JP2010120414A - Air conditioner for vehicle - Google Patents

Air conditioner for vehicle Download PDF

Info

Publication number
JP2010120414A
JP2010120414A JP2008293528A JP2008293528A JP2010120414A JP 2010120414 A JP2010120414 A JP 2010120414A JP 2008293528 A JP2008293528 A JP 2008293528A JP 2008293528 A JP2008293528 A JP 2008293528A JP 2010120414 A JP2010120414 A JP 2010120414A
Authority
JP
Japan
Prior art keywords
air
blower
air volume
vehicle
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008293528A
Other languages
Japanese (ja)
Other versions
JP5210819B2 (en
Inventor
Kojiro Nakamura
康次郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2008293528A priority Critical patent/JP5210819B2/en
Publication of JP2010120414A publication Critical patent/JP2010120414A/en
Application granted granted Critical
Publication of JP5210819B2 publication Critical patent/JP5210819B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner for a vehicle capable of preventing malfunction caused by motive power of a compressor becoming the maximum value without spoiling comfortability of an occupant directly receiving out-blowing wind as much as possible even at the initial time of cooling operation. <P>SOLUTION: This air conditioner for the vehicle includes a blower, an evaporator to cool blown air generated by the blower by heat exchanging with a refrigerant, a control part to automatically control the blower by computing air capacity of the blower in accordance with an environmental load and indoor set temperature of the vehicle, and blows off the air from the blower automatically controlled by the control part indoor as air-conditioning air through the evaporator. The control part controls the blower by air capacity smaller than air capacity FO computed in accordance with the environmental load and the indoor set temperature of the vehicle at the initial time of the cooling operation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車室内に吹き出す空調風の風量をオート制御する車両用空気調和装置に関する。   The present invention relates to a vehicle air conditioner that automatically controls the amount of conditioned air blown into a passenger compartment.

この種の従来の車両用空気調和装置としては、特許文献1に開示されたものがある。この車両用空気調和装置は、送風路に配置された送風機と、送風機によって吸引された送風を冷却する蒸発器と、蒸発器を通過した送風を暖房するヒータコアと、送風機等を自動制御する制御部とを備えている。   A conventional vehicle air conditioner of this type is disclosed in Patent Document 1. This vehicle air conditioner includes a blower disposed in a blower passage, an evaporator that cools the blown air sucked by the blower, a heater core that heats the blown air that has passed through the evaporator, and a controller that automatically controls the blower and the like. And.

制御部は、車室内温度を乗員の設定した設定室内温度に近づけ、且つ、それを維持するべく、環境負荷と設定室内温度に応じて吹き出し風の必要熱量(換言すれば、目標吹き出し温度)を算出し、この吹き出し風の必要熱量(目標吹き出し温度)に応じて送風機の風量を自動制御する。具体的には、冷房運転時にあっては、環境負荷が高負荷(外気温度が高い、車室内温度が高い、日射量が多い等)であればあるほど目標吹き出し温度を低く設定し、これに応じて送風機の風量を大きく制御する(特許文献1参照)。つまり、環境負荷の大きさに応じて、吹き出し風による必要熱量(目標吹き出し温度)を調整する。   The control unit brings the required heat quantity of the blowing air (in other words, the target blowing temperature) in accordance with the environmental load and the setting room temperature in order to bring the vehicle room temperature close to the set room temperature set by the occupant and to maintain it. It calculates and automatically controls the air volume of the blower according to the required amount of heat of the blown air (target blowout temperature). Specifically, during cooling operation, the target blowing temperature is set lower as the environmental load becomes higher (higher outside air temperature, higher vehicle interior temperature, more solar radiation, etc.) Accordingly, the air volume of the blower is largely controlled (see Patent Document 1). That is, the necessary heat amount (target blowing temperature) by the blowing air is adjusted according to the magnitude of the environmental load.

この制御によれば、実際の吹き出し温度が目標吹き出し温度、若しくはこれに近い温度とすることができれば、車室内の全体を迅速に設定室内温度とすることができる。
特開昭58−26618号公報
According to this control, if the actual blowing temperature can be set to the target blowing temperature or a temperature close to the target blowing temperature, the entire interior of the vehicle compartment can be quickly set to the set room temperature.
JP 58-26618 A

しかしながら、冷房運転を多用する時期において、運転初期時にあっては、通常では車両の環境負荷が高負荷となる場合が多い。車両の環境負荷が高負荷であると、送風機の風量が最大に制御されることになるため、蒸発器には大きな冷房能力が要求され、圧縮機の動力が最大値になりやすい。圧縮機の動力が最大値になると、車両運転の性能に悪影響が出る等の不具合が発生する可能がある。   However, when the cooling operation is frequently used, usually, the environmental load of the vehicle is often high at the initial operation. When the environmental load of the vehicle is high, the air volume of the blower is controlled to the maximum. Therefore, the evaporator is required to have a large cooling capacity, and the power of the compressor tends to reach the maximum value. When the power of the compressor reaches the maximum value, problems such as adversely affecting the performance of vehicle operation may occur.

又、環境負荷が高負荷で、送風機の風量が大きい状況下では、蒸発器の冷房能力が実際には不足するため、吹き出し温度が目標吹き出し温度まで下がり難い。従って、冷気を感じず、しかも、大風量の吹き出し風が長い時間に亘って車室内に吹き出すことになり、空調風が直接当たる乗員は長い時間に亘って不快を感じる恐れがある。   Moreover, under a situation where the environmental load is high and the air volume of the blower is large, the cooling capacity of the evaporator is actually insufficient, so that the blowing temperature is difficult to decrease to the target blowing temperature. Therefore, a cool air is not felt, and a large amount of blown air is blown into the passenger compartment for a long time, and a passenger who is directly exposed to the conditioned air may feel uncomfortable for a long time.

そこで、本発明は、冷房運転初期時にあっても吹き出し風を直接受ける乗員の快適性を極力損なうことなく、しかも、圧縮機の動力が最大値になることに起因する不具合を防止できる車両用空気調和装置を提供することを目的とする。   Therefore, the present invention provides a vehicle air that can prevent a problem caused by the maximum power of the compressor without losing the comfort of an occupant who directly receives the blown wind even at the initial stage of cooling operation. It aims at providing a harmony device.

上記目的を達成する請求項1の発明は、送風機と、前記送風機で発生させた送風を冷媒との熱交換によって冷却する蒸発器と、車両の環境負荷と室内設定温度に基づく前記送風機の風量を算出して前記送風機を自動制御する制御部とを備え、前記制御部で自動調整された前記送風機による送風が前記蒸発器を経て空調風として車室内に吹き出される車両用空気調和装置であって、前記制御部は、冷房運転初期時には、車両の環境負荷及び室内設定温度に基づく算出風量より小さい風量で前記送風機を制御したことを特徴とする。   The invention of claim 1 which achieves the above object is characterized in that a blower, an evaporator for cooling the blown air generated by the blower by heat exchange with a refrigerant, an air load of the blower based on an environmental load of the vehicle and an indoor set temperature. A vehicle air conditioner that includes a control unit that calculates and automatically controls the blower, and the air blown by the blower that is automatically adjusted by the control unit is blown into the vehicle interior as conditioned air through the evaporator. The control unit controls the blower with an air volume smaller than the calculated air volume based on the environmental load of the vehicle and the indoor set temperature at the initial stage of the cooling operation.

請求項2の発明は、請求項1記載の車両用空気調和装置であって、車両の環境負荷と室内設定温度に基づく算出風量がしきい値を超えている場合にのみ、算出風量より小さい風量で前記送風機を制御したことを特徴とする。   The invention of claim 2 is the vehicle air conditioner according to claim 1, wherein the air volume is smaller than the calculated air volume only when the calculated air volume based on the environmental load of the vehicle and the indoor set temperature exceeds a threshold value. The blower is controlled by the above.

請求項3の発明は、請求項1又は請求項2記載の車両用空気調和装置であって、乗員が前席のみと判断した場合にのみ、車両の環境負荷と室内設定温度に基づく算出風量より小さい風量で前記送風機を制御したことを特徴とする。   The invention according to claim 3 is the vehicle air conditioner according to claim 1 or 2, wherein the calculated air volume based on the environmental load of the vehicle and the indoor set temperature is used only when the occupant determines only the front seat. The blower is controlled with a small air volume.

請求項4の発明は、請求項1〜請求項3のいずれかに記載の車両用空気調和装置であって、前記蒸発器を通過した空気温度が規定値を下回った場合には、前記送風機の風量を段階的に増加させる制御を行うことを特徴とする。   Invention of Claim 4 is the air conditioning apparatus for vehicles in any one of Claims 1-3, Comprising: When the temperature of the air which passed the said evaporator is less than a regulation value, Control is performed to increase the air volume stepwise.

請求項5の発明は、請求項4記載の車両用空気調和装置であって、前記送風機の風量を増加させた場合には、乗員に直接当たらない吹出口からも送風を吹き出すようにしたことを特徴とする。   The invention according to claim 5 is the vehicle air conditioner according to claim 4, wherein when the air volume of the blower is increased, the air is blown out also from a blower outlet that does not directly hit the passenger. Features.

請求項6の発明は、請求項4又は請求項5記載の車両用空気調和装置であって、冷房運転初期時は、段階的に増加させた前記送風機の風量が、車両の環境負荷と室内設定温度に基づく算出風量に達するまでとすることを特徴とする。   A sixth aspect of the present invention is the vehicle air conditioner according to the fourth or fifth aspect, wherein at the initial stage of the cooling operation, the air volume of the blower increased stepwise increases the environmental load of the vehicle and the indoor setting. Until the calculated air volume based on the temperature is reached.

請求項7の発明は、請求項3〜請求項6のいずれかに記載の車両用空気調和装置であって、乗員が前席のみであるか否かの判断は、座席の熱検知手段の検知情報と後席ドアの開閉履歴情報の少なくとも1つより行うことを特徴とする。   The invention according to claim 7 is the air conditioning apparatus for a vehicle according to any one of claims 3 to 6, wherein whether or not the passenger is only the front seat is determined by detection of a heat detection means of the seat. This is performed by at least one of the information and the opening / closing history information of the rear seat door.

請求項1の発明によれば、冷房運転を多用する時期において、運転初期時は通常では環境負荷が高負荷であるが、送風機の風量が環境負荷に基づく算出風量より小さく抑えられるため、蒸発器に要求される冷房能力が低くなり、圧縮機の動力が最大値にならない。又、送風機の風量が小さく抑えられる分、吹き出し温度が早く低くなるため、吹き出し風を直接受ける乗員の不快を感じる時間が短くなる。以上より、冷房運転初期時にあって吹き出し風を直接受ける乗員の快適性を極力損なうことなく、しかも、圧縮機の動力が最大値になることに起因する不具合を防止できる。   According to the first aspect of the present invention, in the period when the cooling operation is frequently used, the environmental load is usually high at the initial stage of the operation, but the air volume of the blower is suppressed to be smaller than the calculated air volume based on the environmental load. Therefore, the cooling capacity required for the compressor becomes low, and the power of the compressor does not reach the maximum value. In addition, since the blowout temperature is lowered quickly as much as the air volume of the blower is kept small, the time when the passenger who feels the blown wind directly feels uncomfortable is shortened. As described above, it is possible to prevent problems caused by the compressor power reaching the maximum value without losing as much as possible the comfort of an occupant who is directly in the cooling operation and directly receives the blown air.

請求項2の発明によれば、請求項1の発明の効果に加え、冷房運転初期時にあって環境負荷が高くない場合には、送風機の風量が環境負荷及び室内設定温度に基づく算出風量とされる。つまり、環境負荷が高くない場合には、圧縮機の動力も最大値になることがなく、吹き出し風も冷たい風になりやすいため、乗員の快適性を維持できる。又、元々風量が少ない領域で送風機の風量を更に低く抑えると、乗員の快適性を維持できなくなるため、このような不具合を防止できる。   According to the invention of claim 2, in addition to the effect of the invention of claim 1, when the environmental load is not high at the initial stage of the cooling operation, the air volume of the blower is calculated as the calculated air volume based on the environmental load and the indoor set temperature. The That is, when the environmental load is not high, the motive power of the compressor does not reach the maximum value, and the blowing air tends to be cold, so that the comfort of the passenger can be maintained. Further, if the air volume of the blower is further reduced in a region where the air volume is originally low, the passenger comfort cannot be maintained, and thus such a problem can be prevented.

請求項3の発明によれば、請求項1又は請求項2の発明の効果に加え、吹き出し風を直接受けない乗員(例えば後席の乗員)の快適性を極力損なわないようにできる。   According to the invention of claim 3, in addition to the effect of the invention of claim 1 or claim 2, it is possible to minimize the comfort of an occupant (for example, an occupant in the rear seat) who does not directly receive the blowing air.

請求項4の発明によれば、請求項1〜請求項3の発明の効果に加え、吹き出し風が快適なものとなってから風量を増加させるため、乗員に温度の高い大量の空調風が当たるのを防止できる。   According to the invention of claim 4, in addition to the effects of the inventions of claims 1 to 3, in order to increase the air volume after the blowing air becomes comfortable, a large amount of conditioned air hits the occupant. Can be prevented.

請求項5の発明によれば、請求項1〜請求項4の発明の効果に加え、乗員に大量の空調風が直接当たるのを防止しつつ、車室内の迅速な冷房を図ることができる。又、例えばガラスに沿うように吹き出す吹出口から増加分の空調風を吹き出すようにすれば、外部からの輻射熱の抑制にも寄与する。   According to the invention of claim 5, in addition to the effects of the inventions of claims 1 to 4, it is possible to quickly cool the passenger compartment while preventing a large amount of conditioned air from directly hitting the occupant. Further, for example, if an increased amount of conditioned air is blown out from the blowout port that blows out along the glass, it contributes to suppression of radiant heat from the outside.

請求項6の発明によれば、請求項4又は請求項5の発明の効果に加え、複雑な制御を追加することなく、冷房運転初期時の制御からそれ以降の通常の制御にスムーズに移行させることができる。   According to the invention of claim 6, in addition to the effect of the invention of claim 4 or 5, it is possible to smoothly shift from the control at the initial stage of the cooling operation to the subsequent normal control without adding complicated control. be able to.

請求項7の発明によれば、請求項3〜請求項6の発明の効果に加え、乗員が前席のみであるか否かを確実に検知できる。そして、座席の熱検知手段や後席ドアの開閉履歴手段は、送風機の風量制御以外にも使用されるものであり、これら手段を搭載する車両であれば、特別なコストアップなしで乗員が前席のみであるか否かの検知ができる。   According to the invention of claim 7, in addition to the effects of the inventions of claims 3 to 6, it can be reliably detected whether or not the passenger is only the front seat. The heat detection means for the seat and the opening / closing history means for the rear seat door are used in addition to the air flow control of the blower. If the vehicle is equipped with these means, the front passenger is not required to increase the cost. It is possible to detect whether there is only a seat.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1〜図3は本発明の第1実施形態を示し、図1は車両用空気調和装置Aの概略構成図、図2は目標吹き出し温度に応じた送風機11の算出風量の特性線図、図3は送風機11の風量制御フローチャートである。
(First embodiment)
1 to 3 show a first embodiment of the present invention, FIG. 1 is a schematic configuration diagram of a vehicle air conditioner A, FIG. 2 is a characteristic diagram of a calculated air volume of a blower 11 according to a target blowing temperature, and FIG. 3 is an air flow control flowchart of the blower 11.

図1に示すように、車両用空気調和装置Aは、冷凍サイクル1を有する。この冷凍サイクル1は、冷媒を圧縮する圧縮機2と、この圧縮機2から吐出された高温高圧の冷媒を放熱する放熱器3と、この放熱器3を通過した冷媒を減圧する減圧手段4と、この減圧手段4で減圧された冷媒を蒸発させて車室内に導く送風を冷却する蒸発器5とを備え、これらが各配管7a〜7eで接続されている。   As shown in FIG. 1, the vehicle air conditioner A has a refrigeration cycle 1. The refrigeration cycle 1 includes a compressor 2 that compresses refrigerant, a radiator 3 that radiates high-temperature and high-pressure refrigerant discharged from the compressor 2, and decompression means 4 that decompresses the refrigerant that has passed through the radiator 3. The evaporator 5 evaporates the refrigerant depressurized by the depressurizing means 4 and cools the air blown into the passenger compartment, and these are connected by pipes 7a to 7e.

圧縮機2は、車両エンジン8から駆動力を受け、エクスターナルコントロールバルブ(ECV)9によって冷媒吐出量を可変できるよう構成されている。エクスターナルコントロールバルブ9は制御部20からの外部制御信号によって圧縮機2の冷媒吐出量を可変する。   The compressor 2 is configured to receive a driving force from the vehicle engine 8 and to vary the refrigerant discharge amount by an external control valve (ECV) 9. The external control valve 9 varies the refrigerant discharge amount of the compressor 2 by an external control signal from the control unit 20.

蒸発器5は、車室内に導く送風の送風路10内に配置されている。この送風路10の蒸発器5より上流には、送風機11が配置されている。この送風機11の風量は、制御部20からの制御電圧(4V〜12V)によって可変される。又、送風路10の最上流には、外気導入口(図示せず)と内気導入口(図示せず)が開口されている。送風機11の吸引力によって外気や内気が送風路10に吸引される。   The evaporator 5 is disposed in a blower air passage 10 that leads into the passenger compartment. A blower 11 is arranged upstream of the evaporator 5 in the blower passage 10. The air volume of the blower 11 is varied by a control voltage (4V to 12V) from the control unit 20. In addition, an outside air inlet (not shown) and an inside air inlet (not shown) are opened in the uppermost stream of the air passage 10. Outside air and inside air are sucked into the air passage 10 by the suction force of the blower 11.

送風路10内の蒸発器5より下流には、ヒータコア12が設けられている。ヒータコア12は、その内部にエンジン冷却水が循環され、エンジン冷却水によって送風を加熱する。ヒータコア12の直ぐ上流には、ミックスドア13が設けられている。ミックスドア13は、蒸発器5を通過した冷風の内で、ヒータコア12を通過する風量とヒータコア12を通過しない風量の割合を調整する。ヒータコア12を通過する送風(通常では温風)とヒータコア12を通過しない送風(通常では冷風)はヒータコア12の下流でミックスされることによって所望温度の空調風とされる。冷房運転時には目標吹き出し温度の冷風となるよう制御される。   A heater core 12 is provided downstream of the evaporator 5 in the air passage 10. Engine cooling water is circulated in the heater core 12 and the air is heated by the engine cooling water. A mix door 13 is provided immediately upstream of the heater core 12. The mix door 13 adjusts the ratio of the air volume that passes through the heater core 12 and the air volume that does not pass through the heater core 12 in the cold air that has passed through the evaporator 5. The air that passes through the heater core 12 (usually hot air) and the air that does not pass through the heater core 12 (usually cold air) are mixed downstream of the heater core 12 to obtain conditioned air at a desired temperature. During the cooling operation, control is performed so that the target blowing temperature becomes cool air.

送風路10のヒータコア12より下流には複数の吹出口(デフロスタ吹出口、ベント吹出口、フット吹出口)が設けられ、これら吹出口より空調風が車室内に吹き出される。これら吹出口は、前席より車両前方に配置され、ベント吹出口は前席の乗員の上半身に、フット吹出口は前席の乗員の下半身に直接当たるように吹き出させることができる。   A plurality of air outlets (a defroster air outlet, a vent air outlet, and a foot air outlet) are provided downstream of the heater core 12 in the air passage 10, and conditioned air is blown out from the air outlet into the vehicle interior. These air outlets are arranged in front of the vehicle from the front seat, and the vent air outlet can be blown out directly against the upper body of the front seat occupant and the foot air outlet can be directly applied to the lower body of the front seat occupant.

又、送風路10の蒸発器5の直ぐ下流には、蒸発器後空気温度検知センサS1が配置されている。蒸発器後空気温度検知センサS1は、蒸発器5を通過した空気温度(以下、蒸発器後空気温度Tintという。)を検知する。この検知出力は、制御部20に出力される。   In addition, an after-evaporator air temperature detection sensor S <b> 1 is disposed immediately downstream of the evaporator 5 in the air passage 10. The post-evaporator air temperature detection sensor S1 detects the air temperature that has passed through the evaporator 5 (hereinafter referred to as post-evaporator air temperature Tint). This detection output is output to the control unit 20.

制御部20は、ECV調整機能部20aと風量調整機能部20bと必要能力判断機能部20cとを有する。ECV調整機能部20aは、必要能力判断機能部20cからの指令によってエクスターナルコントロールバルブ9を制御する。具体的には、ECV調整機能部20aは、エクスターナルコントロールバルブ9を出力デュティ比によって制御する。エクスターナルコントロールバルブ9は、出力デュティ比に比例させて圧縮機2の冷媒吐出量を制御する。つまり、出力デュティ比が大きければ大きいほど冷媒吐出量を多くし、出力デュティ比が小さければ小さいほど冷媒吐出量を少なくするよう圧縮機2を制御する。   The control unit 20 includes an ECV adjustment function unit 20a, an air volume adjustment function unit 20b, and a necessary capacity determination function unit 20c. The ECV adjustment function unit 20a controls the external control valve 9 according to a command from the necessary capacity determination function unit 20c. Specifically, the ECV adjustment function unit 20a controls the external control valve 9 according to the output duty ratio. The external control valve 9 controls the refrigerant discharge amount of the compressor 2 in proportion to the output duty ratio. That is, the compressor 2 is controlled to increase the refrigerant discharge amount as the output duty ratio increases, and to decrease the refrigerant discharge amount as the output duty ratio decreases.

風量調整機能部20bは、必要能力判断機能部20cからの指令によって送風機11を制御する。具体的には、送風機11に出力する電圧(4V〜12V)によって制御する。送風機11の風量は、LO〜HIに可変される(図2参照)。必要能力判断機能部20cには、蒸発器後空気温度検知センサS1の他に外気温度検知センサS2、車室内温度検知センサS3、日射センサS4等のセンサデータが入力されると共に、乗員による室内設定温度Tset及び送風機11の風量データ等の各種データが入力されている。そして、送風機11の風量等は、乗員の操作によって行われる場合と、環境負荷と室内設定温度に応じて自動的に行われる場合がある。環境負荷と室内設定温度に応じて自動的に行われる場合、つまり、オート制御では、必要能力判断機能部20cは、図3のフローチャートに基づき送風機11の風量を風量調整機能部20aを介して制御する。   The air volume adjustment function unit 20b controls the blower 11 according to a command from the necessary capacity determination function unit 20c. Specifically, it is controlled by the voltage (4V to 12V) output to the blower 11. The air volume of the blower 11 is varied from LO to HI (see FIG. 2). In addition to the post-evaporator air temperature detection sensor S1, sensor data of the outside air temperature detection sensor S2, the vehicle interior temperature detection sensor S3, the solar radiation sensor S4, and the like are input to the necessary capacity determination function unit 20c, and indoor settings by the passenger Various data such as the temperature Tset and the air volume data of the blower 11 are input. And the air volume etc. of the air blower 11 may be performed automatically according to a passenger | crew's operation, or according to environmental load and indoor preset temperature. When automatically performed according to the environmental load and the indoor set temperature, that is, in the automatic control, the necessary capacity determination function unit 20c controls the air volume of the blower 11 through the air volume adjustment function unit 20a based on the flowchart of FIG. To do.

ここで、オート制御による風量の決定方法について説明する。風量は、環境負荷(この実施形態では、外気温度、車室内温度、日射量)と室内設定温度に応じて目標吹き出し温度TOを算出し、この算出した温度TOに応じた値を基本として決定される。具体的には、環境負荷である外気温度をTamb、車室内温度をTinc、日射量をQsun、乗員が入力する室内設定温度をTset、蒸発器後空気温度をTintとすると、先ず、下記式より目標吹き出し温度TOを算出する。   Here, a method for determining the air volume by automatic control will be described. The air volume is determined based on a value corresponding to the calculated temperature TO by calculating the target blowout temperature TO according to the environmental load (in this embodiment, the outside air temperature, the vehicle interior temperature, the amount of solar radiation) and the indoor set temperature. The Specifically, if the outside air temperature, which is the environmental load, is Tamb, the cabin temperature is Tinc, the amount of solar radiation is Qsun, the indoor set temperature input by the occupant is Tset, and the air temperature after the evaporator is Tint, A target blowing temperature TO is calculated.

