JP2010118553A - Phase correction type active magnetic shield device - Google Patents

Phase correction type active magnetic shield device Download PDF

Info

Publication number
JP2010118553A
JP2010118553A JP2008291453A JP2008291453A JP2010118553A JP 2010118553 A JP2010118553 A JP 2010118553A JP 2008291453 A JP2008291453 A JP 2008291453A JP 2008291453 A JP2008291453 A JP 2008291453A JP 2010118553 A JP2010118553 A JP 2010118553A
Authority
JP
Japan
Prior art keywords
magnetic field
signal
phase
phase correction
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008291453A
Other languages
Japanese (ja)
Other versions
JP5535467B2 (en
JP2010118553A5 (en
Inventor
Shinjiro Takeuchi
信次郎 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008291453A priority Critical patent/JP5535467B2/en
Publication of JP2010118553A publication Critical patent/JP2010118553A/en
Publication of JP2010118553A5 publication Critical patent/JP2010118553A5/ja
Application granted granted Critical
Publication of JP5535467B2 publication Critical patent/JP5535467B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase correction type active magnetic shield device securely cancel a disturbing magnetic field of an AC magnetic field and a time-varying magnetic field by removing a residual magnetic field signal corresponding to a magnetic field remaining without being canceled because the disturbing magnetic field and a canceling magnetic field are not in phase with each other. <P>SOLUTION: A phase correction signal similar to the residual magnetic field signal is generated by a phase correction signal generating means 10 so as to remove the unnecessary residual magnetic field signal included in an output signal of a magnetic sensor S, and the phase correction signal and residual magnetic field signal are made to cancel each other through an adding/subtracting means 12, thereby removing the residual magnetic field signal. The phase correction signal generating means 10 includes a phase synchronizing means 17 for synchronization with the output signal phase of the magnetic sensor S and an amplitude adjusting means 18 with a polarity switching function for changing the phase of the phase correction signal in accordance with the output signal phase of the magnetic sensor S. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、交流磁場である外乱磁場を打ち消すための打ち消し磁場の位相と振幅を、外乱磁場の位相と振幅に合わせて相殺させるアクティブ磁気シールド技術に関する。   The present invention relates to an active magnetic shield technology that cancels out the phase and amplitude of a cancellation magnetic field for canceling a disturbance magnetic field, which is an alternating magnetic field, in accordance with the phase and amplitude of the disturbance magnetic field.

各種材料部品の磁気的精密非破壊検査、各種生体磁気計測、医療診断機器や生体生理機能を解析するシステムで使用する極微弱磁場測定装置、磁気的応答による免疫診断システム、病原菌検査システムの精密測定、電子顕微鏡やMRI装置など、無磁場に近い磁場管理空間あるいは非常に安定した磁場空間でしか計測できない分野においては、従来は珪素鋼板やパーマロイなどの高透磁率の磁性材料で機器の周囲を囲んで外乱磁場の影響を抑えていたが、このようなパッシブ磁気シールドでは、磁気シールド効果が不十分で限界があった。   Magnetic non-destructive inspection of various material parts, various biomagnetic measurements, medical diagnostic equipment and extremely weak magnetic field measuring device used in systems for analyzing biological functions, immunodiagnostic system by magnetic response, precise measurement of pathogen testing system In fields where measurement is possible only in a magnetic field management space close to no magnetic field or a very stable magnetic field space, such as an electron microscope and an MRI apparatus, conventionally, the surroundings of equipment are surrounded by magnetic materials with high permeability such as silicon steel plates and permalloy. However, such a passive magnetic shield has a limit due to insufficient magnetic shielding effect.

これに対して、アクティブ磁気シールド技術は、磁気シールドを施したいターゲット空間における外乱磁場に対して、正反対方向から打ち消し磁場を発生させて外乱磁場と相殺し、磁気的に安定した磁場空間を形成しようとする技術である。ここで、ターゲット空間には外乱磁場から防護したい装置類が設置されるので、磁気センサ設置空間とターゲット空間が重なることは少なく、ほとんどの場合において離れている。   In contrast, the active magnetic shield technology cancels the disturbance magnetic field in the opposite direction to the disturbance magnetic field in the target space where the magnetic shield is to be applied, and cancels the disturbance magnetic field to form a magnetically stable magnetic field space. Technology. Here, since devices to be protected from the disturbance magnetic field are installed in the target space, the magnetic sensor installation space and the target space rarely overlap each other and are separated in most cases.

そのため、磁気センサは、打ち消したい外乱磁場のセンサ信号(以下、外乱磁場センサ信号という)の他に、磁気センサが設置された空間において補償コイルの打ち消し磁場も同時に検出するので、磁気センサ出力信号には不要な打ち消し磁場勾配センサ信号として含まれてくることになる。   For this reason, the magnetic sensor simultaneously detects the canceling magnetic field of the compensation coil in the space where the magnetic sensor is installed in addition to the sensor signal of the disturbance magnetic field to be canceled (hereinafter referred to as the disturbance magnetic field sensor signal). Is included as an unnecessary canceling magnetic field gradient sensor signal.

この打ち消し磁場勾配センサ信号は、アクティブ磁気シールド性能を低下させる大きな原因の一つになる。この打ち消し磁場勾配センサ信号を除去しようとした代表的な従来技術の例が、特許文献1および特許文献2に開示されている。   This canceling magnetic field gradient sensor signal is one of the main causes of the deterioration of the active magnetic shield performance. Examples of typical prior arts that attempt to remove the cancellation magnetic field gradient sensor signal are disclosed in Patent Document 1 and Patent Document 2.

この技術を、図5に示した概略構成図において説明すると、ターゲット空間T−Spaceの外乱磁場を打ち消すために、磁気センサ設置空間S−Spaceに設置した磁気センサSで外乱磁場Bnを検出し、その検出した信号を増幅器21で増幅し、増幅された信号の中から地磁気成分などの静磁場オフセット分を減算回路22で差し引き、変動磁場分の信号だけを電流出力回路23に送る。   This technique will be described with reference to the schematic configuration diagram shown in FIG. 5. In order to cancel the disturbance magnetic field in the target space T-Space, the disturbance magnetic field Bn is detected by the magnetic sensor S installed in the magnetic sensor installation space S-Space. The detected signal is amplified by the amplifier 21, and a static magnetic field offset such as a geomagnetic component is subtracted from the amplified signal by the subtraction circuit 22, and only the signal for the variable magnetic field is sent to the current output circuit 23.

そして、電流出力回路23から出力される外乱磁場の打ち消し電流は分流器24において分流する。分流先の一つは、外乱磁場を打ち消す磁場を発生させる補償コイルL1である。残りの一つは、補償コイルL1の打ち消し磁場の一部が磁気センサSに不要な磁場として印加されるので、それを打ち消す磁場勾配発生用の打ち消しコイルL2である。   Then, the disturbance magnetic field canceling current output from the current output circuit 23 is shunted in the shunt 24. One of the diversion destinations is a compensation coil L1 that generates a magnetic field that cancels the disturbance magnetic field. The remaining one is a canceling coil L2 for generating a magnetic field gradient that cancels a part of the canceling magnetic field of the compensation coil L1 as an unnecessary magnetic field is applied to the magnetic sensor S.

この従来技術では、磁気センサSに加わる打ち消し磁場勾配を打ち消すために、磁気センサSに巻いた打ち消しコイルL2に外乱磁場打ち消し電流を分流し、磁気センサSに印加する打ち消し磁場勾配を打ち消す方法を採用している。   In this prior art, in order to cancel the canceling magnetic field gradient applied to the magnetic sensor S, a method of canceling the canceling magnetic field gradient applied to the magnetic sensor S by dividing the disturbance magnetic field canceling current to the canceling coil L2 wound around the magnetic sensor S is adopted. is doing.

特開昭48−38972号公報(図2参照)JP-A-48-38972 (see FIG. 2) 特許第3406273号公報(図1、図2参照)Japanese Patent No. 3406273 (see FIGS. 1 and 2)

前掲の従来の方式が有効に適用出来る範囲は、外乱磁場が直流磁場かそれに近い変動磁場に限られ、外乱磁場の周波数が高くなると増幅現象あるいは発振現象を起こして、アクティブ磁気シールドが不能になるという欠陥を内在していた。   The range in which the above-mentioned conventional method can be effectively applied is limited to a DC magnetic field or a fluctuating magnetic field close to it. When the frequency of the disturbance magnetic field increases, an amplification phenomenon or an oscillation phenomenon occurs, and the active magnetic shield becomes impossible. The inherent defect was.

その主な原因は、補償コイルL1に流れる電流位相と打ち消しコイルL2に流れる電流位相の間にずれが存在するためである。言い換えれば、コイルL1とコイルL2で発生する磁場の位相にずれが存在するためである。位相ずれがあれば外乱磁場の周波数が高くなるにつれて、コイルL1とコイルL2で発生する磁場の位相が当初は0相とπ相で互いに打ち消し合っていた状態から、次第に位相が重なり合って増幅する関係へと推移し、遂にはアクティブ磁気シールドの負帰還回路系が発振して、アクティブ磁気シールド装置自体が磁場雑音発生源になってしまうのである。   The main reason is that there is a difference between the current phase flowing through the compensation coil L1 and the current phase flowing through the cancellation coil L2. In other words, there is a shift in the phase of the magnetic field generated in the coil L1 and the coil L2. If there is a phase shift, as the frequency of the disturbing magnetic field increases, the phase of the magnetic field generated in the coil L1 and the coil L2 initially cancels each other in the 0 phase and the π phase, and the phase gradually overlaps and amplifies. Finally, the negative feedback circuit system of the active magnetic shield oscillates, and the active magnetic shield device itself becomes a magnetic field noise generation source.

ここで、分流器24の回路を単純化してコイルL1とコイルL2の各インダクタンスをL1,L2、抵抗R1とR2の抵抗値をR1,R2とすれば、分流器24は図6の回路で表現できる。 Here, if the circuit of the shunt 24 is simplified so that the inductances of the coils L1 and L2 are L 1 and L 2 and the resistance values of the resistors R1 and R2 are R 1 and R 2 , the shunt 24 is as shown in FIG. It can be expressed by the circuit of

この図6は位相ずれを説明するための代表的な回路図で、電流出力回路23から出力される交流の打ち消し電流iが分岐点Pで分流されたとし、その分岐点Pにおける電圧を
e=EmSinωt
として、コイルL1とコイルL2に流れる各電流i1、i2について解いてみる。
FIG. 6 is a typical circuit diagram for explaining the phase shift. Assume that the AC cancellation current i output from the current output circuit 23 is shunted at the branch point P, and the voltage at the branch point P is expressed as e = EmSinωt
As a result, the currents i 1 and i 2 flowing through the coils L1 and L2 will be solved.

図6の回路では、
e=EmSinωt=L1(di1/dt)+R11=L2(di2/dt)+R22
という微分方程式が成り立つ。
これを解くと各電流i1、i2
1=Em/√(R1 2+ω21 2)・Sin(ωt−Tan-1ωL1/R1
2=Em/√(R2 2+ω22 2)・Sin(ωt−Tan-1ωL2/R2
となる。
In the circuit of FIG.
e = EmSinωt = L 1 (di 1 / dt) + R 1 i 1 = L 2 (di 2 / dt) + R 2 i 2
The following differential equation holds.
When this is solved, each current i 1 and i 2 is i 1 = Em / √ (R 1 2 + ω 2 L 1 2 ) · Sin (ωt−Tan −1 ωL 1 / R 1 )
i 2 = Em / √ (R 2 2 + ω 2 L 2 2 ) · Sin (ωt−Tan −1 ωL 2 / R 2 )
It becomes.

そして、i1とi2の間に位相角の差ΔΦは
ΔΦ=(−Tan-1ωL1/R1)−(−Tan-1ωL2/R2)・・・式(1)
となる。そして、この位相角の差ΔΦを零にすれば、交流磁場の打ち消しが可能になるはずである。
The phase angle difference ΔΦ between i 1 and i 2 is expressed as ΔΦ = (− Tan −1 ωL 1 / R 1 ) − (− Tan −1 ωL 2 / R 2 ) (1)
It becomes. Then, if this phase angle difference ΔΦ is made zero, the AC magnetic field should be cancelled.

式(1)の右辺第1項は補償コイルL1と抵抗R1における位相遅れ分であり、設置環境に依存される要素であるから、パラメータとしてかなり固有かつ固定的な定数になる。   The first term on the right side of Equation (1) is the phase delay in the compensation coil L1 and the resistor R1, and is an element that depends on the installation environment, and therefore is a fairly unique and fixed constant as a parameter.

それに対して、右辺第2項は調整可能な磁気センサSに巻く打ち消しコイルL2とR2による位相遅れ分である。磁気センサSに巻くコイルL2のインダクタンス調整は、かなり高精度を要しかつ複雑であるため現場における調整には不向きで、事前に固定されるか半固定されるパラメータである。   On the other hand, the second term on the right side is a phase delay due to the cancellation coils L2 and R2 wound around the adjustable magnetic sensor S. The inductance adjustment of the coil L2 wound around the magnetic sensor S is a parameter that is fixed in advance or semi-fixed and is not suitable for on-site adjustment because it requires considerably high accuracy and is complicated.

結局のところ、磁気センサに加わる不要な打ち消し磁場勾配を打ち消す電流i2は、一番簡単な抵抗R2で調整されることになる。 After all, the current i 2 that cancels the unnecessary canceling magnetic field gradient applied to the magnetic sensor is adjusted by the simplest resistor R2.

しかしながら、抵抗R2の主目的は、打ち消しコイルL2に流れる打ち消し電流i2を調整して、打ち消し磁場勾配の強度を調整する抵抗、言い換えれば振幅を主調整とする抵抗である。それため、1個の抵抗素子だけで位相調整と振幅調整の個別要素を同時調整することは、2個の独立した回路パラメータを1個の素子パラメータで調整することを意味し非現実的である。 However, the main purpose of the resistor R2, by adjusting the current i 2 cancel flowing through the cancellation coils L2, resistors for adjusting the intensity of the cancellation magnetic field gradient, the resistance to the main adjusting the amplitude in other words. Therefore, simultaneous adjustment of the individual elements of phase adjustment and amplitude adjustment with only one resistive element means that two independent circuit parameters are adjusted with one element parameter, which is unrealistic. .

打ち消し電流を流す両コイルL1,L2では、両者のインダクタンスは異なり、配線線材等を含む直流抵抗R1,R2の抵抗値も異なるので、偶発的な条件が重ならない限り位相角ΔΦは零にはならない。   In both the coils L1 and L2 through which the cancellation current flows, the inductances of the coils are different, and the resistance values of the DC resistors R1 and R2 including the wiring wires are also different. Therefore, the phase angle ΔΦ does not become zero unless the accidental conditions overlap. .

また、磁気センサの配置された空間で磁気的に打ち消す手法では副次的な課題として、配線回線数が多くなるために回線途中から電磁誘導雑音が重畳したり、磁気センサに巻いたコイル自身に誘導雑音が重畳したりする。   In addition, in the method of magnetically canceling in the space where the magnetic sensor is arranged, as a secondary problem, because the number of wiring lines increases, electromagnetic induction noise is superimposed from the middle of the line, or the coil wound around the magnetic sensor itself Inductive noise may be superimposed.

磁気センサに巻いた打ち消しコイルのターン数調整方法、特に3軸構成では磁気センサ自体の磁気検出部と直交度の微調整、打ち消しコイル位置や打ち消しコイルの直交度の微調整、打ち消しコイル各軸間の磁場干渉や電磁誘導雑音などの避けがたい技術課題が現場調整を煩雑化している。   Method of adjusting the number of turns of the cancellation coil wound around the magnetic sensor, especially in the case of a 3-axis configuration, fine adjustment of the orthogonality with the magnetic detection part of the magnetic sensor itself, fine adjustment of the cancellation coil position and orthogonality of the cancellation coil, between each axis of the cancellation coil Technical problems such as magnetic field interference and electromagnetic induction noise are complicating on-site adjustment.

交流磁場の打ち消し周波数帯域の高周波化にあたり、磁気センサに打ち消しコイルを巻いて磁場を打ち消す磁気的方式では、これらの技術的課題が現実的に障害になっている。   When the AC magnetic field canceling frequency band is increased, these technical problems are practically an obstacle in the magnetic method in which a canceling coil is wound around a magnetic sensor to cancel the magnetic field.

従来発明技術を端的に言えば、磁場の強度を調整する機能に限られていて、磁気センサに印加する不要な交流磁場を打ち消す時に最も重視する位相に関しては、何ら積極的に調整する手段は無いという問題が残されている。   In short, the prior art is limited to the function of adjusting the strength of the magnetic field, and there is no means to positively adjust the phase most important when canceling the unnecessary alternating magnetic field applied to the magnetic sensor. The problem remains.

本発明は、外乱磁場の位相と打ち消し磁場の位相が不一致で打ち消すことができずに残留した磁場に対応する残留磁場信号を除去するために、直流の外乱磁場はもちろん、交流の外乱磁場を高精度かつ確実に打ち消すことのできる位相補正型アクティブ磁気シールド装置を提供することを目的とする。   In the present invention, in order to remove the residual magnetic field signal corresponding to the magnetic field that cannot be canceled because the phase of the disturbance magnetic field and the phase of the cancellation magnetic field do not coincide with each other, the DC disturbance magnetic field as well as the AC disturbance magnetic field is increased. An object of the present invention is to provide a phase correction type active magnetic shield device capable of canceling accurately and reliably.

前述した課題を解決するため、本発明の第1の構成に係る位相補正型のアクティブ磁気シールド装置は、外乱磁場を打ち消すための打ち消し磁場を発生させる少なくとも1つの補償コイルと、前記外乱磁場を検出する少なくとも1つの磁気センサと、該磁気センサの出力信号に含まれる残留磁場信号に酷似した位相補正信号を形成して出力する少なくとも1つの位相補正信号形成手段と、前記残留磁場信号を前記位相補正信号で相殺する加減算手段を備え、該補償コイルに打ち消し電流を出力する少なくとも1つの電流出力回路とを有することを特徴とする。   In order to solve the above-described problem, a phase correction type active magnetic shield device according to the first configuration of the present invention detects at least one compensation coil that generates a canceling magnetic field for canceling a disturbing magnetic field, and detects the disturbing magnetic field. At least one magnetic sensor, and at least one phase correction signal forming unit that forms and outputs a phase correction signal very similar to the residual magnetic field signal included in the output signal of the magnetic sensor, and the phase correction of the residual magnetic field signal It has an addition / subtraction means for canceling with a signal, and has at least one current output circuit for outputting a cancellation current to the compensation coil.

本発明の第1の構成においては、磁気センサの出力信号に含まれる磁気シールド性能劣化要因である残留磁場信号を除去して外乱磁場を高精度かつ確実に打ち消すために、別途に設けた位相補正信号形成手段で残留磁場信号に酷似した位相補正信号を作り出し、残留磁場信号と位相補正信号の両信号を加減算手段で相殺させるようにしたものである。なお、「酷似」とは、波形が酷似していることをいう。   In the first configuration of the present invention, a phase correction provided separately is provided in order to cancel the disturbance magnetic field with high accuracy and certainty by removing the residual magnetic field signal that is a cause of deterioration of the magnetic shield performance included in the output signal of the magnetic sensor. The signal forming means generates a phase correction signal very similar to the residual magnetic field signal, and both the residual magnetic field signal and the phase correction signal are canceled by the addition / subtraction means. Note that “very similar” means that the waveforms are very similar.

また、本発明の第2の構成に係る位相補正型のアクティブ磁気シールド装置は、前記位相補正信号を形成する位相補正信号形成手段が、前記位相補正信号の位相を磁気センサ出力信号の位相に同期化させるための位相同期化手段と、磁気センサ出力信号の位相に呼応して前記位相補正信号の位相を切り換える少なくとも1つの極性切り換え機能付き振幅調整手段とを備えたことを特徴とする。
この第2の構成により、位相補正信号形成手段を既存の手法の組み合わせにより実現することができる。
In the phase correction type active magnetic shield device according to the second configuration of the present invention, the phase correction signal forming means for forming the phase correction signal synchronizes the phase of the phase correction signal with the phase of the magnetic sensor output signal. And a phase synchronization unit for switching the phase correction signal in response to the phase of the magnetic sensor output signal and an amplitude adjustment unit with a polarity switching function.
With this second configuration, the phase correction signal forming means can be realized by a combination of existing methods.

本発明の第3の構成に係る位相補正型のアクティブ磁気シールド装置は、外乱磁場の直交する3軸のうち少なくとも2軸成分以上の磁場成分を打ち消すための、前記各軸に対応する軸成分の打ち消し磁場成分の発生が可能な複数個の補償コイル構成において、前記各軸成分の補償コイルが発生する打ち消し磁場成分が互いに他軸の磁気センサに影響を与える他軸磁場成分信号を打ち消すために、前記位相補正信号形成手段に、他軸磁場成分信号の打ち消し用に前記位相補正信号の極性と振幅を個別調整し、該他軸磁場成分信号の打ち消し用位相補正信号として各軸別に出力する手段を付加し、前記加減算手段に、他軸から該他軸磁場成分信号の打ち消し用位相補正信号を受けて加減算する手段を付加したことを特徴とする。
この第3の構成により、2軸方向、3軸方向の磁場成分の打ち消しが可能となる。
The active magnetic shield device of the phase correction type according to the third configuration of the present invention has an axial component corresponding to each axis for canceling at least two axial components of the three orthogonal axes of the disturbance magnetic field. In a plurality of compensation coil configurations capable of generating a canceling magnetic field component, the canceling magnetic field components generated by the compensation coils of the respective axis components cancel each other's magnetic field component signals that affect the other axis magnetic sensors. A means for individually adjusting the polarity and amplitude of the phase correction signal for canceling the other-axis magnetic field component signal to the phase correction signal forming means, and outputting each phase as a phase correction signal for canceling the other-axis magnetic field component signal In addition, a means for adding and subtracting the phase correction signal for canceling the magnetic field component signal of the other axis from the other axis is added to the adding and subtracting means.
This third configuration makes it possible to cancel magnetic field components in the biaxial direction and the triaxial direction.

本発明の第4の構成に係る位相補正型アクティブ磁気シールド装置は、前記位相補正信号形成手段の一部あるいは全体、及び/又は前記加減算手段の一部あるいは全体、及び/又は信号処理回路の一部あるいは全体をソフトウエア手段で構成することを特徴とする。
この第4の構成により、位相補正信号形成手段、加減算手段、信号処理回路を用いて実現するほかに、DSP(デジタルシグナルプロセッサ)やCPU(中央処理装置)を用いたコンピュータソフトウエアにより実現することもできる。
According to a fourth aspect of the present invention, there is provided a phase correction type active magnetic shield device, wherein one or all of the phase correction signal forming means and / or one or all of the addition / subtraction means and / or one of signal processing circuits. A part or the whole is constituted by software means.
According to the fourth configuration, in addition to using phase correction signal forming means, addition / subtraction means, and signal processing circuit, it is realized by computer software using a DSP (digital signal processor) or CPU (central processing unit). You can also.

本発明によれば、交流磁場を高精度かつ確実に打ち消すために、磁気シールド性能に悪影響を与える不要な打ち消し磁場を磁気センサに巻く打ち消しコイルで打ち消すような従来手法ではなく、電子回路的な手法による解決を実施した結果、打ち消し対象の外乱磁場は、直流磁場、変動磁場、数100Hzの交流磁場までに拡大した。また、磁気センサ周辺の打ち消しコイルは無くなり配線工事は簡略化され、調整の作業効率を大幅に改善した。   According to the present invention, in order to cancel an AC magnetic field with high accuracy and reliability, an electronic circuit method is used instead of a conventional method in which an unnecessary canceling magnetic field that adversely affects magnetic shield performance is canceled by a canceling coil wound around a magnetic sensor. As a result of solving the above, the disturbance magnetic field to be canceled has been expanded to a DC magnetic field, a variable magnetic field, and an AC magnetic field of several hundred Hz. In addition, the cancellation coil around the magnetic sensor has been eliminated, wiring work has been simplified, and the adjustment work efficiency has been greatly improved.

磁気シールド性能も従来に比べて10倍以上向上し、交流雑音の発生源や電磁誘導を受ける長いリード線、コード配線、電磁誘導雑音を惹起するコイルなどの誘導雑音が懸念される部品の使用を避けて、ターゲット空間T−Spaceを磁気センサの性能限界に近い性能までに低雑音化、安定化させることに成功した。   Magnetic shield performance is improved by more than 10 times compared to the conventional method. Use of components that are concerned about inductive noise such as AC noise sources, long lead wires that receive electromagnetic induction, cord wiring, and coils that induce electromagnetic induction noise. Avoiding this, we succeeded in reducing the noise and stabilizing the target space T-Space to the performance close to the performance limit of the magnetic sensor.

本発明は交流磁場を打ち消す基本的な技術であるため、公知のアクティブ磁気シールド技術の周波数帯域を拡大させる技術として、従来装置の性能改善にも大いに役立つ。   Since the present invention is a basic technique for canceling an alternating magnetic field, it is greatly useful for improving the performance of a conventional apparatus as a technique for expanding the frequency band of a known active magnetic shield technique.

たとえば、特許文献1{特開昭48−38972号公報(特公昭51−38215号公報)}、特許文献2{特開2001−281311号公報(特許第3406273号公報)}、特開2002−94280号公報、特開2002−232182号公報、特開2003−273565号公報、特開2005−44826号公報、特開2008−78529号公報などのすでに公開されている技術に、本発明の位相補正技術を有機的に組み込めば、外乱磁場の打ち消し可能な周波数帯域の上限は著しく拡大し、飛躍的に磁気シールド性能を向上させることができる。   For example, Patent Document 1 {Japanese Patent Laid-Open No. 48-38972 (Japanese Patent Publication No. 51-38215)}, Patent Document 2 {Japanese Patent Laid-Open No. 2001-281131 (Japanese Patent No. 3406273)}, Japanese Patent Laid-Open No. 2002-94280. JP, 2002-232182, JP 2003-273565, JP 2005-44826, JP 2008-78529, etc. have already been disclosed. Incorporating organically, the upper limit of the frequency band where the disturbance magnetic field can be canceled is remarkably expanded, and the magnetic shielding performance can be dramatically improved.

結局のところ、本発明の位相補正技術を組み込んで生み出される製品および改造技術は、本発明に包含される実施形態になるので、磁気シールド業界において有益な技術として幅広く活用されことが期待できる。   After all, the products and modification techniques produced by incorporating the phase correction technology of the present invention become an embodiment included in the present invention, so that it can be expected to be widely used as a useful technology in the magnetic shield industry.

以下に、本発明の実施の形態を説明する。
図1は、本発明の実施の形態1の基本構成図である。図1において、11は補償コイルであり、外乱磁場Bnを打ち消すための打ち消し磁場Bcを発生させる。コイルの磁場の特性として中央部からコイルに近づくに従い磁場強度は大きくなり、均一な磁場空間はコイル中央部に限られる。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a basic configuration diagram of Embodiment 1 of the present invention. In FIG. 1, reference numeral 11 denotes a compensation coil, which generates a canceling magnetic field Bc for canceling the disturbance magnetic field Bn. As the magnetic field characteristics of the coil, the magnetic field strength increases as the coil approaches the coil from the center, and the uniform magnetic field space is limited to the coil center.

均一磁場空間を大きく確保するための対策として2個のコイルを対向させてヘルムホルツコイル型で構成することが多く、ヘルムホルツコイルの中央部付近に外乱磁場から防護したい装置類を設置することが多い。図1では、ヘルムホルツ型の補償コイルの場合を図示し、T−Spaceは装置を設置するターゲット空間を示している。   As a measure for ensuring a large uniform magnetic field space, the two coils are opposed to each other to form a Helmholtz coil type. In many cases, devices that are to be protected from a disturbance magnetic field are installed near the center of the Helmholtz coil. FIG. 1 illustrates a case of a Helmholtz type compensation coil, and T-Space indicates a target space in which the apparatus is installed.

外乱磁場Bnを検出する磁気センサSは、ターゲット空間T−Spaceより離れた磁気センサ設置空間S−Spaceに設置される。この空間における磁場は、外乱磁場の他に補償コイル11から発生した打ち消し磁場がある。磁場はベクトルとして分解や合成が可能であるから、磁気センサ設置空間における打ち消し磁場は、ターゲット空間における打ち消し磁場Bcに、ターゲット空間から離れた位置の打ち消し磁場勾配ΔBc(本明細書でいう磁場勾配とは、ターゲット空間の中心点における磁場強度とセンサ設置空間の中心点における磁場強度との±磁場強度差をいう)が合成された磁場に置き換えることができる。   The magnetic sensor S that detects the disturbance magnetic field Bn is installed in a magnetic sensor installation space S-Space that is distant from the target space T-Space. The magnetic field in this space includes a canceling magnetic field generated from the compensation coil 11 in addition to the disturbance magnetic field. Since the magnetic field can be decomposed or synthesized as a vector, the canceling magnetic field in the magnetic sensor installation space is canceled by a canceling magnetic field gradient ΔBc (referred to as a magnetic field gradient in this specification) at a position away from the target space. Can be replaced with a synthesized magnetic field that is a ± magnetic field strength difference between the magnetic field strength at the center point of the target space and the magnetic field strength at the center point of the sensor installation space.

実施形態1の図示事例は、磁気センサ設置空間S−Spaceにおける打ち消し磁場がターゲット空間T−Spaceの打ち消し磁場より弱い場合を事例として取り上げた。
磁場の方向を理解しやすくするために、この事例では磁気センサSに印加する打ち消し磁場の合成値をBc−ΔBcで表現することにする。
In the illustrated example of the first embodiment, the case where the cancellation magnetic field in the magnetic sensor installation space S-Space is weaker than the cancellation magnetic field in the target space T-Space is taken as an example.
In order to facilitate understanding of the direction of the magnetic field, in this example, the combined value of the cancellation magnetic field applied to the magnetic sensor S is expressed by Bc−ΔBc.

したがって、外乱磁場の方向を基準にすれば、磁気センサSが検出する磁場は、外乱磁場Bnとターゲット空間T−Spaceにおける打ち消し磁場−Bcとターゲット空間T−Spaceから離れた磁場勾配分ΔBcとの総和{Bn−(Bc−ΔBc)}になり、磁気センサSの出力信号は外乱磁場センサ信号e(Bn)と打ち消し磁場センサ信号−e(Bc)と打ち消し磁場勾配センサ信号e(ΔBc)との総和 [e(Bn)−{e(Bc)−e(ΔBc)}] になる。   Therefore, based on the direction of the disturbance magnetic field, the magnetic field detected by the magnetic sensor S includes the disturbance magnetic field Bn, the cancellation magnetic field -Bc in the target space T-Space, and the magnetic field gradient ΔBc away from the target space T-Space. The sum {Bn− (Bc−ΔBc)} is obtained, and the output signal of the magnetic sensor S includes the disturbance magnetic field sensor signal e (Bn), the canceling magnetic field sensor signal −e (Bc), and the canceling magnetic field gradient sensor signal e (ΔBc). The sum [e (Bn) − {e (Bc) −e (ΔBc)}].

この信号の中で、磁気センサ設置空間S−Spaceがターゲット空間T−Spaceより離れていることによって、磁気シールド性能を劣化させる信号は、該打ち消し磁場勾配センサ信号e(ΔBc)で、これを除去する必要がある。
この除去対応策に関しては、本出願人によって「交流磁場対応型のアクティブ磁気シールド装置」(特願2008−274819号)として出願した。
Among these signals, the signal that degrades the magnetic shielding performance due to the magnetic sensor installation space S-Space being separated from the target space T-Space is the cancellation magnetic field gradient sensor signal e (ΔBc), which is removed. There is a need to.
This removal countermeasure was filed by the present applicant as an “AC magnetic field compatible active magnetic shield device” (Japanese Patent Application No. 2008-274819).

しかしながら、交流外乱磁場を打ち消す場合には、前述の打ち消し磁場勾配センサ信号以外に、アクティブ磁気シールド系全体の位相遅れについても考慮する必要がある。
この位相遅れは、外部磁場を検出してから打ち消し磁場を発生させるまでに時間を要するために生じる。すなわち、打ち消し電流の位相遅れの度合いは、磁気センサの出力信号の中の外乱磁場センサ信号から打ち消し電流を作って打ち消し磁場を発生させるまでの信号処理の所要時間に依存している。
However, when canceling the AC disturbance magnetic field, it is necessary to consider the phase delay of the entire active magnetic shield system in addition to the cancellation magnetic field gradient sensor signal described above.
This phase lag occurs because it takes time from detection of an external magnetic field to generation of a cancellation magnetic field. That is, the degree of phase delay of the cancellation current depends on the time required for signal processing from the generation of the cancellation current from the disturbance magnetic field sensor signal in the output signal of the magnetic sensor to generation of the cancellation magnetic field.

言い換えれば、この位相遅れθがあるために外乱磁場を完全に打ち消すことが困難となり、位相の同期不一致のために打ち消すことができずに残留した磁場成分が磁気センサ出力信号に残留磁場信号として残る。すなわち、残留磁場信号は、磁気センサ出力信号{外乱磁場センサ信号+打ち消し磁場センサ信号+打ち消し磁場勾配センサ信号}において、外乱磁場センサ信号e(Bn)と打ち消し磁場センサ信号−e(Bc)が相殺された時に残る位相ずれ分の残留電圧に相当する。
そして、この残留電圧は電流出力回路50から出力される打ち消し電流の一部になって補償コイル11へ送出され、磁気シールド性能を劣化させてしまうのである。
In other words, it is difficult to completely cancel the disturbance magnetic field because of this phase delay θ, and the remaining magnetic field component that cannot be canceled due to phase synchronization mismatch remains as a residual magnetic field signal in the magnetic sensor output signal. . That is, in the residual magnetic field signal, the disturbance magnetic field sensor signal e (Bn) and the cancellation magnetic field sensor signal −e (Bc) cancel each other in the magnetic sensor output signal {disturbance magnetic field sensor signal + cancellation magnetic field sensor signal + cancellation magnetic field gradient sensor signal}. This corresponds to the residual voltage corresponding to the phase shift remaining when the operation is performed.
This residual voltage becomes a part of the cancellation current output from the current output circuit 50 and is sent to the compensation coil 11 to deteriorate the magnetic shield performance.

電流出力回路50は、入力信号を加減算する加減算手段12と、加減算手段12の出力信号の振幅および位相を調整する信号処理回路13と、該信号処理回路の出力信号を電力増幅する電力増幅器14の構成要素からなる。加減算手段12の出力に残留した残留電圧を信号処理回路13で信号処理する場合には、必要に応じて加減算機能を信号処理回路13に付加する。   The current output circuit 50 includes an addition / subtraction means 12 for adding / subtracting an input signal, a signal processing circuit 13 for adjusting the amplitude and phase of the output signal of the addition / subtraction means 12, and a power amplifier 14 for amplifying the output signal of the signal processing circuit. Consists of components. When the signal processing circuit 13 performs signal processing on the residual voltage remaining at the output of the addition / subtraction means 12, an addition / subtraction function is added to the signal processing circuit 13 as necessary.

本発明では、後述の電流出力回路50の加減算手段12において、磁気センサSから出力される加減算前の位相情報として存在する残留磁場信号Δe(θ)を、位相補正信号形成手段10から出力される反転信号の位相補正信号−Δe(θ)によって相殺する。回路構成の都合上、加減算手段12で加減算を実施しない場合には、図1の破線で示すように、加減算手段12の代わりに信号処理回路13において、加減算手段12の出力に残留した残留電圧を位相補正信号形成手段10から出力される反転信号の位相補正信号−Δe(θ)を受け入れて相殺する。   In the present invention, the residual magnetic field signal Δe (θ) existing as phase information before addition / subtraction output from the magnetic sensor S is output from the phase correction signal forming means 10 in the addition / subtraction means 12 of the current output circuit 50 described later. It is canceled by the phase correction signal −Δe (θ) of the inverted signal. If the addition / subtraction is not performed by the addition / subtraction means 12 due to the circuit configuration, the residual voltage remaining at the output of the addition / subtraction means 12 is replaced by the signal processing circuit 13 instead of the addition / subtraction means 12 as shown by the broken line in FIG. The inverted phase correction signal −Δe (θ) output from the phase correction signal forming means 10 is received and canceled.

加減算手段12の入力部では、磁気センサ出力信号中の残留磁場信号Δe(θ)と位相補正信号形成手段10の出力信号である位相補正信号−Δe(θ)の両信号を、抵抗とオペアンプを使用して加算演算して消去する。また、加減算手段12では、その他の磁気センサ出力信号に関しては、地磁気などの直流成分の減算やオフセットの調整のための加減算を実行する。   At the input section of the addition / subtraction means 12, both the residual magnetic field signal Δe (θ) in the output signal of the magnetic sensor and the phase correction signal −Δe (θ) which is the output signal of the phase correction signal forming means 10 are used as a resistance and an operational amplifier. Use addition operation to erase. Further, the addition / subtraction means 12 executes subtraction of DC components such as geomagnetism and addition / subtraction for adjustment of offset with respect to other magnetic sensor output signals.

加減算された信号は、さらに信号処理回路13においてその振幅と位相が調整され、その後、電力増幅器14に送られる。電力増幅器14は信号処理回路13の出力信号を増幅し、外乱磁場を打ち消すための打ち消し電流icancelを補償コイル11の片方の端子へ出力する。 The added and subtracted signals are further adjusted in amplitude and phase in the signal processing circuit 13 and then sent to the power amplifier 14. The power amplifier 14 amplifies the output signal of the signal processing circuit 13 and outputs a cancellation current i cancel for canceling the disturbance magnetic field to one terminal of the compensation coil 11.

補償コイル11の他端側の端子には、電流電圧変換回路15の構成要素である抵抗Rに直列接続され、該抵抗を介して接地されている。打ち消し電流icancelはこの抵抗Rに流れる電流によって抵抗端子間の電圧に変換されて検出できるので、抵抗Rは電流電圧変換素子として動作している。それゆえ、電流電圧変換回路15の出力端子は打ち消し電流波形を監視するチェックポイントで、アクティブ磁気シールドの動作状態を監視するモニタ端子として使用できる。 The terminal on the other end side of the compensation coil 11 is connected in series to a resistor R that is a component of the current-voltage conversion circuit 15 and is grounded via the resistor. Since the canceling current i cancel is detected by being converted into a voltage between the resistance terminals by the current flowing through the resistor R, the resistor R operates as a current-voltage conversion element. Therefore, the output terminal of the current-voltage conversion circuit 15 is a check point for monitoring the cancellation current waveform, and can be used as a monitor terminal for monitoring the operating state of the active magnetic shield.

補償コイル11を流れる打ち消し電流icancelは、打ち消し磁場Bcを発生させて外乱磁場Bnを打ち消し、抵抗Rを介して接地点に流れる訳であるが、補償コイル11と抵抗Rは、直列接続であるために分流器の時のような並列回路の構成は存在しない。そして、補償コイル11の浮遊容量が問題にならない限り、補償コイル11と抵抗Rの電流位相は同位相である。この場合では、打ち消し電流icancelで作られる打ち消し磁場の位相は打ち消し電流icancelの位相に一致するので、抵抗Rの端子間電圧の位相は、補償コイル11で発生させる打ち消し磁場Bcの位相と同位相であるという関係が成立する。 The cancellation current i cancel flowing through the compensation coil 11 generates a cancellation magnetic field Bc, cancels the disturbance magnetic field Bn, and flows to the ground via the resistor R. The compensation coil 11 and the resistor R are connected in series. Therefore, there is no parallel circuit configuration as in the case of the shunt. As long as the stray capacitance of the compensation coil 11 does not become a problem, the current phases of the compensation coil 11 and the resistor R are the same phase. Since this case, the cancellation magnetic field in the phase made of cancellation currents i cancel matching current i cancel the phase cancellation, the phase of the terminal voltage of the resistor R, and the phase of the cancellation magnetic field Bc is generated by the compensation coil 11 the The relationship of phase is established.

このような回路構成にすることにより、打ち消し磁場Bcの位相と同位相の情報を抵抗Rの端子間電圧から抽出できることが明らかとなった。
ただし、電流電圧変換回路15は、補償コイル11の打ち消し磁場Bcが磁気センサSに与える影響の程度に応じて実装するか、あるいはモニタ端子用として実装するか否かを選択する選択対象の構成要素である。
It became clear that information having the same phase as the phase of the canceling magnetic field Bc can be extracted from the voltage across the resistor R by using such a circuit configuration.
However, the current-voltage conversion circuit 15 is a component to be selected for selecting whether to be mounted according to the degree of the influence of the canceling magnetic field Bc of the compensation coil 11 on the magnetic sensor S or for the monitor terminal. It is.

位相補正信号形成手段10は、磁気センサSと加減算手段12との間に接続され、その構成はバッファ回路16と、位相同期化手段17と、極性切り替え機能付き振幅調整手段18の各構成要素から構成される。   The phase correction signal forming means 10 is connected between the magnetic sensor S and the adding / subtracting means 12, and its configuration is composed of each component of the buffer circuit 16, the phase synchronization means 17, and the amplitude adjusting means 18 with polarity switching function. Composed.

位相補正信号形成手段10の具体的な役割は、磁気センサSの出力に存在する残留磁場信号Δe(θ)を除去するために、磁気センサ出力信号から残留磁場信号Δe(θ)に酷似した反転位相信号を作り、送出することである。   In order to remove the residual magnetic field signal Δe (θ) present in the output of the magnetic sensor S, a specific role of the phase correction signal forming means 10 is an inversion that closely resembles the residual magnetic field signal Δe (θ) from the magnetic sensor output signal. It is to create and send a phase signal.

そのための手順として、まずは、位相補正信号形成手段10の位相同期化手段17を位相調整可能なローパスフィルタで構成し、磁気センサ出力信号の位相に合わせた同位相あるいは反転位相の位相信号を作る。その後、該位相信号の振幅と極性を極性切り替え機能付き振幅調整手段18において調整し、残留磁場信号Δe(θ)に酷似する反転位相の位相補正信号−Δe(θ)を完成させる。   As a procedure for that, first, the phase synchronization means 17 of the phase correction signal forming means 10 is configured by a low-pass filter capable of adjusting the phase, and a phase signal having the same phase or an inverted phase according to the phase of the magnetic sensor output signal is created. Thereafter, the amplitude and polarity of the phase signal are adjusted by the amplitude adjusting means 18 with a polarity switching function to complete a phase correction signal −Δe (θ) having an inverted phase very similar to the residual magnetic field signal Δe (θ).

そして、残留磁場信号Δe(θ)に酷似した反転位相の位相補正信号−Δe(θ)は、加減算手段12へ送出されて、磁気センサ出力の前記残留磁場信号Δe(θ)を相殺する。   Then, a phase correction signal −Δe (θ) having an inversion phase very similar to the residual magnetic field signal Δe (θ) is sent to the addition / subtraction means 12 to cancel the residual magnetic field signal Δe (θ) of the magnetic sensor output.

打ち消し電流icancelに対する前記残留磁場信号の影響は、このようにして加減算手段12の段階で阻止されるのである。 The influence of the residual magnetic field signal on the canceling current i cancel is thus prevented at the stage of the addition / subtraction means 12.

次に、位相同期化手段17の具体的な実施例について説明すれば、たとえば、磁気センサSが磁気発振型磁気センサやフラックスゲート型磁気センサなどの場合では、該磁電変換回路(増幅回路を含む)にローパスフィルタが一般的に使用されている。   Next, a specific example of the phase synchronization means 17 will be described. For example, when the magnetic sensor S is a magnetic oscillation type magnetic sensor, a fluxgate type magnetic sensor, or the like, the magnetoelectric conversion circuit (including an amplification circuit) is described. ) Is generally used.

この場合、最も簡単に実施できる位相同期化手段17の近似的構成は、抵抗だけによる構成であるが、抵抗とコンデンサで1次ローパスフィルタ(積分回路)を構成し、この回路の抵抗値を可変させて、位相補正信号の位相を磁気センサSの出力位相に合わせることもできる。   In this case, the approximate configuration of the phase synchronization means 17 that can be implemented most simply is a configuration using only a resistor. However, a primary low-pass filter (integrating circuit) is configured by the resistor and the capacitor, and the resistance value of this circuit is variable. Thus, the phase of the phase correction signal can be matched with the output phase of the magnetic sensor S.

位相同期化手段17における位相補正信号の位相調整は、残留磁場信号位相に呼応させるので、位相遅れの補正であればローパスフィルタか積分回路を使用し、位相進みの補正であればハイパスフィルタか微分回路を使用するとよい。各フィルタの遮断周波数と次数は基本的には磁気センサSと後続の接続回路を含めて考慮するが、近い次数で類似近似させることも可能であり、いかなる回路構成であっても、これらは全て本発明範囲に属する。   Since the phase adjustment of the phase correction signal in the phase synchronization means 17 is made to correspond to the residual magnetic field signal phase, a low-pass filter or an integration circuit is used for phase lag correction, and a high-pass filter or differentiation is used for phase advance correction. A circuit may be used. The cut-off frequency and the order of each filter are basically considered including the magnetic sensor S and the subsequent connection circuit. However, it is possible to make a similar approximation with a close order, and these are all in any circuit configuration. It belongs to the scope of the present invention.

なお、前述した電流出力回路50および位相補正信号形成手段10における各構成要素およびその要素機能の接続処理順序は、必ずしも上述の順序にこだわるものではなく、本発明の目的を達成する範囲において限定するものではない。また、位相同期化手段17はインダクタと抵抗によるフィルタや、インダクタ、コンデンサ、抵抗、オペアンプなどの任意の素子の組み合わせで実現できるので、これらの組み合わせによるオールパスフィルタをはじめ各種回路あるいは手段も、本発明の目的を実現するための手段に含まれる。   It should be noted that the connection processing order of each component and its element function in the current output circuit 50 and the phase correction signal forming means 10 described above is not necessarily limited to the order described above, and is limited within the scope of achieving the object of the present invention. It is not a thing. Further, since the phase synchronization means 17 can be realized by a combination of an inductor and a resistance filter, or any combination of elements such as an inductor, a capacitor, a resistance, and an operational amplifier, various circuits or means including all-pass filters based on these combinations are also included in the present invention. It is included in the means for realizing the purpose.

さらに、極性切り替え機能付き振幅調整手段18の極性切り替えについて説明すれば、補償コイル11と磁気センサSの配置位置関係によって打ち消し磁場の方向は正負逆転し、打ち消し磁場勾配センサ信号の位相も正負逆転することもある。たとえば、単一補償コイルでは補償コイル枠の内側部と外側部では打ち消し磁場の方向は逆方向であるため、打ち消し磁場勾配センサ信号の位相も反転位相になる。   Further, the polarity switching of the amplitude adjusting means 18 with the polarity switching function will be described. The direction of the canceling magnetic field is reversed in the positive and negative directions depending on the arrangement positional relationship between the compensation coil 11 and the magnetic sensor S, and the phase of the canceling magnetic field gradient sensor signal is also reversed in the positive and negative directions. Sometimes. For example, in the single compensation coil, the direction of the canceling magnetic field is opposite between the inner side and the outer side of the compensation coil frame, so that the phase of the canceling magnetic field gradient sensor signal is also inverted.

また、補償コイル枠内側であっても磁気センサ配置位置によっては、打ち消し磁場勾配強度と外乱磁場強度の関係から位相補正信号の位相を逆転させる場合もあるので、この時には加減算手段12に入力する位相補正信号の位相を切り替えることもあり得る。この極性切り替えは、加減算手段12のオペアンプの反転入力端子と非反転入力端子の接続切り替えで実施することも出来る。
いずれにしても、補償コイル11と磁気センサ配置の位置関係から、事前に極性反転の有無を把握しておく必要がある。
Even within the compensation coil frame, depending on the magnetic sensor arrangement position, the phase of the phase correction signal may be reversed due to the relationship between the canceling magnetic field gradient strength and the disturbance magnetic field strength. It is also possible to switch the phase of the correction signal. This polarity switching can also be performed by switching the connection between the inverting input terminal and the non-inverting input terminal of the operational amplifier of the adding / subtracting means 12.
In any case, it is necessary to know in advance the presence or absence of polarity reversal from the positional relationship between the compensation coil 11 and the magnetic sensor arrangement.

別の実施手段として、位相補正信号形成手段10の一部あるいは全体、加減算手段12の一部あるいは全体、信号処理回路13の一部あるいは全体をソフトウエア手段で実行することも可能である。この場合には、アナログ信号をデジタル信号に変換するAD変換器と、DSPあるいはパソコンを含むデジタル信号処理回路と、処理されたデジタル信号をアナログ信号に戻すDA変換器と、I/Oインターフェイスと、デジタル信号処理回路を制御するソフトウエアを以て、該当箇所を置き換える。このソフトウエアには、本発明思想を実行するメインプログラムの他に、入出力データのインターフェイス制御プログラム等が含まれる。   As another implementation means, a part or whole of the phase correction signal forming means 10, a part or whole of the addition / subtraction means 12, and a part or whole of the signal processing circuit 13 can be executed by software means. In this case, an AD converter that converts an analog signal into a digital signal, a digital signal processing circuit including a DSP or a personal computer, a DA converter that converts the processed digital signal back into an analog signal, an I / O interface, The corresponding part is replaced by software for controlling the digital signal processing circuit. This software includes an input / output data interface control program and the like in addition to the main program for executing the idea of the present invention.

磁気センサ設置空間S−Spaceと補償コイル11の位置関係で、磁気センサSの設置位置が補償コイル11に近いために、打ち消し磁場が磁気センサ11に強く印加されるような配置になった場合でも、打ち消し磁場勾配センサ信号の除去手法は前述の手法と同様の手法で対処可能である。
しかしながら、打ち消し磁場による打ち消し磁場勾配センサ信号の除去と残留磁場信号Δe(θ)の除去を一つの位相補正信号形成手段10で同時実行することは可能であるが、磁気センサSの配置位置によっては、ある程度の磁気シールド性能の劣化は避けられない。むしろ、別途に位相補正信号形成手段10を並列接続して、これを打ち消し磁場勾配センサ信号除去用に使用する方がよい。
Even when the magnetic sensor installation space S-Space and the compensation coil 11 are in a positional relationship, the installation position of the magnetic sensor S is close to the compensation coil 11, so that the cancellation magnetic field is strongly applied to the magnetic sensor 11. The cancellation magnetic field gradient sensor signal removal method can be dealt with by the same method as described above.
However, the cancellation of the cancellation magnetic field gradient sensor signal by the cancellation magnetic field and the removal of the residual magnetic field signal Δe (θ) can be performed simultaneously by one phase correction signal forming means 10, but depending on the arrangement position of the magnetic sensor S. A certain degree of deterioration of the magnetic shield performance is inevitable. Rather, it is better to separately connect the phase correction signal forming means 10 in parallel and cancel it to use it for removing the magnetic field gradient sensor signal.

上述の実施形態の説明を踏まえて、打ち消し磁場による打ち消し磁場勾配センサ信号の除去と残留磁場信号Δe(θ)の除去を、別々の位相補正信号形成手段で実施する時の実施形態を、実施形態2として図2に示す。
実施形態2の図示事例は、磁気センサ設置空間S−Spaceにおける打ち消し磁場がターゲット空間T−Spaceの打ち消し磁場より強い場合を事例として取り上げた。
磁場の方向を理解しやすくするために、この事例では磁気センサSに印加する打ち消し磁場の合成値をBc+ΔBcで表現することにする。
Based on the description of the above-described embodiment, an embodiment in which the removal of the cancellation magnetic field gradient sensor signal by the cancellation magnetic field and the removal of the residual magnetic field signal Δe (θ) are performed by separate phase correction signal forming units will be described. 2 as shown in FIG.
In the illustrated example of the second embodiment, the case where the cancellation magnetic field in the magnetic sensor installation space S-Space is stronger than the cancellation magnetic field in the target space T-Space is taken as an example.
In order to facilitate understanding of the direction of the magnetic field, in this example, the combined value of the canceling magnetic field applied to the magnetic sensor S is expressed by Bc + ΔBc.

したがって、外乱磁場の方向を基準にすれば、磁気センサSが検出する磁場は、外乱磁場Bnとターゲット空間T−Spaceにおける打ち消し磁場−Bcとターゲット空間T−Spaceから離れた磁場勾配分−ΔBcとの総和{Bn−(Bc+ΔBc)}になり、磁気センサSの出力信号は外乱磁場センサ信号e(Bn)と打ち消し磁場センサ信号−e(Bc)と打ち消し磁場勾配センサ信号−e(ΔBc)との総和[e(Bn)−{e(Bc)+e(ΔBc)}]になる。   Therefore, if the direction of the disturbance magnetic field is used as a reference, the magnetic field detected by the magnetic sensor S is the disturbance magnetic field Bn, the cancellation magnetic field -Bc in the target space T-Space, and the magnetic field gradient component -ΔBc far from the target space T-Space. The output signal of the magnetic sensor S is the disturbance magnetic field sensor signal e (Bn), the canceling magnetic field sensor signal −e (Bc), and the canceling magnetic field gradient sensor signal −e (ΔBc). The sum {Bn− (Bc + ΔBc)} The sum [e (Bn) − {e (Bc) + e (ΔBc)}] is obtained.

実施形態1との相違点は、打ち消し磁場勾配センサ信号−e(ΔBc)を除去するための反転位相信号e(ΔBc)を作るために、新たに独立して位相補正信号形成手段10aを電流電圧変換回路15と加減算手段12の間に追加接続した点である。   The difference from the first embodiment is that the phase correction signal forming means 10a is newly set to the current voltage in order to create the inverted phase signal e (ΔBc) for removing the canceling magnetic field gradient sensor signal −e (ΔBc). This is a point additionally connected between the conversion circuit 15 and the addition / subtraction means 12.

位相補正信号形成手段10aの構成は、位相補正信号形成手段10と同じハード構成で、電圧変換された打ち消し電流の位相情報を受け取るバッファ回路16aと、バッファ回路16aの出力信号から打ち消し磁場センサ信号−e(Bc)と同位相あるいは反転位相の位相信号を作る位相同期化手段17aと、この位相信号の極性と振幅を調整して位相補正信号e(ΔBc)として出力する極性切り替え機能付き振幅調整手段18aの各構成要素から構成される。   The configuration of the phase correction signal forming means 10a is the same hardware configuration as the phase correction signal forming means 10, and a buffer circuit 16a for receiving phase information of the voltage-converted cancellation current, and a cancellation magnetic field sensor signal − from the output signal of the buffer circuit 16a. Phase synchronization means 17a for producing a phase signal having the same phase as that of e (Bc) or an inverted phase, and amplitude adjustment means with a polarity switching function for adjusting the polarity and amplitude of this phase signal and outputting it as a phase correction signal e (ΔBc) It is comprised from each component of 18a.

そして、位相補正信号形成手段10aから出力される打ち消し磁場勾配センサ信号除去用の位相補正信号e(ΔBc)は、加減算手段12の入力部に入力される。
このようにして、別々の位相補正信号形成手段10,10aで別々の目的のために形成された各位相補正信号で、打ち消し磁場による打ち消し磁場勾配センサ信号−e(ΔBc)と残留磁場信号Δe(θ)を、加減算手段12において除去するのである。
自明のことながら、位相補正信号形成手段10,10aの役割は、入れ替えて実施することも可能であり、さらに、いずれか一方の位相補正信号形成手段だけで兼用実施することも可能である。
Then, the phase correction signal e (ΔBc) for removing the cancellation magnetic field gradient sensor signal output from the phase correction signal forming unit 10 a is input to the input unit of the addition / subtraction unit 12.
In this way, with each phase correction signal formed for different purposes by the separate phase correction signal forming means 10 and 10a, the cancellation magnetic field gradient sensor signal -e (ΔBc) and the residual magnetic field signal Δe ( θ) is removed by the addition / subtraction means 12.
Obviously, the roles of the phase correction signal forming means 10 and 10a can be exchanged and can be implemented by only one of the phase correction signal forming means.

図3に補償コイル11の様々な実施形態を示す。同図では補償コイルの巻線数や接続、補償コイルを捲くあるいは固定する固定材や壁面に付帯した状況、床に埋設するピット等の表示は省略し、補償コイルの巻線の枠中心線のみで配置関係を図示している。(a)〜(c)は単一コイルで補償コイルを構成した時の事例で、(a)は1軸構成、(b)は2軸構成、(c)は3軸構成の場合である。複数軸では、各軸成分は直交する関係にある。   FIG. 3 shows various embodiments of the compensation coil 11. In the figure, the number of windings and connections of the compensation coil, the fixing material for rolling or fixing the compensation coil, the situation attached to the wall, and the pits embedded in the floor are omitted, and only the center line of the compensation coil winding frame In FIG. (A)-(c) is an example when a compensation coil is comprised by a single coil, (a) is a 1-axis structure, (b) is a 2-axis structure, (c) is a case of a 3-axis structure. In a plurality of axes, the respective axis components are orthogonal to each other.

均一磁場領域を広く確保したヘルムホルツ型の構成例として、(d)は1軸構成、(e)は2軸構成、(f)は3軸構成の場合をそれぞれ示している。
ヘルムホルツ型では、基本的には単一コイル2個分を対向させ、そのコイルの中心軸を一致させるが、必ずしもこれに拘泥するものではなく、コイルの形状、両コイルの間隔も現地にあった変形配置でよい。
As an example of a Helmholtz type configuration in which a uniform magnetic field region is widely secured, (d) shows a one-axis configuration, (e) shows a two-axis configuration, and (f) shows a three-axis configuration.
In the Helmholtz type, basically two single coils are made to face each other and the central axes of the coils are made to coincide with each other, but this is not necessarily limited to this, and the shape of the coil and the spacing between the two coils were also on-site. A modified arrangement may be used.

磁気センサSの検出軸は原則として各コイルの中心軸と平行に保持する。磁気センサSの種類は補償コイルの軸成分の数に応じて、1軸磁気センサ、2軸磁気センサ、3軸磁気センサと使い分けるが、補償コイルの軸成分数以上の軸成分を検出する磁気センサの使用も可能で、たとえば、1軸構成で3軸磁気センサを使用することもあり得る。また、3軸磁気センサの代わりに1軸磁気センサを3本使用して、各軸のコイル面の近傍に分散配置させることも可能である。   In principle, the detection axis of the magnetic sensor S is held parallel to the central axis of each coil. Depending on the number of axial components of the compensation coil, the magnetic sensor S is properly used as a 1-axis magnetic sensor, 2-axis magnetic sensor, or 3-axis magnetic sensor. For example, a three-axis magnetic sensor may be used in a one-axis configuration. It is also possible to use three uniaxial magnetic sensors instead of the triaxial magnetic sensor and distribute them in the vicinity of the coil surface of each axis.

磁気センサSの信号処理は、各軸成分ごとに独立させる。それ故、電流出力回路50、位相補正信号形成手段10についてはもちろんのこと、必要に応じて選択実装する電流電圧変換回路15についても、少なくとも軸成分だけの数は必要になる。
補償コイルの形状寸法によっては2軸構成や3軸構成の場合に、補償コイルが輻輳して補償コイル内部のターゲット空間T−Spaceへの接近、出入が困難になることがある。
The signal processing of the magnetic sensor S is made independent for each axis component. Therefore, not only the current output circuit 50 and the phase correction signal forming means 10, but also the current-voltage conversion circuit 15 that is selectively mounted as necessary requires at least the number of axis components.
Depending on the shape and size of the compensation coil, in the case of a 2-axis configuration or a 3-axis configuration, the compensation coil may become congested, making it difficult to access to and from the target space T-Space inside the compensation coil.

この対策として扉部の周辺部の迂回配線事例が、日本生体磁気学会誌Vol.20 No.1 June 2007(130頁の写真1、131頁の図1)に紹介されているので、これを参考にすればよい。   As countermeasures, examples of bypass wiring around the door are introduced in the Journal of Biomagnetic Society Vol.20 No.1 June 2007 (Photo 1 on page 130, Figure 1 on page 131). You can do it.

図4は、本発明の実施の形態3に係る補償コイルの3軸構成時における回路結線図で、この構成は、実施の形態1及び実施の形態2を複合した実施の形態である。
図4において、SX、SY、SZは各軸の磁気センサで、3軸磁気センサを使用するか、あるいは、1軸磁気センサを各補償コイルの近傍にそれぞれ分散配置して使用するか、あるいは、1軸磁気センサ3本をまとめて3軸磁気センサと見なして使用するか、いずれかの構成で設置する。
FIG. 4 is a circuit connection diagram in the case of a three-axis configuration of the compensation coil according to the third embodiment of the present invention. This configuration is an embodiment in which the first embodiment and the second embodiment are combined.
In FIG. 4, SX, SY, and SZ are magnetic sensors for each axis, using a triaxial magnetic sensor, or using a uniaxial magnetic sensor in a distributed manner in the vicinity of each compensation coil, or The three single-axis magnetic sensors are collectively used as a three-axis magnetic sensor, or are installed in any configuration.

11X、11Y、11Zは各軸の補償コイル、50X、50Y、50Zは電流出力回路、RX、RY、RZは各軸の電流電圧変換回路、10X、10Y、10Zはそれぞれが少なくとも1つの位相補正信号形成手段である。   11X, 11Y, and 11Z are compensation coils for each axis, 50X, 50Y, and 50Z are current output circuits, RX, RY, and RZ are current-voltage conversion circuits for each axis, and 10X, 10Y, and 10Z each have at least one phase correction signal Forming means.

補償コイル11X、11Y、11Zが、図3の(f)に示すように互いに直交する3軸構成になっている場合には、新たな問題として各軸の打ち消し磁場の一部が、残りの他軸(2つの軸)の各磁気センサに印加されて、おのおの影響し合うという磁場干渉現象が生じる。すなわち、X軸の打ち消し磁場成分はY軸とZ軸の磁気センサSY,SZに、Y軸の打ち消し磁場成分はX軸とZ軸の磁気センサSX,SZに、Z軸の打ち消し磁場成分はX軸とY軸の磁気センサSX,SYに、それぞれ影響を与えることになるので除去する必要がある。   When the compensation coils 11X, 11Y, and 11Z have a three-axis configuration orthogonal to each other as shown in FIG. 3 (f), a part of the cancellation magnetic field of each axis is a new problem. A magnetic field interference phenomenon occurs in which the magnetic sensors are applied to the magnetic sensors on the axes (two axes) and influence each other. That is, the X-axis canceling magnetic field component is applied to the Y-axis and Z-axis magnetic sensors SY and SZ, the Y-axis canceling magnetic field component is applied to the X- and Z-axis magnetic sensors SX and SZ, and the Z-axis canceling magnetic field component is set to X. Since this affects the magnetic sensors SX and SY on the axis and the Y axis, it is necessary to remove them.

この磁場干渉を解決するために、X軸を事例にして説明する。閉ループ状のコイルで作る磁場(磁力線でも可)は、原理的には、必ず全方位に向かって湾曲した閉ループを形成する。補償コイル11Xの磁場が及ぶ磁気センサ設置空間S−Spaceでは、X軸成分、Y軸成分、Z軸成分の成分が存在すると考えてよい。自軸のX軸成分に関しては前述の実施形態1で詳述したが、他軸に関しても同様な手法が成り立つ。   In order to solve this magnetic field interference, the X axis will be described as an example. In principle, a magnetic field (or magnetic field lines) created by a closed loop coil always forms a closed loop that is curved in all directions. In the magnetic sensor installation space S-Space covered by the magnetic field of the compensation coil 11X, it may be considered that there are components of the X-axis component, the Y-axis component, and the Z-axis component. Although the X-axis component of the own axis has been described in detail in the first embodiment, the same method can be applied to other axes.

まず、最初にY軸への対策は、X軸打ち消し磁場によってY軸成分に悪影響を及ぼす磁場成分を、Y軸の電流出力回路50Yにおいて打ち消す。そのために、X軸の位相補正信号形成手段10Xには自軸分の振幅調整手段の他に、Y軸専用の振幅調整手段とZ軸専用の振幅調整手段を付加し、このY軸専用振幅調整手段から悪影響を及ぼす磁場成分を打ち消すために位相補正信号を電流出力回路50Yへ送り出す。位相補正信号の振幅と極性は該Y軸専用振幅調整手段で実施する。   First, as a countermeasure for the Y axis, the magnetic field component that adversely affects the Y axis component due to the X axis cancellation magnetic field is canceled in the Y axis current output circuit 50Y. Therefore, in addition to the amplitude adjusting means for the own axis, the Y axis dedicated amplitude adjusting means and the Z axis dedicated amplitude adjusting means are added to the X axis phase correction signal forming means 10X. A phase correction signal is sent to the current output circuit 50Y in order to cancel out the magnetic field component that adversely affects the means. The amplitude and polarity of the phase correction signal are implemented by the Y axis dedicated amplitude adjusting means.

電流出力回路50Yの入力部には自軸分の反転位相補正信号受け入れ端子の他にX軸およびZ軸からの位相補正信号を受け入れる端子を独立して設けておき、先ほどのX軸からの位相補正信号をX軸用端子から受け入れ、電流出力回路50Yの加減算手段で除去する。   In addition to the inverted phase correction signal receiving terminal for the own axis, a terminal for receiving the phase correction signal from the X axis and the Z axis is provided independently at the input part of the current output circuit 50Y, and the phase from the X axis as described above is provided. The correction signal is received from the X-axis terminal and removed by the addition / subtraction means of the current output circuit 50Y.

次に、Z軸への対策であるが、X軸打ち消し磁場によってZ軸成分に悪影響を及ぼす磁場成分についても、同様にしてZ軸の電流出力回路50Zにおいて打ち消す。そのために、X軸の位相補正信号形成手段10XのZ軸専用振幅調整手段から悪影響を及ぼす磁場成分を打ち消すために位相補正信号を電流出力回路50Zへ送出する。位相補正信号の振幅と極性は該Z軸専用振幅調整手段で実施する。   Next, as a countermeasure for the Z-axis, the magnetic field component that adversely affects the Z-axis component due to the X-axis canceling magnetic field is similarly canceled by the Z-axis current output circuit 50Z. For this purpose, a phase correction signal is sent to the current output circuit 50Z in order to cancel out the adverse magnetic field component from the Z-axis dedicated amplitude adjusting means of the X-axis phase correction signal forming means 10X. The amplitude and polarity of the phase correction signal are implemented by the Z axis dedicated amplitude adjusting means.

電流出力回路50Zの入力部には自軸分の反転位相補正信号受け入れ端子の他にX軸およびY軸からの位相補正信号を受け入れる端子を独立して設けておき、先ほどのX軸からの位相補正信号をX軸用端子から受け入れ、電流出力回路50Zの加減算手段で除去する。   In addition to the inverted phase correction signal receiving terminal for the own axis, a terminal for receiving the phase correction signal from the X axis and the Y axis is provided independently at the input part of the current output circuit 50Z, and the phase from the X axis as described above is provided. The correction signal is received from the X-axis terminal and removed by the addition / subtraction means of the current output circuit 50Z.

以下、Y軸打ち消し磁場によってX軸成分Z軸成分に悪影響を及ぼす磁場成分の除去方法も、Z軸打ち消し磁場によってX軸成分およびY軸成分に悪影響を及ぼす磁場成分の除去方法も前述のX軸の場合と同様に実施するので説明を省略する。   Hereinafter, the method for removing the magnetic field component that adversely affects the X-axis component and the Z-axis component by the Y-axis canceling magnetic field, and the method for removing the magnetic field component that adversely affects the X-axis component and the Y-axis component by the Z-axis canceling magnetic field are described above. Since it implements similarly to the case of, description is abbreviate | omitted.

図中の切り替えSWは、特に、1軸磁気センサ3本が分散配置される配置構成では、他軸の打ち消し磁場による影響が抑制されて無視できる場合もあるので、位相補正信号による調整必要の有無の程度によって、そのON/OFFを判断する。   The switching SW in the figure may be negligible because the influence of the canceling magnetic field on the other axis may be neglected, particularly in an arrangement in which three uniaxial magnetic sensors are arranged in a distributed manner. The ON / OFF state is determined according to the degree of.

本発明に関する説明は以上であるが、回路常数などの調整作業においては、ターゲット空間T−Spaceに磁力計を置いて、その磁力計の出力値あるいは磁場波形あるいはFFT解析値を小さくするように調整する方法が簡便である。さらに、磁気センサ設置空間S−Space内にも磁力計を置けば、磁場状態の監視に有益である。   Although the description related to the present invention has been described above, in adjustment work such as circuit constants, a magnetometer is placed in the target space T-Space and adjustment is performed so as to reduce the output value, magnetic field waveform, or FFT analysis value of the magnetometer. The method to do is simple. Furthermore, if a magnetometer is also placed in the magnetic sensor installation space S-Space, it is useful for monitoring the magnetic field state.

本発明は、無磁場に近い磁場管理空間でしか計測できない各種材料部品の磁気的精密非破壊検査の分野、各種生体磁気計測、医療診断機器や生体生理機能を解析するシステムで使用する極微弱磁場測定装置、磁気的応答による免疫診断システム、病原菌検査システムの精密測定の分野、また、電子顕微鏡やMRI装置の分野において幅広く使用できる。   The present invention relates to the field of magnetic precision non-destructive inspection of various material parts that can be measured only in a magnetic field management space close to no magnetic field, various magnetic field measurements, medical diagnostic equipment, and extremely weak magnetic fields used in systems for analyzing biological physiological functions. It can be widely used in the field of precision measurement of measuring devices, immunodiagnostic systems using magnetic responses, pathogen testing systems, and fields of electron microscopes and MRI devices.

本発明の実施の形態1の基本構成図である。It is a basic composition figure of Embodiment 1 of the present invention. 本発明の実施の形態2の基本構成図である。It is a basic composition figure of Embodiment 2 of the present invention. 本発明における補償コイルの様々な実施形態を示す説明図である。It is explanatory drawing which shows various embodiment of the compensation coil in this invention. 本発明の実施の形態3に係る補償コイルの3軸構成時における回路結線図である。It is a circuit connection diagram at the time of the 3 axis | shaft structure of the compensation coil which concerns on Embodiment 3 of this invention. 従来技術の例を示す概略構成図である。It is a schematic block diagram which shows the example of a prior art. 従来技術における位相ずれを説明するための回路図である。It is a circuit diagram for demonstrating the phase shift in a prior art.

符号の説明Explanation of symbols

S 磁気センサ
10,10a 位相補正信号形成手段
11 補償コイル
12 加減算手段
13 信号処理回路
14 電力増幅器
15 電流電圧変換回路
16,16a バッファ回路
17,17a 位相同期化手段
18,18a 極性切り替え機能付き振幅調整手段
50 電流出力回路
DESCRIPTION OF SYMBOLS S Magnetic sensor 10, 10a Phase correction signal formation means 11 Compensation coil 12 Addition / subtraction means 13 Signal processing circuit 14 Power amplifier 15 Current voltage conversion circuit 16, 16a Buffer circuit 17, 17a Phase synchronization means 18, 18a Amplitude adjustment with polarity switching function Means 50 Current output circuit

Claims (4)

外乱磁場を打ち消すために、打ち消し磁場を発生させる少なくとも1つの補償コイルと、
前記外乱磁場を検出する少なくとも1つの磁気センサと、
該磁気センサの出力信号に含まれる残留磁場信号に酷似した位相補正信号を形成して出力する少なくとも1つの位相補正信号形成手段と、
前記残留磁場信号を前記位相補正信号で相殺する加減算手段を備え、前記補償コイルに打ち消し電流を出力する少なくとも1つの電流出力回路と
を有することを特徴とする位相補正型アクティブ磁気シールド装置。
At least one compensation coil for generating a canceling magnetic field to cancel the disturbance magnetic field;
At least one magnetic sensor for detecting the disturbance magnetic field;
At least one phase correction signal forming means for forming and outputting a phase correction signal very similar to the residual magnetic field signal included in the output signal of the magnetic sensor;
A phase correction type active magnetic shield device comprising: addition / subtraction means for canceling the residual magnetic field signal with the phase correction signal, and at least one current output circuit for outputting a cancellation current to the compensation coil.
前記位相補正信号を形成する位相補正信号形成手段は、
前記位相補正信号の位相を磁気センサ出力信号の位相に同期化させるための位相同期化手段と、
磁気センサ出力信号の位相に呼応して位相補正信号の位相を切り換える少なくとも1つの極性切り換え機能付き振幅調整手段と
を備えたことを特徴とする請求項1記載の位相補正型アクティブ磁気シールド装置。
The phase correction signal forming means for forming the phase correction signal is:
Phase synchronization means for synchronizing the phase of the phase correction signal with the phase of the magnetic sensor output signal;
2. The phase correction type active magnetic shield device according to claim 1, further comprising at least one amplitude adjusting means with polarity switching function for switching the phase of the phase correction signal in response to the phase of the magnetic sensor output signal.
外乱磁場の直交する3軸のうち少なくとも2軸成分以上の磁場成分を打ち消すための、前記各軸に対応する軸成分の打ち消し磁場成分の発生が可能な複数個の補償コイル構成において、
前記各軸成分の補償コイルが発生する打ち消し磁場成分が互いに他軸の磁気センサに影響を与える他軸磁場成分信号を打ち消すために、
前記位相補正信号形成手段に、他軸磁場成分信号の打ち消し用に前記位相補正信号の極性と振幅を個別調整し、該他軸磁場成分信号の打ち消し用位相補正信号として各軸別に出力する手段を付加し、
前記加減算手段に、他軸から該他軸磁場成分信号の打ち消し用位相補正信号を受けて加減算する手段を付加したこと
を特徴とする請求項1記載または請求項2記載の位相補正型アクティブ磁気シールド装置。
In a plurality of compensation coil configurations capable of generating a canceling magnetic field component of an axial component corresponding to each axis for canceling a magnetic field component of at least two axial components among three orthogonal axes of a disturbance magnetic field,
In order to cancel the other-axis magnetic field component signals that the canceling magnetic field components generated by the compensation coils of the respective axis components influence the other-axis magnetic sensors,
A means for individually adjusting the polarity and amplitude of the phase correction signal for canceling the other-axis magnetic field component signal to the phase correction signal forming means, and outputting each phase as a phase correction signal for canceling the other-axis magnetic field component signal Add
3. The phase correction type active magnetic shield according to claim 1, wherein means for adding and subtracting the addition / subtraction unit upon receiving a phase correction signal for canceling the other axis magnetic field component signal from the other axis is added to the addition / subtraction unit. apparatus.
前記位相補正信号形成手段の一部あるいは全体、及び/又は前記加減算手段の一部あるいは全体、及び/又は信号処理回路の一部あるいは全体をソフトウエア手段で構成することを特徴とする請求項1から請求項3のいずれかの項に記載の位相補正型アクティブ磁気シールド装置。   2. A part or the whole of the phase correction signal forming means and / or a part or the whole of the adding / subtracting means and / or a part or the whole of a signal processing circuit are constituted by software means. The phase correction type active magnetic shield device according to claim 3.
JP2008291453A 2008-11-13 2008-11-13 Phase correction type active magnetic shield device Expired - Fee Related JP5535467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291453A JP5535467B2 (en) 2008-11-13 2008-11-13 Phase correction type active magnetic shield device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291453A JP5535467B2 (en) 2008-11-13 2008-11-13 Phase correction type active magnetic shield device

Publications (3)

Publication Number Publication Date
JP2010118553A true JP2010118553A (en) 2010-05-27
JP2010118553A5 JP2010118553A5 (en) 2011-10-20
JP5535467B2 JP5535467B2 (en) 2014-07-02

Family

ID=42306025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291453A Expired - Fee Related JP5535467B2 (en) 2008-11-13 2008-11-13 Phase correction type active magnetic shield device

Country Status (1)

Country Link
JP (1) JP5535467B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115424A (en) * 2010-11-30 2012-06-21 Hitachi Metals Ltd Disturbance magnetic field reducing device and magnetic resonance imaging apparatus
KR101242740B1 (en) * 2011-01-14 2013-03-12 한국과학기술원 Automatically controlled EMF cancellation apparatus using reverse current with current sensor
WO2015194428A1 (en) * 2014-06-16 2015-12-23 コニカミノルタ株式会社 Non-destructive inspection device and non-destructive inspection method
KR101861250B1 (en) * 2017-10-23 2018-05-25 손대락 Orthogonality correction method for 3-axis magnetometer
KR101861249B1 (en) * 2017-10-23 2018-05-25 손대락 Orthogonality corrected 3-axis magnetometer
JP2019066479A (en) * 2017-10-02 2019-04-25 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Calibration of magnetometer system
US10782368B2 (en) 2017-05-31 2020-09-22 Northrop Grumman Systems Corporation Pulsed-beam atomic magnetometer system
US10823790B2 (en) 2017-05-31 2020-11-03 Northrop Grumman Systems Corporation Pulsed-beam atomic magnetometer system
KR20210076723A (en) * 2019-12-16 2021-06-24 이규옥 Apparatus for damping noise
US11133117B2 (en) 2019-05-08 2021-09-28 Northrop Grumman Systems Corporation Atomic interferometer system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273565A (en) * 2002-03-12 2003-09-26 Mti:Kk Active magnetic shield device
JP2003332781A (en) * 2002-05-16 2003-11-21 Tokkyokiki Corp Active magnetic field canceler
JP2005044826A (en) * 2003-07-22 2005-02-17 Clover Tech Kk Magnetic canceler
JP2005217341A (en) * 2004-02-02 2005-08-11 Kri Inc Environmental magnetism noise shielding equipment
JP2008078529A (en) * 2006-09-25 2008-04-03 Mti:Kk Magnetic shielding room of internal active magnetically shielded system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003273565A (en) * 2002-03-12 2003-09-26 Mti:Kk Active magnetic shield device
JP2003332781A (en) * 2002-05-16 2003-11-21 Tokkyokiki Corp Active magnetic field canceler
JP2005044826A (en) * 2003-07-22 2005-02-17 Clover Tech Kk Magnetic canceler
JP2005217341A (en) * 2004-02-02 2005-08-11 Kri Inc Environmental magnetism noise shielding equipment
JP2008078529A (en) * 2006-09-25 2008-04-03 Mti:Kk Magnetic shielding room of internal active magnetically shielded system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115424A (en) * 2010-11-30 2012-06-21 Hitachi Metals Ltd Disturbance magnetic field reducing device and magnetic resonance imaging apparatus
KR101242740B1 (en) * 2011-01-14 2013-03-12 한국과학기술원 Automatically controlled EMF cancellation apparatus using reverse current with current sensor
WO2015194428A1 (en) * 2014-06-16 2015-12-23 コニカミノルタ株式会社 Non-destructive inspection device and non-destructive inspection method
US10782368B2 (en) 2017-05-31 2020-09-22 Northrop Grumman Systems Corporation Pulsed-beam atomic magnetometer system
US10823790B2 (en) 2017-05-31 2020-11-03 Northrop Grumman Systems Corporation Pulsed-beam atomic magnetometer system
JP2019066479A (en) * 2017-10-02 2019-04-25 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Calibration of magnetometer system
US10809342B2 (en) 2017-10-02 2020-10-20 Northrop Grumman Systems Corporation Calibration of a magnetometer system
KR101861250B1 (en) * 2017-10-23 2018-05-25 손대락 Orthogonality correction method for 3-axis magnetometer
KR101861249B1 (en) * 2017-10-23 2018-05-25 손대락 Orthogonality corrected 3-axis magnetometer
US11133117B2 (en) 2019-05-08 2021-09-28 Northrop Grumman Systems Corporation Atomic interferometer system
KR20210076723A (en) * 2019-12-16 2021-06-24 이규옥 Apparatus for damping noise
KR102293448B1 (en) * 2019-12-16 2021-08-24 이규옥 Apparatus for damping noise

Also Published As

Publication number Publication date
JP5535467B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5535467B2 (en) Phase correction type active magnetic shield device
KR101965977B1 (en) Apparatus for measuring current
US8237438B2 (en) Very low noise magnetometer
JP6525336B2 (en) 3-axis digital compass
CA2733431C (en) Multi-axis fluxgate magnetic sensor
CN104603628B (en) Magnetoresistive transducer, gradient former
JP5521143B1 (en) Magnetic detector
JP6975031B2 (en) Bearing inspection equipment
JP5472666B2 (en) Young&#39;s modulus variation measuring device minimizing external magnetic disturbance
JP2015102513A (en) Metallic foreign matter detection device, and eddy current flaw detector
JP2829375B2 (en) Weak magnetic field measuring device and measuring method
EP3185030A1 (en) On-line calibration and compensation of a current transformer
JP4435255B1 (en) Active magnetic shield device for AC magnetic field
JP2013186053A (en) Magnetic inspection system for magnetic sensors
JP2003517734A (en) How to reduce interference in a magnetically shielded room
KR20170021664A (en) Orthogonality correction method for 3-axis magnetometer
JP2003273565A (en) Active magnetic shield device
JPS5925726A (en) Diagnostic observation apparatus
Ripka et al. A 3-phase current transducer based on microfluxgate sensors
JP2001281311A (en) Disturbance magnetic field canceling device
Baschirotto et al. Precise vector-2D magnetic field sensor system for electronic compass
KR101861249B1 (en) Orthogonality corrected 3-axis magnetometer
KR20170021663A (en) Orthogonality corrected 3-axis magnetometer
Razmkhah et al. Fundamental mode fluxgate magnetometers for active magnetic shielding
RU2737030C1 (en) Hysteresis loop meter for study of thin magnetic films

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140423

R150 Certificate of patent or registration of utility model

Ref document number: 5535467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees