JP2008060286A - Semiconductor light-emitting element and its manufacturing method - Google Patents

Semiconductor light-emitting element and its manufacturing method Download PDF

Info

Publication number
JP2008060286A
JP2008060286A JP2006234761A JP2006234761A JP2008060286A JP 2008060286 A JP2008060286 A JP 2008060286A JP 2006234761 A JP2006234761 A JP 2006234761A JP 2006234761 A JP2006234761 A JP 2006234761A JP 2008060286 A JP2008060286 A JP 2008060286A
Authority
JP
Japan
Prior art keywords
semiconductor
substrate
light emitting
semiconductor light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006234761A
Other languages
Japanese (ja)
Inventor
Koji Kaga
広持 加賀
Hitomi Saito
仁美 斉藤
Nobusuke Hayashi
伸亮 林
Yoshinori Kinoshita
欣紀 木下
Taketo Nakatani
健人 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2006234761A priority Critical patent/JP2008060286A/en
Publication of JP2008060286A publication Critical patent/JP2008060286A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency of the light extraction of a semiconductor light-emitting element. <P>SOLUTION: Substrate surfaces are exposed on the sides forming semiconductor laminating structures 2 to 4 as light emitters, and irregularities are formed to the exposed substrate surfaces in each semiconductor light-emitting element 100. Consequently, when a light projected from the semiconductor laminating structures 2 to 4 as the light emitters to substrates 1 reaches the exposed surface sides of the substrates 1, a ratio is elevated as emitting the light to the outside without a total reflection. It is remarkable when the refractive indices of the semiconductor laminating structures 2 to 4 are larger than those of the substrates 1, and an effect is remarkable particularly when the light emitter is formed of the laminating structure of a group III nitride compound semiconductor and sapphire, silicon, SiC or a spinel is used as the substrate. When the element is isolated by a dicing together with a semiconductor layer, the side face of the semiconductor layer brought into contact with a dicing saw suffers a damage, and is changed into an optical absorber, but such a damaged region is not formed in this element. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は半導体発光素子に関する。特に、異種基板上に形成されたIII族窒化物系化合物半導体発光素子及びその製造方法に関する。   The present invention relates to a semiconductor light emitting device. In particular, the present invention relates to a group III nitride compound semiconductor light emitting device formed on a heterogeneous substrate and a method for manufacturing the same.

III族窒化物系化合物半導体は、その屈折率が約2.4と大きく、発光層から発せられる光の取り出しが十分でないことが知られている。即ち、大きな屈折率のために臨界角が大きく、III族窒化物系化合物半導体の積層構造内で何度も反射されて外部に放射されない光の割合が無視できない。   It is known that the group III nitride compound semiconductor has a large refractive index of about 2.4, and extraction of light emitted from the light emitting layer is not sufficient. That is, the critical angle is large due to the large refractive index, and the proportion of light that is reflected many times within the laminated structure of the group III nitride compound semiconductor and is not emitted to the outside cannot be ignored.

そこで、III族窒化物系化合物半導体の積層部表面や成長基板の裏面等に凹凸を設けて、光取り出し効率を向上させる工夫が種々されている。このような構成としては特許文献1及び2が挙げられる。   In view of this, various contrivances have been made to improve the light extraction efficiency by providing irregularities on the surface of the laminated portion of the group III nitride compound semiconductor or the back surface of the growth substrate. Patent documents 1 and 2 are mentioned as such composition.

III族窒化物系化合物半導体発光素子の素子分離においては、直接ダイサー等をエピタキシャルウエハに当てる方法の他、個々の素子の外周部のエピタキシャル成長膜を予めエッチングで除去しておくことも知られている。この技術は例えば特許文献3に記載されている。
特開2002−280611号公報 特開2004−221529号公報 特開平7−131069号公報
In device isolation of group III nitride compound semiconductor light emitting devices, it is also known that the epitaxial growth film on the outer peripheral portion of each device is previously removed by etching in addition to a method of directly applying a dicer to an epitaxial wafer. . This technique is described in Patent Document 3, for example.
JP 2002-280611 A JP 2004-221529 A Japanese Unexamined Patent Publication No. 7-131069

III族窒化物系化合物半導体の積層部表面を加工する特許文献1の技術は必ずしも容易な加工ではない。また、いわゆるフェイスアップの発光素子においては、基板裏面の凹凸は効果がなく、特許文献2のような発光層下部に凹凸を設けたとしても、最終的に屈折率の大きいIII族窒化物系化合物半導体から光取り出しを行わなければならないのであれば光取り出し効率は十分には向上しない。   The technique of Patent Document 1 for processing the surface of a laminated portion of a group III nitride compound semiconductor is not always easy. Further, in the so-called face-up light emitting element, the unevenness on the back surface of the substrate is not effective, and even if the unevenness is provided in the lower part of the light emitting layer as in Patent Document 2, the group III nitride compound having a large refractive index is finally obtained. If the light extraction from the semiconductor must be performed, the light extraction efficiency is not sufficiently improved.

本発明者らは、半導体発光素子の光取り出し効率を向上させるべく検討を行い、以下に示す通り10%近い光取り出し効率の向上をもたらす技術を完成した。即ち、本発明の目的は、光取り出し効率を向上させた半導体発光素子及びその製造方法を提供することである。   The present inventors have studied to improve the light extraction efficiency of the semiconductor light-emitting device, and completed a technique that brings about an improvement in light extraction efficiency of nearly 10% as described below. That is, an object of the present invention is to provide a semiconductor light emitting device with improved light extraction efficiency and a method for manufacturing the same.

請求項1に係る発明は、表面に凹凸を有する基板の、当該凹凸面上に半導体を積層することにより半導体積層構造の形成された半導体発光素子において、半導体積層構造の外周部において、基板の凹凸面が露出されたことを特徴とする半導体発光素子である。即ち、露出した基板の凹凸面が半導体積層構造の外周部を囲んだ状態の半導体発光素子である。   The invention according to claim 1 is a semiconductor light emitting device in which a semiconductor multilayer structure is formed by laminating a semiconductor on a concavo-convex surface of a substrate having a concavo-convex surface. A semiconductor light emitting device having a surface exposed. That is, it is a semiconductor light emitting element in a state where the uneven surface of the exposed substrate surrounds the outer peripheral portion of the semiconductor multilayer structure.

請求項2に係る発明は、半導体積層構造は、III族窒化物系化合物半導体から成ることを特徴とする。III族窒化物系化合物半導体は、一般式AlxGayIn1-x-yN、但し、x、y、x+yはいずれも0以上1以下で表される半導体であって、任意の不純物を添加したもの、或いは他のIII族元素でAl、Ga及び/又はInの一部組成を置き換えたもの、他のV族元素でNの一部組成を置き換えたものを含むものとする。請求項3に係る発明は、基板は、サファイア、シリコン、SiC又はスピネルから成ることを特徴とする。 The invention according to claim 2 is characterized in that the semiconductor multilayer structure is made of a group III nitride compound semiconductor. Group III nitride compound semiconductor is a general formula Al x Ga y In 1-xy N, where x, y and x + y are all represented by 0 or more and 1 or less, and an arbitrary impurity is added. Or a group III element substituted with a partial composition of Al, Ga and / or In, or a group V element substituted with a partial composition of N. The invention according to claim 3 is characterized in that the substrate is made of sapphire, silicon, SiC or spinel.

請求項4に係る発明は、半導体積層構造の外周部は、前記基板の凹凸面が露出された部分に向かって俯角45度以下のテーパが形成されていることを特徴とする。請求項5に係る発明は、板の凹凸面の露出は、ドライエッチングにより成されたことを特徴とする。   The invention according to claim 4 is characterized in that the outer peripheral portion of the semiconductor laminated structure is formed with a taper having an included angle of 45 degrees or less toward a portion where the uneven surface of the substrate is exposed. The invention according to claim 5 is characterized in that the uneven surface of the plate is exposed by dry etching.

請求項6に係る発明は、半導体発光素子の製造方法において、表面に凹凸を有する基板の凹凸面上に半導体を積層して半導体積層構造を形成する工程と、個々の素子の半導体積層構造の外周部において、基板の凹凸面を露出するために選択的ドライエッチングを行う工程とを有することを特徴とする半導体発光素子の製造方法である。個々の素子の半導体積層構造の外周部とは、ウエハが後の素子分離工程で分離される際の分離線の内側である。素子分離は例えばダイシングやレーザ加工を用いた分離方法が想定される。   According to a sixth aspect of the present invention, there is provided a method for manufacturing a semiconductor light emitting device, comprising: a step of forming a semiconductor stacked structure by stacking a semiconductor on an uneven surface of a substrate having an uneven surface; and an outer periphery of the semiconductor stacked structure of each device And a step of performing selective dry etching to expose the concavo-convex surface of the substrate. The outer peripheral portion of the semiconductor multilayer structure of each element is the inside of the separation line when the wafer is separated in a later element separation step. For element isolation, for example, an isolation method using dicing or laser processing is assumed.

請求項7に係る発明は、ドライエッチングは、塩素又は塩素の化合物を含むガスを用いることを特徴とする。請求項8に係る発明は、ドライエッチングの際に用いるマスクは、各素子間の分離線上を挟んだ所定領域を除いて各素子毎に分離して形成され、プリベークの後、より高温でリフロさせることによりマスク外周部の膜厚を変化させて、エッチングの際に半導体積層構造の外周部をテーパ形状に形成するものであることを特徴とする。プリベークはレジスト等で形成されるマスクの露光及び現像の後で行われるものであり実質的にはレジストの重合を完結させるものである。この後熱可塑性樹脂のレジストがより高温での変形により、マスク厚さが外周部で薄くなることを利用するものである。   The invention according to claim 7 is characterized in that dry etching uses a gas containing chlorine or a compound of chlorine. In the invention according to claim 8, the mask used in dry etching is formed separately for each element except for a predetermined region sandwiching the separation line between the elements, and is reflowed at a higher temperature after pre-baking. Thus, the thickness of the outer peripheral portion of the mask is changed, and the outer peripheral portion of the semiconductor multilayer structure is formed in a tapered shape during etching. Pre-baking is performed after exposure and development of a mask formed of a resist or the like, and substantially completes the polymerization of the resist. Thereafter, the fact that the mask thickness is reduced at the outer periphery due to deformation of the thermoplastic resin resist at a higher temperature is utilized.

個々の半導体発光素子において、発光部である半導体積層構造を形成した側において、基板面が露出しており、且つ当該露出した基板面に凹凸が設けられている。よって発光部である半導体積層構造から基板に入射した光は、露出した基板の表面側(発光部である半導体積層構造を形成した側)に達した場合、全反射されることなく光が外部に放出される割合が高くなる(請求項1)。これは、基板の屈折率よりも半導体積層構造の屈折率の方が大きい場合に顕著であり、III族窒化物系化合物半導体の積層構造で発光部を形成し、サファイア、シリコン、SiC又はスピネルを基板とする場合に特に効果が顕著となる(請求項2及び3)。また、半導体層ともどもダイシングにより素子分離をする場合には、ダイシングソーに接触する半導体層側面がダメージを受け、光吸収部となるが、本発明は半導体積層構造の周辺部を予め除去しているので、基板を例えばダイシングソーで切断するような場合でも、半導体積層構造にダイシングソーが接触せず、半導体積層構造にダメージ領域が形成されない。   In each semiconductor light emitting element, the substrate surface is exposed on the side where the semiconductor multilayer structure as the light emitting portion is formed, and the exposed substrate surface is provided with irregularities. Therefore, when the light that has entered the substrate from the semiconductor multilayer structure that is the light emitting portion reaches the surface side of the exposed substrate (the side on which the semiconductor multilayer structure that is the light emitting portion is formed), the light is not totally reflected and is transmitted to the outside. The proportion released is increased (claim 1). This is conspicuous when the refractive index of the semiconductor multilayer structure is larger than the refractive index of the substrate, and the light emitting part is formed by the laminated structure of the group III nitride compound semiconductor, and sapphire, silicon, SiC or spinel is formed. The effect is particularly remarkable when the substrate is used (claims 2 and 3). Also, when element separation is performed by dicing with the semiconductor layer, the side surface of the semiconductor layer that contacts the dicing saw is damaged and becomes a light absorbing portion, but the present invention removes the peripheral portion of the semiconductor multilayer structure in advance. Therefore, even when the substrate is cut with, for example, a dicing saw, the dicing saw does not contact the semiconductor multilayer structure, and no damaged region is formed in the semiconductor multilayer structure.

更に基板の凹凸面が露出された部分に向かって半導体積層構造の外周部がテーパを形成していると、半導体積層構造内で当該テーパ部に達した光が、全反射されることなく外部に放出される割合が高くなる。当該テーパの傾斜角(俯角)は任意に調整できるが、以下の製造方法を用いると容易に45度以下の一定俯角のテーパを再現性良く形成することが可能となる(請求項4)。   Further, when the outer peripheral portion of the semiconductor multilayer structure is tapered toward the portion where the uneven surface of the substrate is exposed, the light that reaches the tapered portion in the semiconductor multilayer structure is not totally reflected to the outside. The percentage released is increased. The inclination angle (decline) of the taper can be arbitrarily adjusted, but a taper with a constant depression angle of 45 degrees or less can be easily formed with good reproducibility by using the following manufacturing method (claim 4).

以上のような半導体発光素子を製造するためには、表面に凹凸を有する基板の当該凹凸面上に半導体を積層する工程と、分割後に個々の素子の当該半導体積層構造の外周部となる部分に、基板の凹凸面を露出するために選択的ドライエッチングを行う工程とを設ければ良い(請求項5)。ドライエッチングは塩素又は塩素の化合物を含むガスを用いると良く、上述のテーパを形成するためには、フォトレジストの塗布、露光、現像により各素子ごとのマスクを一旦形成する。この時のマスクで覆われていない部分は、切断線を挟む領域である。プリベークによりマスクの重合及び硬化を十分に行い、当該プリベークよりも高温でリフロさせてマスク外周部の厚さが、縁に向かって薄くなるように形成する。こうしてマスク周辺部の厚さをテーパ状とすることで、エッチング中にマスクが外周部から順次分解除去されるようにすると良い。これにより、個々の素子の半導体積層構造の外周部において、エッチングが実質的に開始されるタイミングがズレることで、エッチング後の半導体積層構造の外周部にテーパ形状を形成することが可能となる。   In order to manufacture the semiconductor light emitting element as described above, a step of laminating a semiconductor on the uneven surface of a substrate having an uneven surface, and a portion that becomes an outer peripheral portion of the semiconductor multilayer structure of each element after division And a step of performing selective dry etching in order to expose the uneven surface of the substrate. In dry etching, a gas containing chlorine or a chlorine compound is preferably used. In order to form the above-described taper, a mask for each element is formed once by applying, exposing, and developing a photoresist. A portion not covered with the mask at this time is a region sandwiching the cutting line. The mask is sufficiently polymerized and cured by pre-baking and reflowed at a higher temperature than the pre-baking so that the thickness of the outer peripheral portion of the mask becomes thinner toward the edge. In this way, the thickness of the peripheral portion of the mask is tapered so that the mask is sequentially decomposed and removed from the outer peripheral portion during etching. As a result, the timing at which etching is substantially started is shifted in the outer peripheral portion of the semiconductor multilayer structure of each element, so that a tapered shape can be formed in the outer peripheral portion of the semiconductor multilayer structure after etching.

本発明は任意の構成の半導体発光素子において、個々の素子の発光部を囲む基板表面の外周部を凹凸状とすることで達成される。上述の通り、基板の屈折率よりも半導体積層構造の屈折率の方が大きい場合に光取り出し効率の向上が顕著であり、III族窒化物系化合物半導体の積層構造で発光部を形成し、サファイア、シリコン、SiC又はスピネルを基板とする場合に特に効果が顕著となる。   The present invention can be achieved by making an outer peripheral portion of a substrate surface surrounding a light emitting portion of each element into a concavo-convex shape in a semiconductor light emitting device having an arbitrary configuration. As described above, when the refractive index of the semiconductor multilayer structure is larger than the refractive index of the substrate, the improvement of the light extraction efficiency is remarkable, and the light emitting part is formed by the laminated structure of the group III nitride compound semiconductor, and the sapphire The effect is particularly remarkable when silicon, SiC or spinel is used as the substrate.

半導体をエピタキシャル成長させる前に、基板表面に凹凸を形成する。当該凹凸の形状は任意であるが、最も容易な形状は、円錐台又は角錘台状の凸部を多数設けることである。又は逆に、反転した円錐台又は角錘台側面の形状を有する凹部を多数形成しても良い。このような凹凸は、基板の材料に応じて、マスクを用いたドライエッチング又は異方性ウエットエッチングで公知の技術により形成可能である。或いは、機械加工、レーザ加工により形成することも可能である。尚、後のエピタキシャル成長を考慮すると、元の基板面と一致する面が一定割合以上残っていることが必要である。この点で完全にランダムな凹凸を形成する場合は、エピタキシャル成長領域には当該凹凸を形成しないことが好ましい。逆に元の基板面と一致する面が一定割合以上残っているならば、エピタキシャル成長領域にも凹凸を形成しても構わない。凹凸を形成した基板上の半導体の積層は、バッファ層を一様に形成して初期の段階ではELO成長させて凹部を塞ぎ、その後縦方向に成長させる方法を用いても良い。凹凸はストライプ状、ドット状でも良く、周期的でも、ランダムに配列されていても良い。尚、分離後の個々の素子の露出した凹凸領域は、平面図において例えば幅10〜50μmの領域とすると良い。   Unevenness is formed on the substrate surface before the semiconductor is epitaxially grown. The shape of the unevenness is arbitrary, but the easiest shape is to provide a large number of convex portions having a truncated cone shape or a truncated cone shape. Or conversely, a large number of concave portions having the shape of the inverted truncated cone or side of the truncated pyramid may be formed. Such irregularities can be formed by a known technique by dry etching using a mask or anisotropic wet etching, depending on the material of the substrate. Alternatively, it can be formed by machining or laser processing. In consideration of the subsequent epitaxial growth, it is necessary that a surface that matches the original substrate surface remains at a certain rate or more. In this respect, when completely random unevenness is formed, it is preferable not to form the unevenness in the epitaxial growth region. On the contrary, as long as the surface which coincides with the original substrate surface remains in a certain ratio or more, unevenness may be formed also in the epitaxial growth region. For the stacking of the semiconductors on the substrate on which the unevenness is formed, a method may be used in which the buffer layer is uniformly formed, ELO growth is performed at an initial stage to close the recesses, and then growth is performed in the vertical direction. The irregularities may be stripes or dots, and may be arranged periodically or randomly. In addition, the uneven | corrugated area | region which the individual element after isolation | separation exposed should be a 10-50 micrometers width | variety area | region in a top view, for example.

基板の凹凸を露出させるための半導体のドライエッチングは、目的とする半導体層をエッチング可能であって、基板のエッチング速度が半導体層のエッチング速度よりも十分小さいことが必要である。例えばIII族窒化物系化合物半導体とサファイア基板の組み合わせの場合は、エッチングガスとして塩素(Cl2)や三塩化ホウ素(BCl3)を用いることができる。尚、エッチングガスには不活性ガス、例えばアルゴン(Ar)を混合するとエッチングが良好となる。 The dry etching of the semiconductor to expose the unevenness of the substrate requires that the target semiconductor layer can be etched and that the etching rate of the substrate is sufficiently lower than the etching rate of the semiconductor layer. For example, in the case of a combination of a group III nitride compound semiconductor and a sapphire substrate, chlorine (Cl 2 ) or boron trichloride (BCl 3 ) can be used as an etching gas. In addition, when an inert gas such as argon (Ar) is mixed with the etching gas, the etching becomes good.

エッチングマスクは、ノボラック系のレジストを1〜20μm厚としてそのまま使用することができる。この他、酸化ケイ素、窒化ケイ素のような無機材料をマスクとして用いることもできる。無機材料のマスクは有機系のレジストマスクよりも耐エッチング性が良いのでエッチングスピードを大きくすることもできる。   As the etching mask, a novolac resist having a thickness of 1 to 20 μm can be used as it is. In addition, an inorganic material such as silicon oxide or silicon nitride can also be used as a mask. Since an inorganic material mask has better etching resistance than an organic resist mask, the etching speed can be increased.

熱可塑性の有機レジストを用いると、レジストの塗布、露光、現像、不要部の除去とプリベークの後に、昇温してリフロさせ、マスク外周部の厚さを縁に向かって薄くし、エッチング後の半導体層外周部にテーパ形状を形成することが容易となる。ノボラック系樹脂では130℃以下でプリベークして水や窒素を脱気させ、その後150〜180℃で外周部をリフロさせると良い。プリベーク時間やリフロ時間は1分以下、又は5分以下程度とすると良い。   If a thermoplastic organic resist is used, after resist application, exposure, development, removal of unnecessary parts and pre-baking, the temperature is raised and reflowed to reduce the thickness of the outer periphery of the mask toward the edge, It becomes easy to form a tapered shape in the outer peripheral portion of the semiconductor layer. In the case of a novolak resin, it is preferable to pre-bake at 130 ° C. or lower to degas water and nitrogen, and then reflow the outer periphery at 150 to 180 ° C. The pre-bake time or reflow time is preferably about 1 minute or less, or about 5 minutes or less.

図1.Aに断面図を、図1.Bに平面図を示した半導体発光素子100を、次のように形成した。
表面に、上面が直径2μm、底部が直径3μm、高さが0.8μmの円錐台状の凸部を5μmの間隔をおいて一面に周期的に形成した厚さ約300μmのサファイア基板1を用意した。
当該サファイア基板1に、約15nmのAlNバッファ層を介して、ノンドープのGaNから成る膜厚約500nm層、シリコン(Si)を1×1018/cm3ドープしたGaNから成る膜厚約5μmのn型コンタクト層、シリコン(Si)を1×1017/cm3ドープした膜厚25nmのn型Al0.15Ga0.85Nから成るn型層を形成した。図1.Aでは単にn型層2とのみ示した。
FIG. A sectional view is shown in FIG. The semiconductor light emitting device 100 whose plan view is shown in B was formed as follows.
Prepared is a sapphire substrate 1 having a thickness of about 300 μm on which a frustoconical convex portion having a diameter of 2 μm at the top, a diameter of 3 μm at the bottom, and a height of 0.8 μm is periodically formed on one surface at an interval of 5 μm. did.
On the sapphire substrate 1, an nN film having a thickness of about 5 μm made of GaN doped with 1 × 10 18 / cm 3 of silicon (Si) through an AlN buffer layer of about 15 nm and a thickness of about 500 nm made of non-doped GaN. An n-type layer made of n-type Al 0.15 Ga 0.85 N with a thickness of 25 nm doped with 1 × 10 17 / cm 3 of silicon (Si) was formed. FIG. In A, only the n-type layer 2 is shown.

n型層2の上には、膜厚3nmのノンドープIn0.2Ga0.8Nから成る井戸層と膜厚20nmのノンドープGaNから成る障壁層とを3ペア積層して多重量子井戸構造の発光層(活性層)3が形成されている。 On the n-type layer 2, three pairs of a well layer made of non-doped In 0.2 Ga 0.8 N having a thickness of 3 nm and a barrier layer made of non-doped GaN having a thickness of 20 nm are stacked to form a light emitting layer having a multiple quantum well structure (active Layer) 3 is formed.

更に、この発光層(活性層)3の上には、Mgを2×1019/cm3ドープした膜厚25nmのp型Al0.15Ga0.85Nから成るp型層、Mgを8×1019/cm3ドープした膜厚100nmのp型GaNから成るp型コンタクト層を形成した。図1.Aでは単にp型層4とのみ示した。 Further, on the light emitting layer (active layer) 3, a p-type layer made of p-type Al 0.15 Ga 0.85 N having a thickness of 25 nm doped with 2 × 10 19 / cm 3 of Mg, and 8 × 10 19 / mg of Mg. A p-type contact layer made of 100-nm thick p-type GaN doped with cm 3 was formed. FIG. In A, only the p-type layer 4 is shown.

又、p型層4の上にはITOから成る透光性電極5が、ITOから成る透光性電極5の上には膜厚約30nmのニッケル(Ni)、膜厚約1.5μmの金(Au)、膜厚約10nmのアルミニウム(Al)を積層したパッド電極6が形成されている。また、n型層2上にはn電極7が形成されている。n電極7は、n型層2の一部露出された部分の上から、膜厚約18nmのバナジウム(V)と膜厚約100nmのアルミニウム(Al)とを積層させることにより構成されている。   A translucent electrode 5 made of ITO is formed on the p-type layer 4, nickel (Ni) having a thickness of about 30 nm, and gold having a thickness of about 1.5 μm on the translucent electrode 5 made of ITO. A pad electrode 6 in which (Au) and aluminum (Al) with a film thickness of about 10 nm are stacked is formed. An n electrode 7 is formed on the n-type layer 2. The n-electrode 7 is configured by laminating vanadium (V) with a film thickness of about 18 nm and aluminum (Al) with a film thickness of about 100 nm on the part of the n-type layer 2 that is partially exposed.

半導体発光素子は、サファイア基板1上に半導体層2〜4をエピタキシャル成長させ、n電極7を形成するためのエッチングを行った後、次のように電極形成を行った。   In the semiconductor light emitting device, the semiconductor layers 2 to 4 were epitaxially grown on the sapphire substrate 1 and etching for forming the n electrode 7 was performed, and then the electrodes were formed as follows.

まず、酸化スズと酸化インジウムの混合物(酸化スズ5%)をターゲットとして、電子線蒸着法により300nmの膜厚のITOから成る透光性電極5を酸素圧0.06Pa下で形成した。次に、窒素雰囲気下で、600℃、5分間の焼成を行った。この後フォトレジストを用いて、ITOから成る透光性電極5を残すべき領域をマスクし、マスクのされていないITOから成る透光性電極5を塩化鉄系エッチング液により除去した。   First, using a mixture of tin oxide and indium oxide (tin oxide 5%) as a target, a translucent electrode 5 made of ITO having a thickness of 300 nm was formed by an electron beam evaporation method under an oxygen pressure of 0.06 Pa. Next, baking was performed at 600 ° C. for 5 minutes in a nitrogen atmosphere. Thereafter, a region where the translucent electrode 5 made of ITO should be left was masked using a photoresist, and the translucent electrode 5 made of ITO without masking was removed with an iron chloride etching solution.

次に、フォトレジストによりパッド電極6を形成すべき領域を窓としたマスクを形成した後、膜厚約30nm3のニッケル層、膜厚約1.5μmの金層、膜厚約10nmのアルミニウム層とを透光性電極5の上に順に形成した。この後フォトレジストを除去した。   Next, after forming a mask with a window where the pad electrode 6 is to be formed by photoresist, a nickel layer with a thickness of about 30 nm 3, a gold layer with a thickness of about 1.5 μm, an aluminum layer with a thickness of about 10 nm, Were sequentially formed on the translucent electrode 5. Thereafter, the photoresist was removed.

全く同様に、フォトレジストによりn電極7を形成すべき領域を窓としたマスクを形成した後、膜厚約18nmのバナジウム層と膜厚約100nmのアルミニウム層142とを、n型コンタクト層の露出した領域に形成した。この後フォトレジストを除去した。   Exactly in the same manner, after forming a mask using a region where the n electrode 7 is to be formed with a photoresist, a vanadium layer having a thickness of about 18 nm and an aluminum layer 142 having a thickness of about 100 nm are exposed to the n-type contact layer. Formed in the region. Thereafter, the photoresist was removed.

次に透光性電極(ITO)5、パッド電極6、n電極7を加熱処理した。   Next, the translucent electrode (ITO) 5, the pad electrode 6, and the n electrode 7 were heat-treated.

次に個々の素子の半導体層を分離し、サファイア基板1の表面の凹凸を露出させるため、ノボラック系のフォトレジストマスクを10μm厚で形成した。厚さは5μm以上可好ましく、8μm以上がより好ましい。即ち露光/現像により、分離線を中心として幅50μmの格子状枠に区画された領域に囲まれた矩形領域のみマスクを形成した後、130℃で1分のプリベークを行い、170℃で1分加熱処理してマスク外周部をリフロさせて縁に向かって薄くなるように形成した。この後、塩素(Cl2)とアルゴン(Ar)を9:1の割合としたエッチングガスを100sccm供給して、分離後の個々の素子外周部となる領域のn型層2をエッチングした。ICP、300Wで行った。これにより、素子外周部の基板面の凹凸が露出すると共に、n型層2の当該基板面の露出部に向かう部分には、俯角30度のテーパが形成された。 Next, in order to separate the semiconductor layers of the individual elements and expose the irregularities on the surface of the sapphire substrate 1, a novolac photoresist mask was formed to a thickness of 10 μm. The thickness is preferably 5 μm or more, and more preferably 8 μm or more. That is, by exposure / development, a mask is formed only in a rectangular area surrounded by a 50 μm-width grid frame centered on the separation line, and then prebaked at 130 ° C. for 1 minute and then at 170 ° C. for 1 minute Heat treatment was performed to reflow the outer periphery of the mask so that the mask became thinner toward the edge. Thereafter, an etching gas having a ratio of 9: 1 of chlorine (Cl 2 ) and argon (Ar) was supplied at 100 sccm to etch the n-type layer 2 in the region to be the outer periphery of each element after separation. ICP, 300W. As a result, the irregularities on the substrate surface of the outer peripheral portion of the element were exposed, and a taper with a depression angle of 30 degrees was formed in the portion of the n-type layer 2 facing the exposed portion of the substrate surface.

この後、ダイシング等により個々の素子に分離して発光素子100を形成した。分離の後の発光素子100の外周の凹凸部の露出部の幅は約25μmであった。   Thereafter, the light emitting device 100 was formed by dicing into individual devices. The width of the exposed portion of the uneven portion on the outer periphery of the light emitting device 100 after the separation was about 25 μm.

このように形成された発光素子100の発光強度を図2に示す。比較のため、上記工程電極を形成した(分離線上をn型層2が覆っている)後に、サファイア基板を露出させるためのエッチングをおこなわずに、ダイシングソーにより素子分離した発光素子900(図3)の発光強度を図2併せて示す。各々4000個程度のデータである図2によれば、本実施例による発光素子100は、基板面の凹凸部を露出させずにダイシングにより素子分離した発光素子900に比較して、5〜10%の光取り出し効率の向上がみられた。これは、周辺部の凹凸からの光取り出し効率向上の効果の他、以下に示すようなダイシングによる半導体積層構造側面のダメージ領域による光吸収が無いためである。   The light emission intensity of the light emitting element 100 formed in this way is shown in FIG. For comparison, after forming the process electrode (the n-type layer 2 covers the separation line), the light emitting device 900 (FIG. 3) was separated by a dicing saw without performing etching for exposing the sapphire substrate. ) Is shown together with FIG. According to FIG. 2 each having about 4000 pieces of data, the light emitting device 100 according to the present example is 5 to 10% in comparison with the light emitting device 900 that is separated by dicing without exposing the uneven portion of the substrate surface. The light extraction efficiency was improved. This is because, in addition to the effect of improving the light extraction efficiency from the irregularities in the peripheral portion, there is no light absorption by the damaged region on the side surface of the semiconductor multilayer structure due to dicing as described below.

実施例1における、個々の素子の半導体層を分離し、サファイア基板1の表面の凹凸を露出させるためのエッチングの際の雰囲気の圧力とエッチング速度、ウエハ温度の関係を調べた。これを図4に示す。エッチングの際の雰囲気の圧力が高いほどエッチングレートは高く、ウエハ温度は低くなることが分かった。レジストの耐熱性から基板温度は250℃以下、より好ましくは230℃以下とすべきである。エッチングレートが高い方が好ましいことから、圧力範囲は1.5〜3Paが好ましい。この範囲で加工速度と基板温度(レジスト膜の保護)が両立できる。   In Example 1, the semiconductor layers of the individual elements were separated, and the relationship between the atmospheric pressure during etching and the etching temperature to expose the irregularities on the surface of the sapphire substrate 1 was examined. This is shown in FIG. It was found that the higher the atmospheric pressure during etching, the higher the etching rate and the lower the wafer temperature. From the heat resistance of the resist, the substrate temperature should be 250 ° C. or lower, more preferably 230 ° C. or lower. Since a higher etching rate is preferable, the pressure range is preferably 1.5 to 3 Pa. Within this range, both the processing speed and the substrate temperature (resist film protection) can be achieved.

この際形成された発光素子のn型層2外周部の断面SEM画像と、カソードルミネッセンス法のパンクロマチック画像による結晶欠陥の様子を図5に示す。尚、「Ref」としたのは、個々の素子の半導体層を分離とサファイア基板1の表面の凹凸を露出させるためのエッチングを行わずに、ダイシングソーにより素子分離した発光素子900である。   FIG. 5 shows the state of crystal defects by a cross-sectional SEM image of the outer periphery of the n-type layer 2 of the light-emitting element formed at this time and a panchromatic image of the cathodoluminescence method. Note that “Ref” is a light emitting element 900 in which the semiconductor layers of the individual elements are separated and the elements are separated by a dicing saw without performing etching for exposing the unevenness of the surface of the sapphire substrate 1.

カソードルミネッセンスの結果から、半導体層ともどもダイシングを行った発光素子900(Ref)は、水平方向の厚さ2μm程度のダメージ領域が生じている。ダイシングの際に生じるダメージ領域は光を吸収するので、光取り出しを悪化させるものである。   From the result of cathodoluminescence, the light emitting element 900 (Ref) which has been diced together with the semiconductor layer has a horizontal damaged region having a thickness of about 2 μm. A damaged area generated during dicing absorbs light, which deteriorates light extraction.

一方、本発明によれば、ダメージ領域は水平方向の厚さ0.2μm以下であって、半導体層にはほとんど生じないことが分かる。即ち、本発明によれば、光取り出しを悪化させるダメージ領域を半導体層に生じさせないことができる。   On the other hand, according to the present invention, it is understood that the damaged region has a horizontal thickness of 0.2 μm or less and hardly occurs in the semiconductor layer. That is, according to the present invention, it is possible to prevent a damage region that deteriorates light extraction from occurring in the semiconductor layer.

尚、エッチング時の雰囲気の圧力によって、半導体層外周部のテーパ角(俯角)が変化する様子も分かる。実際、0.5Pa、2Pa、3Paと圧力が大きくなるにつれて、テーパ角は小さくなっている。これは基板温度が下がり、レジストのエッチングレートに対して半導体層のエッチングレートが高くなるからである。   In addition, it can be seen that the taper angle (the depression angle) of the outer peripheral portion of the semiconductor layer changes depending on the atmospheric pressure during etching. Actually, the taper angle decreases as the pressure increases to 0.5 Pa, 2 Pa, and 3 Pa. This is because the substrate temperature decreases and the etching rate of the semiconductor layer becomes higher than the etching rate of the resist.

〔変形例〕
レジストに替えて、酸化ケイ素、窒化ケイ素をエッチングマスク材料とすることもできる。この場合酸化ケイ素はCVDで全面に形成した後、フォトリソグラフィにより酸化ケイ素膜をパターニングする。こうしてパターニングされた酸化ケイ素マスクを用いて、半導体層のドライエッチングを行うこともできる。尚、CVDに替えて、スピンオングラスのような塗布材料を用いることも可能である。無機材料を半導体層のドライエッチングのマスクとすると、エッチングの際の温度を高温でも可とできるので、エッチングスピードを高くすることができる。但し基板温度は200〜600℃、好ましくは500℃以下とすると良い。
[Modification]
Instead of the resist, silicon oxide or silicon nitride can be used as an etching mask material. In this case, silicon oxide is formed on the entire surface by CVD, and then the silicon oxide film is patterned by photolithography. The semiconductor layer can be dry etched using the silicon oxide mask thus patterned. Note that a coating material such as spin-on glass can be used instead of CVD. When an inorganic material is used as a mask for dry etching of a semiconductor layer, the etching temperature can be increased even at a high temperature, so that the etching speed can be increased. However, the substrate temperature is 200 to 600 ° C., preferably 500 ° C. or less.

本発明の具体的な一実施例に係る半導体発光素子100の構成を示す、断面図(1.A)と平面図(1.B)。Sectional drawing (1.A) and top view (1.B) which show the structure of the semiconductor light-emitting device 100 which concerns on one specific Example of this invention. 実施例に係る半導体発光素子100と比較例に係る半導体発光素子900の発光強度を示すグラフ図。The graph which shows the emitted light intensity of the semiconductor light-emitting device 100 which concerns on an Example, and the semiconductor light-emitting device 900 which concerns on a comparative example. 比較例に係る半導体発光素子900の構成を示す断面図。Sectional drawing which shows the structure of the semiconductor light-emitting device 900 which concerns on a comparative example. 半導体層分離のためのエッチング時の圧力と、エッチングレート及びウエハ温度の関係を示したグラフ図。The graph which showed the pressure at the time of the etching for semiconductor layer isolation | separation, the etching rate, and the relationship of wafer temperature. 半導体層分離のためのエッチング時の圧力と形成されたn−GaN層2の外周部のテーパの状態を示すSEM画像とCL画像を、ダイシングにより素子分離した場合のSEM画像とCL画像と併せて示した画像図。The SEM image and CL image showing the pressure at the time of etching for semiconductor layer separation and the taper state of the outer peripheral portion of the formed n-GaN layer 2 are combined with the SEM image and CL image when the element is separated by dicing. The image figure shown.

符号の説明Explanation of symbols

1:エピタキシャル成長面側に凹凸を有するサファイア基板
2:n型III族窒化物系化合物半導体層(n型層)、但しバッファ層とその直上のノンドープ層を含む。
3:発光層(活性層)
4:p型III族窒化物系化合物半導体層(p型層)
5:透光性電極
6:パッド電極
7:n電極
1: Sapphire substrate having irregularities on the epitaxial growth surface side 2: n-type group III nitride compound semiconductor layer (n-type layer), including a buffer layer and a non-doped layer immediately above it.
3: Light emitting layer (active layer)
4: p-type group III nitride compound semiconductor layer (p-type layer)
5: Translucent electrode 6: Pad electrode 7: N electrode

Claims (8)

表面に凹凸を有する基板の、当該凹凸面上に半導体を積層することにより半導体積層構造の形成された半導体発光素子において、
前記半導体積層構造の外周部において、前記基板の凹凸面が露出されたことを特徴とする半導体発光素子。
In a semiconductor light emitting device in which a semiconductor laminated structure is formed by laminating a semiconductor on the uneven surface of a substrate having an uneven surface,
A semiconductor light-emitting element, wherein an uneven surface of the substrate is exposed at an outer peripheral portion of the semiconductor multilayer structure.
前記半導体積層構造は、III族窒化物系化合物半導体から成ることを特徴とする請求項1に記載の半導体発光素子。 The semiconductor light emitting device according to claim 1, wherein the semiconductor multilayer structure is made of a group III nitride compound semiconductor. 前記基板は、サファイア、シリコン、SiC又はスピネルから成ることを特徴とする請求項1又は請求項2に記載の半導体発光素子。 3. The semiconductor light emitting device according to claim 1, wherein the substrate is made of sapphire, silicon, SiC, or spinel. 前記半導体積層構造の外周部は、前記基板の凹凸面が露出された部分に向かって俯角45度以下のテーパが形成されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体発光素子。 4. The taper having a depression angle of 45 degrees or less is formed on an outer peripheral portion of the semiconductor multilayer structure toward a portion where the uneven surface of the substrate is exposed. 5. The semiconductor light-emitting device described in 1. 前記基板の凹凸面の露出は、ドライエッチングにより成されたことを特徴とする請求項1乃至請求項4のいずれか1項に記載の半導体発光素子。 The semiconductor light emitting element according to claim 1, wherein the uneven surface of the substrate is exposed by dry etching. 半導体発光素子の製造方法において、
表面に凹凸を有する基板の凹凸面上に半導体を積層して半導体積層構造を形成する工程と、
個々の素子の前記半導体積層構造の外周部において、前記基板の凹凸面を露出するために選択的ドライエッチングを行う工程とを有することを特徴とする半導体発光素子の製造方法。
In the method for manufacturing a semiconductor light emitting device,
Forming a semiconductor laminated structure by laminating a semiconductor on an irregular surface of a substrate having irregularities on the surface;
And a step of performing selective dry etching in order to expose the uneven surface of the substrate at the outer peripheral portion of the semiconductor multilayer structure of each element.
前記ドライエッチングは、塩素又は塩素の化合物を含むガスを用いることを特徴とする請求項6に記載の半導体発光素子の製造方法。 The method for manufacturing a semiconductor light emitting device according to claim 6, wherein the dry etching uses a gas containing chlorine or a compound of chlorine. 前記ドライエッチングの際に用いるマスクは、各素子間の分離線上を挟んだ所定領域を除いて各素子毎に分離して形成され、プリベークの後、より高温でリフロさせることによりマスク外周部の膜厚を変化させて、エッチングの際に前記半導体積層構造の外周部をテーパ形状に形成するものであることを特徴とする請求項6又は請求項7に記載の半導体発光素子の製造方法。 The mask used for the dry etching is formed separately for each element except for a predetermined region sandwiching the separation line between the elements, and is pre-baked and then reflowed at a higher temperature to form a film on the outer periphery of the mask. 8. The method of manufacturing a semiconductor light emitting element according to claim 6, wherein the thickness is changed and the outer peripheral portion of the semiconductor multilayer structure is formed into a tapered shape at the time of etching.
JP2006234761A 2006-08-31 2006-08-31 Semiconductor light-emitting element and its manufacturing method Withdrawn JP2008060286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234761A JP2008060286A (en) 2006-08-31 2006-08-31 Semiconductor light-emitting element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234761A JP2008060286A (en) 2006-08-31 2006-08-31 Semiconductor light-emitting element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008060286A true JP2008060286A (en) 2008-03-13

Family

ID=39242689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234761A Withdrawn JP2008060286A (en) 2006-08-31 2006-08-31 Semiconductor light-emitting element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008060286A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258455A (en) * 2009-04-27 2010-11-11 Aurotek Corp Sapphire substrate with periodical structure
WO2011152262A1 (en) 2010-05-31 2011-12-08 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
EP2584618A2 (en) 2011-10-19 2013-04-24 Stanley Electric Co., Ltd. Semiconductor light emitting device and vehicle lamp
JP2016012664A (en) * 2014-06-30 2016-01-21 豊田合成株式会社 Sapphire substrate manufacturing method and group iii nitride semiconductor light emitting element manufacturing method
JP2017073576A (en) * 2017-01-25 2017-04-13 シチズン時計株式会社 LED package
JP2017073575A (en) * 2017-01-25 2017-04-13 シチズン時計株式会社 LED package
WO2018062305A1 (en) * 2016-09-30 2018-04-05 日機装株式会社 Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
JPWO2020100299A1 (en) * 2018-11-16 2021-09-24 堺ディスプレイプロダクト株式会社 Micro LED device and its manufacturing method
JPWO2020100298A1 (en) * 2018-11-16 2021-10-14 堺ディスプレイプロダクト株式会社 Micro LED device and its manufacturing method
JPWO2020100297A1 (en) * 2018-11-16 2021-10-14 堺ディスプレイプロダクト株式会社 Micro LED device and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214946A (en) * 1997-01-30 1998-08-11 Nec Corp Manufacture of semiconductor device
JP2001160657A (en) * 1999-12-01 2001-06-12 Toyoda Gosei Co Ltd Method of manufacturing iii nitride compound semiconductor laser
JP2001320034A (en) * 2000-05-09 2001-11-16 Sony Corp Solid-state image sensing element and its manufacturing method
JP2002280618A (en) * 2001-03-21 2002-09-27 Seiwa Electric Mfg Co Ltd Gallium nitride compound semiconductor light emitting device
JP2004071644A (en) * 2002-08-01 2004-03-04 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
WO2005069388A1 (en) * 2004-01-20 2005-07-28 Nichia Corporation Semiconductor light-emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214946A (en) * 1997-01-30 1998-08-11 Nec Corp Manufacture of semiconductor device
JP2001160657A (en) * 1999-12-01 2001-06-12 Toyoda Gosei Co Ltd Method of manufacturing iii nitride compound semiconductor laser
JP2001320034A (en) * 2000-05-09 2001-11-16 Sony Corp Solid-state image sensing element and its manufacturing method
JP2002280618A (en) * 2001-03-21 2002-09-27 Seiwa Electric Mfg Co Ltd Gallium nitride compound semiconductor light emitting device
JP2004071644A (en) * 2002-08-01 2004-03-04 Nichia Chem Ind Ltd Nitride semiconductor light emitting device
WO2005069388A1 (en) * 2004-01-20 2005-07-28 Nichia Corporation Semiconductor light-emitting device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010258455A (en) * 2009-04-27 2010-11-11 Aurotek Corp Sapphire substrate with periodical structure
US10043948B2 (en) 2010-05-31 2018-08-07 Nichia Corporation Light emitting device in which light emitting element and light transmissive member are directly bonded
WO2011152262A1 (en) 2010-05-31 2011-12-08 日亜化学工業株式会社 Light-emitting device and manufacturing method therefor
KR20130105312A (en) 2010-05-31 2013-09-25 니치아 카가쿠 고교 가부시키가이샤 Light-emitting device and manufacturing method therefor
US9502608B2 (en) 2010-05-31 2016-11-22 Nichia Corporation Method of manufacturing a light emitting device in which light emitting element and light transmissive member are directly bonded
US10658545B2 (en) 2010-05-31 2020-05-19 Nichia Corporation Light emitting device in which light emitting element and light transmissive member are directly bonded
EP2584618A2 (en) 2011-10-19 2013-04-24 Stanley Electric Co., Ltd. Semiconductor light emitting device and vehicle lamp
US9246067B2 (en) 2011-10-19 2016-01-26 Stanley Electric Co., Ltd. Semiconductor light emitting device and vehicle lamp
JP2016012664A (en) * 2014-06-30 2016-01-21 豊田合成株式会社 Sapphire substrate manufacturing method and group iii nitride semiconductor light emitting element manufacturing method
WO2018062305A1 (en) * 2016-09-30 2018-04-05 日機装株式会社 Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
JP2018056499A (en) * 2016-09-30 2018-04-05 日機装株式会社 Semiconductor light-emitting element and method for manufacturing semiconductor light-emitting element
US11489091B2 (en) 2016-09-30 2022-11-01 Nikkiso Co., Ltd. Semiconductor light emitting device and method of manufacturing semiconductor light emitting device having pattered light extraction surface
JP2017073575A (en) * 2017-01-25 2017-04-13 シチズン時計株式会社 LED package
JP2017073576A (en) * 2017-01-25 2017-04-13 シチズン時計株式会社 LED package
JPWO2020100299A1 (en) * 2018-11-16 2021-09-24 堺ディスプレイプロダクト株式会社 Micro LED device and its manufacturing method
JPWO2020100298A1 (en) * 2018-11-16 2021-10-14 堺ディスプレイプロダクト株式会社 Micro LED device and its manufacturing method
JPWO2020100297A1 (en) * 2018-11-16 2021-10-14 堺ディスプレイプロダクト株式会社 Micro LED device and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2008060286A (en) Semiconductor light-emitting element and its manufacturing method
US8124985B2 (en) Semiconductor light emitting device and method for manufacturing the same
KR100798863B1 (en) GaN type light emitting diode device and method of manufacturing the same
KR101482526B1 (en) Method of manufacturing nitride semiconductor light emitting device
JP2013541221A (en) Light emitting device with improved extraction efficiency
WO2007145300A1 (en) Gallium nitride compound semiconductor light emitting element
TW201344962A (en) Semiconductor light emitting device and a manufacturing method of the same
JP2007096116A (en) Light emitting element
TWI593137B (en) Luminous element with heterogeneity material pattern and method for manufacturing the same
WO2017157073A1 (en) Light-emitting diode and method for manufacturing same
JP2004228290A (en) Semiconductor light emitting element and its fabricating process
EP2896077B1 (en) Light emitting device including shaped substrate
KR20070040260A (en) Nitride based semiconductor light emitting devices and manufacturing methods
US8679877B2 (en) Nitride semiconductor light emitting device and method for manufacturing the same
KR101747726B1 (en) Substrate for growing semiconductor, manufacturing method of the substrate for growing semiconductor, light emitting device using the substrate for growing semiconductor and manufacturing method of the light emitting device
KR101131085B1 (en) GaN based light emitting diode and method for fabricating the same
KR101028345B1 (en) Manufacturing method of iii-nitride semiconductor light enitting device
TW202143505A (en) Light emitting diode precursor
JP2007096117A (en) Light emitting element
KR20130046402A (en) Semiconductor light emitting diode and method for manufacturing the same
KR100710087B1 (en) Method for forming light-emitting diode
KR101138973B1 (en) Luminescence device and method of manufacturing the same
KR20110009450A (en) Iii-nitride semiconductor light emitting device
KR100616414B1 (en) Luminous element
KR20230047753A (en) Led device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120127