TO=Kset×Tset−Kamb×Tamb−Kinc×Tinc−Ksun×Qsun+C
ここで、Kset、Kinc、Ksunは制御定数であり、Cは補正定数である。
TO = Kset * Tset-Kamb * Tamb-Kinc * Tinc-Ksun * Qsun + C
Here, Kset, Kinc, and Ksun are control constants, and C is a correction constant.

次に、算出された目標吹き出し温度TOから図2の特性線に基づいて算出風量FOを求める。図2の特性線は、すり鉢状の特性であり、冷房運転にあっては、外気温度、車室内温度、日射量の各要素が大きくなればなるほど目標吹き出し温度TOが低い方に推移し、送風機11の風量が増やされ(最大でHI)、上記各要素が小さくなればなるほど目標吹き出し温度TOが高い方に推移し、送風機11の風量が減らされる(最小でLO)。暖房運転にあっては、外気温度、車室内温度、日射量の各要素が小さくなればなるほど目標吹き出し温度TOが高い方に推移し、送風機11の風量を増やされ(最大でHI)、上記各要素が大きくなればなるほど目標吹き出し温度TOが低い方に推移し、送風機11の風量が減らされる(最小でLO)。このようにして得られた算出風量FOを基準として最終的な風量が決定される。最終的な風量の決定手順については、下記の風量制御のフローで詳述する。   Next, the calculated air volume FO is obtained from the calculated target blowing temperature TO based on the characteristic line of FIG. The characteristic line in FIG. 2 is a mortar-shaped characteristic. In the cooling operation, the target blowing temperature TO shifts to the lower side as the elements of the outside air temperature, the passenger compartment temperature, and the amount of solar radiation increase. 11 is increased (maximum HI), and the target blowing temperature TO shifts higher as the above elements become smaller, and the air volume of the blower 11 is decreased (minimum LO). In the heating operation, the smaller the factors of the outside air temperature, the passenger compartment temperature, and the amount of solar radiation, the higher the target blowing temperature TO, and the air volume of the blower 11 is increased (maximum HI). The larger the factor, the lower the target blowout temperature TO, and the air volume of the blower 11 is reduced (minimum LO). The final air volume is determined based on the calculated air volume FO thus obtained. The final air flow determination procedure will be described in detail in the following air flow control flow.

以下、送風機11の風量制御について説明する。図3において、下記に示すルーチンは、演算単位時間(例えば100ms)ごとに実施される。   Hereinafter, the air volume control of the blower 11 will be described. In FIG. 3, the routine shown below is executed every calculation unit time (for example, 100 ms).

図3に示すように、先ず、環境負荷と室内設定温度より目標吹き出し温度TOを算出する(ステップS1)。目標吹き出し温度TOの算出については、上記したので省略する。   As shown in FIG. 3, first, the target blowing temperature TO is calculated from the environmental load and the indoor set temperature (step S1). Since the calculation of the target blowing temperature TO has been described above, the description thereof will be omitted.

次に、目標吹き出し温度TOより算出風量FOを求める(ステップS2)。算出風量FOの求め方についても、上記したので省略する。   Next, the calculated air volume FO is obtained from the target blowing temperature TO (step S2). The method for obtaining the calculated air volume FO has also been described above, and will be omitted.

次に、圧縮機2が稼働中か否かをチェックする(ステップS3)。稼働中でなければ、算出風量FOを吹き出し風量として風量調整機能部20bに出力する(ステップS10)。   Next, it is checked whether or not the compressor 2 is in operation (step S3). If it is not in operation, the calculated air volume FO is output to the air volume adjusting function unit 20b as the blown air volume (step S10).

圧縮機2が稼動中であれば、圧縮機2が停止(前回ルーチンの状態)から稼動に変化したか否かをチェックする(ステップS4)。停止(前回ルーチンの状態)から稼動に変化していれば、冷房運転初期動作を開始する(ステップS5)。そうでなく稼動中であれば、冷房運転初期動作中か否かをチェックする(ステップS6)。冷房運転初期動作中であれば、算出風量FOがしきい値風量βを超えた値か否かを判定する(ステップS7)。   If the compressor 2 is operating, it is checked whether or not the compressor 2 has changed from being stopped (previous routine state) to operating (step S4). If the operation is changed from the stop (previous routine state) to the operation, the cooling operation initial operation is started (step S5). Otherwise, if it is operating, it is checked whether or not the cooling operation initial operation is being performed (step S6). If the initial operation of the cooling operation is being performed, it is determined whether or not the calculated air volume FO exceeds the threshold air volume β (step S7).

算出風量FOがしきい値風量β以下であれば、算出風量FOを吹き出し風量として風量調整機能部20bに出力する(ステップS10)。これにより、環境負荷に見合った風量、つまり、算出風量FOで送風機11の風量が制御される。そして、冷房初期動作は終了と判断される(ステップS11)。   If the calculated air volume FO is equal to or less than the threshold air volume β, the calculated air volume FO is output to the air volume adjusting function unit 20b as a blown air volume (step S10). Thereby, the air volume of the blower 11 is controlled by the air volume commensurate with the environmental load, that is, the calculated air volume FO. Then, it is determined that the initial cooling operation is finished (step S11).

算出風量FOがしきい値風量βを超えた値であれば、算出風量FOよりaだけ減算した値がしきい値風量βより大きいか否かを比較する(ステップS8)。ここで、a値は、算出風量FOを最大値とした場合に決定される数値であり、(FO−a)値は、算出風量FOが最大値の場合に、乗員に直接当たっても不快でなく冷房感を得やすい風量となるよう設定される。この値は予め実験等で求められる。例えば、送風機11の最大風量が7m/minであり、冷房感を得やすい風量が5m/minである場合に、a値は2m/min程度に設定する。 If the calculated air volume FO exceeds the threshold air volume β, it is compared whether or not the value obtained by subtracting a from the calculated air volume FO is larger than the threshold air volume β (step S8). Here, the a value is a numerical value determined when the calculated air volume FO is the maximum value, and the (FO−a) value is uncomfortable even if the calculated air volume FO is the maximum value even if it directly hits the passenger. It is set so that the air volume can be easily obtained without cooling. This value is obtained in advance by experiments or the like. For example, when the maximum air volume of the blower 11 is 7 m 3 / min and the air volume at which cooling feeling is easily obtained is 5 m 3 / min, the a value is set to about 2 m 3 / min.

(FO−a)値がβ(但し、β>a)より大きい値であれば、(FO−a)値を吹き出し風量として風量調整機能部20bに出力する(ステップS9)。これにより、乗員に直接当たっても不快でなく冷房感を得やすい風量が吹き出される。(FO−a)値がβ以下であれば、β値を吹き出し風量として風量調整機能部20bに出力する(ステップS12)。これにより、環境負荷が大きいにも係わらず、少ない風量しか吹き出されないような事態を防止できる。   If the (FO-a) value is larger than β (where β> a), the (FO-a) value is output to the air volume adjustment function unit 20b as the blown air volume (step S9). Thereby, even if it hits a passenger | crew directly, the air volume which is not unpleasant and can obtain a cooling feeling is blown out. If the (FO-a) value is less than or equal to β, the β value is output to the air volume adjustment function unit 20b as the blown air volume (step S12). As a result, it is possible to prevent a situation in which only a small amount of air is blown out in spite of a large environmental load.

以上説明したように、車両用空気調和装置Aは、制御部20は、冷房運転初期時には、車両の環境負荷及び室内設定温度に基づく算出風量FOより小さい風量で送風機11を制御した。従って、冷房運転を多用する時期において、運転初期時は通常では環境負荷が高負荷であるが、送風機11の風量が環境負荷に基づく算出風量より小さく抑えられるため、蒸発器5に要求される冷房能力が低くなり、圧縮機2の動力が最大値にならない。又、送風機11の風量が小さく抑えられる分、吹き出し温度が低くなりやすいため、吹き出し風を直接受ける前席の乗員は不快を感じる時間が短くなる。以上より、冷房運転初期時にあっても吹き出し風を直接受ける前席の乗員の快適性を極力損なうことなく、しかも、圧縮機2の動力が最大値になることに起因する不具合を防止できる。   As described above, in the vehicle air conditioner A, the control unit 20 controls the blower 11 with an air volume smaller than the calculated air volume FO based on the environmental load of the vehicle and the indoor set temperature at the initial stage of the cooling operation. Therefore, in the period when the cooling operation is frequently used, the environmental load is usually high at the initial stage of the operation, but the air volume of the blower 11 is suppressed to be smaller than the calculated air volume based on the environmental load. The capacity is lowered, and the power of the compressor 2 does not reach the maximum value. Further, since the blowout temperature is likely to be lowered as much as the air volume of the blower 11 is kept small, the front seat occupant who directly receives the blowout air feels uncomfortable. From the above, it is possible to prevent problems caused by the power of the compressor 2 reaching the maximum value without impairing the comfort of the front seat occupant who directly receives the blown air even when the cooling operation is in the initial stage.

この第1実施形態では、車両の環境負荷と室内設定温度に基づく算出風量FOがしきい値βを超えている場合にのみ、算出風量FOより小さい風量((FO−a)値又はβ値)で送風機11を制御した。従って、冷房運転初期時にあって環境負荷が高くない場合には、送風機11の風量が環境負荷及び室内設定温度に基づく算出風量FOとされる。つまり、環境負荷が高くない場合には、圧縮機11の動力も最大値になることがなく、吹き出し風も冷たい風であるため、乗員の快適性を維持できる。又、元々風量が低い領域で送風機11の風量を更に低く抑えると、却って乗員の快適性を維持できなくなり、このような不具合を防止できる。   In the first embodiment, an air volume smaller than the calculated air volume FO ((FO-a) value or β value) only when the calculated air volume FO based on the environmental load of the vehicle and the indoor set temperature exceeds the threshold value β. The blower 11 was controlled. Therefore, when the environmental load is not high at the initial stage of the cooling operation, the air volume of the blower 11 is set to the calculated air volume FO based on the environmental load and the indoor set temperature. That is, when the environmental load is not high, the motive power of the compressor 11 does not reach the maximum value, and the blowing air is a cold air, so that the comfort of the passenger can be maintained. Further, if the air volume of the blower 11 is further reduced in a region where the air volume is originally low, the comfort of the occupant cannot be maintained, and such a problem can be prevented.

(第2実施形態)
図4は本発明の第2実施形態に係る送風機の風量制御フローチャートである。
(Second Embodiment)
FIG. 4 is an air flow control flowchart of the blower according to the second embodiment of the present invention.

この第2実施形態は、前記第1実施形態と比較するに、乗員が前席のみであるか否かを判定する手段を有することと、これに伴って風量制御フローチャートの一部が異なる。つまり、上記判定手段は、座席の熱検知手段の検知情報と後席ドアの開閉履歴情報の少なくとも1つより乗員が前席のみであるか否かを判定する。   Compared with the first embodiment, the second embodiment has a means for determining whether or not the occupant is only the front seat, and accordingly, a part of the air volume control flowchart is different. That is, the determination means determines whether or not the occupant is only the front seat from at least one of detection information of the heat detection means of the seat and opening / closing history information of the rear seat door.

尚、車両用空気調和装置Aの概略構成図は第1実施形態とほぼ同じであるため、図1を利用する。   In addition, since the schematic block diagram of the vehicle air conditioner A is substantially the same as 1st Embodiment, FIG. 1 is utilized.

図4に示すように、この第2実施形態の制御フローには、圧縮機2が稼動中と判断されれば、その後に、乗員は前席のみであるか否かをチェックするステップ(ステップS20)が付加されている。そして、乗員が前席のみであれば、圧縮機2の停止が稼動に変化したか否かのステップ(ステップS3)に移行し、乗員が前席のみでなければ、算出風量FOを吹き出し風量として風量調整機能部20bに出力するステップ(ステップS10)に移行する。   As shown in FIG. 4, in the control flow of the second embodiment, if it is determined that the compressor 2 is in operation, then a step of checking whether or not the passenger is only the front seat (step S20). ) Is added. If the occupant is only the front seat, the process proceeds to a step (step S3) as to whether or not the stop of the compressor 2 has changed to operation. If the occupant is not only the front seat, the calculated air volume FO is set as the blown air volume. The process proceeds to the step of outputting to the air volume adjustment function unit 20b (step S10).

他のフローチャートは前記第1実施形態と同様であるため、省略する。   The other flowcharts are the same as those in the first embodiment, and will be omitted.

この第2実施形態では、乗員が前席のみであれば、冷房運転初期時にあって吹き出し風を直接受ける乗員、つまり、前席の乗員の快適性を極力損なわないように算出風量FOより弱い吹き出し風を吹き出す。又、乗員が後席にもいる場合には、算出風量FOによって吹き出す。これにより、吹き出し風を直接受けない後席の乗員の快適性を極力損なわないようにできる。   In the second embodiment, if the occupant is only the front seat, the airflow is weaker than the calculated airflow FO so as not to impair the comfort of the occupant who directly receives the blown air at the initial stage of the cooling operation, that is, the front seat occupant. Blow the wind. When the passenger is also in the rear seat, it is blown out by the calculated air volume FO. As a result, the comfort of the passenger in the rear seat who does not directly receive the blowing wind can be prevented from being lost as much as possible.

この第2実施形態では、乗員が前席のみであるか否かの判断は、座席の熱検知手段の検知情報と後席ドアの開閉履歴情報の少なくとも1つより行う構成した。従って、乗員が前席のみであるか否かを確実に検知できる。そして、座席の熱検知手段や後席ドアの開閉履歴手段は、送風機11の風量制御以外にも使用されるものであり、これら手段を搭載する車両であれば、特別なコストアップなしで乗員が前席のみであるか否かの検知ができる。   In the second embodiment, the determination as to whether or not the passenger is only the front seat is made based on at least one of detection information of the heat detection means of the seat and opening / closing history information of the rear seat door. Therefore, it can be reliably detected whether or not the passenger is only the front seat. The heat detection means for the seat and the opening / closing history means for the rear seat door are used in addition to the air volume control of the blower 11. If the vehicle is equipped with these means, the occupant can avoid the special cost increase. It is possible to detect whether only the front seat is present.

(第3実施形態)
図5〜図10は本発明の第3実施形態を示し、図5は吹出口を中心として送風路10の構成図、図6はベント吹出口31と補助吹出口40の吹き出し方向を示す概略図、図7は送風機11の風量制御フローチャート、図8(a)は第3実施形態と従来例における冷房運転初期時の吹き出し風量、吹き出し温度、車室内温度の推移を示す特性線図、図8(b)は冷房運転初期時の吹き出し風量の推移の詳細を示す特性線図、図9は補助吹出用ドア41の開閉制御の特性線図、図10は第3実施形態と従来例における圧縮機2の動力推移の特性線図である。
(Third embodiment)
FIGS. 5 to 10 show a third embodiment of the present invention, FIG. 5 is a configuration diagram of the air passage 10 around the air outlet, and FIG. 6 is a schematic diagram showing the blowing direction of the vent air outlet 31 and the auxiliary air outlet 40. FIG. 7 is a flow chart for controlling the air flow of the blower 11. FIG. 8A is a characteristic diagram showing the transition of the blown air volume, the blowing temperature, and the passenger compartment temperature at the initial stage of the cooling operation in the third embodiment and the conventional example. b) is a characteristic diagram showing the details of the transition of the blown air volume at the initial stage of the cooling operation, FIG. 9 is a characteristic diagram of the opening / closing control of the auxiliary blowing door 41, and FIG. 10 is the compressor 2 in the third embodiment and the conventional example. It is a characteristic line figure of motive power transition.

図5に示すように、この第3実施形態では、前記第1実施形態と同様に、送風路10のヒータコア12より下流に、デフロスタ吹出口30、ベント吹出口31及びフット吹出口32が設けられている。これら各吹出口30,31,32はデフロスタ用ドア33、ベント用ドア34及びフット用ドア35によってそれぞれ開閉される。デフロスタ用ドア33、ベント用ドア34及びフット用ドア35をそれぞれ駆動する各アクチュエータ36,37,38は、制御部20によって制御される。   As shown in FIG. 5, in the third embodiment, a defroster outlet 30, a vent outlet 31, and a foot outlet 32 are provided downstream of the heater core 12 of the air passage 10 as in the first embodiment. ing. These air outlets 30, 31, and 32 are opened and closed by a defroster door 33, a vent door 34, and a foot door 35, respectively. The actuators 36, 37, and 38 that respectively drive the defroster door 33, the vent door 34, and the foot door 35 are controlled by the control unit 20.

第3実施形態では、前記第1実施形態と異なり、送風路10のヒータコア12より下流に補助吹出口40が設けられている。この補助吹出口40は、補助吹出用ドア41によって開閉される。補助吹出用ドア41を駆動するアクチュエータ42は、制御部20によって制御される。   In the third embodiment, unlike the first embodiment, an auxiliary air outlet 40 is provided downstream of the heater core 12 in the air passage 10. The auxiliary air outlet 40 is opened and closed by an auxiliary air outlet door 41. The actuator 42 that drives the auxiliary blowing door 41 is controlled by the control unit 20.

図6に示すように、ベント吹出口31は、前席の乗員の上半身に直接当たる方向に吹き出すよう設定されているが、補助吹出口40は、前席の乗員に直接当たらない方向で、しかも、両側の補助吹出口40はサイドガラスに沿うように吹き出すよう設定されている。   As shown in FIG. 6, the vent outlet 31 is set so as to blow directly to the upper body of the front seat occupant, but the auxiliary outlet 40 does not directly hit the front seat occupant. The auxiliary air outlets 40 on both sides are set to blow out along the side glass.

尚、車両用空気調和装置Aのそれ以外の概略構成図は第1実施形態とほぼ同じであるため、図1を利用する。   In addition, since the other schematic structure figure of the air conditioning apparatus A for vehicles is substantially the same as 1st Embodiment, FIG. 1 is utilized.

以下、送風機11の風量制御について説明する。図7において、下記に示すルーチンは、演算単位時間(例えば100ms)ごとに実施される。   Hereinafter, the air volume control of the blower 11 will be described. In FIG. 7, the routine shown below is executed every calculation unit time (for example, 100 ms).

図7に示すように、先ず、環境負荷及び室内設定温度より目標吹き出し温度TOを算出する(ステップS1)。目標吹き出し温度TOの算出については、上記したので省略する。   As shown in FIG. 7, first, the target blowing temperature TO is calculated from the environmental load and the indoor set temperature (step S1). Since the calculation of the target blowing temperature TO has been described above, the description thereof will be omitted.

次に、目標吹き出し温度TOが冷房運転側であるか否かをチェックする(ステップS30)。目標吹き出し温度TOに応じた風量の特性線は、図2に示すように、すり鉢状の特性であるため、そのすり鉢状の特性のちょうど中心が安定期と考えられるため、その中心(図2の破線位置)を境界として冷房運転側か暖房運転側か否かを判定する。冷房運転側でなければ、暖房運転による制御に移行する(ステップS31)。暖房運転では、環境負荷に見合った風量、つまり、算出風量FOで送風機11の風量が制御される。   Next, it is checked whether or not the target blowing temperature TO is on the cooling operation side (step S30). As shown in FIG. 2, since the characteristic line of the air volume according to the target blowing temperature TO is a mortar-shaped characteristic, the center of the mortar-shaped characteristic is considered to be a stable period, and therefore the center (in FIG. 2 It is determined whether it is the cooling operation side or the heating operation side with respect to the position of the broken line). If it is not the cooling operation side, the control shifts to the heating operation control (step S31). In the heating operation, the air volume of the blower 11 is controlled by the air volume commensurate with the environmental load, that is, the calculated air volume FO.

冷房運転側であれば、目標吹き出し温度TOより算出風量FOを求める(ステップS2)。算出風量FOの求め方については、上記したので省略する。   If it is on the cooling operation side, the calculated air volume FO is obtained from the target blowing temperature TO (step S2). The method for obtaining the calculated air volume FO has been described above and will not be described.

次に、圧縮機2が稼働中か否かをチェックする(ステップS3)。稼働中でなければ、算出風量FOを吹き出し風量として風量調整機能部20bに出力する。   Next, it is checked whether or not the compressor 2 is in operation (step S3). If it is not in operation, the calculated air volume FO is output to the air volume adjusting function unit 20b as the blown air volume.

圧縮機2が稼動中であれば、圧縮機2が停止(前回ルーチンの状態)から稼動に変化したか否かをチェックする(ステップS4)。停止(前回ルーチンの状態)から稼動に変化していれば、冷房初期運転動作を開始する(ステップS5)。そうでなく稼動中であれば、冷房運転初期動作中か否かをチェックする(ステップS6)。   If the compressor 2 is operating, it is checked whether or not the compressor 2 has changed from being stopped (previous routine state) to operating (step S4). If the operation is changed from the stop (previous routine state) to the operation, the cooling initial operation operation is started (step S5). Otherwise, if it is operating, it is checked whether or not the cooling operation initial operation is being performed (step S6).

冷房運転初期動作中であれば、蒸発器後空気温度Tintが規定値である10℃を超えた値か否かをチェックする(ステップS40)。蒸発器後空気温度Tintが10℃を超えた値であれば、(FO−a)値を吹き出し風量として風量調整機能部20bに出力する(ステップS41)。   If the initial operation of the cooling operation is being performed, it is checked whether or not the post-evaporator air temperature Tint is a value that exceeds a specified value of 10 ° C. (step S40). If the post-evaporator air temperature Tint exceeds 10 ° C., the (FO−a) value is output to the air volume adjustment function unit 20b as the blown air volume (step S41).

蒸発器後空気温度Tintが10℃以下であれば、算出風量FOが前回の風量Fbakに差分Δを加算した値より大きな値であるか否かを判定する(ステップS43)。算出風量FOより(Fbak+Δ)が小さい値であれば、(Fbak+Δ)値を吹き出し風量として風量調整機能部20bに出力し(ステップS44)、送風機11の風量が(Fbak+Δ)値で制御される。算出風量FOより(Fbak+Δ)が小さい値であれば、風量が段階的にΔ値だけ増加される。そして、(Fbak+Δ)値が算出風量FO以上になれば、つまり、(Fbak+Δ)値が算出風量FOに達すれば、算出風量FOを風量調整機能部20bに出力し(ステップS10)、送風機11の送風が算出風量FOで制御される。そして、冷房初期動作は終了とされる(ステップS11)。このようにして決定された吹き出し風量は、Fbakとして保存される(ステップS42)。   If the post-evaporator air temperature Tint is 10 ° C. or less, it is determined whether or not the calculated air volume FO is larger than the value obtained by adding the difference Δ to the previous air volume Fbak (step S43). If (Fbak + Δ) is smaller than the calculated air volume FO, the (Fbak + Δ) value is output to the air volume adjustment function unit 20b as the blown air volume (step S44), and the air volume of the blower 11 is controlled by the (Fbak + Δ) value. If (Fbak + Δ) is smaller than the calculated air volume FO, the air volume is increased step by step by Δ value. If the (Fbak + Δ) value becomes equal to or greater than the calculated air volume FO, that is, if the (Fbak + Δ) value reaches the calculated air volume FO, the calculated air volume FO is output to the air volume adjusting function unit 20b (step S10). Is controlled by the calculated air volume FO. Then, the cooling initial operation is ended (step S11). The blowout air volume determined in this way is stored as Fbak (step S42).

次に、このような制御内容における冷房運転初期時の吹き出し風量、吹き出し温度、車室内温度の推移を従来例と比較しつつ図8(a)を参照して説明する。   Next, transition of the blown air volume, the blown temperature, and the passenger compartment temperature at the initial stage of the cooling operation in such control contents will be described with reference to FIG.

冷房運転開始時点では、環境負荷が大きく、蒸発器後空気温度は10℃を超えた値を示すものとする。冷房運転開始時点では、算出風量FOが最大値となり、従来例では最大値の算出風量FOで送風機11を制御することになるが、第3実施形態では、吹き出し風量が(FO−a)値となる。これにより、吹き出し温度は、従来例に比べて第3実施形態の方が低い温度となり、吹き出し風が直接当たる前席の乗員は不快を感じる時間が少なくて済む。   At the start of the cooling operation, the environmental load is large, and the air temperature after the evaporator shows a value exceeding 10 ° C. At the time of the cooling operation start, the calculated air volume FO becomes the maximum value, and in the conventional example, the blower 11 is controlled by the maximum calculated air volume FO. However, in the third embodiment, the blown air volume is the (FO-a) value. Become. As a result, the blowout temperature is lower in the third embodiment than in the conventional example, and the front seat occupant directly hit by the blowout air needs less time to feel uncomfortable.

