JP2010116663A - Method for producing molded body from polyphosphoric acid solution - Google Patents

Method for producing molded body from polyphosphoric acid solution Download PDF

Info

Publication number
JP2010116663A
JP2010116663A JP2009289279A JP2009289279A JP2010116663A JP 2010116663 A JP2010116663 A JP 2010116663A JP 2009289279 A JP2009289279 A JP 2009289279A JP 2009289279 A JP2009289279 A JP 2009289279A JP 2010116663 A JP2010116663 A JP 2010116663A
Authority
JP
Japan
Prior art keywords
polyphosphoric acid
dope
polymer
molded body
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009289279A
Other languages
Japanese (ja)
Inventor
Yoshihiko Teramoto
喜彦 寺本
Shoichi Kamimura
彰一 上村
Seishi Hotta
清史 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2009289279A priority Critical patent/JP2010116663A/en
Publication of JP2010116663A publication Critical patent/JP2010116663A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve maintenance cycle of an apparatus in industrial production of a high performance polybenzazole molded product and suppress metal ion contamination of a polyphosphoric acid solvent. <P>SOLUTION: The method for producing the molded product from the phosphate solution, uses a production apparatus which is made of a highly corrosive resistant material in at least a dope-contacted part of a device for agitating the dope to be uniformly dispersed and/or a pump device for transferring the uniformly dispersed dope, and in addition, a filter material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は高性能高分子、特に機械的強度や耐熱性に優れた高分子から成る成形体の製造方法に関するものである。 The present invention relates to a method for producing a molded body comprising a high-performance polymer, particularly a polymer excellent in mechanical strength and heat resistance.

芳香環のパラ結合等の剛直ユニットを主鎖に持つ高分子は耐熱性が高く、力学特性も優れている。これらの高分子の中でもポリベンズアゾール類は極めて耐熱性が高い高性能高分子である。これらのポリマーの重合及び成形工程はポリ燐酸を溶媒として用いる事が知られている(WolfeらMaclomolecules,1981年909頁及び915頁)。これらのポリ燐酸溶媒を利用するポリマーは実験室規模ではその性能評価がなされてきたが、近年まで工業的に生産されることはなく、工業的実施に伴う問題は議論されることはなかった。   A polymer having a rigid unit such as a para bond of an aromatic ring in the main chain has high heat resistance and excellent mechanical properties. Among these polymers, polybenzazoles are high-performance polymers with extremely high heat resistance. The polymerization and molding processes for these polymers are known to use polyphosphoric acid as a solvent (Wolfe et al. Macromolecules, 1981, pages 909 and 915). Although the performance evaluation of the polymer using these polyphosphoric acid solvents has been made on a laboratory scale, it has not been industrially produced until recently, and problems associated with industrial implementation have not been discussed.

これらの高性能ポリマーを重合したり、繊維やフィルム等に加工する際に、剪断を加える反応機やポリマー溶液を移送するポンプ、口金から定量吐出するためのポンプでは、ポリマー溶液を加工しやすい粘性係数まで下げるために、工程温度が160℃を越える場合が多い。また、装置内での剪断発熱によってさらに高い温度になることがある。この際に、従来より用いられてきたSUS316Lやステライト鋼(三菱マテリアル)といった耐蝕材料では、ポリ燐酸が金属を腐蝕する為に装置の一部が溶けだして溶媒のリサイクルを困難にしたり、装置寿命が短くなるといった問題が生じた。   When these high-performance polymers are polymerized or processed into fibers, films, etc., with a reactor that applies shear, a pump that transports the polymer solution, and a pump that dispenses a fixed amount from the base, the viscosity that makes it easy to process the polymer solution In order to lower the coefficient, the process temperature often exceeds 160 ° C. In addition, the temperature may be higher due to shear heat generation in the apparatus. At this time, with conventional corrosion resistant materials such as SUS316L and stellite steel (Mitsubishi Materials), polyphosphoric acid corrodes the metal, so part of the equipment melts, making it difficult to recycle the solvent, The problem of shortening occurred.

本発明はポリ燐酸溶媒を用いる高性能ポリマーを重合及び成形加工する際に、従来の装置材質を改善し反応機やポンプの寿命改善とリサイクル溶媒中の金属イオン濃度を低減しようとするものである。   In the present invention, when polymerizing and molding a high-performance polymer using a polyphosphoric acid solvent, it is intended to improve the material of a conventional apparatus, improve the life of a reactor and a pump, and reduce the concentration of metal ions in a recycling solvent. .

即ち、本発明に係る第1発明は、ポリ燐酸溶媒とポリ燐酸に可溶なポリマーからなるドープから成形体を製造する際に、ドープを撹拌し均一分散する装置及び/又は均一分散されたドープを移送するポンプ装置の少なくともド−プ接液部分が116%ポリ燐酸175℃浸漬評価での材質溶出速度が0.1(mm/年)以下である耐蝕材であり、耐蝕材がニッケル系合金で構成されてなる製造装置を用いることを特徴とするポリ燐酸溶液から成形体を製造する方法であり、第2発明は、上記第1発明の濾材を用いることを特徴とするポリ燐酸溶液から成形体を製造する方法に関する。 That is, the first invention according to the present invention is a device for stirring and uniformly dispersing a dope and / or a uniformly dispersed dope when a molded body is produced from a polyphosphoric acid solvent and a dope comprising a polymer soluble in polyphosphoric acid. At least a portion of the wetted portion of the pump device that transports the material is a corrosion-resistant material having a material elution rate of 0.1 (mm / year) or less at 116% polyphosphoric acid 175 ° C. immersion evaluation , and the corrosion-resistant material is a nickel-based alloy The second invention is a method for producing a molded body from a polyphosphoric acid solution , characterized in that the filter medium according to the first invention is used. The present invention relates to a method for manufacturing a body .

ポリ燐酸などの金属腐食性が高い溶媒を用いて、高性能高分子を加工するさいには高度な耐蝕性能を有する素材を利用しないと装置の腐食と回収溶媒への金属溶出の問題が発生する。本発明により、生産設備の腐食によるメンテナンス頻度および回収溶媒への金属の溶出が低減され製品製造コストを低減させることを可能とした。   When processing high-performance polymers using a highly corrosive solvent such as polyphosphoric acid, materials with a high degree of corrosion resistance must be used, resulting in problems of equipment corrosion and metal elution into the recovery solvent. . According to the present invention, the maintenance frequency due to corrosion of production facilities and the elution of metal into the recovered solvent are reduced, and the product manufacturing cost can be reduced.

