JP2010116879A - Ignition control device or ignition control method for internal combustion engine - Google Patents

Ignition control device or ignition control method for internal combustion engine Download PDF

Info

Publication number
JP2010116879A
JP2010116879A JP2008291627A JP2008291627A JP2010116879A JP 2010116879 A JP2010116879 A JP 2010116879A JP 2008291627 A JP2008291627 A JP 2008291627A JP 2008291627 A JP2008291627 A JP 2008291627A JP 2010116879 A JP2010116879 A JP 2010116879A
Authority
JP
Japan
Prior art keywords
ignition
combustion
discharge
coil
ignition coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008291627A
Other languages
Japanese (ja)
Other versions
JP4982470B2 (en
Inventor
Osamu Mukaihara
修 向原
Kenichi Machida
憲一 町田
Takuya Shiraishi
拓也 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2008291627A priority Critical patent/JP4982470B2/en
Publication of JP2010116879A publication Critical patent/JP2010116879A/en
Application granted granted Critical
Publication of JP4982470B2 publication Critical patent/JP4982470B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such problems that a discharge pattern required by an internal combustion engine when an improvement in combustion varies depending on the circumstances regardless of a combustion system, that, for example, when lean limitations are expanded by homogeneous combustion or EGR is introduced into a combustion chamber in large quantity, it is considered desirable that a secondary current which reaches its peak immediately after the start of discharge be higher, that when stratified charge combustion is performed, it is considered desirable that a discharge period be made longer after securing a certain amount of secondary current, and that a request for ignition is not touched on when the combustion system is switched from the homogeneous combustion to the stratified charge combustion or from the stratified charge combustion to the homogeneous combustion. <P>SOLUTION: Each cylinder of the ignition control device includes one ignition plug 111 and at least two ignition coils 106. Each ignition coil 106 is controlled simultaneously or individually so that the ignition pattern can be varied with respect to the switching of the combustion system. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関の点火制御装置または点火制御方法に関する。詳しくは燃焼方式に応じ、適切な放電エネルギの消費形態(以下、放電パターン)を提供することを特徴とした点火制御装置または点火制御方法に関する。   The present invention relates to an ignition control device or an ignition control method for an internal combustion engine. More specifically, the present invention relates to an ignition control device or an ignition control method that provides an appropriate discharge energy consumption mode (hereinafter, discharge pattern) according to a combustion method.

火花点火式の内燃機関では、着火性や燃焼安定性の向上を目的として、1気筒に対して、複数の点火コイルを備えた内燃機関が公知である。例えば、特許文献1では、1気筒に対して、1本の点火プラグと2本の点火コイルを備え、成層燃焼において、燃焼室内の混合気が丸まった形状である場合は、1回目の点火と2回目の点火の間隔を狭くし、混合気の形状が長くなっている場合には、1回目と2回目の点火間隔を広げる技術などが挙げられる。   As a spark ignition type internal combustion engine, an internal combustion engine having a plurality of ignition coils per cylinder is known for the purpose of improving ignitability and combustion stability. For example, in Patent Document 1, one ignition plug and two ignition coils are provided for one cylinder, and in stratified combustion, when the mixture in the combustion chamber has a rounded shape, the first ignition is performed. When the interval of the second ignition is narrowed and the shape of the air-fuel mixture is long, a technique for increasing the interval between the first and second ignitions can be cited.

特許3767383号公報Japanese Patent No. 3767383

しかしながら、燃焼方式に関わらず、燃焼改善を行う際に内燃機関より要求される前記放電パターンは状況により異なる。例えば、均質燃焼でリーン限界の拡大を図る場合、またはEGRを大量に燃焼室へ導入する場合などでは、放電開始直後にピークとなる二次電流が高い方が望ましいとされているのに対し、成層燃焼を行う場合では、ある程度の二次電流を確保した上で、放電時間を長くすることが望ましいとされている。また、燃焼方式が均質燃焼から成層燃焼または成層燃焼から均質燃焼へ切換わる際の点火要求については触れていない。   However, regardless of the combustion method, the discharge pattern required by the internal combustion engine when improving combustion differs depending on the situation. For example, when trying to expand the lean limit by homogeneous combustion, or when introducing a large amount of EGR into the combustion chamber, it is desirable that the secondary current peaking immediately after the start of discharge be higher. In the case of stratified combustion, it is desirable to increase the discharge time after securing a certain amount of secondary current. In addition, there is no mention of ignition requirements when the combustion method is switched from homogeneous combustion to stratified combustion or from stratified combustion to homogeneous combustion.

上記問題を鑑み、本発明では、1気筒に1本の点火プラグと、少なくとも2つ以上の点火コイルを備え、燃焼方式の切換えに対し、前記点火パターンを変化させる様に、それぞれの点火コイルを同時または個別に制御する。   In view of the above problems, in the present invention, each cylinder is provided with one ignition plug and at least two ignition coils, and each ignition coil is changed so as to change the ignition pattern in response to switching of the combustion system. Control simultaneously or individually.

内燃機関の燃焼方式に応じ、最適な点火制御を行うことで燃焼改善を行うことができる。   Combustion can be improved by performing optimal ignition control according to the combustion method of the internal combustion engine.

以下、実施例を詳細に記載する。   Hereinafter, examples will be described in detail.

図1に、本発明の実施例1に関する構成図を示す。なお、本実施例では主として多気筒エンジンを想定しているが、以降の図では簡素化のため1つの気筒について説明する。図1は、代表的な成層燃焼が行える内燃機関(101)の構成図である。この内燃機関(101)の特徴として、燃焼室内に直接燃料を噴射することができる燃料噴射弁(108)を備えている。まず、大気中の空気は吸気経路(103)から、エアフィルタ(図示せず)を経由し燃焼室(109)へ吸入される。更に吸気経路(103)内には、吸入空気量を計測するエアフローセンサ(図示せず)や吸入空気量の調整を行う電制スロットル弁(図示せず)が設けられており、コントロールユニット(102)は吸入空気量の算出や電制スロットル弁(図示せず)の制御を行う。電制スロットル弁(図示せず)の下流側には、ガス流動制御弁であるTGV(105)と仕切り板(104)が備わっており、吸気弁(107)近傍に出口が開口している副吸気通路を設けることで、燃焼室(109)へ吸入した空気が燃焼室(109)内に対して縦方向に流れるタンブル流(114)を発生できるようにしている。このとき、ガス流動の形成を制御するため、副吸気通路から供給される空気量を制御する必要があり、TGV(105)を用い、本来の吸気経路(103)から供給される空気量との比率が制御できるようにしている。一方、燃料は燃料タンク(図示せず)から汲上げを行うリフトポンプ(図示せず)により高圧燃料ポンプ(図示せず)へ送られ、高圧燃料ポンプ(図示せず)によって昇圧された後、ギャラリー(図示せず)を介して燃料噴射弁(108)で燃焼室(109)内へ直接噴射される。成層燃焼を行う場合は、圧縮行程中に燃料噴射弁(108)から燃料を燃焼室(109)へ噴射することで、点火プラグ(111)周辺に燃焼可能な混合気を形成することを特徴としており、図内では、噴霧1(115)と噴霧2(116)がこれに該当する。噴霧1(115)は、ピストン(110)に向い、燃料噴射弁(108)が噴射し、ピストン(110)の冠面に衝突した燃料が上方向へ巻き上げられ、点火プラグ(111)の方向へ向う。噴霧2は、燃料噴射弁(108)から直接、点火プラグ(111)方向へ向う様に設定されており、点火プラグ(111)は、この噴霧の塊となった混合気に点火することで燃焼が始まるが、毎回(燃焼サイクル毎)、混合気は同じタイミングで点火プラグへ到達するとは限らず、また同じ形状をした混合気になる訳ではない。更に燃焼後の混合気は、排出ガスとして排気弁(112)が開いた際に、燃焼室(109)外へ排気経路(113)を経由し、大気へ排出される。排気経路(113)内には、排出ガスを浄化する目的で、触媒(図示せず)が備わっている。   FIG. 1 shows a configuration diagram relating to the first embodiment of the present invention. In the present embodiment, a multi-cylinder engine is mainly assumed. In the following drawings, one cylinder will be described for the sake of simplicity. FIG. 1 is a configuration diagram of an internal combustion engine (101) capable of typical stratified combustion. As a feature of the internal combustion engine (101), a fuel injection valve (108) capable of directly injecting fuel into the combustion chamber is provided. First, air in the atmosphere is drawn into the combustion chamber (109) from the intake passage (103) via an air filter (not shown). Further, an air flow sensor (not shown) for measuring the intake air amount and an electric throttle valve (not shown) for adjusting the intake air amount are provided in the intake passage (103), and the control unit (102 ) Calculates the intake air amount and controls an electric throttle valve (not shown). On the downstream side of the electric throttle valve (not shown), a TGV (105) that is a gas flow control valve and a partition plate (104) are provided, and an outlet is opened near the intake valve (107). By providing the intake passage, it is possible to generate a tumble flow (114) in which the air sucked into the combustion chamber (109) flows in the vertical direction with respect to the combustion chamber (109). At this time, in order to control the formation of the gas flow, it is necessary to control the amount of air supplied from the auxiliary intake passage, and the TGV (105) is used to control the amount of air supplied from the original intake passage (103). The ratio can be controlled. On the other hand, the fuel is sent to a high-pressure fuel pump (not shown) by a lift pump (not shown) that pumps up from a fuel tank (not shown), and is pressurized by a high-pressure fuel pump (not shown). The fuel is injected directly into the combustion chamber (109) by the fuel injection valve (108) through a gallery (not shown). When stratified combustion is performed, fuel is injected from the fuel injection valve (108) into the combustion chamber (109) during the compression stroke to form a combustible air-fuel mixture around the spark plug (111). In the figure, spray 1 (115) and spray 2 (116) correspond to this. The spray 1 (115) is directed to the piston (110), the fuel injection valve (108) injects, the fuel colliding with the crown surface of the piston (110) is wound upward, and toward the spark plug (111). Head over. The spray 2 is set so as to be directed directly from the fuel injection valve (108) toward the spark plug (111), and the spark plug (111) is combusted by igniting the air-fuel mixture as a lump of spray. However, every time (each combustion cycle), the air-fuel mixture does not always reach the spark plug at the same timing, and the air-fuel mixture does not necessarily have the same shape. Further, the air-fuel mixture after combustion is discharged to the atmosphere via the exhaust path (113) outside the combustion chamber (109) when the exhaust valve (112) is opened as exhaust gas. A catalyst (not shown) is provided in the exhaust path (113) for the purpose of purifying exhaust gas.

実施例1の点火制御装置について、更に詳しく述べると、コントロールユニット(102)は、クランクシャフト(図示せず)の回転角を基準とした所定のタイミングで点火プラグ(111)が火花を飛ばせるように制御を行っている。コントロールユニット(102)から点火信号(117,118)を点火コイル(106)へ出力するが、点火信号1(117)と点火信号2(118)は独立した制御が行えるため、同時点火を行う場合以外にも、個別点火を行うことができる。点火コイル(106)は、それぞれの点火信号(117,118)に基づき、点火コイル(106)内の複数備わる一次コイルで電気エネルギの充電または遮断を行う。点火信号(117,118)により電気エネルギが遮断されたタイミングで、電磁誘導の作用により、点火コイル内の二次コイル側へ高電圧となった電気エネルギが発生する。この二次コイルから出力された高電圧の電気エネルギが点火プラグ(111)へ送られ、火花となるが、この際、点火プラグ(111)の中心電極と外側電極間の隙間(以下、火花ギャップ)の周辺状態によって、火花が飛び始める二次電圧の要求値(以下、要求二次電圧)が決まるため、前記要求二次電圧を点火コイル(106)が供給する二次電圧が超えた場合、火花が放たれることになり、この火花が飛んだ瞬間が実際の点火時期となる。前記要求二次電圧は言い換えると、内燃機関側から要求されると言え、更に詳しく述べると点火プラグ(111)周辺の状態(圧力,温度,湿度,空燃比など)と点火プラグ(111)の形状や材質などによって決定される。点火コイル(106)側から言うと、前記要求二次電圧を超える二次電圧を供給することが要求される。尚、本図では、点火コイル(106)の一次コイルを2経路と二次コイルを1経路備えた点火コイルとしているが、通常の点火コイルを並列に2本以上備え、点火プラグ(111)へ放電を行う場合においても同様の効果を得ることができる。   The ignition control device according to the first embodiment will be described in more detail. The control unit (102) allows the spark plug (111) to discharge a spark at a predetermined timing based on the rotation angle of the crankshaft (not shown). Control. When the ignition signal (117, 118) is output from the control unit (102) to the ignition coil (106), since the ignition signal 1 (117) and the ignition signal 2 (118) can be controlled independently, simultaneous ignition is performed. In addition, individual ignition can be performed. Based on the respective ignition signals (117, 118), the ignition coil (106) charges or cuts off electric energy with a plurality of primary coils in the ignition coil (106). At the timing when the electric energy is interrupted by the ignition signal (117, 118), electric energy having a high voltage is generated on the secondary coil side in the ignition coil by the action of electromagnetic induction. The high-voltage electrical energy output from the secondary coil is sent to the spark plug (111) to generate a spark. At this time, a gap between the center electrode and the outer electrode of the spark plug (111) (hereinafter referred to as a spark gap). ), The required value of the secondary voltage at which the spark starts to fly (hereinafter referred to as the required secondary voltage) is determined. Therefore, when the secondary voltage supplied by the ignition coil (106) exceeds the required secondary voltage, A spark will be released, and the moment when this spark flies becomes the actual ignition timing. In other words, it can be said that the required secondary voltage is required from the internal combustion engine side. More specifically, the state around the spark plug (111) (pressure, temperature, humidity, air-fuel ratio, etc.) and the shape of the spark plug (111) And the material. Speaking from the ignition coil (106) side, it is required to supply a secondary voltage exceeding the required secondary voltage. In this figure, the primary coil of the ignition coil (106) is an ignition coil having two paths and one secondary coil, but two or more normal ignition coils are provided in parallel to the ignition plug (111). The same effect can be obtained also when discharging.

次に点火信号と点火コイルに関する説明を、図2を用いて説明する。図2は、従来(点火コイル1本と点火プラグ1本を備えた内燃機関)の点火制御装置に関する信号を計測した結果である。図内一番上は、コントロールユニット(図1内102)から出力された点火信号(201)である。点火信号(201)は、通常、Lowレベルとなっており、点火を行う場合、点火信号(201)はHighレベルとなるが、点火信号(201)がHighレベルとなる間、点火コイル内の一次コイルへ電気エネルギを充電(充填)する期間となる。これを通電時間(206)と呼ぶ。点火信号(201)が再び、Lowレベルとなった際、点火コイルは一次コイルへの充電を遮断し、放電を開始する。このタイミングのことを点火時期と呼ぶ(207)。次に一次電流について説明する。図内上から2番目の一次電流(202)は、図の上方向になるほど、電流値が高くなることを指し、電流値が高くなるほど、一次コイル内に電気エネルギが充電されていることを指す。この充電に伴う一次電流の上昇曲線は、一次コイルの内部インダクタンスに依存しており、インダクタンスが大きいと充電に伴う電流値の上昇が遅れる(同電流値を得るまでに要する時間が掛かる)が、大きな電流を溜めることができる。また、通常、点火コイルには電流制限の回路が備わっており、例えば、通電時間(206)を図内の時間より更に長くし、充電される一次電流(202)を大きくしようとしても、ある一定量の電流値に到達した時点で、これ以上一次コイルへ電流を充電することができない仕組みとなっている。点火信号(201)がLowレベルになった瞬間に、一次電流(202)は急激に降下するが、これは、一次コイル内の電気エネルギが二次コイルへ移動したことを指す。また、一次電流が遮断される直前に最大値となる一次電流(202)の値を一次遮断電流(208)と言う。一次コイルから二次コイルへ移動した電気エネルギの表記は、図2の上から3番目が二次電圧(203)と図2の上から4番目の二次電流(204)となる。二次電圧(203)と二次電流(204)は、図の下方向になるほど、値が大きくなることを示す。点火コイルが供給できる二次電圧は、一次コイルに印加された電圧と一次コイルの巻き数と二次コイルの巻き数の比など(巻数比)から決まるが、前記要求二次電圧を点火コイルが供給できる二次電圧が高くなければならない。この前記要求二次電圧と点火コイルが供給できる二次電圧が逆転した場合、点火プラグから火花が放たれず、結果的に失火を招くことになる。具体的には、前記要求二次電圧がなんらかの理由により上昇し、点火コイルの供給する二次電圧がこれを満たすことができない場合が挙げられる。これに対し、二次電流(204)については、点火コイル内部の抵抗値や二次コイルのインダクタンスなどから決定され、火花が継続する時間=放電時間(209)と密接な関係性がある。一般的に放電時間(209)が長くなる性質の点火コイルほど、二次電流(204)は低くなり、逆に放電時間(209)が短くなる性質の点火コイルほど、二次電流(204)は高くなる。前記放電パターン(205)は、点火プラグからの放電エネルギを示したものであり、放電エネルギの変化を確認することができる。放電エネルギは、二次電圧×二次電流×時間の式で求めることができるため、図内では、斜線(210)の面積がこれに当たる。この放電エネルギ(210)の面積が大きいほど、内燃機関の燃焼状態が悪い場合に燃焼安定性などに効果が期待できる。   Next, an explanation regarding the ignition signal and the ignition coil will be given with reference to FIG. FIG. 2 shows a result of measuring signals related to a conventional ignition control device (internal combustion engine including one ignition coil and one ignition plug). The top of the figure is the ignition signal (201) output from the control unit (102 in FIG. 1). The ignition signal (201) is normally at a low level, and when ignition is performed, the ignition signal (201) is at a high level. While the ignition signal (201) is at a high level, the primary in the ignition coil This is a period for charging (filling) the coil with electrical energy. This is called energization time (206). When the ignition signal (201) again becomes a low level, the ignition coil cuts off charging of the primary coil and starts discharging. This timing is called ignition timing (207). Next, the primary current will be described. The second primary current (202) from the top in the figure indicates that the current value increases as it goes upward in the figure, and that the electrical energy is charged in the primary coil as the current value increases. . The rising curve of the primary current accompanying charging depends on the internal inductance of the primary coil. If the inductance is large, the increase in the current value accompanying charging is delayed (it takes time to obtain the same current value). A large current can be stored. In general, the ignition coil has a current limiting circuit. For example, even if the energization time (206) is made longer than the time shown in the figure and the primary current (202) to be charged is increased, the ignition coil is constant. When the amount of current value is reached, the primary coil can no longer be charged with current. At the moment when the ignition signal (201) becomes a low level, the primary current (202) drops rapidly, which indicates that the electric energy in the primary coil has moved to the secondary coil. Further, the value of the primary current (202) that becomes the maximum value immediately before the primary current is cut off is referred to as the primary cut-off current (208). In the notation of the electric energy transferred from the primary coil to the secondary coil, the third from the top of FIG. 2 is the secondary voltage (203) and the fourth secondary current (204) from the top of FIG. The secondary voltage (203) and the secondary current (204) indicate that the values increase in the downward direction of the figure. The secondary voltage that can be supplied by the ignition coil is determined by the voltage applied to the primary coil and the ratio of the number of turns of the primary coil and the number of turns of the secondary coil (turn ratio). The secondary voltage that can be supplied must be high. When the required secondary voltage and the secondary voltage that can be supplied by the ignition coil are reversed, no spark is emitted from the spark plug, resulting in misfire. Specifically, there is a case where the required secondary voltage rises for some reason and the secondary voltage supplied from the ignition coil cannot satisfy this. On the other hand, the secondary current (204) is determined from the resistance value inside the ignition coil, the inductance of the secondary coil, and the like, and has a close relationship with the duration of the spark = discharge time (209). In general, an ignition coil having a longer discharge time (209) has a lower secondary current (204), while an ignition coil having a shorter discharge time (209) has a lower secondary current (204). Get higher. The discharge pattern (205) shows the discharge energy from the spark plug, and the change of the discharge energy can be confirmed. Since the discharge energy can be obtained by the equation of secondary voltage × secondary current × time, the area of the oblique line (210) corresponds to this in the figure. The larger the area of the discharge energy (210), the more effective the combustion stability can be expected when the combustion state of the internal combustion engine is poor.

続いて、前記放電パターンについて、図3を用いて説明を行う。図3は、放電時間が短い特性を持つ短放電型点火コイルの前記放電パターン(301)と放電時間が長い特性を持つ長放電型点火コイルの前記放電パターン(302)と、短放電型点火コイルと長放電型点火コイルを同時に点火することで得ることができる前記放電パターン(303)を示した図である。短放電型点火コイルの前記放電パターン(301)は、長放電型点火コイルの前記放電パターン(302)に比べ、放電時間が短いことが特徴であるが(305,306)、更に点火直後(=点火時期(図内:304))でピークとなる放電エネルギ(310)が長放電型点火コイルの放電エネルギピーク(311)より高いことが挙げられる。放電エネルギのピークが高いと言うことは、二次電流が高いことであるとも言える。何故なら、二次電圧は前記要求二次電圧(内燃機関の運転状態など)によって決定されるため、内燃機関の運転状態が同じであれば、放電エネルギのピークは二次電流が支配するからである。ここで、具体的な使い方を挙げると、均質燃焼時では、短放電型点火コイル(301)を用い、成層燃焼時では長放電型点火コイル(302)を用いることで、それぞれの燃焼方式で要求される前記放電パターンを満たし、成層燃焼から均質燃焼または、均質燃焼から成層燃焼の切換え時には、双方を組み合わせた本発明(303)にある前記放電パターンとすることで、燃焼安定性を損なうことなくスムーズな燃焼切換えを行うことができる。   Next, the discharge pattern will be described with reference to FIG. FIG. 3 shows the discharge pattern (301) of a short discharge ignition coil having a short discharge time characteristic, the discharge pattern (302) of a long discharge ignition coil having a long discharge characteristic, and a short discharge ignition coil. It is the figure which showed the said discharge pattern (303) which can be obtained by igniting and a long discharge type ignition coil simultaneously. The discharge pattern (301) of the short discharge ignition coil is characterized in that the discharge time is shorter than the discharge pattern (302) of the long discharge ignition coil (305, 306). The peak discharge energy (310) at the ignition timing (in the figure: 304) is higher than the discharge energy peak (311) of the long discharge ignition coil. It can be said that the peak of the discharge energy is a high secondary current. This is because the secondary voltage is determined by the required secondary voltage (such as the operating state of the internal combustion engine), and therefore, if the operating state of the internal combustion engine is the same, the peak of the discharge energy is dominated by the secondary current. is there. Here, as specific usage, a short discharge type ignition coil (301) is used at the time of homogeneous combustion, and a long discharge type ignition coil (302) is used at the time of stratified combustion. The discharge pattern in the present invention (303) that combines both of the above-described discharge patterns and satisfying the discharge pattern and switching between stratified combustion and homogeneous combustion or between homogeneous combustion and stratified combustion can be achieved without impairing combustion stability. Smooth combustion switching can be performed.

これを具体的な制御の流れとして図4を用いて説明すると、まず、燃焼切換え時なのかを判断し(S401)、燃焼切換え時であれば、複数の点火コイルに同時または個別に点火信号を入力し、点火コイルを駆動する(S404)。また、燃焼切換え時でない場合、更に燃焼方式が均質燃焼か成層燃焼であるかを判断する(S402)。均質燃焼の場合では、概述の内容から短放電型点火コイルを用いた点火制御を実施し(S403)、成層燃焼の場合、長放電型点火コイルを用いた点火制御を実施する(S405)。   This will be described with reference to FIG. 4 as a specific control flow. First, it is determined whether the combustion is switched (S401). If the combustion is switched, an ignition signal is sent to a plurality of ignition coils simultaneously or individually. Then, the ignition coil is driven (S404). If it is not during combustion switching, it is further determined whether the combustion method is homogeneous combustion or stratified combustion (S402). In the case of homogeneous combustion, ignition control using a short discharge ignition coil is performed from the outline (S403). In the case of stratified combustion, ignition control using a long discharge ignition coil is performed (S405).

また、成層燃焼時においては、燃焼サイクル時で混合気の状態が異なることから、点火プラグ(111)の電極間で空燃比がリーン状態になることも考えられるため、双方の点火コイルを同時に使用し、二次電流が高い状態で使用しても良い。   Also, during stratified combustion, the air-fuel ratio may be lean between the electrodes of the spark plug (111) because the state of the air-fuel mixture differs during the combustion cycle, so both ignition coils are used simultaneously. However, it may be used in a state where the secondary current is high.

本発明の基本構成図。1 is a basic configuration diagram of the present invention. 従来の放電エネルギ説明図。Conventional discharge energy explanatory drawing. 本発明の放電エネルギ説明図。Explanatory drawing of discharge energy of this invention. 本発明のフローチャート。The flowchart of this invention.

符号の説明Explanation of symbols

101 内燃機関
102 コントロールユニット
103 吸気経路
104 仕切り板
105 ガス流動制御弁
106 点火コイル
107 吸気弁
108 燃料噴射弁
109 燃焼室
110 ピストン
111 点火プラグ
112 排気弁
113 排気経路
114 タンブル流
115 噴霧1
116 噴霧2
117 点火信号1
118 点火信号2
101 Internal combustion engine 102 Control unit 103 Intake path 104 Partition plate 105 Gas flow control valve 106 Ignition coil 107 Intake valve 108 Fuel injection valve 109 Combustion chamber 110 Piston 111 Exhaust valve 112 Exhaust path 114 Tumble flow 115 Spray 1
116 Spray 2
117 Ignition signal 1
118 Ignition signal 2

Claims (1)

1気筒毎に混合気に点火を行う点火プラグ1つに対し少なくとも2つ以上の点火コイルを有し、均質燃焼と成層燃焼とを切換えて行う内燃機関の点火制御装置において、
一方の点火コイルは放電開始時の二次電流が高い性質を持ち、他方の点火コイルは放電時間が長い性質を持つ点火コイルを少なくとも1つずつ以上備え、
前記内燃機関の燃焼が均質燃焼の場合、少なくとも放電開始時の二次電流が高い性質を持つ点火コイルを用いて点火を行い、
前記内燃機関の燃焼が成層燃焼の場合、少なくとも放電時間が長い性質を持つ点火コイルを用いて点火を行い、
前記内燃機関の燃焼が、均質燃焼と均質燃焼との燃焼切換え中の場合は、少なくとも放電開始時の二次電流が高い性質を持つ点火コイルと放電時間が長い性質を持つ点火コイルとの双方を制御することを特徴とした点火制御装置。
In an ignition control device for an internal combustion engine that has at least two ignition coils for one ignition plug that ignites an air-fuel mixture for each cylinder, and performs switching between homogeneous combustion and stratified combustion,
One ignition coil has a property of high secondary current at the start of discharge, and the other ignition coil has at least one ignition coil having a property of long discharge time,
When the combustion of the internal combustion engine is homogeneous combustion, at least ignition is performed using an ignition coil having a property of a high secondary current at the start of discharge,
When the combustion of the internal combustion engine is stratified combustion, ignition is performed using an ignition coil having a property of at least a long discharge time,
When the combustion of the internal combustion engine is during combustion switching between homogeneous combustion and homogeneous combustion, at least both an ignition coil having a high secondary current property at the start of discharge and an ignition coil having a long discharge time property An ignition control device characterized by controlling.
JP2008291627A 2008-11-14 2008-11-14 Ignition control device or ignition control method for internal combustion engine Expired - Fee Related JP4982470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291627A JP4982470B2 (en) 2008-11-14 2008-11-14 Ignition control device or ignition control method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291627A JP4982470B2 (en) 2008-11-14 2008-11-14 Ignition control device or ignition control method for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010116879A true JP2010116879A (en) 2010-05-27
JP4982470B2 JP4982470B2 (en) 2012-07-25

Family

ID=42304691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291627A Expired - Fee Related JP4982470B2 (en) 2008-11-14 2008-11-14 Ignition control device or ignition control method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4982470B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145469A1 (en) 2010-05-21 2011-11-24 日本電気株式会社 Instructed position determination device of touch panel, touch panel device, electronic apparatus provided with same, instructed position determination method of touch panel and computer program storage medium
JP2017002769A (en) * 2015-06-08 2017-01-05 日立オートモティブシステムズ株式会社 Internal combustion engine control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291519A (en) * 1999-04-07 2000-10-17 Nissan Motor Co Ltd Ignition device for internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000291519A (en) * 1999-04-07 2000-10-17 Nissan Motor Co Ltd Ignition device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145469A1 (en) 2010-05-21 2011-11-24 日本電気株式会社 Instructed position determination device of touch panel, touch panel device, electronic apparatus provided with same, instructed position determination method of touch panel and computer program storage medium
JP2017002769A (en) * 2015-06-08 2017-01-05 日立オートモティブシステムズ株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP4982470B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
EP1705371B1 (en) Spark ignition engine, controller for use in the engine, ignition coil for use in the engine
JP4170902B2 (en) In-cylinder direct injection internal combustion engine
US6397827B1 (en) Spark ignition device for direct injection-type engines
US20230184160A1 (en) Ignition system
CN113825900B (en) Control device for internal combustion engine
JP2014206068A (en) Ignition control device
JP2012177310A (en) Ignition control device for internal combustion engine
JP5150460B2 (en) Ignition control device or ignition control method for internal combustion engine
Geringer et al. Adaptive continuous spark ignition as enabler for high dilution EGR operation
JP4982470B2 (en) Ignition control device or ignition control method for internal combustion engine
CN105164391B (en) The ignition control device of internal combustion engine and ignition control method
JP6392535B2 (en) Control device for internal combustion engine
JP2003049650A (en) Compressed self-ignition internal combustion engine
JP6563699B2 (en) Ignition control device
JP2004263612A (en) Control device of internal combustion engine
JP7251900B2 (en) Control device for internal combustion engine
JP4939629B2 (en) Ignition control device for internal combustion engine
JP4914547B2 (en) Method for operating a direct injection gasoline driven internal combustion engine
JP7102061B2 (en) Internal combustion engine control device
JP5954812B2 (en) Control device for spark ignition internal combustion engine
JP2011069232A (en) Ignition control device for internal combustion engine
JP2014088778A (en) Internal combustion engine
JP4884516B2 (en) Ignition control device for internal combustion engine
JP2003206796A (en) Cylinder injection type internal combustion engine
JP2010144592A (en) Ignition control device, control method and ignition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982470

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees