Absorption refrigeration system
JP5261111B2 (en) Absorption refrigerator
JP5338272B2 (en) Absorption refrigeration system
JP5168102B2 (en) Absorption refrigeration system
JP3883894B2 (en) Absorption refrigerator
JP5338271B2 (en) Absorption refrigeration system
JP4572860B2 (en) Absorption refrigeration system
KR20080094985A (en) Hot-water using absorption chiller
JP2008020094A (en) Absorption type heat pump device
JP2010121900A (en) Absorption-type refrigerating device
JP5233716B2 (en) Absorption refrigeration system
JP3889655B2 (en) Absorption refrigerator
JP2012068019A (en) Absorption refrigerating machine
JP5260895B2 (en) Absorption refrigerator
CA3053654C (en) An absorption chiller
JP4887872B2 (en) Absorption refrigeration system
JP2001082824A (en) Absorption refrigerating machine
JP2005300126A (en) Absorption type refrigerating machine
JP3857955B2 (en) Absorption refrigerator
JP4282225B2 (en) Absorption refrigerator
JP5233715B2 (en) Absorption refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

LAPS Cancellation because of no payment of annual fees