以下、本発明を詳述する。
本発明は、Wolfeらの「Liquid Crystalline Polymer Compositions,Process and Products」 U.S.Patent 4,703,103(October 27,1987);Wolfeらの「Liquid Crystalline Polymer Compositions,Process and Products」 U.S.Patent 4,533,692(August 6,1985);Wolfeらの「Liquid Crystalline Poly(2,6−Benzothiazole) Compositions,Process and Products」 U.S.Patent 4,533,724(August 6,1985);Wolfeらの「Liquid Crystalline Polymer Compositions,Process and Products」 U.S.Patent 4,533,693(August 6,1985);Evers「Thermoxdatively StableArticulated p−Benzobisoxazole p−Benzobisthiazole Polymers」 U.S.Patent 4,359,567(November 16,1982);Tsaiらの「Method for Making Heterocyclic Block Copolymer Compositions,Process and Products」 U.S.Patent 4,578,432(March 25,1986);11 Ency.Poly.Sci.& Eng.,「Polybenzothiazoles and Polybenzoxazoles」,601(J.Wiley & Sons 1988) and W.W.Adamsら 「The Materials Science and Engineering of Rigid−Rod Polymers」(Materials Research Society1989)に記載されているようなPBO、PBT、PBIのホモポリマーのランダム、シーケンシャル、ブロック共重合ポリマー及びこれらの誘導体、およびそれらの一部を主鎖に含むポリマーをポリ燐酸溶媒を経て加工する製造方法に関する。
The present invention is described in detail below.
The present invention is disclosed in Wolf et al., “Liquid Crystalline Polymer Compositions, Process and Products” U.S. Pat. S. Patent 4,703,103 (October 27, 1987); Wolfe et al., “Liquid Crystalline Polymer Compositions, Process and Products” U.S. Pat. S. Patent 4,533,692 (August 6, 1985); Wolfe et al., “Liquid Crystalline Poly (2,6-Benzothiazole) Compositions, Process and Products” U.S. Pat. S. Patent 4,533,724 (August 6, 1985); Wolfe et al., “Liquid Crystalline Polymer Compositions, Process and Products”, U.S. Pat. S. Patent 4,533,693 (August 6, 1985); Evers, “Thermoxatively Stable Articulated p-Benzobisazole p-Benzobisimidazole Polymers”, U.S. Pat. S. Patent 4,359,567 (November 16, 1982); Tsai et al., “Method for Making Heterocyclic Block Polymer Compositions, Process and Products” U.S. Pat. S. Patent 4,578,432 (March 25, 1986); 11 Ency. Poly. Sci. & Eng. , “Polybenzothazoles and Polybenzoxazoles”, 601 (J. Wiley & Sons 1988) and W. W. PAM, PBT, and homopolymers of these polymers, as described in Adams et al., “The Materials Science and Engineering of Rigid-Rod Polymers” (Materials Research Society 1989); The present invention relates to a production method of processing a polymer containing a part of the polymer in a main chain through a polyphosphoric acid solvent.

ポリマーは化学構造式(c)(d)に代表されるようなAB型 かつ/または 化学構造式(a)(b)に代表されるようなAA/BB型単位であることができる。   The polymer can be AB type as represented by chemical structural formulas (c) and (d) and / or AA / BB type units as represented by chemical structural formulas (a) and (b).

Figure 2010116663
Figure 2010116663

式中、各々のArは種々の芳香属基を表わす。芳香属基はピリジニレン基のようなヘテロ環であってもよい、但し炭素で環を形成している事が好ましい。芳香属基は縮合した多環基環若しくは縮合していない多環基であってもよい、但し1つの6員環が好ましい。大きさ制約はないが、芳香属基は18個以下の炭素原子を含む事が好ましく、より好ましくは12個以下の炭素原子を含む事が好ましく、さらに好ましくは6個以下の炭素原子を含む事が好ましい。AA/BB型単位のAr1は1,2,4,5−フェニレン構造もしくはその類似体である事が好ましい。AB型単位のArは1,3,4−フェニレン構造もしくはその類似体である事が好ましい。各々のZは互いが無関係に酸素原子もしくは硫黄原子もしくは窒素と水素原子である。各々のDMは互いが無関係に直接結合もしくは2価の有機構造である。2価の構造単位としては、前述の芳香属基(Ar)が好ましい。特に、1,4−フェニレン構造もしくはその類似体が好適である。各々のアゾール環の窒素原子とZ構造は隣接する芳香属基の炭素原子と結合して、5員アゾール環と芳香属基が縮合した形になっている。AA/BB型単位のアゾール環は、引用文献中の11 Ency.Poly.Sci.& Eng.,「Polybenzothiazoles and Polybenzoxazoles」,601(J.Wiley & Sons 1988)に図示されているシス型もしくはトランス型の何れであってもよい。 In the formula, each Ar represents various aromatic groups. The aromatic group may be a heterocycle such as a pyridinylene group, provided that a ring is formed of carbon. The aromatic group may be a condensed polycyclic group ring or a non-condensed polycyclic group, with one 6-membered ring being preferred. Without limitation on the size, aromatic Shokumoto preferably be containing up to 18 carbon atoms, more preferably preferably contains up to 12 carbon atoms, more preferably containing up to 6 carbon atoms Things are preferable. Ar1 in the AA / BB type unit preferably has a 1,2,4,5-phenylene structure or an analogue thereof. AB in the AB type unit is preferably a 1,3,4-phenylene structure or an analog thereof. Each Z is independently an oxygen atom, a sulfur atom, or a nitrogen and hydrogen atom. Each DM is a direct bond or a divalent organic structure independently of each other. As the divalent structural unit, the aforementioned aromatic group (Ar) is preferable. In particular, a 1,4-phenylene structure or an analog thereof is preferable. The nitrogen atom and the Z structure of each azole ring are bonded to the carbon atom of the adjacent aromatic group, and the 5-membered azole ring and the aromatic group are condensed. The azole ring of AA / BB type unit is described in 11 Ency. Poly. Sci. & Eng. , “Polybenzothazoles and Polybenzoxazoles”, 601 (J. Wiley & Sons 1988).

ポリマーはAB−PBZ繰り返し単位もしくはAA/BB−PBZ繰り返し単位で構成される事が好ましく更に好ましくは本質的にAA/BB−PBZ繰り返し単位で構成される事が好ましい。ポリマー中のアゾール環はZが酸素原子または硫黄原子または窒素と水素である事が好ましい。   The polymer is preferably composed of AB-PBZ repeating units or AA / BB-PBZ repeating units, more preferably essentially consisting of AA / BB-PBZ repeating units. In the azole ring in the polymer, Z is preferably an oxygen atom, a sulfur atom, or nitrogen and hydrogen.

本発明で用いる繰り返し単位は構造式(a)−(h)に示したものが好ましい。より好ましくは構造式(a)−(f)に示したものが良く、更に好ましくは構造式(a)−(d)に示したものが好適である。   The repeating units used in the present invention are preferably those represented by structural formulas (a) to (h). More preferred are those represented by structural formulas (a)-(f), and even more preferred are those represented by structural formulas (a)-(d).

Figure 2010116663
Figure 2010116663

PBZポリマーは少なくとも平均でおよそ25以上の繰り返し単位を有する事が好ましい、より好ましくは少なくともおよそ50以上の繰り返し単位を有する事が好ましく、更に好ましくは少なくともおよそ100以上の繰り返し単位を有する事が好ましい。AA/BB−PBZ剛直鎖の極限粘度数は、25℃メタンスルフォン酸の測定で、少なくともおよそ10dl/g以上である事が好ましい、より好ましくは少なくともおよそ15dl/g以上である事が好ましく、更に好ましくは少なくともおよそ20dl/g以上である事が好ましい。ある用途に対しては極限粘度数は、少なくともおよそ25もしくは30dl/gであることが最適である。極限粘度数は、60dl/gであってもよいが、40dl/gである事が好ましい。半剛直なAB−PBZポリマーの極限粘度数は、少なくともおよそ5dl/g以上である事が好ましい、より好ましくは少なくともおよそ10dl/g以上である事が好ましく、更に好ましくは少なくともおよそ15dl/g以上である事が好ましい。   The PBZ polymer preferably has an average of at least about 25 or more repeating units, more preferably at least about 50 or more repeating units, and more preferably at least about 100 or more repeating units. The intrinsic viscosity of the AA / BB-PBZ rigid straight chain is preferably at least about 10 dl / g or more, more preferably at least about 15 dl / g or more as measured by 25 ° C. methanesulfonic acid, Preferably it is at least about 20 dl / g or more. For some applications, the intrinsic viscosity is optimally at least approximately 25 or 30 dl / g. The intrinsic viscosity number may be 60 dl / g, but is preferably 40 dl / g. The intrinsic viscosity of the semi-rigid AB-PBZ polymer is preferably at least about 5 dl / g or more, more preferably at least about 10 dl / g or more, and even more preferably at least about 15 dl / g or more. Something is preferable.

このポリマーあるいはコポリマーは、モノマーもしくはオリゴマーをポリ燐酸溶媒中で反応させることで好ましい繰り返し単位まで重合する事ができる。   This polymer or copolymer can be polymerized to a preferred repeating unit by reacting a monomer or oligomer in a polyphosphoric acid solvent.

ポリマーのポリ燐酸溶媒の濃度斑をなくしかつミクロ分散させることは成形品の欠点を減らし品質を安定化させる上で極めて重要である。本発明で利用する事が可能な反応機は2軸のニーダー、1軸リアクター、1軸押し出し機に分散エレメントを用いた物、2軸押し出し機が利用できる。特に高粘度に対応できる機種を選定する事が好ましい。   Eliminating unevenness in the concentration of the polymer polyphosphate solvent and micro-dispersion are extremely important in reducing defects of the molded article and stabilizing the quality. As the reactor that can be used in the present invention, a twin screw kneader, a single screw reactor, a single screw extruder using a dispersion element, and a twin screw extruder can be used. It is particularly preferable to select a model that can handle high viscosity.

本発明に利用できるポンプとして、ギヤポンプ、モーノポンプ(兵神装備)、スクリューフィーダー等が可能である。吐出圧力を高く設定できるギヤポンプが特に有用である。特に大型の設備においては長いポリマーラインを移送する際の粘性抵抗に見合った昇圧能力が必要である。   As a pump that can be used in the present invention, a gear pump, a Mono pump (Hyojin equipment), a screw feeder, and the like are possible. A gear pump that can set the discharge pressure high is particularly useful. In particular, in a large-scale facility, it is necessary to have a pressure increasing capability commensurate with viscous resistance when a long polymer line is transferred.

装置から発生する燐酸溶解金属量を低減するには、ポリ燐酸溶液で潤滑された装置摺動部分を燐酸耐蝕に強い材質にする事に加えて、材料の硬度が高く摩耗に強い材質を選定する必要がある。部品を母材から加工する場合と溶射材から加工する場合があるが、組成だけでなく組織が緻密である溶射方法を選定する事が肝要である。   In order to reduce the amount of phosphoric acid-dissolved metal generated from the equipment, in addition to making the equipment sliding parts lubricated with polyphosphoric acid solution resistant to phosphoric acid corrosion resistance, select a material with high material hardness and resistance to wear. There is a need. There are cases where parts are processed from a base material and thermal spray materials, but it is important to select a thermal spraying method that has a dense structure as well as a composition.

燐酸耐蝕材の例としては、ハステロイ等のニッケル系合金、タンタル・ニオブ系合金、ステライト等のコバルト系合金、SUS317等のステンレス鋼、グラファイトやアルミナ等のセラミックスが利用できる。中でも特に優れているのはニッケル系合金である。さらに耐摩耗性に優れたニッケルベースのタングステンカーバイト合金やニッケル系合金のHIP(熱間等方圧加圧)処理母材が好ましい。サーメットや窒化炭素等のコーティングも有用であるが母材の耐食性とコーティングの厚みを適切にしてピンホールによる性能低下が生じないように工夫する必要がある。異種類の材料を組み合わせて使用するには、熱膨張や接合部分の残留応力に配慮することは言うまでもない。   Examples of phosphoric acid corrosion resistant materials include nickel alloys such as Hastelloy, tantalum / niobium alloys, cobalt alloys such as stellite, stainless steels such as SUS317, and ceramics such as graphite and alumina. Of these, nickel alloys are particularly excellent. Further, a nickel-based tungsten carbide alloy or nickel-based alloy HIP (hot isostatic pressing) processing base material having excellent wear resistance is preferable. Coatings such as cermet and carbon nitride are also useful, but it is necessary to devise so as not to cause performance degradation due to pinholes by making the base material corrosion resistance and coating thickness appropriate. Needless to say, in order to use a combination of different types of materials, consideration should be given to thermal expansion and residual stress at the joint.

本発明で加工する溶液は、ポリ燐酸溶液で160℃を超える温度ではステンレス鋼のような耐食性金属でも溶かす性質がある。このために、反応機やポンプのクリアランスを変化させて、分散能力や送液能力を経時適に低下させる。また、燐酸溶媒中に金属イオンが溶出することから溶媒リサイクルする際の溶媒品質の変化が避けられない。一旦溶媒中に溶けだした金属イオンを吸着して溶媒精製することは、きわめて困難でありポリマー成形工程での金属溶出を最小限にすることは重要である。   The solution processed in the present invention is a polyphosphoric acid solution and has a property of dissolving even a corrosion-resistant metal such as stainless steel at a temperature exceeding 160 ° C. Therefore, the clearance of the reactor and the pump is changed, and the dispersion capacity and the liquid feeding capacity are appropriately reduced over time. In addition, since metal ions are eluted in the phosphoric acid solvent, a change in solvent quality is unavoidable when the solvent is recycled. It is extremely difficult to adsorb metal ions once dissolved in a solvent and purify the solvent, and it is important to minimize metal elution in the polymer molding process.

ポリ燐酸による装置や配管の腐食を低減させるには工程の温度を下げることが効果的であるが、利用するポリマーの重合度が高くなると溶液の粘性係数が高くなる事から温度を下げる事に限界がある。また反応機内の温度は温度を高めて反応時間を短くする事で装置サイズを小さくし、設備コストを低減できる事から高い温度でも使用可能にすることが望まれる。   Although it is effective to reduce the temperature of the process to reduce corrosion of equipment and piping due to polyphosphoric acid, the higher the degree of polymerization of the polymer used, the higher the viscosity coefficient of the solution, so there is a limit to lowering the temperature. There is. In addition, it is desired that the temperature in the reactor can be used even at a high temperature because the apparatus size can be reduced by increasing the temperature to shorten the reaction time and the equipment cost can be reduced.

ポリ燐酸溶媒を経由して加工する高性能高分子材料ポリベンズビスオキザゾールを例として本発明を説明する。重合度がおよそ200のポリベンズビスオキサゾールポリマーのポリマー濃度がおよそ14重量パーセントであるポリ燐酸溶液から繊維を製造するために好ましい温度は165℃以上でより好ましくは170℃以上である。しかしながら、この溶液の170℃における粘度は1000Pa・s(剪断速度10毎秒)と高い為に反応機やポンプ内でのせん断エネルギーの熱消散が大きく溶液温度が著しく増大する。その為に通常の耐蝕材では腐食が進行して、装置の摩耗や好ましくない金属イオンの溶媒への溶出が進行して。装置部品の交換周期が数ヶ月と短くなったり、溶液中の金属イオン濃度が高くなるといった問題が生じる。   The present invention will be described by taking as an example a high performance polymer material polybenzbisoxazole processed via a polyphosphoric acid solvent. A preferred temperature for producing fibers from a polyphosphoric acid solution having a polymer concentration of about 200 weight percent of a polybenzbisoxazole polymer having a degree of polymerization of about 200 is 165 ° C or higher, more preferably 170 ° C or higher. However, since the viscosity at 170 ° C. of this solution is as high as 1000 Pa · s (shear rate 10 per second), the heat dissipation of the shear energy in the reactor and the pump is large, and the solution temperature increases remarkably. For this reason, corrosion progresses with normal corrosion resistant materials, and wear of the device and elution of undesirable metal ions into the solvent progress. There arises a problem that the replacement period of the device parts is shortened to several months, and the concentration of metal ions in the solution is increased.

高温下でポリ燐酸を加工する装置の材質として特に燐酸耐蝕に優れた物を使用する必要がある。燐酸耐蝕の評価は高い温度で確認するほど判定が容易である。従って場合によっては実際の加工温度より高い温度での評価になるが、耐蝕性が優れた材料を用いることで工業生産が安定に実施できる。本発明の評価は210℃116%ポリ燐酸溶液に素材を40時間浸漬して重量減少を測定する方法で行う。評価温度が210℃よりも低いと材料の溶出量が小さく測定が困難である。また230℃以上では評価容器として用いるガラスの溶出が多く実施が困難である。ポリ燐酸濃度には特に制約はないが、市販で入手が容易な116%で評価する。浸漬時間は40時間を標準として24時間あたりの溶出量を計算する。耐蝕性が高い材料については100時間、耐食性が不十分な材料については4時間程度まで評価時間を短縮しても1(mm/年)を超えるかの判定が出来れば支障はない。   As a material for an apparatus for processing polyphosphoric acid at a high temperature, it is necessary to use a material particularly excellent in phosphoric acid corrosion resistance. The evaluation of phosphoric acid corrosion resistance is easier as it is confirmed at a higher temperature. Therefore, in some cases, the evaluation is performed at a temperature higher than the actual processing temperature, but industrial production can be stably performed by using a material having excellent corrosion resistance. The evaluation of the present invention is carried out by a method of measuring weight loss by immersing the material in a polyphosphoric acid solution at 210 ° C. for 40 hours. When the evaluation temperature is lower than 210 ° C., the elution amount of the material is small and measurement is difficult. Further, when the temperature is 230 ° C. or higher, the glass used as an evaluation container is often eluted and is difficult to implement. Although there is no restriction | limiting in particular in polyphosphoric acid density | concentration, it evaluates by 116% which is easy to acquire commercially. The soaking time is 40 hours as a standard, and the elution amount per 24 hours is calculated. Even if the evaluation time is shortened to about 100 hours for a material having high corrosion resistance and about 4 hours for a material having insufficient corrosion resistance, there is no problem as long as it can be determined whether it exceeds 1 (mm / year).

180℃で重合度200のポリベンズビスオキサゾールの14%溶液を加工する場合に使用する耐蝕材としては1(mm/年)以下さらに好ましくは0.5(mm/年))以下より好ましくは0.1(mm/年)以下である。   The corrosion-resistant material used when processing a 14% solution of polybenzbisoxazole having a polymerization degree of 200 at 180 ° C. is 1 (mm / year) or less, more preferably 0.5 (mm / year) or less, more preferably 0. .1 (mm / year) or less.

ポリ燐酸溶液を加工する反応機やポンプはポリ燐酸溶液で潤滑されているが、部品の擦れによる摩耗と燐酸による溶解が同時に起こる。二軸押し出し機やギヤポンプの寿命を伸ばすには材料の硬度を上げることが必須である。このような用途に適した冶金材料として、ステライトが利用されてきたが燐酸耐蝕が不十分で長期間の使用に耐えない。本発明に適した材料としてはプラストハード(三菱マテリアル製)等のニッケル系合金およびニッケルベースのタングステンカーバイド含有合金等である。摺動による摩耗の耐性が充分である材料の硬度はHRC20以上、より好ましくはHRC40以上、さらに好ましくはHRC50以上である。耐蝕性に優れて硬度が高い素材としては、前記したWC含有材料、ニッケルベース合金に好適な物がある。   Reactors and pumps that process polyphosphoric acid solutions are lubricated with polyphosphoric acid solutions, but wear due to part rubbing and dissolution by phosphoric acid occur simultaneously. Increasing the hardness of the material is essential to extend the life of twin screw extruders and gear pumps. As a metallurgical material suitable for such applications, stellite has been used, but phosphoric acid corrosion resistance is insufficient and it cannot withstand long-term use. Suitable materials for the present invention include nickel-based alloys such as Plasthard (manufactured by Mitsubishi Materials) and nickel-based tungsten carbide-containing alloys. The hardness of the material having sufficient wear resistance due to sliding is HRC20 or more, more preferably HRC40 or more, and further preferably HRC50 or more. As materials having excellent corrosion resistance and high hardness, there are materials suitable for the above-mentioned WC-containing materials and nickel-based alloys.

製造工程における金属溶出に着目した場合、濾過部材は接液面積が大きく耐蝕材に変える効果が高い。一般に濾過部材は100ミクロン以下の細線で構成されている。SUS316を用いても短期間で部材の強度がなくなってしまい濾過機能を果たせなくなる。SUS316Lの溶出速度は、170℃では0.09(mm/年)であるが、180℃では0.19(mm/年)と2倍になる。実際に100×800メッシュのあやたたみ織りのSUS316L金網を用いた場合、170℃では1ヶ月使用可能であったものが、180℃では2週間で金網の破片が流れ出して使用不可となった。溶出速度は遅い方が好ましく、連続使用期間が長くないと交換ロスでポリマー屑が多くなる等の不都合が生じる。特に、好ましい濾過材料としては、SUS316やSUS317やスーパーステンレ鋼NAS354N(日本冶金工業)、さらにハステロイC―22が好適である。 When focusing on the metal elution in the manufacturing process, the filtering member has a large effect of changing to a corrosion-resistant material because of its large liquid contact area. Generally, the filter member is composed of fine wires of 100 microns or less. Even if SUS316 is used, the strength of the member is lost in a short period of time and the filtration function cannot be performed. The elution rate of SUS316L is 0.09 (mm / year) at 170 ° C., but doubles to 0.19 (mm / year) at 180 ° C. When the 100 × 800 mesh SUS316L wire mesh with a 100 × 800 mesh was used, what was usable for one month at 170 ° C. became unusable because fragments of the wire mesh flowed out in two weeks at 180 ° C. It is preferable that the elution rate is slow, and if the continuous use period is not long, problems such as an increase in polymer waste due to exchange loss occur. In particular, preferred filtering material, SUS316 and SUS317 and super stainless Les scan steel NAS354N (Nippon Yakin Kogyo), further Hastelloy C-22 are preferred.

成型品への異物混入を防ぐ目的で、濾過を行う。必要な濾過精度は成型品の種類により異なり、フイルム用途では異物突起となるサイズ以上の物を捕捉する。繊維では、紡糸での糸破断に影響するサイズ以上の固形物を捕捉する必要がある。濾材が溶出する事によって、目開きが大きくなり所望の濾過精度を維持できなくなる前に濾材を交換する必要がある。また、細い線径のワイヤーの不織布を用いる場合などは溶出が進行すると線材そのものがちぎれて流れ出して製品中に欠点として入ってしまう。このような不具合を防止するために、濾材の交換周期を非常に短くすると、交換に伴うロスが増えるばかりでなく溶媒中に溶け込む金属イオン量が増大してしまう。好ましい、濾材の耐蝕性能としては濾過温度(175℃)での燐酸による材質溶出速度が0.1(mm/年)以下より好ましくは、0.05(mm/年)以下、さらに好ましくは0.02(mm/年)である。   Filtration is performed to prevent foreign matter from entering the molded product. The required filtration accuracy differs depending on the type of molded product, and in film applications, it captures objects that are larger than the size that becomes a foreign matter protrusion. In the fiber, it is necessary to capture solids having a size larger than that affecting the yarn breakage during spinning. It is necessary to replace the filter medium before the filter medium is eluted and the opening becomes large and the desired filtration accuracy cannot be maintained. In addition, when using a thin wire non-woven fabric, elution progresses and the wire itself breaks away and enters the product as a defect. If the exchange period of the filter medium is made very short in order to prevent such a problem, not only will the loss associated with the exchange increase, but the amount of metal ions dissolved in the solvent will increase. As the corrosion resistance of the filter medium, the material elution rate by phosphoric acid at the filtration temperature (175 ° C.) is preferably 0.1 (mm / year) or less, more preferably 0.05 (mm / year) or less, and still more preferably 0.8. 02 (mm / year).

以下の実施例は説明だけの目的であり、これらにより本発明の明細書および特許請求の範囲の何れに対しても制約を与えるものではない。断りがない場合には分量およびパーセンテージはすべて重量で示す。   The following examples are for illustrative purposes only and are not intended to limit either the specification or the claims of the invention. Unless otherwise noted, all quantities and percentages are given by weight.

<燐酸溶媒による材料溶出速度評価法>厚さ2mm、幅10mm、長さ30mmの材料を、メチルアルコールで洗浄後風乾した後、電子天秤で秤量して室温下で直径50mmのパイレックス製ビーカーに150ccの116%といっしょに入れる。210℃の熱風循環式乾燥器(ヤマト科学株式会社製DS−64)に入れて、所定温度に上がる(約10分)を含めて40時間後にビーカーをとりだす。室温で徐冷した後に試料のまわりの燐酸を拭き取り流水中で5分間水洗してから精製水に1時間浸漬し風乾する。試料を電子天秤で秤量して重量減少を測定したデータと試料表面積、および材料密度のデータから減量速度を求める。取り扱う溶液の性質上流動下での耐蝕評価は実施せず、上記の静置場(自然対流のみ)での評価で材料の燐酸への溶出速度を評価した。
<硬度値>JIS Z2245(1998年)記載のロックウエル硬さ、Cスケール値を材料提供メーカーから入手した。
<Method for Evaluating Material Elution Rate with Phosphoric Acid Solvent> A material having a thickness of 2 mm, a width of 10 mm, and a length of 30 mm was washed with methyl alcohol, air-dried, weighed with an electronic balance, and 150 cc in a Pyrex beaker having a diameter of 50 mm at room temperature. Of 116%. It puts into a 210 degreeC hot-air circulation type dryer (Yamato Scientific Co., Ltd. DS-64), and takes out a beaker 40 hours after including a predetermined temperature (about 10 minutes). After slow cooling at room temperature, the phosphoric acid around the sample is wiped off, washed in running water for 5 minutes, then immersed in purified water for 1 hour and air dried. The weight reduction rate is obtained from the data obtained by weighing the sample with an electronic balance and measuring the weight loss, the surface area of the sample, and the material density data. Corrosion resistance evaluation under flow was not performed due to the nature of the solution to be handled, and the elution rate of the material into phosphoric acid was evaluated by the evaluation in the above-mentioned stationary place (only natural convection).
<Hardness value> Rockwell hardness and C scale value described in JIS Z2245 (1998) were obtained from a material provider.

参考例1
極限粘度数30dl/gのシス−ポリベンツオキサゾールポリマーを14重量%溶かしたポリ燐酸溶液を、200℃の呼び径90mm、L/D=30の2軸押し出し機で混練し、その先端に設置した150cc/revのギヤポンプで20MPaに昇圧して、流量400kg/時で供給した。この時の2軸押し出し機出口でのポリマードープ温度は205℃で、装置の材質は2軸押し出し機のスクリューおよびバレルがハステロイC−276、 ギヤポンプの接液部分は住友電工製M23Sであった。装置を連続して5ヶ月運転したが、ギヤポンプの吐出効率の低下がなく安定して生産を継続することができた。
Reference example 1
A polyphosphoric acid solution in which 14% by weight of a cis-polybenzoxazole polymer having an intrinsic viscosity of 30 dl / g was dissolved was kneaded with a twin screw extruder having a nominal diameter of 90 mm and L / D = 30 at 200 ° C., and placed at the tip. The pressure was increased to 20 MPa with a 150 cc / rev gear pump, and the flow rate was supplied at 400 kg / hour. The polymer dope temperature at the biaxial extruder outlet at this time was 205 ° C., the material of the apparatus was Hastelloy C-276 for the screw and barrel of the biaxial extruder, and the wetted part of the gear pump was M23S manufactured by Sumitomo Electric. Although the device was operated continuously for 5 months, it was possible to continue production with no decrease in the discharge efficiency of the gear pump.

ハステロイC−276とイゲタロイM23Sの210℃の116%燐酸への溶出速度はそれぞれ、0.07mm/年と0.08mm/年であった。   The elution rates of Hastelloy C-276 and Igetalloy M23S into 116% phosphoric acid at 210 ° C. were 0.07 mm / year and 0.08 mm / year, respectively.

比較例1
参考例1において、ギヤポンプをステライト#3で製作したところ、ポリマー溶液温度205℃の条件では3ヶ月でギヤポンプの吐出効率が95%から76%に低下したために、新しいギヤポンプと交換する必要があった。
Comparative Example 1
In Reference Example 1 , when the gear pump was manufactured with Stellite # 3, the discharge efficiency of the gear pump decreased from 95% to 76% in 3 months under the condition of the polymer solution temperature of 205 ° C., so it was necessary to replace it with a new gear pump. .

ステライト#3の210℃の116%燐酸への溶出速度は、4.1mm/年であった。   The dissolution rate of Stellite # 3 into 116% phosphoric acid at 210 ° C. was 4.1 mm / year.

参考例2
参考例1において、2軸押し出し機のバレルのハステロイC―276製シリンダーは3ヶ月の運転後にスクリューニーダーとの接触部分に深さ0.12mmの傷が多数生じた。シリンダーをすべて三菱マテリアル製MAプラストハード−Sを使用したところ、6ヶ月の運転でシリンダー内壁には0.05mm以上の傷がつかなかった。
Reference example 2
In Reference Example 1 , the Hastelloy C-276 cylinder in the barrel of the biaxial extruder had many scratches with a depth of 0.12 mm at the contact portion with the screw kneader after operation for 3 months. When all cylinders were made of Mitsubishi Plastics MA Plasthard-S, the cylinder inner wall was not damaged by 0.05 mm or more after 6 months of operation.

ハステロイC−276とMAプラストハード−Sの210℃の116%燐酸への溶出速度はそれぞれ、0.07mm/年と0.16mm/年であった。硬度の測定値は、ハステロイC−276はHRCで20未満(HRBで90)、MAプラストハード−SではHRCで40であった。耐蝕性で十分であっても材料硬度が不足すると装置の摩耗が著しい。   The elution rates of Hastelloy C-276 and MA Plasthard-S into 116% phosphoric acid at 210 ° C. were 0.07 mm / year and 0.16 mm / year, respectively. The measured hardness was less than 20 for HASTELLOY C-276 in HRC (90 for HRB), and 40 for HRC in MA Plasthard-S. Even if the corrosion resistance is sufficient, if the material hardness is insufficient, the wear of the device is significant.

比較例2
極限粘度数30dl/gのシス−ポリベンツオキサゾールポリマーを14重量%溶かしたポリ燐酸溶液を、197℃の呼び径30mm、L/D=35の2軸押し出し機で混練し、その先端に設置した10cc/revのギヤポンプで13MPaに昇圧して、流量20kg/時で供給した。この時の2軸押し出し機出口でのポリマードープ温度は200℃で、装置の材質は2軸押し出し機のスクリューおよびバレルがステライト#6、 ギヤポンプの接液部分はステライト#6であった。装置を間欠運転で延べ3ヶ月運転したが、2軸押し出し機の材料溶出によりクリアランスが0.3mmから1.1mmまで拡大し、ギヤポンプの吐出効率は95%から77%まで低下した。この運転中に回収された10%オルト燐酸水溶液中の金属イオン濃度を測定したところ、クロムイオンが10ppm検出された。
Comparative Example 2
A polyphosphoric acid solution in which 14% by weight of a cis-polybenzoxazole polymer having an intrinsic viscosity of 30 dl / g was dissolved was kneaded with a twin screw extruder having a nominal diameter of 30 mm at 197 ° C. and L / D = 35, and placed at the tip thereof. The pressure was increased to 13 MPa with a 10 cc / rev gear pump, and the flow rate was supplied at 20 kg / hour. At this time, the polymer dope temperature at the exit of the twin screw extruder was 200 ° C., and the material of the apparatus was Stellite # 6 for the screw and barrel of the twin screw extruder, and Stellite # 6 for the wetted part of the gear pump. The apparatus was operated for 3 months in intermittent operation, but the clearance increased from 0.3 mm to 1.1 mm due to the elution of the material of the biaxial extruder, and the discharge efficiency of the gear pump decreased from 95% to 77%. When the metal ion concentration in the 10% orthophosphoric acid aqueous solution recovered during this operation was measured, 10 ppm of chromium ions was detected.

ステライト#6の210℃の116%燐酸への溶出速度は、3.5mm/年で、硬度値はHRCで44であった。耐蝕性能が悪いと生産設備としては利用することができない。   The dissolution rate of Stellite # 6 into 116% phosphoric acid at 210 ° C. was 3.5 mm / year, and the hardness value was 44 in HRC. If the corrosion resistance is poor, it cannot be used as production equipment.

(実施例1)
米国特許4533693号示す方法により得られた、30℃のメタンスルホン酸溶液で測定した固有粘度が28.4dL/gのポリベンゾオキサゾール14.0(重量)%と五酸化リン含量率83.2%のポリリン酸からなる紡糸ドープを紡糸に用いた。2軸混練装置で混練と脱泡を行った後、ギヤポンプで昇圧し、重合体溶液を175℃に保つた配管中を紡糸頭内に設置したスピンパックに移送した。スピンパック内はハステロイC−22の800X100メッシュ(線径は0..065mmと0.1mm)のあやたたみ織り金網濾材を通過さる構造になっていた。孔数664を有する紡糸口金から175℃で紡出し、温度60℃の冷却風を用いて吐出糸条を冷却した後、凝固浴中に導入した。紡速350m/分で引き取り連続してオンラインで紡糸・凝固・水洗(中和)・乾燥を行ない平均で1112デシテックスの強度38cN/デシテックスの高強度ポリベンズビスオキサゾール繊維が得られた。このスピンパックを1ヶ月間連続使用したところ。平均糸切れ回数は0.07件/日であった。
(比較例3)
同じ紡糸頭内に並列しで設置されたハステロイC−22の代わりにSUS316Lの800X100メッシュ(線径は0.065mmと0.1mm)のあやたたみ織り金網濾材を取り付けたスピンパックで孔数664を有する紡糸口金から175℃で紡出したところ同様に平均で1115デシテックスの強度38cN/デシテックスの高強度ポリベンズビスオキサゾール繊維が得られた。このスピンパックでは運転初期の10日間は糸切れがなかったが、その後1日あたり1件の糸切れが発生し13日目にスピンパックを取り外して内部を分解したところ金網の細線がやせて裏が透けるようになっており、とことどころ細線が切れていた。
Example 1
Obtained by the method shown in US Pat. No. 4,533,693, polybenzoxazole 14.0% (by weight) having an intrinsic viscosity of 28.4 dL / g measured with a methanesulfonic acid solution at 30 ° C. and a phosphorus pentoxide content of 83.2% A spinning dope comprising polyphosphoric acid was used for spinning. After kneading and defoaming with a biaxial kneader, the pressure was increased with a gear pump, and the polymer solution was transferred to a spin pack installed in the spinning head through a pipe maintained at 175 ° C. The inside of the spin pack had a structure that passed through a woven wire mesh filter medium of Hastelloy C-22 800 × 100 mesh (wire diameters: 0.065 mm and 0.1 mm). Spinning was performed from a spinneret having a number of holes of 664 at 175 ° C., and the discharged yarn was cooled using a cooling air having a temperature of 60 ° C. and then introduced into a coagulation bath. Spinning, coagulation, washing with water (neutralization), and drying were continuously carried out at a spinning speed of 350 m / min, and high-strength polybenzbisoxazole fibers having an average strength of 1112 dtex and 38 cN / dtex were obtained. This spin pack is used continuously for one month. The average thread breakage number was 0.07 / day.
(Comparative Example 3)
Instead of Hastelloy C-22 installed side by side in the same spinning head, SUS316L 800X100 mesh (wire diameters 0.065mm and 0.1mm) with a spin pack attached with a woven wire mesh filter medium, the number of holes 664 When spinning at 175 ° C. from the spinneret having the same, a high-strength polybenzbisoxazole fiber having an average of 1115 dtex and a strength of 38 cN / dtex was obtained. In this spin pack, there was no yarn breakage for the first 10 days of operation, but after that, one piece of yarn breakage occurred per day, and when the spin pack was removed on the 13th day and the inside was disassembled , the thin wire mesh was thinned. The back was transparent, and the fine lines were cut.

175℃におけるハステロイC−22およびSUS316Lの116%ポリ燐酸への溶出速度はそれぞれ、0.01mm/年および0.13mm/年であった。SUS316Lは175℃のポリベンザゾール溶液では濾材として利用が困難である。   The elution rates of Hastelloy C-22 and SUS316L into 116% polyphosphoric acid at 175 ° C. were 0.01 mm / year and 0.13 mm / year, respectively. SUS316L is difficult to use as a filter medium with a polybenzazole solution at 175 ° C.

Claims (2)

ポリ燐酸溶媒とポリ燐酸に可溶なポリマーからなるドープから成形体を製造する際に、ドープを撹拌し均一分散する装置及び/又は均一分散されたドープを移送するポンプ装置の少なくともド−プ接液部分が116%ポリ燐酸175℃浸漬評価での材質溶出速度が0.1(mm/年)以下である耐蝕材であり、耐蝕材がニッケル系合金で構成されてなる製造装置を用いることを特徴とするポリ燐酸溶液から成形体を製造する方法。 When producing a molded body from a polyphosphoric acid solvent and a dope comprising a polymer soluble in polyphosphoric acid, at least a dope contact of a device for stirring and uniformly dispersing the dope and / or a pump device for transferring the uniformly dispersed dope The liquid part is a corrosion-resistant material having a material elution rate of 0.1 (mm / year) or less in 116% polyphosphoric acid 175 ° C. immersion evaluation , and the corrosion-resistant material is made of a nickel-based alloy. A method for producing a molded body from a polyphosphoric acid solution. 請求項1記載の濾材を用いることを特徴とするポリ燐酸溶液から成形体を製造する方法。A method for producing a molded body from a polyphosphoric acid solution, wherein the filter medium according to claim 1 is used.
JP2009289279A 2009-12-21 2009-12-21 Method for producing molded body from polyphosphoric acid solution Pending JP2010116663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289279A JP2010116663A (en) 2009-12-21 2009-12-21 Method for producing molded body from polyphosphoric acid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289279A JP2010116663A (en) 2009-12-21 2009-12-21 Method for producing molded body from polyphosphoric acid solution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP35359199A Division JP2001163989A (en) 1999-12-13 1999-12-13 Method of producing molded product from polyphosphoric acid solution

Publications (1)

Publication Number Publication Date
JP2010116663A true JP2010116663A (en) 2010-05-27

Family

ID=42304482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289279A Pending JP2010116663A (en) 2009-12-21 2009-12-21 Method for producing molded body from polyphosphoric acid solution

Country Status (1)

Country Link
JP (1) JP2010116663A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115654B4 (en) 2016-07-29 2023-12-07 Mitsubishi Electric Corporation Board connector for board equipped on both sides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128177A (en) * 1992-10-15 1994-05-10 Asahi Chem Ind Co Ltd Method for partial hydrogenation of monocyclic aromatic hydrocarbon
JPH08199271A (en) * 1995-01-19 1996-08-06 Mitsubishi Chem Corp Method for handling ethylene glycol solution containing phosphorus compound
JPH08296118A (en) * 1995-04-28 1996-11-12 Toyobo Co Ltd Production of polybenzazole fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06128177A (en) * 1992-10-15 1994-05-10 Asahi Chem Ind Co Ltd Method for partial hydrogenation of monocyclic aromatic hydrocarbon
JPH08199271A (en) * 1995-01-19 1996-08-06 Mitsubishi Chem Corp Method for handling ethylene glycol solution containing phosphorus compound
JPH08296118A (en) * 1995-04-28 1996-11-12 Toyobo Co Ltd Production of polybenzazole fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017115654B4 (en) 2016-07-29 2023-12-07 Mitsubishi Electric Corporation Board connector for board equipped on both sides

Similar Documents

Publication Publication Date Title
Choe et al. Synthesis, spinning, and fiber mechanical properties of poly (p-phenylenebenzobisoxazole)
Yuyan et al. Recycling of carbon fibre reinforced composites using water in subcritical conditions
EP1421032B1 (en) Compositions comprising rigid-rod polymers and carbon nanotubes and process for making the same
EP0672199B1 (en) Polybenzazole fibers with ultra-high physical properties and method for making them
JP2006188806A (en) Method for producing cellulose fiber
CN1297593C (en) Solution concentrating method and solution film making method and product
JP5502976B2 (en) Manufacturing method of high hardness, high corrosion resistance and high wear resistance alloy
JP2010116663A (en) Method for producing molded body from polyphosphoric acid solution
Kim et al. Ultra‐High Toughness Fibers Using Controlled Disorder of Assembled Aramid Nanofibers
JP2001163989A (en) Method of producing molded product from polyphosphoric acid solution
Zhang et al. Poly (arylene ether sulfone) containing thioether units: synthesis, oxidation and properties
KR102625634B1 (en) Method for producing polyamide 6 with low extract content and device therefor
CN109912795B (en) Production method of high-quality poly (p-phenylene terephthalamide) resin and PPD dissolving kettle
CN1189509C (en) Polymer-based silicon carbide particle reinfored composite material and its production method
CN115740486A (en) Photocuring printing hard alloy cutter and preparation method thereof
CN101550231A (en) Industrial method and polycondensation reactor for continuously preparing poly-p-phenylene terephthamide resin with high viscosity
JP2019131817A (en) Polymerization coupled compounding process
CN107857970A (en) A kind of large scale PEEK/TPI alloy screws and its compression molding preparation method
JP5286128B2 (en) Acrylic resin production method
JPH01192528A (en) Manufacture of optical polycarbonate resin molding material
JP4010853B2 (en) Aromatic polyamide whisker and method for producing the same
JP4362806B2 (en) Method for producing polybenzazole molded body
Arnold The Birth of Ordered Polymer Technology for Air Force Applications
EP3024880A2 (en) Chemical processing articles
JP4258700B2 (en) Method for producing polybenzazole molded body

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A02 Decision of refusal

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A02