JP2010118572A - Method of manufacturing semiconductor light-emitting device - Google Patents

Method of manufacturing semiconductor light-emitting device Download PDF

Info

Publication number
JP2010118572A
JP2010118572A JP2008291740A JP2008291740A JP2010118572A JP 2010118572 A JP2010118572 A JP 2010118572A JP 2008291740 A JP2008291740 A JP 2008291740A JP 2008291740 A JP2008291740 A JP 2008291740A JP 2010118572 A JP2010118572 A JP 2010118572A
Authority
JP
Japan
Prior art keywords
light
light emitting
photoresist
emitting device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008291740A
Other languages
Japanese (ja)
Inventor
Satoshi Tanaka
聡 田中
Yusuke Yokobayashi
裕介 横林
Masayuki Kanechika
正之 金近
Takako Chinone
崇子 千野根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2008291740A priority Critical patent/JP2010118572A/en
Publication of JP2010118572A publication Critical patent/JP2010118572A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method of manufacturing a semiconductor light-emitting device having improved light extraction efficiency. <P>SOLUTION: The method of manufacturing the semiconductor light-emitting device includes: a process for preparing members to be treated including semiconductor light-emitting element structures; a process for forming photoresists on the members to be treated; a process for exposing the photoresists; a process for developing the photoresists to form resist patterns; and a process for etching the members to be treated from the top of the resist patterns. The exposure process includes a process for exposing the photoresists via masks where a plurality of light transmission sections are disposed in a lattice shape beyond light-shielding sections, and diffracting light that has transmitted through the light transmission sections so that the distribution of light intensity on the photoresist has a first peak under the light transmission sections and a second one also under the light-shielding sections. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体発光装置の製造方法に関し、特に、光取り出し効率向上の図られた半導体発光装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor light emitting device, and more particularly, to a method for manufacturing a semiconductor light emitting device with improved light extraction efficiency.

半導体発光素子の光取り出し効率向上のために、発光素子に凹凸構造を形成する技術が知られている(例えば、特開2005−150261号公報、特開2007−036240号公報参照)。凹凸構造は、例えば、成長基板の裏面上、成長させた半導体層上、透明導電膜上に形成される。   In order to improve the light extraction efficiency of a semiconductor light emitting element, a technique for forming a concavo-convex structure in the light emitting element is known (see, for example, Japanese Patent Application Laid-Open Nos. 2005-150261 and 2007-0336240). The uneven structure is formed, for example, on the back surface of the growth substrate, on the grown semiconductor layer, or on the transparent conductive film.

発光素子は、成長基板上に多数同時に形成された後、個々に分割され、個々の発光素子が支持基板に搭載される。発光素子の分割時や、支持基板への搭載時に、凹凸構造に起因して、クラックの発生等の不具合が生じやすい。   A large number of light emitting elements are simultaneously formed on the growth substrate, and then individually divided, and each light emitting element is mounted on a support substrate. When the light emitting element is divided or mounted on the support substrate, defects such as cracks are likely to occur due to the uneven structure.

図6A及び図6Bは、発光素子をコレットで支持体に搭載している状況を示す概略断面図である。   6A and 6B are schematic cross-sectional views showing a state in which the light emitting element is mounted on the support with a collet.

図6Aは、凹凸構造102が、鋸歯状の断面を持ち、V字状に尖った谷部102Aを持つ場合を示す。コレット101の吸引孔101Aで発光素子を吸引し持ち上げて、発光素子を支持体上に移動する。支持体への搭載時に、コレット101の先端が発光素子を支持体に押し付け、凹凸構造102に圧力が加わる。谷部102Aの尖った底に、応力が集中しやすく、クラックが特に生じやすい。なお、図において凹凸構造上の矢印は力の方向を示す。   FIG. 6A shows a case where the concavo-convex structure 102 has a serrated cross section and has a trough 102A sharpened in a V shape. The light emitting element is sucked and lifted by the suction hole 101A of the collet 101, and the light emitting element is moved onto the support. When mounted on the support, the tip of the collet 101 presses the light emitting element against the support, and pressure is applied to the concavo-convex structure 102. Stress tends to concentrate on the sharp bottom of the valley 102A, and cracks are particularly likely to occur. In the figure, arrows on the concavo-convex structure indicate the direction of force.

図6Bは、凹凸構造103が、なだらかな波状の断面を持ち、U字状の谷部103Aを持つ場合を示す。図6Aのような尖った谷部102Aに比べると、コレット101による搭載時に、谷部103Aの底には応力が集中しにくく、クラックの発生が抑制される。   FIG. 6B shows a case where the concavo-convex structure 103 has a gentle wavy cross section and a U-shaped valley 103A. Compared to the sharp valley 102A as shown in FIG. 6A, when mounting with the collet 101, stress is less likely to concentrate on the bottom of the valley 103A, and the generation of cracks is suppressed.

なお、特に、GaN系材料を用いた青色発光ダイオードを例にとると、成長基板にサファイア、SiC、Si等異種基板を用いる場合がある。異種基板を用いると、基板材料と、成長させるGaN系材料との熱膨張係数及び格子定数の違いから、エピウエハが反る方向に応力が発生する。   In particular, when a blue light emitting diode using a GaN-based material is taken as an example, a heterogeneous substrate such as sapphire, SiC, or Si may be used as a growth substrate. When a heterogeneous substrate is used, stress is generated in the direction in which the epi-wafer warps due to the difference in thermal expansion coefficient and lattice constant between the substrate material and the GaN-based material to be grown.

図6Cは、サファイア基板111上にGaN系半導体層112を形成したエピウエハを示す概略断面図である。GaN系半導体層112に収縮応力113が生じ、サファイア基板111の裏面114が凸となる形状でエピウエハが反っている。このように反ったエピウエハに、サファイア基板111の裏面側からコレットを接触させ圧力115が加わると、収縮応力113と圧力115の集中領域116に、割れやクラックが生じやすい。   FIG. 6C is a schematic cross-sectional view showing an epi wafer in which a GaN-based semiconductor layer 112 is formed on a sapphire substrate 111. A shrinkage stress 113 is generated in the GaN-based semiconductor layer 112, and the epi-wafer is warped in a shape in which the back surface 114 of the sapphire substrate 111 is convex. When the collet is brought into contact with the warped epiwafer from the back side of the sapphire substrate 111 and the pressure 115 is applied, cracks and cracks are likely to occur in the concentration region 116 of the shrinkage stress 113 and the pressure 115.

ここで、図6Cに示す例は、結晶成長後、素子分割の前に分割しやすいよう成長基板を70μm〜90μmの厚みに研削・研磨により薄くしたものである。通常、成長基板は400μm〜500μmの厚さを有し、成長直後はその厚みからウエハはほぼ平坦もしくは図6Cと逆方向に、わずかに反っている。   Here, in the example shown in FIG. 6C, the growth substrate is thinned by grinding and polishing to a thickness of 70 μm to 90 μm so that it can be easily divided after element growth and before element division. Usually, the growth substrate has a thickness of 400 μm to 500 μm, and immediately after the growth, the wafer is almost flat or slightly warped in the opposite direction to FIG. 6C.

また、近年、より高出力を実現するために、チップサイズが例えば1mm×1mmと大きい半導体発光素子が増えてきている。このようなサイズの大きい素子でも、半導体層の構成は従来とほとんど変わらないため、素子の厚みは従来と同程度であり、反りに起因する変位が大きくなりやすく、割れやクラックが生じやすくなる。   In recent years, semiconductor light emitting devices having a chip size as large as 1 mm × 1 mm have been increasing in order to achieve higher output. Even in such an element having a large size, the structure of the semiconductor layer is almost the same as that in the prior art, so the thickness of the element is almost the same as that in the prior art, and the displacement due to warpage is likely to increase, and cracks and cracks are likely to occur.

特開2005−150261号公報JP 2005-150261 A 特開2007−036240号公報Japanese Patent Laid-Open No. 2007-036240

本発明の一目的は、光取り出し効率向上が図られた半導体発光装置の新規な製造方法を提供することである。   An object of the present invention is to provide a novel method for manufacturing a semiconductor light emitting device in which light extraction efficiency is improved.

本発明の他の目的は、光取り出し効率向上とともに、クラック等の発生の抑制が図られた半導体発光装置の製造方法を提供することである。   Another object of the present invention is to provide a method for manufacturing a semiconductor light emitting device in which light extraction efficiency is improved and generation of cracks and the like is suppressed.

本発明の一観点によれば、(a)半導体発光素子構造を含む加工対象部材を準備する工程と、(b)前記加工対象部材上にフォトレジストを形成する工程と、(c)前記フォトレジストを露光する工程と、(d)前記フォトレジストを現像して、レジストパターンを形成する工程と、(e)前記レジストパターンの上から、前記加工対象部材をエッチングする工程とを有し、前記工程(c)は、複数の透光部が遮光部を隔てて格子状に配置されたマスクを介して前記フォトレジストを露光し、該フォトレジスト上の光強度分布が、透光部の下に第1のピークを持つとともに、遮光部の下にも第2のピークを持つように透光部を透過した光を回折させる工程を含む半導体発光装置の製造方法が提供される。   According to one aspect of the present invention, (a) a step of preparing a processing target member including a semiconductor light emitting element structure, (b) a step of forming a photoresist on the processing target member, and (c) the photoresist (D) developing the photoresist to form a resist pattern; and (e) etching the member to be processed from above the resist pattern. (C) exposing the photoresist through a mask in which a plurality of light-transmitting portions are arranged in a grid pattern with a light-shielding portion interposed therebetween, and the light intensity distribution on the photoresist is exposed under the light-transmitting portions. There is provided a method for manufacturing a semiconductor light emitting device including a step of diffracting light transmitted through a light transmitting part so as to have a peak of 1 and also have a second peak under a light shielding part.

マスクの遮光部の下に回折光が回りこみ、遮光部の下にも光強度分布のピークが生じるような露光を行うことにより、レジストパターンにおいて透光部に加え遮光部の下にも例えば凹部を作ることができる。レジストパターンに形成された凹凸形状を加工対象部材に転写することにより、光取り出し効率向上が図られる。   By performing exposure such that diffracted light travels under the light-shielding portion of the mask and a peak of the light intensity distribution is generated also under the light-shielding portion, in the resist pattern, for example, a depression Can be made. The light extraction efficiency can be improved by transferring the concavo-convex shape formed in the resist pattern to the member to be processed.

図1A〜図1Iを参照して、本発明の実施例による半導体発光装置の製造方法について説明する。図1A〜図1Iは、実施例の半導体発光装置の概略断面図である。なお、1枚の基板上に同時に多数の発光素子が形成され、チップ化工程により個々の発光素子に分割される。図1A〜図1Gまでは、素子の分割前の工程を示すが、1つ分の素子のみを図示している。   A method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention will be described with reference to FIGS. 1A to 1I are schematic cross-sectional views of a semiconductor light emitting device of an example. A large number of light emitting elements are simultaneously formed on a single substrate, and are divided into individual light emitting elements by a chip forming process. 1A to 1G show a process before dividing an element, but only one element is shown.

まず、図1Aを参照して、半導体発光素子について説明する。GaN基板1のC+面(Ga面)上に、n型半導体層2、活性層3、及びp型半導体層4の積層からなる半導体層5が形成されている。n型半導体層2、活性層3、及びp型半導体層4は、それぞれ、AlInGa1−x−yN(0≦x≦1、0≦y≦1)で表される窒化物半導体であり、例えば有機金属化学気相堆積(MOCVD)で成長される。n型半導体層2にはSi等のn型ドーパント、p型半導体層4にはMg等のp型ドーパントがドープされる。実施例の半導体層5は、発光波長が青色となるように組成が選択されている。 First, a semiconductor light emitting element will be described with reference to FIG. 1A. On the C + face (Ga face) of the GaN substrate 1, a semiconductor layer 5 composed of a stack of an n-type semiconductor layer 2, an active layer 3, and a p-type semiconductor layer 4 is formed. The n-type semiconductor layer 2, the active layer 3, and the p-type semiconductor layer 4 are nitrides represented by Al x In y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), respectively. A semiconductor, for example, grown by metal organic chemical vapor deposition (MOCVD). The n-type semiconductor layer 2 is doped with an n-type dopant such as Si, and the p-type semiconductor layer 4 is doped with a p-type dopant such as Mg. The composition of the semiconductor layer 5 of the example is selected so that the emission wavelength is blue.

なお、半導体層5の構成はこれに限らない。例えば、発光効率を向上させるために電流拡散層、クラッド層、コンタクト層等を必要に応じて挿入することもできる。さらに、活性層3を多層膜(多重量子井戸構造)とする構成も考えられる。   The configuration of the semiconductor layer 5 is not limited to this. For example, in order to improve the light emission efficiency, a current diffusion layer, a clad layer, a contact layer, or the like can be inserted as necessary. Furthermore, the structure which makes the active layer 3 a multilayer film (multiple quantum well structure) is also considered.

GaN基板1上に半導体層5を形成した後、ウエットエッチングまたはドライエッチングで、n型半導体層2が露出する深さまで半導体層5をエッチングする。露出したn型半導体層2上に、n側オーミック電極6が形成される。n側オーミック電極6は、例えば、TiAl、AlRh、Pt、Auのいずれかで形成され、フォトリソ工程、蒸着工程を経て形成される。   After the semiconductor layer 5 is formed on the GaN substrate 1, the semiconductor layer 5 is etched to a depth at which the n-type semiconductor layer 2 is exposed by wet etching or dry etching. An n-side ohmic electrode 6 is formed on the exposed n-type semiconductor layer 2. The n-side ohmic electrode 6 is formed of, for example, any one of TiAl, AlRh, Pt, and Au, and is formed through a photolithography process and a vapor deposition process.

次に、p型半導体層4の上に、p側オーミック電極7が形成される。p側オーミック電極7は、例えば、半導体層側から順に、オーミック接触のためのインジウムスズ酸化物(ITO)層、光反射のためのNiAg層、及び、支持体との接合のためのAuSn層を積層した多層電極であり、フォトリソ工程、蒸着工程を経て形成される。   Next, the p-side ohmic electrode 7 is formed on the p-type semiconductor layer 4. For example, the p-side ohmic electrode 7 includes, in order from the semiconductor layer side, an indium tin oxide (ITO) layer for ohmic contact, a NiAg layer for light reflection, and an AuSn layer for bonding to a support. It is a laminated multilayer electrode, which is formed through a photolithography process and a vapor deposition process.

次に、図1Bに示すように、発光素子をサンプルホルダー11に固定する。p側オーミック電極7側が固定用ワックス12によりサンプルホルダー11に固定され、GaN基板1の裏面であるC−面(N面)が露出する。   Next, as shown in FIG. 1B, the light emitting element is fixed to the sample holder 11. The p-side ohmic electrode 7 side is fixed to the sample holder 11 by the fixing wax 12, and the C-plane (N plane) which is the back surface of the GaN substrate 1 is exposed.

次に、GaN基板1を裏面から研削・研磨して、好ましくは260μm以下の厚さとなるように薄くする。研磨面が鏡面になるほど、後のチップ化工程での歩留まりが向上する。研磨後は、固定用ワックス12を除去する。固定用ワックス12は、加熱及び有機溶剤で容易に拭き取ることができる。   Next, the GaN substrate 1 is ground and polished from the back surface, and is preferably thinned to a thickness of 260 μm or less. As the polished surface becomes a mirror surface, the yield in the subsequent chip forming process is improved. After polishing, the fixing wax 12 is removed. The fixing wax 12 can be easily wiped off by heating and an organic solvent.

次に、図1Cに示すように、GaN基板1の裏面上にフォトレジスト剤21を塗布する。フォトレジスト剤21は、例えばAZエレクトロニックマテリアルズ社のAZ6130(62cp)である。フォトレジスト剤21は、例えば3000rpmでスピンコートし、GaN基板1上に均一に塗布後、例えば90℃で1分間乾燥させる。このときのレジスト膜厚は例えば3μmである。   Next, as shown in FIG. 1C, a photoresist agent 21 is applied on the back surface of the GaN substrate 1. The photoresist agent 21 is, for example, AZ6130 (62 cp) manufactured by AZ Electronic Materials. The photoresist agent 21 is spin-coated at 3000 rpm, for example, and uniformly applied on the GaN substrate 1 and then dried at 90 ° C. for 1 minute, for example. The resist film thickness at this time is, for example, 3 μm.

レジスト膜厚は、2μm〜6μm程度の範囲に調整するのが好ましい。この範囲より薄いと、現像後に十分なレジストが残らず、後の凹凸加工で所望の曲面形状が得られなかったり、凹凸形状の十分な高低差が得られなかったりする。一方、この範囲より厚いと、基板端部にレジスト溜が発生し、後の凹凸加工工程後にもレジストが残るため、これを除去する余分な工程が増えて好ましくない。   The resist film thickness is preferably adjusted to a range of about 2 μm to 6 μm. If the thickness is less than this range, sufficient resist does not remain after development, and a desired curved surface shape cannot be obtained in the subsequent uneven processing, or a sufficient height difference of the uneven shape cannot be obtained. On the other hand, if it is thicker than this range, a resist pool is generated at the edge of the substrate, and the resist remains after the subsequent uneven processing step.

次に、図1Dに示すように、開口部23の形成されたマスク22を介して、フォトレジスト剤21を露光する。マスク22により生成された光強度分布で、フォトレジスト剤21が露光される。露光後、例えば、ホットプレート上で110℃、1分間加熱することにより、露光部のレジストの反応を促進させる(露光後ベーキング)。   Next, as shown in FIG. 1D, the photoresist agent 21 is exposed through the mask 22 in which the openings 23 are formed. The photoresist agent 21 is exposed with the light intensity distribution generated by the mask 22. After the exposure, for example, the reaction of the resist in the exposed portion is promoted by heating at 110 ° C. for 1 minute on a hot plate (post-exposure baking).

次に、図1Eに示すように、フォトレジスト剤21を現像する。現像は、現像液、例えば、AZエレクトロニックマテリアルズ社製のAZ600MIFに、例えば60秒浸して行う。現像後、例えば、ホットプレート上で115℃、2分間加熱することにより、レジスト形状を固定させる(現像後ベーキング)。このようにして、露光強度分布に応じた凹凸構造を持つレジストパターン26が形成される。   Next, as shown in FIG. 1E, the photoresist agent 21 is developed. The development is performed by immersing in a developer, for example, AZ600MIF manufactured by AZ Electronic Materials, for 60 seconds, for example. After development, for example, the resist shape is fixed by heating at 115 ° C. for 2 minutes on a hot plate (post-development baking). In this way, a resist pattern 26 having a concavo-convex structure corresponding to the exposure intensity distribution is formed.

ここで露光工程について詳しく説明する。   Here, the exposure process will be described in detail.

図2は、実施例のマスクを示す写真である。正三角格子の格子点上に開口部が配置されている(最密構造で開口部が配置されている)。開口部は直径3μmの円状であり、隣接する開口部間の中心間隔(開口ピッチと呼ぶこととする)は5μmである。   FIG. 2 is a photograph showing the mask of the example. Openings are arranged on lattice points of a regular triangular lattice (openings are arranged in a close-packed structure). The openings have a circular shape with a diameter of 3 μm, and the center distance between adjacent openings (referred to as an opening pitch) is 5 μm.

図3Aは、フォトレジスト剤21及びマスク22の概略断面図である。開口部23が開口ピッチで並ぶ方向に沿った、マスク22の断面を示す。マスク22の下面と、フォトレジスト剤21の上面とが、露光ギャップLを隔てて平行に配置されている。ほぼ均一な光強度分布の露光光25が、マスク22に入射する。   FIG. 3A is a schematic sectional view of the photoresist agent 21 and the mask 22. The cross section of the mask 22 is shown along the direction in which the openings 23 are arranged at the opening pitch. The lower surface of the mask 22 and the upper surface of the photoresist agent 21 are arranged in parallel with an exposure gap L therebetween. The exposure light 25 having a substantially uniform light intensity distribution enters the mask 22.

開口部23の直径をaとし、開口ピッチをbとする。開口部23が開口ピッチで並ぶ方向について、隣接する開口部23の間の遮光部24の中心27(以下、隣接開口部間中心27と呼ぶこともある)から、開口部23の中心までの距離がb/2となる。   The diameter of the opening 23 is a, and the opening pitch is b. The distance from the center 27 of the light shielding part 24 between the adjacent openings 23 (hereinafter also referred to as the center 27 between adjacent openings) to the center of the opening 23 in the direction in which the openings 23 are arranged at the opening pitch. Becomes b / 2.

1つ分の開口部23を透過した光について、フォトレジスト剤21の表面での露光強度について説明する。開口部23の直径aが十分に小さく、適当な露光ギャップLが確保されていると、開口部23の下の露光強度分布D1が、回折現象によって、中心から裾に向かって徐々に弱くなるような釣鐘状となる。さらに、同様の釣鐘状をした回折光の光強度分布D2が、次式(1)に従う回折角度θの方向に現れる。   The exposure intensity on the surface of the photoresist agent 21 with respect to the light transmitted through one opening 23 will be described. When the diameter a of the opening 23 is sufficiently small and an appropriate exposure gap L is ensured, the exposure intensity distribution D1 below the opening 23 gradually decreases from the center toward the bottom due to the diffraction phenomenon. It becomes a bell shape. Further, the light intensity distribution D2 of the diffracted light having the same bell shape appears in the direction of the diffraction angle θ according to the following equation (1).

θ=1.83(λ/a) ・・・(1)
ここで、aは開口部23の直径、λは露光波長である。
θ = 1.83 (λ / a) (1)
Here, a is the diameter of the opening 23 and λ is the exposure wavelength.

開口部23で回折された回折光の光強度分布D2のピークの位置を、開口部23の中心からの距離xで表すと、回折位置xは、露光ギャップL及び回折角θにより、
x=Ltanθ ・・・(2)
と表される。従って、露光ギャップLにより、フォトレジスト剤21上の回折位置xを調整できる。
When the peak position of the light intensity distribution D2 of the diffracted light diffracted at the opening 23 is represented by a distance x from the center of the opening 23, the diffraction position x is expressed by the exposure gap L and the diffraction angle θ.
x = Ltanθ (2)
It is expressed. Therefore, the diffraction position x on the photoresist agent 21 can be adjusted by the exposure gap L.

回折位置xが、隣接開口部間中心27の下に配置されるように、つまり、nを奇数として、
x=n×(b/2) (n=1,3,5,7,・・・) ・・・(3)
となるように、露光ギャップLを調整することができる。
The diffraction position x is arranged below the center 27 between adjacent openings, that is, n is an odd number.
x = n × (b / 2) (n = 1, 3, 5, 7,...) (3)
The exposure gap L can be adjusted so that

実施例では、n=3(x=3/2×b)とし、開口部23に対し2つ隣の遮光部24の隣接開口部間中心27の下に回折位置xを配置した。   In the embodiment, n = 3 (x = 3/2 × b), and the diffraction position x is arranged below the center 27 between the adjacent openings of the light shielding part 24 adjacent to the opening 23.

実施例の露光条件をまとめると、直径a=3μmの開口部を、開口ピッチb=5μmとして最密構造に配置したマスクを用い、露光波長λ=230nmとし、n=3として露光ギャップL=約50μmとし、マスク上の露光量を58mJ/cmとした。 Summarizing the exposure conditions of the example, a mask in which openings having a diameter a = 3 μm are arranged in a close-packed structure with an opening pitch b = 5 μm, an exposure wavelength λ = 230 nm, n = 3, and an exposure gap L = about The exposure amount on the mask was 58 mJ / cm 2 .

図4は、フォトレジスト剤21及びマスク22の概略平面図である。各開口部23の回折光を重ね合わせた光強度分布について説明する。ある隣接開口部間中心27aについて、上記のn=3の関係を満たす開口部は、開口部23a1と、中心27aに対し開口部23a1と反対側に配置された開口部23a2の2つである。これらの開口部の中心を中心とし、半径3/2×bの円を破線で示す。これらの円上に、開口部23a1、23a2による回折光のピークが位置する。隣接開口部間中心27aで、回折光のピークが重ね合わされる。   FIG. 4 is a schematic plan view of the photoresist agent 21 and the mask 22. The light intensity distribution obtained by superimposing the diffracted lights of the openings 23 will be described. With respect to a certain center 27a between adjacent openings, two openings satisfying the relationship of n = 3 are the opening 23a1 and the opening 23a2 disposed on the opposite side of the opening 23a1 with respect to the center 27a. A circle having a radius of 3/2 × b centered on the center of these openings is indicated by a broken line. On these circles, the peaks of the diffracted light by the openings 23a1 and 23a2 are located. At the center 27a between adjacent openings, the peaks of the diffracted light are superimposed.

相互に近接する3つの開口部23が、1辺bの正三角形の単位格子29を画定する。単位格子29の中心である単位格子中心28を定義する。隣接開口部間中心27aは、ある単位格子29aの1辺の中心に位置する。この単位格子29aの単位格子中心28aから、開口部23a1及び23a2の中心までの距離は、3/2×bで近似される。従って、単位格子中心28aでも、開口部23a1及び23a2の回折光のピークが重なり合うと見なせる。なお、この近似は、式(3)におけるnが大きいほど正しくなる。   Three openings 23 close to each other define a unit cell 29 of an equilateral triangle having one side b. A unit cell center 28 that is the center of the unit cell 29 is defined. The center 27a between adjacent openings is located at the center of one side of a certain unit cell 29a. The distance from the unit cell center 28a of the unit cell 29a to the centers of the openings 23a1 and 23a2 is approximated by 3/2 × b. Therefore, it can be considered that the peak of the diffracted light from the openings 23a1 and 23a2 overlaps even at the unit cell center 28a. Note that this approximation becomes more accurate as n in equation (3) increases.

単位格子29aの他の2辺の一方の中心に位置する隣接開口部間中心27bでは、開口部23b1及び23b2による回折光のピークが重なり、単位格子29aの他の2辺の他方の中心に位置する隣接開口部間中心27cでは、開口部23c1及び23c2による回折光のピークが重なる。単位格子中心28aから、開口部23b1、23b2、23c1、及び23c2の中心までの距離も、それぞれ3/2×bで近似される。   At the center 27b between the adjacent openings located at the center of one of the other two sides of the unit cell 29a, the peak of the diffracted light from the openings 23b1 and 23b2 overlaps and is positioned at the other center of the other two sides of the unit cell 29a. At the center 27c between adjacent openings, the peaks of diffracted light from the openings 23c1 and 23c2 overlap. The distances from the unit cell center 28a to the centers of the openings 23b1, 23b2, 23c1, and 23c2 are also approximated by 3/2 × b, respectively.

以上より、単位格子中心28aでは、開口部23a1、23a2、23b1、23b2、23c1、及び23c2による6つの回折光のピークが重なり合うと見なせる(これは、図4で、これら6つの開口部を中心とし破線で示した半径3/2×bの6つの円周が、単位格子中心28aでほぼ重なり合うことに対応する)。なお、単位格子中心28aで重なる回折光の数6は、1つ分の隣接開口部間中心27で重なる回折光の数2に、三角格子配置の3回対称性の3を掛けて導くことができる。   From the above, at the unit cell center 28a, it can be considered that the peaks of the six diffracted lights from the openings 23a1, 23a2, 23b1, 23b2, 23c1, and 23c2 overlap (this is illustrated in FIG. 4 with these six openings as the center. This corresponds to the fact that the six circumferences of radius 3/2 × b indicated by broken lines almost overlap at the unit cell center 28a). Note that the number 6 of diffracted lights overlapping at the unit grating center 28a is derived by multiplying the number 2 of diffracted lights overlapping at the center 27 between adjacent openings by the three-fold symmetry 3 of the triangular lattice arrangement. it can.

図3Bは、フォトレジスト剤21の表面での露光強度分布D3を概略的に示すグラフであり、開口部23の中心近傍の光強度分布D31と、単位格子中心28近傍の(各回折光が重ね合わせられた)光強度分布D32をまとめて1次元的に示すものである。両分布D31及びD32は、なだらかな形状を有する。   FIG. 3B is a graph schematically showing the exposure intensity distribution D3 on the surface of the photoresist agent 21. The light intensity distribution D31 near the center of the opening 23 and the vicinity of the unit cell center 28 (each diffracted light overlaps). The combined light intensity distribution D32 is shown one-dimensionally. Both distributions D31 and D32 have a gentle shape.

実施例では、現像により、光強度の強い位置ほどフォトレジスト剤21が除去され、光強度分布D3の山と谷とを反転した凹凸形状D4で、レジストパターンが形成される。   In the embodiment, as a result of development, the photoresist agent 21 is removed at a position where the light intensity is higher, and a resist pattern is formed with a concavo-convex shape D4 in which peaks and valleys of the light intensity distribution D3 are inverted.

上述のように、(遮光部24下の)単位格子中心28では、6つの開口部23による回折光のピークが重ね合わされている。遮光部24下で重ね合わされた回折光の分布D32のピーク強度は、開口部(透光部)23の下の分布D31のピーク強度と同程度(0.8倍〜1.2倍の範囲)であることが特に好ましい(後述の図5A、図5B、及び図5Cとその説明も参照)。   As described above, at the unit cell center 28 (below the light shielding portion 24), the peaks of the diffracted light from the six openings 23 are superimposed. The peak intensity of the diffracted light distribution D32 superimposed under the light shielding part 24 is approximately the same as the peak intensity of the distribution D31 under the opening (translucent part) 23 (range of 0.8 to 1.2 times). It is particularly preferable (see also FIG. 5A, FIG. 5B, and FIG. 5C described later and the description thereof).

実施例の露光条件では、遮光部下のピーク強度と開口部下のピーク強度が同程度と考えられる(後述の図5A参照)。従って、遮光部下で重ねあわされた各回折光のピーク強度が、開口部のピーク強度の1/6程度であったと推測される。なお、開口部のピーク強度と各回折光のピーク強度との比率は、開口径a、露光ギャップL、露光波長λ等を適宜調整することにより、実験的に調整することができる。   Under the exposure conditions of the examples, the peak intensity under the light shielding part and the peak intensity under the opening part are considered to be approximately the same (see FIG. 5A described later). Therefore, it is estimated that the peak intensity of each diffracted light superimposed under the light-shielding part is about 1/6 of the peak intensity of the opening. The ratio between the peak intensity of the opening and the peak intensity of each diffracted light can be experimentally adjusted by appropriately adjusting the opening diameter a, the exposure gap L, the exposure wavelength λ, and the like.

図5Aは、このような条件で得られたレジストパターンの凹凸構造を示す走査型プローブ顕微鏡(SPM)像である。   FIG. 5A is a scanning probe microscope (SPM) image showing the concavo-convex structure of the resist pattern obtained under such conditions.

マスクの開口部の下に凹部が形成されるとともに、遮光部の(単位格子中心の)下にも、開口部の凹部と同様な寸法、深さの凹部が形成されている。マスクの1つの開口部が、6つの単位格子に取り囲まれていることに対応し、開口部下の1つの凹部に隣接して、遮光部下の6つの凹部が配置されている。なだらかに変化する露光強度分布に対応して、レジストパターン上の凹凸形状もなだらかな曲面状となっている。   A recess is formed below the opening of the mask, and a recess having the same size and depth as the recess of the opening is formed below the light-shielding portion (in the center of the unit cell). Corresponding to the fact that one opening of the mask is surrounded by six unit cells, six recesses below the light shielding part are arranged adjacent to one recess below the opening. Corresponding to the gently changing exposure intensity distribution, the uneven shape on the resist pattern is also a gently curved surface.

なお、現像後ベーキングを行うことにより、凹部と凸部とを結ぶ斜面の傾きが基板裏面に対して52°〜64°の角度で分布するようになる。現像後ベーキングの温度が90℃〜120℃であれば、52°〜64°の角度範囲が得られ、処理時間にはさほど影響を受けない。現像後ベーキングの温度が高いほど、凹部と凸部とを結ぶ斜面の傾きが小さく(水平に近く)なる。この角度範囲は、発光素子を樹脂封止した場合に、活性層からの光を最も効率良く素子外へ放射させる角度として知られている。なお、露光後ベーキングを行うことにより、現像後ベーキングで形成されるレジストパターン上の凹部と凸部を結ぶ斜面の角度再現性が向上する。   By performing post-development baking, the slope of the slope connecting the concave portion and the convex portion is distributed at an angle of 52 ° to 64 ° with respect to the back surface of the substrate. If the post-development baking temperature is 90 ° C. to 120 ° C., an angle range of 52 ° to 64 ° is obtained, and the processing time is not significantly affected. The higher the post-development baking temperature, the smaller the slope of the slope connecting the concave and convex portions (close to the horizontal). This angle range is known as the angle at which light from the active layer is most efficiently emitted outside the device when the light emitting device is sealed with resin. By performing post-exposure baking, the angle reproducibility of the slope connecting the concave and convex portions on the resist pattern formed by post-development baking is improved.

図1Fに戻って説明を続ける。次に、レジストパターン26上の凹凸構造を異方性エッチングによりその下のGaN基板1に転写する凹凸加工工程を行う。例えば、反応性イオンエッチング(RIE)等のドライエッチングが用いられる。プロセス条件を、例えば、真空度1Pa、エッチングガスClの流量20sccm、印加電圧50W〜100Wとして、RIE装置31によりエッチングを行う。 Returning to FIG. 1F, the description will be continued. Next, a concavo-convex processing step for transferring the concavo-convex structure on the resist pattern 26 to the underlying GaN substrate 1 by anisotropic etching is performed. For example, dry etching such as reactive ion etching (RIE) is used. Etching is performed by the RIE apparatus 31 under the process conditions of, for example, a degree of vacuum of 1 Pa, an etching gas Cl 2 flow rate of 20 sccm, and an applied voltage of 50 W to 100 W.

全面にGaN基板1が露出するまで、レジストパターン26の上からエッチングすることにより、レジストパターン26の凹凸構造がGaN基板1の裏面に転写される。なお、GaN基板1上に形成される凹凸構造の表面を滑らかにするために、ドライエッチングにおけるプラズマ雰囲気中にSiを含有するとよい。これは、プラズマ雰囲気中のSiがエッチング対象物に付着し、エッチングレートが下がるため、エッチング面が平滑になる効果による。   By etching from above the resist pattern 26 until the GaN substrate 1 is exposed on the entire surface, the concavo-convex structure of the resist pattern 26 is transferred to the back surface of the GaN substrate 1. In order to smooth the surface of the concavo-convex structure formed on the GaN substrate 1, Si may be contained in the plasma atmosphere in dry etching. This is due to the effect that the etching surface becomes smooth because Si in the plasma atmosphere adheres to the object to be etched and the etching rate decreases.

GaN基板1上に形成された凹凸構造は、凸部の底辺が(隣接する凹部間の間隔が)1μm〜6μm程度であることが好ましく、また、凹部の底に対する凸部の高さが0.6μm〜5.6μm程度であることが好ましい。なお、ドライエッチングの反応ガスとして、Cl以外にも、塩素を含むBCl等公知の反応ガスを用いることができる。 In the concavo-convex structure formed on the GaN substrate 1, it is preferable that the base of the convex part is about 1 μm to 6 μm (interval between adjacent concave parts), and the height of the convex part with respect to the bottom of the concave part is 0. It is preferable that it is about 6 micrometers-5.6 micrometers. As a reactive gas for dry etching, a known reactive gas such as BCl 3 containing chlorine can be used in addition to Cl 2 .

図1Gは、GaN基板1に凹凸構造が形成された発光素子を示す。   FIG. 1G shows a light emitting device in which a concavo-convex structure is formed on the GaN substrate 1.

次に、図1Hに示すように、GaN基板1に凹凸構造が形成された発光素子を、個々の発光素子に分割するチップ化工程を行う。素子の分割は、例えばスクライブ及びブレイキング等の公知の方法で行うことができる。   Next, as shown in FIG. 1H, a chip forming process is performed in which the light-emitting element having a concavo-convex structure formed on the GaN substrate 1 is divided into individual light-emitting elements. The element can be divided by a known method such as scribing and breaking.

次に、図1Iに示すように、発光素子を、n側オーミック電極6及びp側オーミック電極7がそれぞれに対応する接合電極42上に配置されるように、共晶ボンダー装置のコレット43により、支持基板41にフリップチップ接合する。   Next, as shown in FIG. 1I, the light emitting element is formed by the collet 43 of the eutectic bonder device so that the n-side ohmic electrode 6 and the p-side ohmic electrode 7 are arranged on the corresponding junction electrodes 42. Flip chip bonding is performed on the support substrate 41.

接合後の不具合を軽減するために、ダイシェア測定による接合強度が50Nとなるように接合圧力(荷重)を調整する。接合圧力は、300mN〜500mN/チップが好ましい。接合圧力が高すぎると、共晶部材が設置部よりはみ出し、リークまたはショート等の不具合が発生する。このようにして、実施例の半導体発光装置が作製される。   In order to reduce defects after bonding, the bonding pressure (load) is adjusted so that the bonding strength by die shear measurement is 50N. The bonding pressure is preferably 300 mN to 500 mN / chip. If the bonding pressure is too high, the eutectic member protrudes from the installation portion, and problems such as leakage or short circuit occur. In this manner, the semiconductor light emitting device of the example is manufactured.

以上説明したように、実施例の半導体発光装置の製造方法では、回折を利用した露光により、なだらかな曲面状の凹凸形状を持つレジストパターンを簡易に形成できる。   As described above, in the method for manufacturing the semiconductor light emitting device of the embodiment, a resist pattern having a gentle curved concavo-convex shape can be easily formed by exposure using diffraction.

このようなレジストパターンをマスクとしてエッチングを施し、レジストパターンの凹凸構造を発光素子表面に転写することができる。発光素子表面の凹凸構造により、光取り出し効率向上が図られる。   Etching is performed using such a resist pattern as a mask, and the concavo-convex structure of the resist pattern can be transferred to the surface of the light emitting element. The light extraction efficiency can be improved by the uneven structure on the surface of the light emitting element.

発光素子の支持基板への接合時に、コレットが接触する面をなだらかな曲面状の凹凸構造とすることにより、例えば断面が鋸歯状の凹凸構造とする場合に比べて、接合圧力が分散され、クラック発生等が抑制される。接合歩留まりの改善が図られる。   When the light emitting element is bonded to the support substrate, the contact surface with the collet has a gently curved uneven structure, so that, for example, the bonding pressure is dispersed and cracks are reduced compared to a serrated uneven structure. Generation etc. are suppressed. The junction yield can be improved.

なお、実施例では発光素子を形成した基板の裏面上にレジストパターン、凹凸構造を形成したが、フォトレジストを塗布し、エッチング可能な場所であれば、他の場所にレジストパターンを形成し、凹凸構造を形成することができる。例えば、基板上に成長させた半導体層の最上面や、透明電極の表面等である。これにより、半導体発光素子の設計の自由度が向上する。   In the examples, the resist pattern and the concavo-convex structure were formed on the back surface of the substrate on which the light-emitting element was formed. However, if the photoresist is coated and etched, the resist pattern is formed in another place, A structure can be formed. For example, the uppermost surface of the semiconductor layer grown on the substrate, the surface of the transparent electrode, and the like. Thereby, the freedom degree of design of a semiconductor light-emitting device improves.

マスクの遮光部の下にも光強度分布のピークが生じるように、開口部を透過した光を回折させて、露光が行われる。これにより、遮光部の下にも凹凸構造を形成できるので、マスクの開口構造を微細にしなくても済み、また、露光が容易になる。凹凸構造を密に形成することが容易となり、光取り出し効率の向上が図られる。   Exposure is performed by diffracting the light transmitted through the opening so that the peak of the light intensity distribution also occurs under the light shielding portion of the mask. As a result, a concavo-convex structure can be formed under the light-shielding portion, so that it is not necessary to make the opening structure of the mask fine, and exposure is facilitated. It becomes easy to form the uneven structure densely, and the light extraction efficiency is improved.

なお、実施例では式(3)において、n=3を選択した。以下さらに、実施例でn=3を選択した理由を説明する。   In the example, n = 3 was selected in the formula (3). Hereinafter, the reason why n = 3 is selected in the embodiment will be described.

n=1の場合は、n=3の場合よりも、マスクとフォトレジスト剤間の露光ギャップが狭い。露光ギャップが狭すぎると、開口部のみがほぼ均一に露光されて、遮光部は非露光に近くなる。露光領域と非露光領域の境界で急峻に光強度が変化するので、レジストパターンにおいて、凹部と凸部との境界で高さが急峻に変化し、平坦部が多くなり、なだらかな曲面状の凹凸構造を得ることが困難となる。レジストパターンに平坦部が多くなると、全反射成分が増え、光取り出し効率向上の観点から好ましくない。   When n = 1, the exposure gap between the mask and the photoresist agent is narrower than when n = 3. If the exposure gap is too narrow, only the opening is exposed almost uniformly, and the light-shielding portion is close to non-exposure. Since the light intensity changes sharply at the boundary between the exposed area and the non-exposed area, the height of the resist pattern changes sharply at the boundary between the concave and convex portions, the number of flat portions increases, and the surface has a gentle curved surface. It becomes difficult to obtain a structure. When the flat portion increases in the resist pattern, the total reflection component increases, which is not preferable from the viewpoint of improving the light extraction efficiency.

また、開口部のみ露光されると、凹凸構造が密に形成されない。さらに、nが小さいと、上述の近似の精度もよくない。   Further, when only the opening is exposed, the uneven structure is not densely formed. Furthermore, when n is small, the above-mentioned approximation accuracy is not good.

一方、n=5(またはそれ以上)の場合は、n=3の場合よりも露光ギャップが広い。露光ギャップが広すぎると、回折光のピーク強度が小さくなり、かつブロードになる。これに起因して、回折ピークが重ね合わせられても、遮光部下のピーク強度を、開口部下のピーク強度と同程度とすることが困難となり、遮光部下の(例えば)凹部が浅くなる。   On the other hand, when n = 5 (or more), the exposure gap is wider than when n = 3. If the exposure gap is too wide, the peak intensity of the diffracted light becomes small and broad. As a result, even if the diffraction peaks are overlapped, it is difficult to make the peak intensity under the light shielding portion comparable to the peak intensity under the opening, and the (for example) concave portion under the light shielding portion becomes shallow.

実施例では、n=3が適度な露光ギャップであった。なお、露光ギャップは厳密にn=3を満たす(図3Aで、開口部の2つ隣の遮光部の中心の下に回折位置xを配置する)ものでなくともよい。   In the example, n = 3 was an appropriate exposure gap. The exposure gap may not strictly satisfy n = 3 (in FIG. 3A, the diffraction position x is arranged below the center of the light shielding portion adjacent to the opening portion two times).

図5B、図5Cは、露光ギャップを上記実施例の約50μmからずらし、それぞれ30μm、70μmとした変形例のレジストパターンの凹凸構造を示すSPM像である。図5B及び図5Cの場合も、遮光部の下にも回折光が照射され、凹部が形成されている。ただし、露光ギャップを50μmとした図5Aの場合に比べて、遮光部の下の回折光強度が弱く、開口部と遮光部の凹部形状の均一性が低下し、凹凸形状のなだらかさは低下している。   5B and 5C are SPM images showing the concavo-convex structure of the resist pattern of the modified example in which the exposure gap is shifted from about 50 μm of the above embodiment to be 30 μm and 70 μm, respectively. In the case of FIG. 5B and FIG. 5C as well, the diffracted light is irradiated under the light-shielding portion to form a recess. However, compared to the case of FIG. 5A in which the exposure gap is 50 μm, the intensity of diffracted light under the light-shielding portion is weak, the uniformity of the concave shape of the opening and the light-shielding portion is lowered, and the smoothness of the uneven shape is lowered. ing.

なお、開口部と遮光部の凹部形状の均一性の高い図5Aのレジストパターンの方が、図5B、図5Cのレジストパターンと比較して、ダイボンディング時のコレットとの接触面積をより多くすることができ、歩留まり改善に特に好ましい。   Note that the resist pattern of FIG. 5A, which has a more uniform recess shape of the opening and the light-shielding portion, has a larger contact area with the collet during die bonding than the resist pattern of FIGS. 5B and 5C. It is particularly preferable for improving the yield.

式(1)〜(3)より、露光ギャップLは、λを露光波長、aを開口部の径、bを隣接開口部間のピッチとして、
L=[n×b/2]/[tan(1.83λ/a)] ・・・(4)
と表される。上記実施例の条件(a=3μm、b=5μm、λ=230nm)でn=2、3、4の露光ギャップLは、それぞれ35μm、53μm、71μmとなる。図5B、図5Cの場合は、大体n=2、n=4に対応しており、2<n<4が、露光の好ましい条件といえる。
From Expressions (1) to (3), the exposure gap L is defined as λ is the exposure wavelength, a is the diameter of the opening, and b is the pitch between adjacent openings.
L = [n × b / 2] / [tan (1.83λ / a)] (4)
It is expressed. Under the conditions of the above embodiment (a = 3 μm, b = 5 μm, λ = 230 nm), the exposure gaps L of n = 2, 3, and 4 are 35 μm, 53 μm, and 71 μm, respectively. 5B and 5C generally correspond to n = 2 and n = 4, and 2 <n <4 is a preferable condition for exposure.

2<n<4は、概ね、図3Aで開口部の2つ隣の遮光部内に、回折光の光強度分布のピークが配置されるような条件ということもできる。なお、n=3にさらに近い範囲の、例えば2.5<n<3.5とすれば、より好ましいといえる。   In general, 2 <n <4 can be regarded as a condition in which the peak of the light intensity distribution of the diffracted light is arranged in the light shielding portion adjacent to the opening in FIG. 3A. Note that it is more preferable that n <3, for example, 2.5 <n <3.5.

なお、上記実施例では、マスクの開口部を正三角格子状(最密構造)に配置したが、開口部の配置はこれに限定されない。開口部が、例えば正方格子等の格子状に、周期的に配置されたマスクを用いることもできる。なお、開口形状は円形に限定されず、例えば多角形等としてもよい。   In the above embodiment, the openings of the mask are arranged in a regular triangular lattice (closest-packed structure), but the arrangement of the openings is not limited to this. For example, a mask in which openings are periodically arranged in a lattice shape such as a square lattice can be used. The opening shape is not limited to a circle, and may be a polygon, for example.

図4と同様な考察をすると、正方格子の場合は、近接する4つの開口の画定する正方形が、単位格子となる。正方格子は4回対称なので、単位格子の中心において、8つの開口部による回折光のピークが重ね合わされる。1つ分の開口部を透過した光について、隣接開口部間中心での回折光のピーク強度が、開口部直下のピーク強度の1/8程度となることが好ましいこととなる(図3A参照)。   Considering the same consideration as FIG. 4, in the case of a square lattice, a square defined by four adjacent openings is a unit lattice. Since the square lattice is four-fold symmetric, the peaks of the diffracted light from the eight openings are superimposed at the center of the unit lattice. For light transmitted through one opening, the peak intensity of diffracted light at the center between adjacent openings is preferably about 1/8 of the peak intensity immediately below the opening (see FIG. 3A). .

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

図1A、図1Bは、本発明の実施例の半導体発光装置の製造工程を示す概略断面図である。1A and 1B are schematic cross-sectional views showing a manufacturing process of a semiconductor light emitting device according to an embodiment of the present invention. 図1C〜図1Eは、図1A、図1Bに引き続き、実施例の半導体発光素子の製造工程を示す概略断面図である。1C to 1E are schematic cross-sectional views illustrating manufacturing steps of the semiconductor light emitting device of the example, following FIGS. 1A and 1B. 図1F、図1Gは、図1C〜図1Eに引き続き、実施例の半導体発光素子の製造工程を示す概略断面図である。1F and FIG. 1G are schematic cross-sectional views illustrating manufacturing steps of the semiconductor light emitting device of the example, following FIGS. 1C to 1E. 図1H、図1Iは、図1F、図1Gに引き続き、実施例の半導体発光素子の製造工程を示す概略断面図である。1H and FIG. 1I are schematic cross-sectional views showing manufacturing steps of the semiconductor light emitting device of the example, following FIG. 1F and FIG. 1G. 図2は、実施例のマスクを示す写真である。FIG. 2 is a photograph showing the mask of the example. 図3A及び図3Bは、実施例の露光条件を説明するための、マスク及びフォトレジスト剤の概略断面図である。3A and 3B are schematic cross-sectional views of a mask and a photoresist agent for explaining the exposure conditions of the embodiment. 図4は、実施例の露光条件を説明するための、マスク及びフォトレジスト剤の概略平面図である。FIG. 4 is a schematic plan view of a mask and a photoresist agent for explaining the exposure conditions of the embodiment. 図5A〜図5Cは、実施例及びその変形例によるレジストパターンのSPM像である。FIG. 5A to FIG. 5C are SPM images of resist patterns according to examples and modifications thereof. 図6A及び図6Bは、コレットに吸着されている発光素子の凹凸構造を示す概略断面図であり、図6Cは、サファイア基板上にGaN系半導体層を形成したエピウエハを示す概略断面図である。6A and 6B are schematic cross-sectional views showing the concavo-convex structure of the light-emitting element adsorbed on the collet, and FIG. 6C is a schematic cross-sectional view showing an epi-wafer in which a GaN-based semiconductor layer is formed on a sapphire substrate.

符号の説明Explanation of symbols

1 基板
2 n型半導体層
3 活性層
4 p型半導体層
5 半導体層
6 n側オーミック電極
7 p側オーミック電極
21 フォトレジスト剤
22 マスク
23 開口部
24 遮光部
25 露光光
26 レジストパターン
41 支持基板
42 接合電極
43 コレット
1 substrate 2 n-type semiconductor layer 3 active layer 4 p-type semiconductor layer 5 semiconductor layer 6 n-side ohmic electrode 7 p-side ohmic electrode 21 photoresist agent 22 mask 23 opening 24 light-shielding portion 25 exposure light 26 resist pattern 41 support substrate 42 Joining electrode 43 Collet

Claims (6)

(a)半導体発光素子構造を含む加工対象部材を準備する工程と、
(b)前記加工対象部材上にフォトレジストを形成する工程と、
(c)前記フォトレジストを露光する工程と、
(d)前記フォトレジストを現像して、レジストパターンを形成する工程と、
(e)前記レジストパターンの上から、前記加工対象部材をエッチングする工程と
を有し、
前記工程(c)は、複数の透光部が遮光部を隔てて格子状に配置されたマスクを介して前記フォトレジストを露光し、該フォトレジスト上の光強度分布が、透光部の下に第1のピークを持つとともに、遮光部の下にも第2のピークを持つように透光部を透過した光を回折させる工程を含む半導体発光装置の製造方法。
(A) preparing a processing target member including a semiconductor light emitting element structure;
(B) forming a photoresist on the workpiece;
(C) exposing the photoresist;
(D) developing the photoresist to form a resist pattern;
(E) etching the member to be processed from above the resist pattern,
In the step (c), the photoresist is exposed through a mask in which a plurality of light-transmitting portions are arranged in a grid pattern with a light-shielding portion interposed therebetween, and the light intensity distribution on the photoresist is below the light-transmitting portions. A method of manufacturing a semiconductor light emitting device, comprising: diffracting light transmitted through the light transmitting portion so as to have a first peak and a second peak below the light shielding portion.
前記工程(c)で、前記第1のピークの強度に対し、前記第2のピークの強度が、0.8倍〜1.2倍の範囲である請求項1に記載の半導体発光装置の製造方法。   2. The method of manufacturing a semiconductor light emitting device according to claim 1, wherein in the step (c), the intensity of the second peak is in a range of 0.8 to 1.2 times the intensity of the first peak. Method. 前記工程(c)で、前記マスクと前記フォトレジストとの間の露光ギャップLを、λを露光波長、aを前記透光部の径、bを隣接透光部の中心間のピッチとして、
L=[n×b/2]/[tan(1.83λ/a)]
と表したとき、2<n<4となるようにnが選択されている請求項1または2に記載の半導体発光装置の製造方法。
In the step (c), an exposure gap L between the mask and the photoresist, λ is an exposure wavelength, a is a diameter of the light transmitting portion, and b is a pitch between centers of adjacent light transmitting portions,
L = [n × b / 2] / [tan (1.83λ / a)]
The method for manufacturing a semiconductor light emitting device according to claim 1, wherein n is selected so that 2 <n <4.
前記工程(c)で、前記透光部の回折光の前記フォトレジスト上における回折位置が、隣接する透光部間の遮光部の中心の下に配置されるように、前記透光部の径、及び前記マスクと前記フォトレジストとの間の露光ギャップが定められている請求項1または2に記載の半導体発光装置の製造方法。   In the step (c), the diameter of the light transmitting part is arranged such that the diffraction position of the diffracted light of the light transmitting part on the photoresist is arranged below the center of the light shielding part between the adjacent light transmitting parts. And a method for manufacturing a semiconductor light emitting device according to claim 1, wherein an exposure gap between the mask and the photoresist is defined. 前記工程(c)で、前記マスクは、透光部が正三角格子状に配置されている請求項1〜4のいずれか1項に記載の半導体発光装置の製造方法。   5. The method of manufacturing a semiconductor light emitting device according to claim 1, wherein in the step (c), the light transmitting portions of the mask are arranged in a regular triangular lattice shape. 前記工程(b)は、前記フォトレジストを、前記加工対象部材の、半導体発光素子構造の形成されている基板の該発光素子構造と反対側の裏面上に形成する請求項1〜5のいずれか1項に記載の半導体発光装置の製造方法。   The said process (b) forms the said photoresist on the back surface on the opposite side to this light emitting element structure of the board | substrate with which the semiconductor light emitting element structure is formed of the said process target member. 2. A method for manufacturing a semiconductor light emitting device according to item 1.
JP2008291740A 2008-11-14 2008-11-14 Method of manufacturing semiconductor light-emitting device Pending JP2010118572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291740A JP2010118572A (en) 2008-11-14 2008-11-14 Method of manufacturing semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291740A JP2010118572A (en) 2008-11-14 2008-11-14 Method of manufacturing semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JP2010118572A true JP2010118572A (en) 2010-05-27

Family

ID=42306038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291740A Pending JP2010118572A (en) 2008-11-14 2008-11-14 Method of manufacturing semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JP2010118572A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033520A (en) * 2010-07-28 2012-02-16 Hitachi Cable Ltd Substrate and light-emitting element
JP2014229648A (en) * 2013-05-20 2014-12-08 シャープ株式会社 Semiconductor light-emitting element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626438A (en) * 1979-05-29 1981-03-14 Massachusetts Inst Technology Method and device for isolating and exposing spatial period
JP2000138160A (en) * 1998-10-29 2000-05-16 Canon Inc X-ray exposing method and x-ray mask structure for the method
JP2001274458A (en) * 2000-03-27 2001-10-05 Toshiba Electronic Engineering Corp Semiconductor light emitting device and method of manufacturing it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626438A (en) * 1979-05-29 1981-03-14 Massachusetts Inst Technology Method and device for isolating and exposing spatial period
JP2000138160A (en) * 1998-10-29 2000-05-16 Canon Inc X-ray exposing method and x-ray mask structure for the method
JP2001274458A (en) * 2000-03-27 2001-10-05 Toshiba Electronic Engineering Corp Semiconductor light emitting device and method of manufacturing it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012033520A (en) * 2010-07-28 2012-02-16 Hitachi Cable Ltd Substrate and light-emitting element
JP2014229648A (en) * 2013-05-20 2014-12-08 シャープ株式会社 Semiconductor light-emitting element

Similar Documents

Publication Publication Date Title
US8602832B2 (en) Light emitting device and method of forming the same
EP2477238B1 (en) Semiconductor light emitting element
US8785308B2 (en) Method for manufacturing semiconductor base material
JP5646503B2 (en) Optoelectronic semiconductor chip and method of manufacturing optoelectronic semiconductor chip
JP2007036240A (en) Gallium-nitride-based light-emitting diode element having vertical structure and manufacturing method thereof
US11245049B2 (en) Method of manufacturing optoeletronic device epitaxial structure
KR20130054930A (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP4889361B2 (en) Manufacturing method of semiconductor light emitting device
JP2008060286A (en) Semiconductor light-emitting element and its manufacturing method
US10418510B1 (en) Mesa shaped micro light emitting diode with electroless plated N-contact
JP2007123446A (en) Method of manufacturing semiconductor light emitting element
JP2009158696A (en) Method of manufacturing semiconductor light emitting device, and semiconductor light emitting device
JP2010118572A (en) Method of manufacturing semiconductor light-emitting device
US8853057B2 (en) Method for fabricating semiconductor devices
TWI542032B (en) Opto-electronic semiconductor chip and method for producing opto-electronic semiconductor chip
KR100618086B1 (en) Method for manufacturing semiconductor device and light emitting diode by using the said method
TW201513394A (en) Substrate and method for manufacturing same, light-emitting element and method for manufacturing same, and device having substrate or light-emitting element
KR100809508B1 (en) Light emitting device having plane fresnel lens and fabrication method thereof
TW200924248A (en) Method of forming fine patterns and method of manufacturing semiconductor light emitting device using the same
CN113517379A (en) Patterned substrate, preparation method thereof and LED chip
KR20220152284A (en) Laser lift-off handling system with metal grid
EP2709171B1 (en) LED array
JP2008282979A (en) Semiconductor light-emitting element, and manufacturing method thereof
CN115537766A (en) Mask assembly and preparation method of LED chip
CN116314532A (en) LED passivation layer, preparation method and LED chip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130423