JP2010119298A - Drive system, mold motor, air-conditioner, refrigerator, and ventilation fan of electric motor - Google Patents

Drive system, mold motor, air-conditioner, refrigerator, and ventilation fan of electric motor Download PDF

Info

Publication number
JP2010119298A
JP2010119298A JP2010047878A JP2010047878A JP2010119298A JP 2010119298 A JP2010119298 A JP 2010119298A JP 2010047878 A JP2010047878 A JP 2010047878A JP 2010047878 A JP2010047878 A JP 2010047878A JP 2010119298 A JP2010119298 A JP 2010119298A
Authority
JP
Japan
Prior art keywords
temperature
electric motor
motor
transistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010047878A
Other languages
Japanese (ja)
Other versions
JP4589453B2 (en
Inventor
Togo Yamazaki
東吾 山崎
Mamoru Kawakubo
守 川久保
Tomoo Yamada
倫雄 山田
Kazuhiro Nakane
和広 中根
Mineo Yamamoto
峰雄 山本
Hiroyuki Ishii
博幸 石井
Takashi Matsunaga
隆 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010047878A priority Critical patent/JP4589453B2/en
Publication of JP2010119298A publication Critical patent/JP2010119298A/en
Application granted granted Critical
Publication of JP4589453B2 publication Critical patent/JP4589453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drive system of an electric motor that has a narrow operating temperature range for protection against overheating in a motor, and that can provide high-accuracy protection from overheating. <P>SOLUTION: A drive system of the electric motor includes a direct-current power supply, an inverter circuit, an electric motor in which a driving current is supplied to each phase coil from the inverter circuit, a temperature-sensitive resistive element provided in the electric motor and connected to a power supply line via a transistor, an overcurrent detection circuit having a comparator circuit that compares a detected temperature of the electric motor, detected by the temperature-sensitive resistive element with a predetermined reference temperature and detects whether the detected temperature is higher than or equal to the reference temperature, and a driving section that individually drives on/off a plurality of switching elements. The driving section controls the on-period of the plurality of switching elements and suppresses the drive current supplied to the electric motor, when the comparator circuit detects that the temperature is higher than or equal to the reference temperature. The transistor is normally turned on. As the detected temperature of the electric motor rises, the transistor transits from on to off. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、直流ブラシレスモータ等の電動機の駆動装置に関するもので、モータの温度の過度の上昇を防止する技術に関する。   The present invention relates to a drive device for an electric motor such as a DC brushless motor, and relates to a technique for preventing an excessive increase in the temperature of the motor.

冷凍空調機等の分野では、3相の直流ブラシレスモータが使用されているが、モータのロックや過負荷等の異常状態が発生すると、モータ温度が過度に上昇し、モータの巻線が損傷したり絶縁不良となり、モータに内蔵されている各種電気回路、電子回路が破壊される場合がある。   In the field of refrigeration and air conditioners, etc., three-phase DC brushless motors are used. However, when an abnormal state such as motor lock or overload occurs, the motor temperature rises excessively and the motor windings are damaged. Insulation failure may occur and various electric and electronic circuits built in the motor may be destroyed.

その対策として、従来の直流ブラシレスモータの駆動装置では、モータ温度が、基準温度以上になると温度判別部が検出し、駆動部がこれにより複数のスイッチ素子のオン期間を制限して、モータに供給される駆動電流を抑制し、モータの温度が誤って過度に上昇する事態を防止している(例えば、特許文献1参照)。   As a countermeasure, in a conventional DC brushless motor drive device, when the motor temperature becomes equal to or higher than the reference temperature, the temperature discriminating unit detects, and the drive unit thereby limits the ON period of a plurality of switch elements and supplies it to the motor. The drive current is suppressed, and the situation where the temperature of the motor is erroneously excessively increased is prevented (for example, see Patent Document 1).

特開平10−201280号公報JP-A-10-201280 特開2002−354870号公報JP 2002-354870 A

従来の直流ブラシレスモータの駆動装置は、過電流検出回路に感温抵抗素子を使用しているが、その温度−抵抗変化特性のバラツキにより、モータの過熱保護の温度動作範囲が広く、過熱保護の精度に問題があった。   Conventional DC brushless motor drive devices use a temperature-sensitive resistor element in the overcurrent detection circuit, but due to variations in temperature-resistance change characteristics, the temperature operating range of the motor's overheat protection is wide, and overheat protection There was a problem with accuracy.

この発明は、上記のような問題点を解決するためになされたもので、モータの過熱保護の温度動作範囲が狭く、高精度の過熱保護ができる電動機の駆動装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an electric motor drive device that has a narrow temperature operating range for overheating protection of a motor and can perform overheating protection with high accuracy. .

この発明に係る電動機の駆動装置は、電源ラインに接続される直流電源と、
複数のスイッチ素子を有し、直流電源の直流電力を擬似交流電力に変換するインバータ回路と、
複数相のコイルを有し、インバータ回路から各相コイルに駆動電流が供給される電動機と、
電動機に設けられ、温度によって電気的抵抗値が変化し、トランジスタを介して電源ラインに接続される感温抵抗素子と、
この感温抵抗素子が検出した電動機の検出温度を予め定める基準温度と比較し、検出温度が前記基準温度以上になったか否かを検知する比較回路を有する過電流検出回路と、
複数のスイッチ素子を個別にオン/ オフ駆動すると共に、比較回路が基準温度以上になったことを検知した場合に、複数のスイッチ素子のオン期間を制限して、電動機に供給される駆動電流を抑制する駆動部とを備え、
トランジスタは通常オン状態であり、電動機の検出温度が上昇する途中でトランジスタがオン状態からオフ状態に移行するものである。
An electric motor drive device according to the present invention includes a DC power source connected to a power line,
An inverter circuit having a plurality of switch elements and converting the DC power of the DC power source into pseudo AC power;
An electric motor having a coil of a plurality of phases and having a drive current supplied from the inverter circuit to each phase coil;
A temperature-sensitive resistance element provided in the electric motor, the electric resistance value changes depending on the temperature, and connected to the power supply line through the transistor;
An overcurrent detection circuit having a comparison circuit that compares the detected temperature of the electric motor detected by the temperature-sensitive resistance element with a predetermined reference temperature and detects whether the detected temperature is equal to or higher than the reference temperature;
When a plurality of switch elements are individually turned on / off, and the comparison circuit detects that the reference temperature has been exceeded, the on-period of the plurality of switch elements is limited to reduce the drive current supplied to the motor. A drive unit to suppress,
The transistor is normally in an on state, and the transistor shifts from an on state to an off state while the detected temperature of the electric motor rises.

この発明に係る電動機の駆動装置は、上記構成により、過熱保護の温度動作範囲が狭く、温度変化に対する精度を高くすることが可能となり過熱保護の高精度化を図ることができる。   With the above configuration, the motor driving device according to the present invention has a narrow temperature operation range for overheat protection, can increase the accuracy with respect to temperature changes, and can improve the accuracy of overheat protection.

実施の形態1を示す図で、駆動装置の電気的構成を示す回路図である。FIG. 3 is a diagram illustrating the first embodiment and is a circuit diagram illustrating an electrical configuration of the driving device. 実施の形態1を示す図で、過電流検出回路を示す図である。FIG. 3 is a diagram illustrating the first embodiment and is a diagram illustrating an overcurrent detection circuit. 実施の形態1を示す図で、過電流検出回路の他の例を示す図である。FIG. 5 shows the first embodiment and is a diagram showing another example of an overcurrent detection circuit. 実施の形態1を示す図で、感温抵抗素子の抵抗温度特性を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the resistance temperature characteristic of a temperature sensitive resistive element. 実施の形態1を示す図で、温度−電流制限値の関係を示す図である。It is a figure which shows Embodiment 1, and is a figure which shows the relationship of a temperature-current limiting value. 実施の形態1、2を示す図で、電動機の構成を示す図である。It is a figure which shows Embodiment 1, 2, and is a figure which shows the structure of an electric motor. 実施の形態3を示す図で、壁掛け形空気調和機を示す図である。It is a figure which shows Embodiment 3, and is a figure which shows a wall-hanging type air conditioner. 実施の形態3を示す図で、同室内機の構成を示す図である。It is a figure which shows Embodiment 3, and is a figure which shows the structure of the same indoor unit. 実施の形態4を示す図で、天井埋め込み型空気調和機の室内機を示す図である。It is a figure which shows Embodiment 4, and is a figure which shows the indoor unit of a ceiling embedded type air conditioner. 実施の形態4を示す図で、は同室外機を示す図である。FIG. 6 is a diagram illustrating the fourth embodiment, and is a diagram illustrating the outdoor unit. 実施の形態5を示す図で、冷蔵庫を示す図である。It is a figure which shows Embodiment 5, and is a figure which shows a refrigerator. 実施の形態6を示す図で、換気扇を示す図である。It is a figure which shows Embodiment 6, and is a figure which shows a ventilation fan.

実施の形態1.
図1〜6は実施の形態1を示す図で、図1は駆動装置の電気的構成を示す回路図、図2は過電流検出回路を示す図、図3は過電流検出回路の他の例を示す図、図4は感温抵抗素子の抵抗温度特性を示す図、図5は温度−電流制限値の関係を示す図、図6は電動機の構成を示す図である。
Embodiment 1 FIG.
1 to 6 are diagrams showing the first embodiment, FIG. 1 is a circuit diagram showing the electrical configuration of the driving device, FIG. 2 is a diagram showing an overcurrent detection circuit, and FIG. 3 is another example of the overcurrent detection circuit. FIG. 4 is a diagram showing the resistance-temperature characteristics of the temperature-sensitive resistance element, FIG. 5 is a diagram showing the relationship between temperature and current limit values, and FIG. 6 is a diagram showing the configuration of the motor.

図1に示すように、駆動装置21は、インバータ回路28と、ゲートドライブ回路29と、三相分配回路30と、PWM回路32と、過電流検出回路35と、直流電源40とから構成されている。   As shown in FIG. 1, the driving device 21 includes an inverter circuit 28, a gate drive circuit 29, a three-phase distribution circuit 30, a PWM circuit 32, an overcurrent detection circuit 35, and a DC power supply 40. Yes.

駆動部は、ゲートドライブ回路29と、三相分配回路30とで構成される。   The drive unit includes a gate drive circuit 29 and a three-phase distribution circuit 30.

また、電動機22は、3相であって、U相、V相及びW相の駆動信号Iu、Iv、Iwが供給される3本のコイル23、24、25を有する固定子と、一対の磁極を有する永久磁石等からなる回転子26を備えている。   The electric motor 22 has three phases, and a stator having three coils 23, 24, and 25 to which U-phase, V-phase, and W-phase drive signals Iu, Iv, and Iw are supplied, and a pair of magnetic poles. The rotor 26 which consists of a permanent magnet etc. which has is provided.

また、電動機22は、回転子26の回転速度を検出するためにホール素子等から構成され、各相毎の磁極信号Hu、Hv、Hwを出力する磁極検出素子27を備えている。   The electric motor 22 includes a hall element or the like for detecting the rotation speed of the rotor 26, and includes a magnetic pole detection element 27 that outputs magnetic pole signals Hu, Hv, and Hw for each phase.

この電動機22のコイル23、24、25はU相、V相及びW相の駆動信号Iu、Iv、Iwをそれぞれ供給するインバータ回路28に接続されている。このインバータ回路28には、6つのトランジスタQ1、Q2、Q3、Q4、Q5、Q6が設けられている。各トランジスタQ1〜Q6のそれぞれに並列にダイオードD1、D2、D3、D4、D5、D6が接続されている。各ダイオードD1〜D6のアノードは、各トランジスタQ1〜Q6のエミッタに接続され、トランジスタQ1〜Q6は直流電源40に接続されている。   The coils 23, 24, and 25 of the electric motor 22 are connected to an inverter circuit 28 that supplies U-phase, V-phase, and W-phase drive signals Iu, Iv, and Iw, respectively. The inverter circuit 28 is provided with six transistors Q1, Q2, Q3, Q4, Q5, and Q6. Diodes D1, D2, D3, D4, D5, and D6 are connected in parallel to each of the transistors Q1 to Q6. The anodes of the diodes D1 to D6 are connected to the emitters of the transistors Q1 to Q6, and the transistors Q1 to Q6 are connected to the DC power supply 40.

トランジスタQ1、Q4;Q2、Q5;Q3、Q6の各接続点からU相、V相及びW相の駆動信号Iu、Iv、Iwがそれぞれ出力される。トランジスタQ1〜Q3のコレクタは、電源ライン39を介して直流電源40に接続され、また、トランジスタQ4〜Q6のエミッタは、電源ライン39を介して直流電源40の負極に接続されている。   U-phase, V-phase, and W-phase drive signals Iu, Iv, and Iw are output from the connection points of the transistors Q1, Q4; Q2, Q5; Q3, Q6, respectively. The collectors of the transistors Q1 to Q3 are connected to the DC power supply 40 via the power supply line 39, and the emitters of the transistors Q4 to Q6 are connected to the negative electrode of the DC power supply 40 via the power supply line 39.

磁極検出素子27は、三相分配回路30に接続されている。三相分配回路30の出力は、各トランジスタQ1、Q2、Q3、Q4、Q5、Q6をオン/オフする制御信号を出力するゲートドライブ回路29に入力される。一方、三相分配回路30には、PWM(パルス幅変換)回路32と、過電流検出回路35とが接続されている。   The magnetic pole detection element 27 is connected to the three-phase distribution circuit 30. The output of the three-phase distribution circuit 30 is input to a gate drive circuit 29 that outputs a control signal for turning on / off each of the transistors Q1, Q2, Q3, Q4, Q5, and Q6. On the other hand, a PWM (pulse width conversion) circuit 32 and an overcurrent detection circuit 35 are connected to the three-phase distribution circuit 30.

PWM回路32では、速度指令入力部からの信号が三角波発生回路からの三角波と比較回路で比較され、所定の回転速度に対応したオン期間のPWM信号が三相分配回路30に出力される。   In the PWM circuit 32, the signal from the speed command input unit is compared with the triangular wave from the triangular wave generation circuit by the comparison circuit, and the PWM signal in the ON period corresponding to a predetermined rotational speed is output to the three-phase distribution circuit 30.

過電流検出回路35の構成の概略は以下の通りである。   The outline of the configuration of the overcurrent detection circuit 35 is as follows.

即ち、過電流検出回路35は、一例として、電源ライン39に直列に接続された電流検出用抵抗41の端子間電圧が一方入力端子に入力される比較回路36(後述する)と、比較回路36の他方入力端子に予め定める基準電圧を入力するための基準電源37とを備える。比較回路36の出力は、三相分配回路30に入力される。   That is, the overcurrent detection circuit 35 includes, as an example, a comparison circuit 36 (described later) in which a voltage between terminals of a current detection resistor 41 connected in series to the power supply line 39 is input to one input terminal, and a comparison circuit 36. And a reference power source 37 for inputting a predetermined reference voltage to the other input terminal. The output of the comparison circuit 36 is input to the three-phase distribution circuit 30.

以下、図2を参照して、過電流検出回路35の詳細な構成例について説明する。   Hereinafter, a detailed configuration example of the overcurrent detection circuit 35 will be described with reference to FIG.

過電流検出回路35は、図2に示すように、電源ライン39とそこにつながる抵抗、コンデンサ、基準電位、デジタルトランジスタ、感温抵抗素子、比較回路から構成されている。   As shown in FIG. 2, the overcurrent detection circuit 35 includes a power supply line 39 and a resistor, a capacitor, a reference potential, a digital transistor, a temperature sensitive resistance element, and a comparison circuit connected thereto.

電源ライン39には、抵抗値R13とR14とが並列に接続された電流検出用抵抗41が接続され、その一端は接地されている。このとき電流検出用抵抗41と電源ライン39間の電位V1は、抵抗R15 9を介してV0となり比較回路36に接続されている。   The power supply line 39 is connected to a current detection resistor 41 in which resistance values R13 and R14 are connected in parallel, and one end thereof is grounded. At this time, the potential V1 between the current detection resistor 41 and the power supply line 39 becomes V0 via the resistor R159 and is connected to the comparison circuit 36.

V0の電位はコンデンサC15 12により接地されている。一方感温抵抗素子RT1 42は一端が基準電圧VB 2、他端が抵抗分圧抵抗R17 1とコンデンサC18 11とから接地される。このとき基準電位VB3にはデジタルトランジスタ(抵抗入りのトランジスタ)Q7 5のベース側に接続され、コレクタ側には抵抗R16 6を介して基準電位VB 3に接続され、エミッタは接地されている。基準電位VB 2と基準電位VB 3とは同電圧である。   The potential of V0 is grounded by the capacitor C1512. On the other hand, one end of the temperature sensitive resistance element RT1 42 is grounded from the reference voltage VB2, and the other end is grounded from the resistance voltage dividing resistor R171 and the capacitor C1811. At this time, the reference potential VB3 is connected to the base side of a digital transistor (transistor with a resistor) Q75, the collector side is connected to the reference potential VB3 via the resistor R166, and the emitter is grounded. The reference potential VB2 and the reference potential VB3 are the same voltage.

このとき基準電位VB 2は、抵抗R12 7により電位V0に接続される。V0の電位が比較回路36に取り込まれる。また、比較回路36の他方入力端子には、基準電位Vrefの基準電源37に接続されている。   At this time, the reference potential VB2 is connected to the potential V0 by the resistor R127. The potential of V0 is taken into the comparison circuit 36. Further, the other input terminal of the comparison circuit 36 is connected to a reference power source 37 having a reference potential Vref.

感温抵抗素子RT1 42は、例えば、温度を検出する対象の電動機22のモールド内の基板に実装されている(図6参照)。   The temperature sensitive resistance element RT1 42 is mounted on, for example, a substrate in a mold of the electric motor 22 whose temperature is to be detected (see FIG. 6).

感温抵抗素子RT1 42としては、例えばチタン酸バリウムに希土類元素を微量添加したn型原子価制御形半導体等が好適である。このような感温抵抗素子RT1 42の一例としてポジスタ(登録商標、村田製作所)の使用が最適である。本実施例で使用される感温抵抗素子RT1 42の温度―抵抗変化比特性の一例が、図4のグラフに示されている。   As the temperature sensitive resistance element RT1 42, for example, an n-type valence control type semiconductor in which a trace amount of rare earth element is added to barium titanate is suitable. As an example of such a temperature sensitive resistance element RT <b> 1 42, the use of Posister (registered trademark, Murata Manufacturing Co., Ltd.) is optimal. An example of the temperature-resistance change ratio characteristic of the temperature-sensitive resistance element RT1 42 used in this embodiment is shown in the graph of FIG.

図2の過電流検出回路では、デジタルトランジスタ(抵抗入りのトランジスタ)Q7 5を使用する例を示したが、図3のように、トランジスタQ8と抵抗の組み合わせでもよい。   In the overcurrent detection circuit of FIG. 2, an example in which the digital transistor (transistor-containing transistor) Q75 is used is shown, but a combination of the transistor Q8 and a resistor may be used as shown in FIG.

図2の過電流検出回路35を、図1の駆動装置21に搭載して、電動機の過熱保護試験を行った。   The overcurrent detection circuit 35 shown in FIG. 2 was mounted on the driving device 21 shown in FIG. 1 to perform an overheat protection test of the motor.

試験に使用した電動機は、図6に示すようなモールド樹脂25で固定子と、感温抵抗素子RT1 42が実装された基板とを一体に成形した直流ブラシレスモータで、軸出力が30Wのものである。   The electric motor used for the test is a DC brushless motor in which a stator and a substrate on which a temperature-sensitive resistance element RT1 42 is mounted are integrally molded with a mold resin 25 as shown in FIG. is there.

また、感温抵抗素子RT1 42には、前述したポジスタ(登録商標、村田製作所)PRF18BE471を用いた。   Further, the above-described Posister (registered trademark, Murata Manufacturing Co., Ltd.) PRF18BE471 was used for the temperature sensitive resistance element RT1 42.

上記直流ブラシレスモータを、常温から110℃の雰囲気において、直流ブラシレスモータの回転子をロックして、モータ入力電流とモータの温度との関係を調査した。   With respect to the DC brushless motor, the relationship between the motor input current and the motor temperature was investigated by locking the rotor of the DC brushless motor in an atmosphere of room temperature to 110 ° C.

その結果を図5のグラフに示す。   The results are shown in the graph of FIG.

図5には、従来の駆動装置(例えば、特許文献1)における電流制限値温度特性を曲線A,B,Cで示す。このA,B,Cは、図4のものに対応する。   FIG. 5 shows current limit value temperature characteristics in curves A, B, and C in a conventional driving device (for example, Patent Document 1). A, B, and C correspond to those in FIG.

これに対し本実施の形態による電流制限値温度特性は、図5の曲線17、23、18のようになった。   On the other hand, the current limit value temperature characteristics according to the present embodiment are as shown by curves 17, 23 and 18 in FIG.

これから解るように、従来の駆動装置による電流制限範囲19よりも、本実施の形態の駆動装置による電流制限範囲20は狭くなり、尚且つ傾きが急峻になっている。これによって高精度でばらつきの少ない電流制限が可能となる。この結果、従来の駆動装置の運転温度範囲45に比べて、本実施の形態の駆動装置の室内機46の運転動作の温度範囲が広く取れ、電動機の安定動作の温度範囲が広くなり、電動機の性能が向上することが明らかになった。   As can be seen, the current limiting range 20 by the driving device of the present embodiment is narrower and the slope becomes steeper than the current limiting range 19 by the conventional driving device. This makes it possible to limit the current with high accuracy and little variation. As a result, the temperature range of the operation operation of the indoor unit 46 of the drive device of the present embodiment is wider than the operation temperature range 45 of the conventional drive device, and the temperature range of the stable operation of the motor is widened. It became clear that performance improved.

上記の結果は、本実施の形態の駆動装置21によって得られるものである。電動機22がロックや過負荷等の理由で温度が上昇して、感温抵抗素子RT1 42のキュリー温度を超えると、感温抵抗素子RT1 42の抵抗変化比が急速に増大する。これにより、図2における感温抵抗素子RT1 42の一端の基準電位VB 3が低下し、通常ON状態のデジタルトランジスタQ7 5がOFFすることで、電位V0が上昇する。電圧V0が基準電源37の基準電位Vrefを超えると、比較回路36から過電流検出信号が出力され、過電流検出回路35は過電流検出信号を出力し、三相分配回路30は、この検出信号に基づいて電流制限信号をゲートドライブ回路29に出力し、インバータ回路28の各トランジスタQ1〜Q6のオン時間を短くしていき駆動電流を抑制する。   The above result is obtained by the driving device 21 of the present embodiment. When the temperature of the electric motor 22 rises due to locking or overloading and exceeds the Curie temperature of the temperature sensitive resistance element RT1 42, the resistance change ratio of the temperature sensitive resistance element RT1 42 rapidly increases. As a result, the reference potential VB3 at one end of the temperature sensitive resistance element RT1 42 in FIG. 2 is lowered, and the normally-on digital transistor Q75 is turned off, thereby raising the potential V0. When the voltage V0 exceeds the reference potential Vref of the reference power source 37, an overcurrent detection signal is output from the comparison circuit 36, the overcurrent detection circuit 35 outputs an overcurrent detection signal, and the three-phase distribution circuit 30 detects this detection signal. Is output to the gate drive circuit 29 to shorten the on-time of each of the transistors Q1 to Q6 of the inverter circuit 28 and suppress the drive current.

これにより、電動機22の温度が過度に上昇する事態を防止できる。すなわち、抑制された駆動電流の供給によって発熱する電動機22の温度と、電流制限値に対応する感温抵抗素子RT1 42の検知温度とが釣り合う温度で平衡状態となる。   Thereby, the situation where the temperature of the electric motor 22 rises excessively can be prevented. That is, an equilibrium state is reached at a temperature at which the temperature of the electric motor 22 that generates heat by the suppressed supply of drive current and the detected temperature of the temperature sensitive resistance element RT1 42 corresponding to the current limit value are balanced.

但し、駆動電流を抑制しても、何らかの外的要因により電動機22の温度が上昇し続けると、さらに駆動電流を抑制し、最終的に駆動電流の供給を停止する。   However, even if the drive current is suppressed, if the temperature of the electric motor 22 continues to rise due to some external factor, the drive current is further suppressed and finally the supply of the drive current is stopped.

また、電動機22がロックや過負荷状態等から解放されると電動機22の温度が低くなるため、感温抵抗素子RT1 42の抵抗値が正常値に戻り、電動機22には所定の出力が得られるのに充分な電流が供給できる状態に自動的に復帰する。   Further, when the electric motor 22 is released from the locked state or the overload state, the temperature of the electric motor 22 is lowered, so that the resistance value of the temperature sensitive resistance element RT1 42 returns to a normal value, and a predetermined output is obtained to the electric motor 22. Automatically returns to a state where a sufficient current can be supplied.

制限信号をゲートドライブ回路29に出力し、インバータ回路28の各トランジスタQ1〜Q6のオン時間を短くしていき駆動電流を抑制する。   The limit signal is output to the gate drive circuit 29, and the on-time of each of the transistors Q1 to Q6 of the inverter circuit 28 is shortened to suppress the drive current.

更に、本実施の形態で感温抵抗素子RT1 42として用いられている素子は、外部温度が常温からキュリー温度に到達するまではほぼ一定の抵抗を示し、外部温度がキュリー温度を超えると急峻な正の温度ー抵抗変化を示すので、電動機22が正常に回転している場合には、電動機22の温度がキュリー温度を超える温度等の過度な高温になるまでは、電動機22の仕様として設定されている出力を得るに十分な電流を電動機22に供給することができる。   Further, the element used as the temperature-sensitive resistance element RT1 42 in this embodiment exhibits a substantially constant resistance until the external temperature reaches the Curie temperature from the normal temperature, and becomes steep when the external temperature exceeds the Curie temperature. Since it shows a positive temperature-resistance change, when the motor 22 is rotating normally, it is set as the specification of the motor 22 until the temperature of the motor 22 reaches an excessively high temperature such as a temperature exceeding the Curie temperature. A sufficient current can be supplied to the electric motor 22 to obtain the current output.

また、電動機22が過度に高温になると、感温抵抗素子RT1 42が急速に抵抗値を増大させるので、過電流検出回路35は速やかに電動機22へ供給される駆動電流値を制限し、或は遮断する。これにより、本実施の形態の過電流検出回路35は、電動機22の過度な高温からの保護を確実に図ることができる。   Further, when the motor 22 becomes excessively high in temperature, the temperature sensing resistor RT1 42 rapidly increases the resistance value, so that the overcurrent detection circuit 35 quickly limits the drive current value supplied to the motor 22, or Cut off. Thereby, the overcurrent detection circuit 35 of the present embodiment can reliably protect the electric motor 22 from an excessively high temperature.

一方、電動機22が正常に回転してその温度が常温である場合、感温抵抗素子RT1 42の温度はキュリー温度未満であり、駆動装置21における電流制限値は比較的大きく、電動機22には所望の出力が得られるに十分な電流が供給される。   On the other hand, when the electric motor 22 rotates normally and its temperature is normal temperature, the temperature of the temperature-sensitive resistance element RT1 42 is less than the Curie temperature, and the current limit value in the driving device 21 is relatively large. Sufficient current is supplied to obtain the output.

即ち、この場合、三相分配回路30は、電動機22への通電オン信号を出力する。これにより、ゲートドライブ回路29は、電動機22がロック等せず、従って過電流が流れていないとき、所定の回転速度に対応するタイミングで各トランジスタQ1〜Q6をオン/オフする。   That is, in this case, the three-phase distribution circuit 30 outputs an energization on signal to the electric motor 22. Thereby, the gate drive circuit 29 turns on / off each of the transistors Q1 to Q6 at a timing corresponding to a predetermined rotation speed when the electric motor 22 is not locked and therefore no overcurrent flows.

本実施の形態では、図2に示す過電流検出回路の構成により、電動機22の過熱保護の温度範囲を狭くすることで、高精度の電流制限が出来、また、電動機22の運転温度範囲を広く取ることが出来る。   In the present embodiment, the configuration of the overcurrent detection circuit shown in FIG. 2 makes it possible to limit the current with high accuracy by narrowing the temperature range of the overheat protection of the electric motor 22 and widen the operating temperature range of the electric motor 22. I can take it.

感温抵抗素子RT1 42の一端を電源ライン39からデジタルトランジスタQ7 5を介することで間接的に切り離すことで、サージやノイズなどによる感温抵抗素子RT1 42の破壊を防ぐ効果を得る。   By indirectly disconnecting one end of the temperature sensitive resistance element RT1 42 from the power supply line 39 via the digital transistor Q75, an effect of preventing destruction of the temperature sensitive resistance element RT1 42 due to surge or noise is obtained.

また、電源ライン39から間接的に切り離すことで、感温抵抗素子RT1 42の配置の自由度が増加し回路設計、実装配線が容易になる。   Further, by indirectly disconnecting from the power supply line 39, the degree of freedom of arrangement of the temperature sensitive resistance element RT1 42 is increased, and circuit design and mounting wiring are facilitated.

また、感温抵抗素子RT1 42の一端を基準電圧VB 2に接続することで、電圧を安定させ、感温抵抗素子RT1 42の温度よる電圧降下率の精度向上により過熱保護の高精度化が実現できる。   In addition, by connecting one end of the temperature-sensitive resistance element RT1 42 to the reference voltage VB2, the voltage is stabilized and the accuracy of the voltage drop rate due to the temperature of the temperature-sensitive resistance element RT1 42 is improved, so that the overheat protection is highly accurate. it can.

実施の形態2.
図6は実施の形態2を示す図でもあり、実施の形態1の駆動装置を用いた電動機の一例を示している。
Embodiment 2. FIG.
FIG. 6 is also a diagram showing the second embodiment, and shows an example of an electric motor using the drive device of the first embodiment.

図において、本体基板8には実施の形態1の駆動装置が搭載されている。本体基板8は固定子鉄心13を有する固定子と共にモールド樹脂25で一体に成形される。電動機には、コネクタ14から駆動信号Iu、Iv、Iwが供給される。   In the figure, the driving device of the first embodiment is mounted on the main body substrate 8. The main body substrate 8 is integrally formed with a mold resin 25 together with a stator having a stator core 13. Drive signals Iu, Iv, and Iw are supplied from the connector 14 to the electric motor.

尚、外殻の材料については鋼板でもよい。   The outer shell material may be a steel plate.

実施の形態1の駆動装置を搭載した本体基板8を用いることで、品質の良いモールド電動機が得られる。   By using the main body substrate 8 on which the driving device of the first embodiment is mounted, a good quality molded motor can be obtained.

実施の形態3.
図7、8は実施の形態3を示す図で、図7は壁掛け形空気調和機を示す図、図8は同室内機の構成を示す図である。
Embodiment 3 FIG.
7 and 8 are diagrams showing Embodiment 3, FIG. 7 is a diagram showing a wall-mounted air conditioner, and FIG. 8 is a diagram showing a configuration of the indoor unit.

図7において、壁掛け形空気調和機は、室内機46、室外機47を備え、室内機46には室内機用送風機48b(図8参照)、室外機47には室外機用送風機31aを使用している。   7, the wall-mounted air conditioner includes an indoor unit 46 and an outdoor unit 47. The indoor unit 46 uses an indoor unit blower 48b (see FIG. 8), and the outdoor unit 47 uses an outdoor unit blower 31a. ing.

そして、室外機用送風機31a、室内機用送風機31bは上記実施の形態2の電動機により駆動される。   The outdoor unit blower 31a and the indoor unit blower 31b are driven by the electric motor of the second embodiment.

近年の空気調和機は、低騒音化が進んでおり、上記実施の形態2の電動機を空気調和機の主用部品である送風機用電動機として用いることは好適である。   In recent years, noise reduction is progressing in an air conditioner, and it is preferable to use the electric motor of the second embodiment as an electric motor for a blower that is a main part of the air conditioner.

このように構成することで、壁掛け形空気調和機の送風機は品質が向上する。   By configuring in this way, the quality of the blower of the wall-mounted air conditioner is improved.

実施の形態4.
図9、10は実施の形態4を示す図で、図9は天井埋め込み型空気調和機の室内機を示す図、図10は同室外機を示す図である。
Embodiment 4 FIG.
FIGS. 9 and 10 are diagrams showing Embodiment 4, FIG. 9 is a diagram showing an indoor unit of a ceiling-embedded air conditioner, and FIG. 10 is a diagram showing the outdoor unit.

図9に示すように、天井埋め込み型空気調和機の室内機は、送風機49を使用している。送風機49に、上記実施の形態2で示した電動機を搭載することで送風機49及び天井埋め込み型空気調和機の品質が向上する。   As shown in FIG. 9, the indoor unit of the ceiling embedded air conditioner uses a blower 49. The quality of the blower 49 and the ceiling-embedded air conditioner is improved by mounting the electric motor shown in the second embodiment on the blower 49.

図10に示すように、天井埋め込み型空気調和機の室外機も、送風機50を使用している。この送風機50に上記実施の形態2で示した電動機を搭載することで送風機50及び天井埋め込み型空気調和機の品質が向上する。   As shown in FIG. 10, the outdoor unit of the ceiling-embedded air conditioner also uses the blower 50. By mounting the electric motor shown in the second embodiment on the blower 50, the quality of the blower 50 and the ceiling-embedded air conditioner is improved.

実施の形態5.
図11は実施の形態5を示す図で、冷蔵庫を示す図である。
Embodiment 5 FIG.
FIG. 11 is a diagram showing the fifth embodiment and is a diagram showing a refrigerator.

図に示すように、冷蔵庫は冷却室に冷却器で生成された冷気を、冷蔵室、冷凍室等に送るための送風機51を冷却室に備える。   As shown in the figure, the refrigerator includes a blower 51 in the cooling chamber for sending the cold air generated by the cooler to the cooling chamber to the refrigerator compartment, the freezer compartment, and the like.

送風機51に、上記実施の形態2で示した電動機を搭載することで送風機51及び冷蔵庫の品質が向上する。   By installing the electric motor shown in the second embodiment on the blower 51, the quality of the blower 51 and the refrigerator is improved.

実施の形態6.
図12は実施の形態6を示す図で、換気扇を示す図である。
Embodiment 6 FIG.
FIG. 12 is a diagram showing the sixth embodiment and is a diagram showing a ventilation fan.

図に示すように、換気扇は、換気運転を行うための送風機52を備える。   As shown in the figure, the ventilation fan includes a blower 52 for performing a ventilation operation.

送風機52に、上記実施の形態2で示した電動機を搭載することで送風機52及び換気扇の品質が向上し、低騒音化を実現できる。   By mounting the electric motor shown in the second embodiment on the blower 52, the quality of the blower 52 and the ventilation fan is improved, and noise reduction can be realized.

1 抵抗R17、2 基準電位VB、3 基準電位VB、4 抵抗R16、5 デジタルトランジスタQ7、7 抵抗R12、8 本体基板、9 抵抗R15、11 コンデンサC18、12 コンデンサC15、13 固定子鉄心、14 コネクタ、21 駆動装置、22 電動機、25 モールド樹脂、28 インバータ回路、29 ゲートドライブ回路、30 三相分配回路、35 過電流検出回路、36 比較回路、37 基準電源、39 電源ライン、40 直流電源、41 電流検出用抵抗、42 感温抵抗素子RT1、46 室内機、47 室外機、48a 室外機用送風機、48b 室内機用送風機、49〜52 送風機。   1 resistor R17, 2 reference potential VB, 3 reference potential VB, 4 resistor R16, 5 digital transistor Q7, 7 resistor R12, 8 body substrate, 9 resistor R15, 11 capacitor C18, 12 capacitor C15, 13 stator core, 14 connector , 21 Driving device, 22 Electric motor, 25 Mold resin, 28 Inverter circuit, 29 Gate drive circuit, 30 Three-phase distribution circuit, 35 Overcurrent detection circuit, 36 Comparison circuit, 37 Reference power supply, 39 Power supply line, 40 DC power supply, 41 Resistance for current detection, 42 Temperature sensitive resistance element RT1, 46 Indoor unit, 47 Outdoor unit, 48a Blower for outdoor unit, 48b Blower for indoor unit, 49-52 Blower.

Claims (7)

電源ラインに接続される直流電源と、
複数のスイッチ素子を有し、前記直流電源の直流電力を擬似交流電力に変換するインバータ回路と、
複数相のコイルを有し、前記インバータ回路から各相コイルに駆動電流が供給される電動機と、
前記電動機に設けられ、温度によって電気的抵抗値が変化し、トランジスタを介して前記電源ラインに接続される感温抵抗素子と、
この感温抵抗素子が検出した前記電動機の検出温度を予め定める基準温度と比較し、前記検出温度が前記基準温度以上になったか否かを検知する比較回路を有する過電流検出回路と、
前記複数のスイッチ素子を個別にオン/オフ駆動すると共に、前記比較回路が前記基準温度以上になったことを検知した場合に、前記複数のスイッチ素子のオン期間を制限して、前記電動機に供給される駆動電流を抑制する駆動部と、
を備えたことを特徴とする電動機の駆動装置。
DC power supply connected to the power line,
An inverter circuit having a plurality of switch elements and converting the DC power of the DC power source into pseudo AC power;
An electric motor having a coil of a plurality of phases, and a drive current is supplied to each phase coil from the inverter circuit;
A temperature-sensitive resistance element provided in the electric motor, the electric resistance value changes according to temperature, and is connected to the power supply line through a transistor;
An overcurrent detection circuit having a comparison circuit that detects whether or not the detected temperature is equal to or higher than the reference temperature by comparing the detected temperature of the electric motor detected by the thermosensitive resistance element with a predetermined reference temperature;
The plurality of switch elements are individually turned on / off, and when the comparison circuit detects that the reference temperature is higher than the reference temperature, the ON period of the plurality of switch elements is limited and supplied to the electric motor. A drive unit that suppresses the drive current generated;
An electric motor drive device comprising:
前記感温抵抗素子の一端は基準電位に接続され、他端は抵抗及びコンデンサを介して接地されると共に、前記トランジスタのベース側に接続され、
前記トランジスタのコレクタ側には抵抗を介して基準電位が接続され、前記トランジスタのエミッタ側は接地され、前記トランジスタコレクタ側は抵抗を介して比較回路に接続され、
電流検出用抵抗が接続された前記電源ラインは抵抗を介して前記比較回路に接続されることを特徴とする請求項1記載の電動機の駆動装置。
One end of the temperature-sensitive resistance element is connected to a reference potential, the other end is grounded via a resistor and a capacitor, and is connected to the base side of the transistor,
A reference potential is connected to the collector side of the transistor via a resistor, the emitter side of the transistor is grounded, and the transistor collector side is connected to a comparison circuit via a resistor,
The motor drive device according to claim 1, wherein the power supply line to which a current detection resistor is connected is connected to the comparison circuit via a resistor.
前記トランジスタをデジタルトランジスタで構成したことを特徴とする請求項1又は請求項2記載の電動機の駆動装置。   3. The motor driving apparatus according to claim 1, wherein the transistor is a digital transistor. 請求項1乃至3のいずれかに記載の電動機の駆動装置を搭載した基板を固定子とともにモールド樹脂で封入したことを特徴とするモールド電動機。   4. A molded electric motor comprising a substrate on which the electric motor driving device according to claim 1 is mounted together with a stator in a mold resin. 請求項4記載のモールド電動機を送風機用電動機として搭載したことを特徴とする空気調和機。   An air conditioner comprising the molded motor according to claim 4 mounted as a blower motor. 請求項4記載のモールド電動機を送風機用電動機として搭載したことを特徴とする冷蔵庫。   A refrigerator comprising the molded motor according to claim 4 as a blower motor. 請求項4記載のモールド電動機を送風機用電動機として搭載したことを特徴とする換気扇。   A ventilation fan comprising the molded electric motor according to claim 4 mounted as an electric motor for a blower.
JP2010047878A 2010-03-04 2010-03-04 Electric motor drive device, molded motor, air conditioner, refrigerator and ventilation fan Active JP4589453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010047878A JP4589453B2 (en) 2010-03-04 2010-03-04 Electric motor drive device, molded motor, air conditioner, refrigerator and ventilation fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010047878A JP4589453B2 (en) 2010-03-04 2010-03-04 Electric motor drive device, molded motor, air conditioner, refrigerator and ventilation fan

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004311825A Division JP4509735B2 (en) 2004-10-27 2004-10-27 Electric motor drive device, molded motor, air conditioner, refrigerator and ventilation fan

Publications (2)

Publication Number Publication Date
JP2010119298A true JP2010119298A (en) 2010-05-27
JP4589453B2 JP4589453B2 (en) 2010-12-01

Family

ID=42306551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010047878A Active JP4589453B2 (en) 2010-03-04 2010-03-04 Electric motor drive device, molded motor, air conditioner, refrigerator and ventilation fan

Country Status (1)

Country Link
JP (1) JP4589453B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3261239A1 (en) * 2016-06-20 2017-12-27 Jtekt Corporation Overcurrent protection circuit
EP3493390A4 (en) * 2017-09-07 2019-12-11 NSK Ltd. Motor control device and electric power steering device equipped with same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201280A (en) * 1997-01-14 1998-07-31 Shibaura Eng Works Co Ltd Device for driving brushless dc motor
JP2001169589A (en) * 1999-12-06 2001-06-22 Matsushita Seiko Co Ltd Motor drive device and electric equipment using it
JP2002354870A (en) * 2001-05-21 2002-12-06 Matsushita Electric Ind Co Ltd Brushless motor drive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201280A (en) * 1997-01-14 1998-07-31 Shibaura Eng Works Co Ltd Device for driving brushless dc motor
JP2001169589A (en) * 1999-12-06 2001-06-22 Matsushita Seiko Co Ltd Motor drive device and electric equipment using it
JP2002354870A (en) * 2001-05-21 2002-12-06 Matsushita Electric Ind Co Ltd Brushless motor drive

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3261239A1 (en) * 2016-06-20 2017-12-27 Jtekt Corporation Overcurrent protection circuit
CN107528297A (en) * 2016-06-20 2017-12-29 株式会社捷太格特 Circuit overcurrent protection
US10505363B2 (en) 2016-06-20 2019-12-10 Jtekt Corporation Overcurrent protection circuit
CN107528297B (en) * 2016-06-20 2020-11-03 株式会社捷太格特 Overcurrent protection circuit
EP3493390A4 (en) * 2017-09-07 2019-12-11 NSK Ltd. Motor control device and electric power steering device equipped with same

Also Published As

Publication number Publication date
JP4589453B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP4586034B2 (en) Motor driving semiconductor device, three-phase motor having the same, motor driving device and fan motor
JP5098599B2 (en) Brushless motor drive device for compressor of air conditioner
JP4682985B2 (en) Brushless DC motor and electric device equipped with the same
JP2008141902A (en) Control unit for brushless dc motor and ventilation blower
JP4509735B2 (en) Electric motor drive device, molded motor, air conditioner, refrigerator and ventilation fan
JP2007318921A (en) Semiconductor device for driving motor, and motor, motor driving device, and air-conditioner comprising it,
JP2009198139A (en) Brushless motor driving device for compressor of air conditioner
JP2920754B2 (en) Drive device for brushless DC motor
JP5163536B2 (en) Induced voltage detection circuit, motor driving semiconductor device having the same, motor and air conditioner
JP6619297B2 (en) Motor drive circuit, motor with built-in drive circuit and pump motor with built-in drive circuit, and air conditioner, ventilator, heat pump water heater, and built-in cold / hot water circulating air conditioner equipped with them
WO2011099258A1 (en) Brushless motor drive device, brushless motor, and air conditioner
JP6937471B2 (en) Brushless DC motor
JP4589453B2 (en) Electric motor drive device, molded motor, air conditioner, refrigerator and ventilation fan
JP5032615B2 (en) Electric motor drive device, molded motor, air conditioner, refrigerator and ventilation fan
JP4696395B2 (en) Brushless motor drive device
JP6012211B2 (en) Motor drive device and air conditioner equipped with the same
JP2001169589A (en) Motor drive device and electric equipment using it
JP6040066B2 (en) Fan motor drive control device
JP2009077507A (en) Brushless dc motor with built-in constant air flow control means
CN113169697B (en) Motor and air conditioner equipped with same
JP5382147B2 (en) Brushless motor driving device, brushless motor and air conditioner
JP6396679B2 (en) Overcurrent detection circuit, air conditioner, thermistor mounting structure, and electrical equipment
JP2006246558A (en) Brushless motor drive circuit
JP6487093B2 (en) Air conditioner
WO2023135743A1 (en) Electric motor, air conditioner, and control board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100304

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100304

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Ref document number: 4589453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250