又、車室内温度の低下に応じて蒸発器後空気温度Tintも徐々に低下し、蒸発器後空気温度Tintが10℃以下になると(T1タイミング)、吹き出し風量は、従来例では算出風量FOのままであるが、第3実施形態では(Fbak+Δ)値となり、徐々に増加される。そして、吹き出し風量が算出風量FOに達すると(T2タイミング)、冷房運転初期時が終了とされ、その以降は通常の冷房制御に基づいて吹き出し風量が制御される。つまり、算出風量FOによって送風機11の風量が制御される。   In addition, when the post-evaporator air temperature Tint gradually decreases as the passenger compartment temperature decreases and the post-evaporator air temperature Tint becomes 10 ° C. or less (T1 timing), the blown-out air volume is equal to the calculated air volume FO in the conventional example. However, in the third embodiment, the value becomes (Fbak + Δ) and is gradually increased. When the blown air volume reaches the calculated air volume FO (T2 timing), the initial stage of the cooling operation is terminated, and thereafter, the blown air volume is controlled based on normal cooling control. That is, the air volume of the blower 11 is controlled by the calculated air volume FO.

又、蒸発器後空気温度tintが10℃以下となった時点から冷房運転初期時の終了までの間の吹き出し風量は、図8(b)に示すように、(FO−a)値と増加風量分を加算したものとなる。   Further, as shown in FIG. 8B, the blown-out air volume from the time when the post-evaporator air temperature tint becomes 10 ° C. or less to the end of the initial cooling operation is the (FO−a) value and the increased air volume. It is the sum of minutes.

更に、上記動作過程にあって、吹き出し風量が増加されると、補助吹出用ドア41は図9に示すように開度θが制御される。これにより、(FO−a)の風量は、ベント吹出口より31より吹き出され、ほぼ増加分の風量は、補助吹出口40より吹き出される。つまり、増加分の風量は、乗員に直接当たらないように吹き出される。   Further, in the above operation process, when the blown air volume is increased, the opening degree θ of the auxiliary blowing door 41 is controlled as shown in FIG. Thereby, the air volume of (FO-a) is blown out from the vent blower outlet 31, and the almost increased air volume is blown out from the auxiliary blower outlet 40. That is, the increased air volume is blown out so as not to directly hit the passenger.

上記動作過程にあって、冷房運転初期時の圧縮機2の動力を従来例と比較するに、図10に示すように、第3実施形態の方が圧縮機2の動力の最大値が低く抑えられることになる。   In the above operation process, when comparing the power of the compressor 2 at the initial stage of the cooling operation with that of the conventional example, the maximum value of the power of the compressor 2 is kept lower in the third embodiment as shown in FIG. Will be.

以上、第3実施形態では、蒸発器5を通過した空気温度が規定値(第3実施形態では10℃)を下回った場合には、送風機11の風量を段階的に増加させる制御を行う。従って、吹き出し風が快適なものとなってから風量を増加させるため、乗員に温度の高い大量の空調風が当たるのを防止できる。   As described above, in the third embodiment, when the temperature of the air that has passed through the evaporator 5 falls below a specified value (10 ° C. in the third embodiment), control is performed to increase the air volume of the blower 11 stepwise. Therefore, since the air volume is increased after the blown air becomes comfortable, it is possible to prevent a large amount of conditioned air from hitting the occupant.

送風機11の風量を増加させた場合には、乗員に直接当たらない補助吹出口40からも送風を吹き出すようにした。従って、乗員に大量の空調風が直接当たるのを防止しつつ、車室内の迅速な冷房を図ることができる。又、ガラスに沿うように吹き出す補助吹出口40から増加分の空調風を吹き出すようにしたため、外部からの輻射熱の抑制にも寄与する。   When the air volume of the blower 11 is increased, the blown air is blown out from the auxiliary air outlet 40 that does not directly hit the passenger. Accordingly, it is possible to quickly cool the passenger compartment while preventing a large amount of conditioned air from directly hitting the passenger. Moreover, since the increased amount of conditioned air is blown from the auxiliary air outlet 40 that blows out along the glass, it also contributes to suppression of radiant heat from the outside.

又、この第3実施形態では、図9に示すように、増加風量に応じて補助吹出用ドア41の開度を可変するので、増加風量分の風量を補助吹出口40から吹き出し、ベント吹出口31からの吹き出し量をほぼ一定、具体的には、乗員に直接当たっても不快でなく冷房感を得やすい風量に抑えることができる。   In the third embodiment, as shown in FIG. 9, since the opening degree of the auxiliary blowing door 41 is varied according to the increased air volume, the air volume corresponding to the increased air volume is blown from the auxiliary air outlet 40, and the vent air outlet. The amount of air blown from 31 is substantially constant, specifically, it can be suppressed to an air volume that is not uncomfortable and easily obtains a cooling feeling even if it directly hits an occupant.

冷房運転初期時は、段階的に増加させた送風機11の風量が、車両の環境負荷と室内設定温度に基づく算出風量FOに達するまでとした。従って、複雑な制御を追加することなく、冷房運転初期時の制御からそれ以降の通常の制御にスムーズに移行させることができる。   At the initial stage of the cooling operation, the air volume of the blower 11 increased in a stepwise manner reaches the calculated air volume FO based on the environmental load of the vehicle and the indoor set temperature. Therefore, it is possible to smoothly shift from the control at the initial stage of the cooling operation to the normal control after that without adding complicated control.

(その他)
各実施形態では、環境負荷は、外気温度、車室内温度及び日射量を要素としたが、環境負荷は室内温度を室内設定温度とする際に妨げとなる負荷であり、環境負荷を決定する要素はこれらに限定されるものではない。
(Other)
In each embodiment, the environmental load includes the outside air temperature, the vehicle interior temperature, and the amount of solar radiation. However, the environmental load is a load that hinders the indoor temperature from being set to the indoor set temperature, and is an element that determines the environmental load. Is not limited to these.

本発明の第1実施形態を示し、車両用空気調和装置の概略構成図である。1 is a schematic configuration diagram of a vehicle air conditioner according to a first embodiment of the present invention. 本発明の第1実施形態を示し、目標吹き出し温度に応じた送風機の算出風量の特性線図である。FIG. 3 is a characteristic diagram of a calculated air volume of the blower according to the target blowing temperature according to the first embodiment of the present invention. 本発明の第1実施形態を示し、送風機の風量制御フローチャートである。1 is a flowchart illustrating an air flow control of a blower according to a first embodiment of the present invention. 本発明の第2実施形態を示し、送風機の風量制御フローチャートである。It is a flow rate control flowchart of a fan which shows 2nd Embodiment of this invention. 本発明の第3実施形態を示し、吹出口を中心として送風路の構成図である。It is a block diagram of a ventilation path which shows 3rd Embodiment of this invention centering on a blower outlet. 本発明の第3実施形態を示し、ベント吹出口と補助吹出口の吹き出し方向を示す概略図である。It is the schematic which shows 3rd Embodiment of this invention and shows the blowing direction of a vent blower outlet and an auxiliary blower outlet. 本発明の第3実施形態を示し、送風機の風量制御フローチャートである。It is a flow rate control flowchart of a blower, showing a third embodiment of the present invention. (a)は第3実施形態と従来例における冷房運転初期時の吹き出し風量、吹き出し温度、車室内温度の推移を示す特性線図、(b)は冷房運転初期時の吹き出し風量の推移の詳細を示す特性線図である。(A) is a characteristic diagram showing the transition of the blown air volume, the blowout temperature, and the passenger compartment temperature at the initial stage of the cooling operation in the third embodiment and the conventional example, and (b) shows the details of the transition of the blown air volume at the initial stage of the cooling operation. FIG. 本発明の第3実施形態を示し、補助吹出用ドアの開閉制御の特性線図である。It is a characteristic diagram of the opening / closing control of the auxiliary blowing door according to the third embodiment of the present invention. 第3実施形態と従来例における圧縮機の動力推移の特性線図である。It is a characteristic diagram of the power transition of the compressor in a 3rd embodiment and a conventional example.

符号の説明Explanation of symbols

A 車両用空気調和装置
5 蒸発器
11 送風機
20 制御部
A Air conditioner for vehicles 5 Evaporator 11 Blower 20 Control part

Claims (7)

送風機(11)と、前記送風機(11)で発生させた送風を冷媒との熱交換によって冷却する蒸発器(5)と、車両の環境負荷と室内設定温度に基づく前記送風機(11)の風量を算出して前記送風機(11)を自動制御する制御部(20)とを備え、前記制御部(20)で自動調整された前記送風機(11)による送風が前記蒸発器(5)を経て空調風として車室内に吹き出される車両用空気調和装置(A)であって、
前記制御部(20)は、冷房運転初期時には、車両の環境負荷及び室内設定温度に基づく算出風量より小さい風量で前記送風機(11)を制御したことを特徴とする車両用空気調和装置(A)。
The blower (11), the evaporator (5) that cools the air generated by the blower (11) by heat exchange with the refrigerant, and the air volume of the blower (11) based on the environmental load of the vehicle and the indoor set temperature. A control unit (20) for calculating and automatically controlling the blower (11), and the air blown by the blower (11) automatically adjusted by the control unit (20) passes through the evaporator (5) and is conditioned air Vehicle air conditioner (A) blown into the passenger compartment as
The controller (20) controls the blower (11) with an air volume smaller than the calculated air volume based on the environmental load of the vehicle and the indoor set temperature at the initial stage of the cooling operation. .
請求項1記載の車両用空気調和装置(A)であって、
車両の環境負荷と室内設定温度に基づく算出風量がしきい値を超えている場合にのみ、算出風量より小さい風量で前記送風機(11)を制御したことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to claim 1,
The vehicle air conditioner (A) is characterized in that the blower (11) is controlled with an air volume smaller than the calculated air volume only when the calculated air volume based on the environmental load of the vehicle and the indoor set temperature exceeds a threshold value. ).
請求項1又は請求項2記載の車両用空気調和装置(A)であって、
乗員が前席のみと判断した場合にのみ、車両の環境負荷と室内設定温度に基づく算出風量より小さい風量で前記送風機(11)を制御したことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to claim 1 or 2,
The vehicle air conditioner (A) is characterized in that the blower (11) is controlled with an air volume smaller than a calculated air volume based on the environmental load of the vehicle and the indoor set temperature only when the occupant determines only the front seat.
請求項1〜請求項3のいずれかに記載の車両用空気調和装置(A)であって、
前記蒸発器(5)を通過した空気温度が規定値を下回った場合には、前記送風機(11)の風量を段階的に増加させる制御を行うことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to any one of claims 1 to 3,
When the temperature of the air that has passed through the evaporator (5) falls below a specified value, control is performed to increase the air volume of the blower (11) step by step. .
請求項4記載の車両用空気調和装置(A)であって、
前記送風機(11)の風量を増加させた場合には、乗員に直接当たらない吹出口からも送風を吹き出すようにしたことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to claim 4,
When the air volume of the blower (11) is increased, the vehicle air conditioner (A) is characterized in that the blown air is blown out also from an outlet that does not directly hit the passenger.
請求項4又は請求項5記載の車両用空気調和装置(A)であって、
冷房運転初期時は、段階的に増加させた前記送風機(11)の風量が、車両の環境負荷と室内設定温度に基づく算出風量に達するまでとすることを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to claim 4 or 5,
The vehicle air conditioner (A) is characterized in that at the initial stage of the cooling operation, the air volume of the blower (11) increased in stages reaches the calculated air volume based on the environmental load of the vehicle and the indoor set temperature. ).
請求項3〜請求項6のいずれかに記載の車両用空気調和装置(A)であって、
乗員が前席のみであるか否かの判断は、座席の熱検知手段の検知情報と後席ドアの開閉履歴情報の少なくとも1つより行うことを特徴とする車両用空気調和装置(A)。
The vehicle air conditioner (A) according to any one of claims 3 to 6,
The vehicle air conditioner (A) is characterized in that whether or not the passenger is only the front seat is determined based on at least one of detection information of the heat detection means of the seat and opening / closing history information of the rear seat door.
JP2008293528A 2008-11-17 2008-11-17 Air conditioner for vehicles Expired - Fee Related JP5210819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293528A JP5210819B2 (en) 2008-11-17 2008-11-17 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293528A JP5210819B2 (en) 2008-11-17 2008-11-17 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2010120414A true JP2010120414A (en) 2010-06-03
JP5210819B2 JP5210819B2 (en) 2013-06-12

Family

ID=42322146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293528A Expired - Fee Related JP5210819B2 (en) 2008-11-17 2008-11-17 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP5210819B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010379A (en) * 2011-06-28 2013-01-17 Japan Climate Systems Corp Vehicle control system
WO2013021753A1 (en) * 2011-08-08 2013-02-14 トヨタ自動車株式会社 Vehicle air-conditioner apparatus
KR101418849B1 (en) 2012-03-02 2014-07-16 한라비스테온공조 주식회사 Air conditioner for vehicle and its control method
US20150352925A1 (en) * 2012-12-28 2015-12-10 Thermo King Corporation Method and system for controlling operation of condenser and evaporator fans
CN109664717A (en) * 2018-12-24 2019-04-23 北京新能源汽车股份有限公司 A kind of control method, control device and the vehicle of air-conditioning air-heating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171351A (en) * 1992-12-07 1994-06-21 Zexel Corp Air-conditioner for vehicle
JP2006137253A (en) * 2004-11-10 2006-06-01 Denso Corp Air conditioner for vehicle
JP2006240578A (en) * 2005-03-07 2006-09-14 Denso Corp Seating determination device for vehicle and air conditioner for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06171351A (en) * 1992-12-07 1994-06-21 Zexel Corp Air-conditioner for vehicle
JP2006137253A (en) * 2004-11-10 2006-06-01 Denso Corp Air conditioner for vehicle
JP2006240578A (en) * 2005-03-07 2006-09-14 Denso Corp Seating determination device for vehicle and air conditioner for vehicle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010379A (en) * 2011-06-28 2013-01-17 Japan Climate Systems Corp Vehicle control system
WO2013021753A1 (en) * 2011-08-08 2013-02-14 トヨタ自動車株式会社 Vehicle air-conditioner apparatus
JP2013035406A (en) * 2011-08-08 2013-02-21 Denso Corp Vehicle air-conditioner apparatus
CN103717423A (en) * 2011-08-08 2014-04-09 丰田自动车株式会社 Vehicle air-conditioner apparatus
KR101418849B1 (en) 2012-03-02 2014-07-16 한라비스테온공조 주식회사 Air conditioner for vehicle and its control method
US20150352925A1 (en) * 2012-12-28 2015-12-10 Thermo King Corporation Method and system for controlling operation of condenser and evaporator fans
CN109664717A (en) * 2018-12-24 2019-04-23 北京新能源汽车股份有限公司 A kind of control method, control device and the vehicle of air-conditioning air-heating

Also Published As

Publication number Publication date
JP5210819B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP2009208620A (en) Vehicle air conditioner
JP5210819B2 (en) Air conditioner for vehicles
JP2006082641A (en) Temperature control device of vehicle
JP2015143037A (en) Air-conditioning control device
JP7315429B2 (en) Temperature control device controller for convertible vehicle
JP4521649B2 (en) Air conditioner for vehicles
JP2010105505A (en) Air conditioner for vehicle
JP2015145174A (en) Air conditioner for vehicle
JP4521650B2 (en) Air conditioner for vehicles
JP6187088B2 (en) Air conditioner for vehicles
JP2009292385A (en) Air conditioner for vehicle
JP6390364B2 (en) Air conditioner for vehicles
JP4350980B2 (en) Air conditioning control device for vehicles
JP3861805B2 (en) Air conditioner for vehicles
JP2010264814A (en) Vehicular air conditioner
KR101758720B1 (en) Air conditioner for vehicles
JP2008302839A (en) Air conditioning device for vehicle
JP4360196B2 (en) Air conditioner for vehicles
JP6610383B2 (en) Air conditioning system for vehicles
JP2003080919A (en) Vehicular air conditioner
JP2002307926A (en) Air conditioner for vehicle
JP2005349939A (en) Air conditioner for vehicle
JP2002225533A (en) Air conditioner for vehicle
JP2008168734A (en) Vehicular air conditioner
JPS62178416A (en) Air conditioner for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5210819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees