JP2010116524A - Extraction method for polysaccharide - Google Patents

Extraction method for polysaccharide Download PDF

Info

Publication number
JP2010116524A
JP2010116524A JP2008292548A JP2008292548A JP2010116524A JP 2010116524 A JP2010116524 A JP 2010116524A JP 2008292548 A JP2008292548 A JP 2008292548A JP 2008292548 A JP2008292548 A JP 2008292548A JP 2010116524 A JP2010116524 A JP 2010116524A
Authority
JP
Japan
Prior art keywords
pectin
extraction
mpa
subcritical water
elution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008292548A
Other languages
Japanese (ja)
Other versions
JP5975453B2 (en
Inventor
Munehiro Hoshino
宗広 星野
Masahiro Tanaka
雅裕 田中
Akihiro Terada
晶広 寺田
Motonobu Goto
元信 後藤
Mitsuru Sasaki
満 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKII KK
ASCII Corp
Original Assignee
ASUKII KK
ASCII Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKII KK, ASCII Corp filed Critical ASUKII KK
Priority to JP2008292548A priority Critical patent/JP5975453B2/en
Publication of JP2010116524A publication Critical patent/JP2010116524A/en
Application granted granted Critical
Publication of JP5975453B2 publication Critical patent/JP5975453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processing Of Solid Wastes (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple hot-water extraction method for polysaccharides, especially pectin, from citrus rinds, enabling polymer-rich pectin with slight impurities to be obtained in high recovery without conducting any treatment with e.g. an acid, alkali, chelating agent or emulsifier. <P>SOLUTION: Polymer-rich pectin with very slight in impurities including protein is obtained in high recovery by conducting only a subcritical water extraction treatment of citrus peels under predetermined conditions of 120-140°C and 4-30 MPa without conducting any treatment with e.g. an acid, alkali, chelating agent or emulsifier. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、植物細胞組織、特に柑橘果皮からの多糖類、特にペクチン抽出方法に関する。更に詳細には、抽出条件として亜臨界水抽出条件を用いた、柑橘果皮からのペクチンの熱水抽出方法に関する。   The present invention relates to a method for extracting polysaccharides, particularly pectin, from plant cell tissues, particularly citrus peel. More specifically, the present invention relates to a hot water extraction method for pectin from citrus peel using subcritical water extraction conditions as extraction conditions.

限りある化石資源への高度依存を脱却する観点から、近年、バイオマス(生物資源)が注目されてきている。バイオマスとは、再生可能な生物由来の有機性資源で化石資源を除いたものを示す。   In recent years, biomass (biological resources) has attracted attention from the viewpoint of breaking away from the high degree of dependence on limited fossil resources. Biomass refers to organic resources derived from renewable organisms excluding fossil resources.

バイオマスは、都市生ごみや畜産業での排泄物、さらには食品工業等における廃棄物などの廃棄物系と、もみ殻や果汁抽出残渣等の未利用資源系、バイオエタノール原料などの資源作物に分類される。特に、バイオマスをすべて余すところなく、物質やエネルギーとして使うシステム(バイオマスリファイナリー)構築のため、廃棄物系及び未利用系のバイオマスの有効利用法の開発が強く望まれている。   Biomass is used as waste in the municipal food waste and livestock industry, as well as waste in the food industry, unused resources such as rice husk and fruit juice extraction residue, and resource crops such as bioethanol raw materials. being classified. In particular, there is a strong demand for the development of an effective utilization method for waste and unused biomass in order to construct a system (biomass refinery) that uses all biomass as material and energy.

多くの廃棄物系や未利用資源系のバイオマスには、植物細胞組織(細胞壁など)に由来するセルロース、ヘミセルロース、ペクチンなどの有用多糖類が含まれている。このうち、ペクチンについては、植物細胞組織中では不溶性となって存在しているため、そのまま熱水抽出することが難しい成分とされていた。   Many waste-based and unused resource-based biomass contain useful polysaccharides such as cellulose, hemicellulose, and pectin derived from plant cell tissues (cell walls, etc.). Of these, pectin has been considered to be a component that is difficult to extract with hot water as it is because it is insoluble in plant cell tissues.

このペクチン抽出方法としては、例えば、柑橘果皮(主にレモン)、リンゴ搾汁粕、ビートパルプ、コーンスターチ、アロエなどから酸、アルカリ、キレート剤などを用いて抽出・分離する方法が開発されているが(特許文献1〜3)、これらの方法は、酸、アルカリ、キレート剤などの中和、除去といった操作を繰り返し行う必要があり、回収操作を煩雑なものとしている。また、添加剤によってはペクチン分子の分解が起こり、ペクチンが低分子化してしまい、得られたペクチンのゲル化能などに影響がでる場合もある。   As this pectin extraction method, for example, a method of extracting / separating from citrus peel (mainly lemon), apple juice lees, beet pulp, corn starch, aloe etc. using acid, alkali, chelating agent, etc. has been developed. However, these methods require repeated operations such as neutralization and removal of acids, alkalis, chelating agents, etc., making the recovery operation complicated. In addition, depending on the additive, pectin molecules may be decomposed to lower the molecular weight of pectin, which may affect the gelation ability of the obtained pectin.

特に柑橘果皮は、果実加工や果汁搾汁時に大量に排出される未利用資源であり、かつペクチンを多く含むものであるため、ペクチン原料として有用性の高いものと考えられる。しかし、上述の酸、アルカリ、キレート剤などの処理によるペクチン抽出方法では、製造コストや得られるペクチンの品質などが満足できるものでなく、この柑橘果皮から添加剤等を使用せず、有用な高分子のペクチンを熱水抽出により簡便に高回収率で得る方法の開発が望まれていた。
特開2000−7703号公報 特表2002−514663号公報 特開2004−197001号公報
In particular, citrus peel is considered to be highly useful as a pectin raw material because it is an unused resource that is discharged in large quantities during fruit processing and juice extraction and contains a large amount of pectin. However, the above-described pectin extraction method by treatment with acid, alkali, chelating agent, etc. does not satisfy the production cost or the quality of the obtained pectin. It has been desired to develop a method for easily obtaining a molecular pectin at a high recovery rate by hot water extraction.
JP 2000-7703 A JP 2002-514663 A JP 2004-197001 A

本発明の目的は、柑橘果皮から、酸、アルカリ、キレート剤、又は乳化剤などの添加剤処理を行うことなく、不純物の少ない高分子を多く含むペクチンを高回収率で得ることが可能な、ペクチンの簡便な熱水抽出方法を提供することにある。そして、このペクチン抽出に際して、抽出と同時にペクチン溶出状況が確認できる方法の提供も目的とする。   An object of the present invention is to provide a pectin that can obtain a high-recovery pectin containing a large amount of impurities-free polymer from citrus peel without performing an additive treatment such as acid, alkali, chelating agent, or emulsifier. Is to provide a simple hot water extraction method. It is another object of the present invention to provide a method capable of confirming the pectin elution status at the same time as the extraction of pectin.

上記目的を達成するため、本発明者らは鋭意研究の結果、亜臨界水抽出に着目した。そして、柑橘果皮を120〜140℃、4〜30MPaの範囲での所定の亜臨界水抽出条件で加圧熱水抽出(亜臨界水抽出処理)のみを行うことで、酸、アルカリ、キレート剤、又は乳化剤などの添加剤処理を一切行うことなく、タンパク質や夾雑物の混在が非常に少ない高分子ペクチンを多く含むペクチン抽出物が得られ、また総ペクチン回収率70%以上という高回収率でペクチンが回収できることを見出し、本発明に至った。さらに付随して、亜臨界水抽出の抽出液pHを即時測定することで、抽出と同時にペクチンの溶出を確認することができることも見出した。   In order to achieve the above object, the present inventors have paid attention to subcritical water extraction as a result of intensive studies. And, by performing only pressurized hot water extraction (subcritical water extraction treatment) under predetermined subcritical water extraction conditions in the range of 120 to 140 ° C. and 4 to 30 MPa for citrus peel, acid, alkali, chelating agent, Or, without any processing of additives such as emulsifiers, a pectin extract containing a large amount of high molecular weight pectin with very little mixture of proteins and contaminants can be obtained, and pectin can be recovered at a high recovery rate of 70% or more. Has been found to be recoverable, leading to the present invention. In addition, it was also found that elution of pectin can be confirmed simultaneously with extraction by immediately measuring the pH of the subcritical water extraction solution.

すなわち、本発明の実施形態は次のとおりである。
(1)柑橘果皮から、酸、アルカリ、キレート剤、又は乳化剤による処理をいずれも行うことなく、120〜140℃、4MPaの条件での亜臨界水抽出処理のみを用いて抽出することを特徴とする、高分子ペクチンを多く含むペクチンの抽出方法。
(2)柑橘果皮から、酸、アルカリ、キレート剤、又は乳化剤による処理をいずれも行うことなく、130〜140℃、4〜30MPa、好ましくは140℃、4〜10MPaの条件での亜臨界水抽出処理のみを用いて抽出することを特徴とする、高分子ペクチンを多く含むペクチンの抽出方法。
(3)高分子ペクチンの分子量が4〜40万、更には5〜30万である(1)又は(2)に記載の方法。
(4)総ペクチン回収率が70%以上、更には75〜80%であることを特徴とする(1)〜(3)のいずれか1つに記載の方法。
(5)亜臨界水の抽出流量を0.5〜2.0ml/分とすることを特徴とする(1)〜(4)のいずれか1つに記載の方法。
(6)柑橘果皮から亜臨界水抽出処理を用いてペクチンを抽出する際に、抽出液のpHを即時測定することで、抽出と同時にペクチンの溶出を確認する方法。
That is, the embodiment of the present invention is as follows.
(1) It is characterized by extracting from citrus peel using only subcritical water extraction treatment under conditions of 120 to 140 ° C. and 4 MPa without performing any treatment with acid, alkali, chelating agent, or emulsifier. A method for extracting pectin containing a large amount of high molecular weight pectin.
(2) Subcritical water extraction from citrus peel without any treatment with acid, alkali, chelating agent, or emulsifier under conditions of 130-140 ° C., 4-30 MPa, preferably 140 ° C., 4-10 MPa A method for extracting pectin containing a large amount of high molecular weight pectin, characterized by performing extraction only by treatment.
(3) The method according to (1) or (2), wherein the molecular weight of the high molecular weight pectin is 40 to 400,000, more preferably 5 to 300,000.
(4) The method according to any one of (1) to (3), wherein the total pectin recovery rate is 70% or more, and further 75 to 80%.
(5) The method according to any one of (1) to (4), wherein the extraction flow rate of subcritical water is 0.5 to 2.0 ml / min.
(6) A method of confirming elution of pectin simultaneously with extraction by immediately measuring the pH of the extract when extracting pectin from citrus peel using subcritical water extraction treatment.

本発明によれば、柑橘果皮から、酸、アルカリ、キレート剤、又は乳化剤などの添加剤処理を一切行うことなく、タンパク質や夾雑物の混在が非常に少ない、分子量4〜40万の高分子ペクチンが主体のペクチンを高回収率で得ることができる。さらに、亜臨界水抽出の抽出液pHを即時測定することで、抽出と同時にペクチンの溶出を確認することもできる。   According to the present invention, high molecular weight pectin having a molecular weight of 40,000 to 400,000, which contains very little mixture of proteins and contaminants from citrus peel without any processing of additives such as acid, alkali, chelating agent or emulsifier. Can be obtained with a high recovery rate. Furthermore, by immediately measuring the pH of the extract obtained by subcritical water extraction, elution of pectin can be confirmed simultaneously with extraction.

本発明において、ペクチン抽出原料としては、果実加工や果汁搾汁時に大量に排出される柑橘果皮を使用する。柑橘果皮は、ユズ、レモン、ミカン、オレンジ、カボス、スダチ、ダイダイ、シークァーサー、ライム、グレープフルーツ、キンカンなどの由来が例示される。特に、ユズ果皮に関しては、他の柑橘類に比べてユズ果実は果皮の割合が多く(ユズ果実の50%以上)廃棄量も多いため、原料に非常に適している。また、ペクチン抽出原料として、生の柑橘果皮だけでなく、柑橘果皮乾燥物、その粉砕物や柑橘果皮から超臨界抽出により精油などを抽出した抽出残渣などを使用することも可能である。   In the present invention, citrus peel that is discharged in large quantities during fruit processing or juice extraction is used as a pectin extraction raw material. Citrus fruit skin is exemplified by the origin of yuzu, lemon, mandarin orange, orange, kabosu, sudachi, daidai, seaquaser, lime, grapefruit, kumquat, and the like. In particular, yuzu fruit is very suitable as a raw material because yuzu fruit has a large percentage of pericarp (50% or more of yuzu fruit) and a large amount of waste compared to other citrus fruits. In addition to raw citrus peel, it is also possible to use not only raw citrus peel, but also dried residue of citrus peel, an extraction residue obtained by extracting essential oil or the like by supercritical extraction from pulverized product or citrus peel.

ペクチン抽出には、亜臨界水抽出条件を用いる。亜臨界水とは、飽和水蒸気圧以上の圧力をかけた100℃以上の加圧熱水を示す。但し、超臨界水(374℃以上、22MPa以上の加圧熱水)は含まれない。方法は、柑橘果皮を反応容器内に入れ、所定の流量で予備加熱した脱気水を通液する。そして、反応系に所定の条件で加圧加熱して亜臨界水抽出条件とする。亜臨界水通液後の抽出液は速やかに冷却し、回収する。本発明で用いる抽出装置の概略図を図1に示す。   Subcritical water extraction conditions are used for pectin extraction. Subcritical water refers to pressurized hot water of 100 ° C. or higher with a pressure of saturated water vapor pressure or higher. However, supercritical water (pressurized hot water of 374 ° C. or higher, 22 MPa or higher) is not included. In the method, citrus peel is placed in a reaction vessel, and deaerated water preheated at a predetermined flow rate is passed therethrough. Then, the reaction system is heated under pressure under predetermined conditions to obtain subcritical water extraction conditions. The extract after passing through subcritical water is quickly cooled and recovered. A schematic diagram of an extraction apparatus used in the present invention is shown in FIG.

この亜臨界水抽出条件としては、温度120〜140℃の場合圧力4MPa、温度130〜140℃の場合圧力4〜30MPa(更には温度140℃、圧力4〜10MPa)が好ましい。温度は、140℃を超えると総ペクチン回収率は高くなるが、ペクチンの低分子化、夾雑物やタンパク質等の不純物大量混入などが起こり、得られるペクチンの品質が好ましくない。また、120℃を下回る温度では、ペクチンの抽出が充分な回収率で得られない。なお、120〜140℃の温度帯においては、圧力をより高くすると反比例して総ペクチン回収率が下がってしまうため、効率やコスト面などを考慮するとできる限り圧力4〜10MPa付近が望ましい。   As the subcritical water extraction conditions, a pressure of 4 MPa is preferable when the temperature is 120 to 140 ° C, and a pressure of 4 to 30 MPa (further, the temperature is 140 ° C and the pressure is 4 to 10 MPa) when the temperature is 130 to 140 ° C. If the temperature exceeds 140 ° C., the total pectin recovery rate will be high, but the pectin quality will be unfavorable due to low molecular weight of pectin, large amounts of impurities such as impurities and proteins. Also, at temperatures below 120 ° C., pectin extraction cannot be obtained with a sufficient recovery rate. In the temperature range of 120 to 140 ° C., the higher the pressure, the lower the total pectin recovery rate in inverse proportion. Therefore, considering the efficiency and cost, the pressure is preferably around 4 to 10 MPa.

従来のペクチン抽出法では、植物細胞組織からの溶出をしやすくするために、抽出原料を酸やアルカリ処理してpH調整を行ったり、キレート剤を抽出時に添加したりする方法が採用されているが、本発明ではこれらの処理、添加は一切必要ない。また、抽出液中への夾雑物やタンパク質などの混入を防ぐため、抽出時に乳化剤を添加する方法も知られているが、本発明では所定の条件での亜臨界水抽出により不純物の混在が非常に少なくできるため、乳化剤の添加も全く必要ない。   In the conventional pectin extraction method, in order to facilitate elution from plant cell tissue, a method of adjusting the pH of the extraction raw material by acid or alkali treatment or adding a chelating agent during extraction is adopted. However, in the present invention, these treatments and additions are not necessary at all. In addition, a method of adding an emulsifier at the time of extraction is also known in order to prevent contamination with contaminants and proteins in the extract, but in the present invention, impurities are extremely mixed by subcritical water extraction under predetermined conditions. Therefore, it is not necessary to add an emulsifier at all.

亜臨界水抽出時の流量については、特に限定はされないが、0.5〜2.0ml/分であることが好ましい。この範囲の流量とすることで、高分子ペクチンを多く含む抽出液を高濃度で得ることができ、かつ抽出に使用する亜臨界水の量を少なくすることができる。したがって、実用上非常に有効である。なお、この範囲より流量を多くしても、得られるペクチンの品質、回収率等には全く影響を与えない。   The flow rate during subcritical water extraction is not particularly limited, but is preferably 0.5 to 2.0 ml / min. By setting the flow rate within this range, an extract containing a large amount of high molecular weight pectin can be obtained at a high concentration, and the amount of subcritical water used for extraction can be reduced. Therefore, it is very effective in practical use. Even if the flow rate is increased from this range, the quality of pectin obtained, the recovery rate, etc. are not affected at all.

本発明により得られる高分子のペクチンとは、分子量4〜40万、更には分子量5〜30万のペクチンを示す。ペクチンは食品工業において主に増粘剤として使用されており、その粘性はペクチン分子量と相関している。つまり、ペクチンの分子量はその増粘剤としての品質に大きく影響している。本発明は、柑橘果皮中から、高分子のペクチンを多く抽出することができるため、非常に有用な方法である。   The high molecular weight pectin obtained by the present invention is a pectin having a molecular weight of 40,000 to 400,000, and further a molecular weight of 5 to 300,000. Pectin is mainly used as a thickener in the food industry, and its viscosity correlates with pectin molecular weight. In other words, the molecular weight of pectin greatly affects the quality as a thickener. The present invention is a very useful method because a large amount of high molecular weight pectin can be extracted from citrus peel.

また、本発明による柑橘果皮からの総ペクチン(高分子ペクチン、分子量4万以下の低分子ペクチン、及びカラクツロン酸モノマーを含むトータルペクチン)回収率は、70%以上、更には75〜80%となり、非常に高回収率となる。なお、本発明の120〜140℃の温度帯において圧力を高くするほど回収率は下がり、130〜140℃においては4〜30MPaで全て回収率70%を超えるが、120℃においては4MPaでしか回収率70%を超えない。また、回収率75%を指標とすると、140℃おいては4〜30MPaで全て回収率75%を超えるが、120〜130℃においては4MPaでしか回収率75%を超えない。   In addition, the total pectin (high molecular weight pectin, low molecular weight pectin having a molecular weight of 40,000 or less, and total pectin containing a caracturonic acid monomer) recovery from the citrus peel according to the present invention is 70% or more, and further 75 to 80%, Very high recovery rate. The recovery rate decreases as the pressure is increased in the temperature range of 120 to 140 ° C. of the present invention, and the recovery rate is 4 to 30 MPa at 130 to 140 ° C., which exceeds 70%. However, the recovery rate is only 4 MPa at 120 ° C. The rate does not exceed 70%. When the recovery rate is 75% as an index, the recovery rate exceeds 4% at 4 to 30 MPa at 140 ° C., but the recovery rate exceeds 75% only at 4 MPa at 120 to 130 ° C.

さらに、本発明では、亜臨界水抽出時の抽出液pHを即時測定することで、抽出と同時にペクチンの溶出を確認することができる。ペクチン溶出量が増えることにより、抽出液のpHはより酸性域に振れ(pHが下がり)、溶出量が減ると抽出液のpHはもとの値に戻る。このpH挙動データを即時取得することで、ペクチン抽出と同時に溶出状況を確認することができるため、より不純物の少ないペクチン溶液の取得が可能となる。   Furthermore, in the present invention, the elution of pectin can be confirmed simultaneously with the extraction by immediately measuring the pH of the extract at the time of subcritical water extraction. As the amount of elution of pectin increases, the pH of the extract moves more acidic (pH decreases), and when the amount of elution decreases, the pH of the extract returns to the original value. By acquiring this pH behavior data immediately, it is possible to confirm the elution status at the same time as the extraction of pectin, so that a pectin solution with fewer impurities can be acquired.

以下、本発明の実施例について述べるが、本発明はこれらのみに限定されるものではない。なお、以下の実施例は全て図1に示した装置によって反応を行った。   Examples of the present invention will be described below, but the present invention is not limited to these examples. In all the following examples, the reaction was carried out by the apparatus shown in FIG.

(実施例1:亜臨界水温度のペクチン溶出への影響確認)
ペクチン抽出原料として、乾燥ユズ果皮粉末(粒子径120〜400μm)0.5gを用いた。抽出条件としては、果皮粉末を反応容器内に入れ、十分に脱気した蒸留水を3.5ml/分の流量で反応器内に通水し、回収口より気泡が無くなったのを確認後、4MPaまで背圧弁にて容器内を昇圧した後に通液温度を80〜160℃まで徐々に昇温し、各温度帯にて7mlずつ抽出液を回収した。得られた抽出液のペクチン定量は、ジメチルフェノール−硫酸法にてガラクツロン酸のモノマーを定量した。
(Example 1: Confirmation of influence of subcritical water temperature on pectin elution)
As a pectin extraction raw material, 0.5 g of dried yuzu peel powder (particle size: 120 to 400 μm) was used. As extraction conditions, put the skin powder into a reaction vessel, and water sufficiently deaerated distilled water through the reactor at a flow rate of 3.5 ml / min, and after confirming that bubbles disappeared from the recovery port, After the pressure inside the container was increased to 4 MPa with a back pressure valve, the liquid passing temperature was gradually raised to 80 to 160 ° C., and 7 ml of the extract was recovered at each temperature zone. Pectin quantification of the obtained extract was performed by quantifying galacturonic acid monomers by the dimethylphenol-sulfuric acid method.

図2に示すように、100℃から徐々にペクチン溶出が確認され、160℃付近までペクチン溶出があることが明らかとなった。また、120〜140℃付近で最も急激にペクチン溶出があることも示された。   As shown in FIG. 2, pectin elution was gradually confirmed from 100 ° C., and it was revealed that pectin elution was performed up to around 160 ° C. It was also shown that there was pectin elution most rapidly around 120-140 ° C.

(実施例2:亜臨界水温度のペクチン分子量及びペクチン以外の成分溶出への影響確認)
実施例1と温度、流量以外の条件は同様とし、流量0.5ml/分で、温度を80℃から120℃、140℃、160℃の各温度帯に急激に昇温して、得られたペクチン抽出液の容態(外観、臭い等)確認、総ペクチン量、ペクチン分子量、タンパク質量の測定を行った。タンパク質の定量はケルダール法により行った。ペクチン分子量は高速液体クロマトグラフィーにより測定した。
(Example 2: Confirmation of effect of subcritical water temperature on pectin molecular weight and elution of components other than pectin)
The conditions other than the temperature and flow rate were the same as in Example 1, and the temperature was rapidly increased from 80 ° C. to 120 ° C., 140 ° C., and 160 ° C. at a flow rate of 0.5 ml / min. The condition (appearance, smell, etc.) of the pectin extract was confirmed, and the total pectin amount, pectin molecular weight, and protein amount were measured. Protein quantification was performed by the Kjeldahl method. Pectin molecular weight was measured by high performance liquid chromatography.

図3に示すように、120℃、140℃で抽出したペクチン溶液は濁り等が無く、糖類の過分解物特有のフラン化合物の香り等もない。これに対し、160℃で抽出したペクチン溶液は、濁り、着色、臭いが顕著であった。さらに、図4に示すように、160℃で抽出したペクチン溶液にはタンパク質が多く混在しているが、120℃、140℃で抽出したペクチン溶液のタンパク質量は非常に少ないものであった。したがって、120℃、140℃で抽出したペクチンは不純物の混在が非常に少ない好適なものであることが明らかになった。   As shown in FIG. 3, the pectin solution extracted at 120 ° C. and 140 ° C. has no turbidity or the like, and does not have the fragrance of the furan compound peculiar to the saccharide hyperdegradation product. In contrast, the pectin solution extracted at 160 ° C. was markedly cloudy, colored, and smelly. Furthermore, as shown in FIG. 4, although many proteins were mixed in the pectin solution extracted at 160 ° C., the amount of protein in the pectin solution extracted at 120 ° C. and 140 ° C. was very small. Therefore, it was revealed that pectin extracted at 120 ° C. and 140 ° C. is suitable with very few impurities.

また、図5に示すように、160℃で抽出したペクチンは分子量1〜2万以下のものがほとんどであり、明確に低分子化が進んでいる。ペクチンはその高次構造によりゲル化特性を示すものであるが、160℃で回収したものは非常に低分子化が進んでおり食品添加物としてのペクチン(増粘剤)の性状を好適に有してはいない。これに対し、120℃、140℃で抽出したものは、ペクチン分子量として4〜40万のものが大半を占めている。つまり、ペクチンの増粘剤としての有用性を失うことなく抽出できることを示している。さらに付随して、温度設定により用途に応じた様々な分子量のペクチン回収が可能であることも示している。   Moreover, as shown in FIG. 5, most of the pectin extracted at 160 ° C. has a molecular weight of 1 to 20,000 or less, and the molecular weight is clearly decreasing. Pectin exhibits gelling properties due to its higher-order structure, but those recovered at 160 ° C. are very low in molecular weight and have the properties of pectin (thickener) as a food additive. Not done. On the other hand, most of those extracted at 120 ° C. and 140 ° C. account for a pectin molecular weight of 40,000 to 400,000. That is, it can be extracted without losing the usefulness of pectin as a thickener. In addition, it is shown that pectin with various molecular weights can be collected depending on the application by setting the temperature.

(実施例3:の亜臨界水温度及び圧力の総ペクチン回収率への影響確認)
ペクチン抽出原料として、実施例1と同様に乾燥ユズ果皮粉末0.5gを用いた。抽出条件としては、果皮粉末を反応容器内に入れ、十分に脱気した蒸留水を0.5ml/分の流量で反応器内に通水し、回収口より気泡が無くなったのを確認後、所定の圧力(4、10、20、30MPa)まで背圧弁にて容器内を昇圧した後に通液温度を80℃から所定の温度(110、120、130、140、150、160℃)に急激に昇温して、得られたペクチン抽出液を7mlずつ回収し、ペクチンの定量及び回収率を測定した。
(Example 3: Confirmation of influence of subcritical water temperature and pressure on total pectin recovery rate)
As a pectin extraction raw material, 0.5 g of dried yuzu peel powder was used as in Example 1. As extraction conditions, put the skin powder into the reaction vessel, and water distilled sufficiently deaerated through the reactor at a flow rate of 0.5 ml / min, and after confirming that bubbles disappeared from the recovery port, After increasing the pressure inside the container with a back pressure valve to a predetermined pressure (4, 10, 20, 30 MPa), the liquid passing temperature is rapidly increased from 80 ° C. to a predetermined temperature (110, 120, 130, 140, 150, 160 ° C.). The temperature was raised, and 7 ml of the obtained pectin extract was collected, and the quantification and recovery rate of pectin were measured.

図6は、4MPaの圧力条件化で各温度に昇温設定したときのペクチン溶出量(上段)、及び積算収率(下段)を示している。上段のグラフより、高い温度に昇温するほど速やかにペクチン溶出が促されることがわかった。しかし、下段のグラフから、160℃では回収率が明らかに低下しており、過分解(ガラクツロン酸の分解)が進行していることがわかる。また、110℃においては十分にペクチンの遊離が進行していないことがわかる。これに対し、120から40℃で抽出したときは回収率76%程度に収束し、過分解等を受けずに抽出されていることが示された。   FIG. 6 shows the pectin elution amount (upper stage) and the integrated yield (lower stage) when the temperature is raised to each temperature under a pressure condition of 4 MPa. From the upper graph, it was found that pectin elution was promoted more rapidly as the temperature was raised to a higher temperature. However, from the lower graph, it can be seen that the recovery rate is clearly reduced at 160 ° C., and overdecomposition (decomposition of galacturonic acid) proceeds. It can also be seen that pectin release does not proceed sufficiently at 110 ° C. On the other hand, when extracted at 120 to 40 ° C., the recovery rate converged to about 76%, indicating that the extraction was performed without undergoing excessive decomposition.

図7では、120〜150℃の温度帯で抽出した場合に、圧力が総ペクチン回収率に及ぼす影響を示している。120〜140℃温度帯では、低圧であるほど回収率が増している。逆に150℃では高圧であるほど回収率が増す傾向を示していた。また、140℃の時に最も回収率が高く、4〜30MPaの圧力帯で76〜80%の高収率で回収されることが示された。さらに、130℃でも4〜30MPaの圧力帯で70%以上の高回収率であることが示された。   FIG. 7 shows the effect of pressure on the total pectin recovery rate when extracted in a temperature range of 120 to 150 ° C. In the temperature range of 120 to 140 ° C., the recovery rate increases as the pressure decreases. On the contrary, at 150 ° C., the recovery rate tended to increase as the pressure increased. Further, the recovery rate was highest at 140 ° C., and it was shown that the recovery was performed in a high yield of 76 to 80% in a pressure zone of 4 to 30 MPa. Furthermore, even at 130 ° C., a high recovery rate of 70% or more was shown in the pressure range of 4 to 30 MPa.

圧力が設備投資などのコストに及ぼす影響としては、高圧装置ほど、ポンプの出力、安全面で管の肉厚、それに伴う熱交換を考慮する必要がある。本発明では、比較的低圧でもペクチンの抽出が可能となることが示され、設備投資およびランニングコストの低減が可能となることが示された。なお、総ペクチンを75〜80%の回収率で抽出できる温度帯および圧力帯を図8に示した。   As the impact of pressure on costs such as capital investment, the higher the pressure, the higher the output of the pump, the tube thickness for safety, and the accompanying heat exchange. In the present invention, it has been shown that pectin can be extracted even at a relatively low pressure, and that it is possible to reduce capital investment and running cost. In addition, the temperature zone and pressure zone which can extract total pectin with the recovery rate of 75-80% were shown in FIG.

(実施例4:亜臨界水流量のペクチン溶出への影響確認)
ペクチン抽出原料として、実施例1と同様乾燥ユズ果皮粉末0.5gを用いた。抽出条件としては、果皮粉末を反応容器内に入れ、十分に脱気した蒸留水を所定の流量(0.5、1.0、2.0ml/分)で反応器内に通水し、回収口より気泡が無くなったのを確認後、4MPaまで背圧弁にて容器内を昇圧した後に通液温度を80℃から140℃まで急激に昇温し、7mlずつ抽出液を回収してペクチンの定量及び回収率を測定した。
(Example 4: Confirmation of effect of subcritical water flow rate on pectin elution)
As a pectin extraction raw material, 0.5 g of dried yuzu peel powder was used as in Example 1. As extraction conditions, put the peel powder into a reaction vessel, and pass distilled water that has been sufficiently degassed into the reactor at a predetermined flow rate (0.5, 1.0, 2.0 ml / min) for recovery. After confirming that air bubbles disappeared from the mouth, the inside of the container was pressurized to 4 MPa with a back pressure valve, and the liquid passing temperature was rapidly raised from 80 ° C. to 140 ° C., and 7 ml of the extract was collected to quantify pectin. And recovery was measured.

図9に各流量で通水したときのペクチンの溶出状況を示している。流量が多くなるにつれペクチンの溶出はなだらかになり1フラクション当たりの溶出されたペクチン濃度が低下していることが明らかとなった。つまり、低流量であるほど高濃度でペクチン回収が可能になることが示された。   FIG. 9 shows the state of elution of pectin when water is passed at each flow rate. As the flow rate increased, the elution of pectin became smoother, and it was revealed that the concentration of the eluted pectin per fraction decreased. That is, it was shown that pectin recovery becomes possible at a higher concentration as the flow rate is lower.

図10では、原料中に含まれるペクチンに対する本法でのペクチン積算収率を示している。どの流量においても収率は76〜77%程度と高収率であることが示され、140℃でのガラクツロン酸の過分解は、いずれの流量でも起こらないことが明らかとなった。   In FIG. 10, the pectin integrated yield by this method with respect to the pectin contained in the raw material is shown. It was shown that the yield was as high as about 76 to 77% at any flow rate, and it was revealed that the excessive decomposition of galacturonic acid at 140 ° C. did not occur at any flow rate.

通常、亜臨界水の流量を下げれば抽出効率(回収率)が下がると考えられる。現に、110℃や150〜160℃では流量と回収率は相関している。しかし、120〜140℃においては、回収率は流量に依存するのでなく、反応管内の滞留時間に依存することが示された。これらは、比較的低温域において、抽出に使用する亜臨界水量を少なくすることが可能であることを示しており、コスト低減や得られるペクチンの品質向上などが見込まれ、産業上非常に有用である。   Usually, it is considered that the extraction efficiency (recovery rate) decreases if the flow rate of subcritical water is lowered. In fact, at 110 ° C. and 150 to 160 ° C., the flow rate and the recovery rate are correlated. However, at 120 to 140 ° C., it was shown that the recovery rate does not depend on the flow rate but on the residence time in the reaction tube. These indicate that it is possible to reduce the amount of subcritical water used for extraction in a relatively low temperature range, which is expected to reduce costs and improve the quality of the obtained pectin. is there.

(実施例5:ペクチン溶出と抽出液pHの関係確認)
ペクチン抽出原料として、実施例1と同様に乾燥ユズ果皮粉末0.5gを用いた。抽出条件としては、果皮粉末を反応容器内に入れ、十分に脱気した蒸留水を所定の流量(0.5、1.0、2.0ml/分)で反応器内に通水し、回収口より気泡が無くなったのを確認後、4MPaまで背圧弁にて容器内を昇圧した後に通液温度を80℃から所定の温度(120、140、160℃)に急激に昇温して、得られたペクチン抽出液を7mlずつ回収し、ペクチンの定量及び抽出液pHを測定した。
(Example 5: Confirmation of relationship between pectin elution and extract pH)
As a pectin extraction raw material, 0.5 g of dried yuzu peel powder was used as in Example 1. As extraction conditions, put the peel powder into a reaction vessel, and pass distilled water that has been sufficiently degassed into the reactor at a predetermined flow rate (0.5, 1.0, 2.0 ml / min) for recovery. After confirming the absence of bubbles from the mouth, the pressure inside the container was increased to 4 MPa with a back pressure valve, and the liquid passing temperature was rapidly increased from 80 ° C. to a predetermined temperature (120, 140, 160 ° C.). The obtained pectin extract was collected in an amount of 7 ml, and the amount of pectin and the pH of the extract were measured.

図11は、140℃で抽出を行ったときの各流量(0.5、1.0、2.0ml/分)におけるペクチン溶出状況と、その抽出液(フラクション)のpH推移の関係を示している。どの流量においてもペクチンの溶出に伴いpHが低下していくことが明らかとなった。   FIG. 11 shows the relationship between the pectin elution status at each flow rate (0.5, 1.0, 2.0 ml / min) when extracted at 140 ° C. and the pH transition of the extract (fraction). Yes. It was revealed that the pH decreased with elution of pectin at any flow rate.

図12は、流量0.5ml/分において各温度(120、140、160℃)で抽出を行ったときのペクチン溶出状況と、その抽出液(フラクション)のpH推移の関係を示している。図11と同様に、ペクチンの溶出に伴うpHの低下が確認された。これらのように、抽出液のpHを即時に測定することで、ペクチンの溶出を抽出と同時に確認することが可能であることが示された。   FIG. 12 shows the relationship between the pectin elution state and the pH transition of the extract (fraction) when extraction was performed at each temperature (120, 140, 160 ° C.) at a flow rate of 0.5 ml / min. As in FIG. 11, a decrease in pH accompanying pectin elution was confirmed. As described above, it was shown that the elution of pectin can be confirmed simultaneously with extraction by measuring the pH of the extract immediately.

本発明に用いる抽出装置の概略図を示す。The schematic of the extraction apparatus used for this invention is shown. 4MPaの亜臨界水を温度上昇させた時のペクチン抽出量を示す。The amount of pectin extracted when the temperature of 4 MPa subcritical water is raised is shown. 圧力4MPaで、120℃、140℃、160℃の各温度でのユズ果皮からペクチンを抽出した時の抽出液の容態を示す(図面代用写真)。The condition of the extract when pectin is extracted from yuzu peel at a pressure of 4 MPa and at temperatures of 120 ° C., 140 ° C., and 160 ° C. is shown (drawing substitute photo). 圧力4MPaで、120℃、140℃、160℃の各温度でのユズ果皮からペクチンを抽出した際のペクチンとタンパク質の溶出挙動を示す。The elution behavior of pectin and protein when pectin is extracted from yuzu peel at a pressure of 4 MPa and at temperatures of 120 ° C., 140 ° C., and 160 ° C. is shown. 圧力4MPaで、120℃、140℃、160℃の各温度でのユズ果皮からペクチンを抽出したペクチンの分子量分布を示す。The molecular weight distribution of the pectin which extracted the pectin from the yuzu peel at each temperature of 120 degreeC, 140 degreeC, and 160 degreeC by the pressure of 4 Mpa is shown. 圧力4MPaでユズ果皮からペクチンを抽出した時の、110〜160℃の各温度でのペクチン溶出状況(上段)、及び各温度で抽出したときのペクチン積算収率(下段)を示す。The pectin elution situation (upper stage) at each temperature of 110 to 160 ° C. when pectin is extracted from yuzu peel at a pressure of 4 MPa, and the pectin integrated yield (lower stage) when extracted at each temperature are shown. ペクチン抽出温度、圧力、総ペクチン回収率の相関を示す。The correlation between pectin extraction temperature, pressure and total pectin recovery is shown. 総ペクチン回収率が75〜80%となる温度帯及び圧力帯を示す。A temperature zone and a pressure zone in which the total pectin recovery rate is 75 to 80% are shown. 圧力4MPa、140℃でのユズ果皮からペクチンを抽出した時の、亜臨界水各流量(0.5、1.0、2.0ml/分)でのペクチン溶出状況を示す。The pectin elution situation at each subcritical water flow rate (0.5, 1.0, 2.0 ml / min) when pectin is extracted from yuzu peel at a pressure of 4 MPa and 140 ° C. is shown. 圧力4MPa、140℃でのユズ果皮からペクチンを抽出した時の、亜臨界各流量(0.5、1.0、2.0ml/分)でのペクチン積算収率を示す。The pectin integrated yield at each subcritical flow rate (0.5, 1.0, 2.0 ml / min) when pectin is extracted from yuzu peel at a pressure of 4 MPa and 140 ° C. is shown. 圧力4MPa、140℃でのユズ果皮からペクチンを抽出した時の、亜臨界水各流量(0.5、1.0、2.0ml/分)におけるペクチン溶出状況とそのpH推移を示す。The pectin elution situation and pH transition at each subcritical water flow rate (0.5, 1.0, 2.0 ml / min) when pectin is extracted from yuzu peel at a pressure of 4 MPa and 140 ° C. are shown. 圧力4MPa、流量0.5ml/分でのユズ果皮からペクチンを抽出した時の、各抽出温度(120℃、140℃、160℃)でのペクチン溶出状況とそのpH推移を示す。The pectin elution situation and pH transition at each extraction temperature (120 ° C, 140 ° C, 160 ° C) when pectin is extracted from yuzu peel at a pressure of 4 MPa and a flow rate of 0.5 ml / min are shown.

Claims (6)

柑橘果皮から、120〜140℃、4MPaの条件での亜臨界水抽出処理のみを用いて抽出することを特徴とするペクチンの抽出方法。   Extraction method of pectin characterized by extracting from citrus peel using only subcritical water extraction treatment under conditions of 120 to 140 ° C. and 4 MPa. 柑橘果皮から、130〜140℃、4〜30MPaの条件での亜臨界水抽出処理のみを用いて抽出することを特徴とするペクチンの抽出方法。   Extraction method of pectin characterized by extracting from citrus peel using only subcritical water extraction treatment under conditions of 130 to 140 ° C. and 4 to 30 MPa. ペクチンの分子量が4〜40万である請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the molecular weight of pectin is 40,000 to 400,000. 総ペクチン回収率が70%以上であることを特徴とする請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the total pectin recovery rate is 70% or more. 亜臨界水の抽出流量を0.5〜2.0ml/分とすることを特徴とする請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the subcritical water extraction flow rate is 0.5 to 2.0 ml / min. 柑橘果皮から亜臨界水抽出処理を用いてペクチンを抽出する際に、抽出液のpHを即時測定することで、抽出と同時にペクチンの溶出を確認する方法。   When extracting pectin from citrus peel using subcritical water extraction, the pH of the extract is measured immediately to confirm elution of pectin simultaneously with extraction.
JP2008292548A 2008-11-14 2008-11-14 Extraction method of polysaccharides Expired - Fee Related JP5975453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292548A JP5975453B2 (en) 2008-11-14 2008-11-14 Extraction method of polysaccharides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292548A JP5975453B2 (en) 2008-11-14 2008-11-14 Extraction method of polysaccharides

Publications (2)

Publication Number Publication Date
JP2010116524A true JP2010116524A (en) 2010-05-27
JP5975453B2 JP5975453B2 (en) 2016-08-23

Family

ID=42304374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292548A Expired - Fee Related JP5975453B2 (en) 2008-11-14 2008-11-14 Extraction method of polysaccharides

Country Status (1)

Country Link
JP (1) JP5975453B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101935361A (en) * 2010-08-31 2011-01-05 中国农业大学 Method for preparing pectin by high static pressure technology
JP2011225745A (en) * 2010-04-21 2011-11-10 Asukii:Kk Method for modifying pectin
CN102526295A (en) * 2012-03-07 2012-07-04 江南大学 Method for comprehensively utilizing dried orange peel
CN103483465A (en) * 2013-08-28 2014-01-01 华南理工大学 Environment-friendly preparation method of beet pectin
CN103880972A (en) * 2014-03-12 2014-06-25 江苏大学 Method of synchronously extracting polysaccharides and proteins from subcritical water
CN103923225A (en) * 2014-04-23 2014-07-16 赛珂睿德生物医药科技(上海)有限公司 Method for preparing citrus pectin
CN108324729A (en) * 2018-02-01 2018-07-27 江苏大学 A kind of arrowhead polysaccharide composition and preparation method thereof of enhancing immune function
CN108383926A (en) * 2018-03-27 2018-08-10 华南理工大学 A method of utilizing witloof/taro dregs of rice coproduction gel-type and emulsifying pectin
CN108434171A (en) * 2018-02-01 2018-08-24 江苏大学 A kind of arrowhead polysaccharide composition and preparation method thereof preventing chemical damage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213501A (en) * 1987-02-28 1988-09-06 Takuo Sakai Production of pectin
JP2005502676A (en) * 2001-09-03 2005-01-27 ディーエスエム アイピー アセッツ ビー.ブイ. Composition comprising pectin and ascorbic acid
WO2005090410A1 (en) * 2004-03-24 2005-09-29 Mitsui Chemicals, Inc. Pectin originating in plant cell
JP2008118940A (en) * 2006-11-14 2008-05-29 Clean Mechanical Kk Method and apparatus for producing citrus fruit beverage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213501A (en) * 1987-02-28 1988-09-06 Takuo Sakai Production of pectin
JP2005502676A (en) * 2001-09-03 2005-01-27 ディーエスエム アイピー アセッツ ビー.ブイ. Composition comprising pectin and ascorbic acid
WO2005090410A1 (en) * 2004-03-24 2005-09-29 Mitsui Chemicals, Inc. Pectin originating in plant cell
JP2008118940A (en) * 2006-11-14 2008-05-29 Clean Mechanical Kk Method and apparatus for producing citrus fruit beverage

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H.UENO., ET AL, SEPARATION AND PURIFICATION TECHNOLOGY, vol. 62, JPN6013043643, September 2008 (2008-09-01), pages 513 - 516, ISSN: 0002622233 *
上野 裕, 超臨界二酸化炭素および亜臨界水を用いた和柑橘搾汁残渣部位からの有価物の回収および有価資源への転換, JPN6015010619, 25 September 2007 (2007-09-25), pages 3 - 3, ISSN: 0003032366 *
高分子学会年次大会 予稿集, vol. 57巻1号, JPN6013043644, 8 May 2008 (2008-05-08), pages 1737頁, ISSN: 0002622234 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225745A (en) * 2010-04-21 2011-11-10 Asukii:Kk Method for modifying pectin
CN101935361A (en) * 2010-08-31 2011-01-05 中国农业大学 Method for preparing pectin by high static pressure technology
CN101935361B (en) * 2010-08-31 2012-06-20 中国农业大学 Method for preparing pectin by high static pressure technology
CN102526295A (en) * 2012-03-07 2012-07-04 江南大学 Method for comprehensively utilizing dried orange peel
CN103483465A (en) * 2013-08-28 2014-01-01 华南理工大学 Environment-friendly preparation method of beet pectin
CN103880972A (en) * 2014-03-12 2014-06-25 江苏大学 Method of synchronously extracting polysaccharides and proteins from subcritical water
CN103923225A (en) * 2014-04-23 2014-07-16 赛珂睿德生物医药科技(上海)有限公司 Method for preparing citrus pectin
CN108324729A (en) * 2018-02-01 2018-07-27 江苏大学 A kind of arrowhead polysaccharide composition and preparation method thereof of enhancing immune function
CN108434171A (en) * 2018-02-01 2018-08-24 江苏大学 A kind of arrowhead polysaccharide composition and preparation method thereof preventing chemical damage
CN108383926A (en) * 2018-03-27 2018-08-10 华南理工大学 A method of utilizing witloof/taro dregs of rice coproduction gel-type and emulsifying pectin
WO2019184320A1 (en) * 2018-03-27 2019-10-03 华南理工大学 Method for co-producing gelatinous and emulsified pectin by using cichorium intybus/helianthus tuberosus meal
CN108383926B (en) * 2018-03-27 2020-05-22 华南理工大学 Method for co-producing gel type and emulsion type pectin by using chicory/taro meal

Also Published As

Publication number Publication date
JP5975453B2 (en) 2016-08-23

Similar Documents

Publication Publication Date Title
JP5975453B2 (en) Extraction method of polysaccharides
Gómez et al. Pectic oligosacharides from lemon peel wastes: Production, purification, and chemical characterization
JP5748964B2 (en) Pectin modification method
JP2006255676A (en) Method for separating lignin substance
Kininge et al. Intensification of alkaline delignification of sugarcane bagasse using ultrasound assisted approach
CN104198668B (en) A kind of stage division of dextrin
CN103180505A (en) Improved process for recovering sugars from pretreatment stream of lignocellulosic biomass
Landim et al. Application of cationic hemicelluloses produced from corn husk as polyelectrolytes in sewage treatment
RU2736368C2 (en) Method of producing hemicellulose extracts
CN103834710A (en) Extraction method of agave sisalana pectin
JP5861413B2 (en) Continuous production method of furfural from biomass
JP5924188B2 (en) Method for producing furfurals from lignocellulose-containing biomass
JP2005023041A (en) Water-soluble saccharide and its production method
CN101507520A (en) Enzyme method orange juice recovery technique by processing flesh (dregs)
CN104974207B (en) A kind of method that GP4G is extracted in the artemia cysts from salt water
CN106883315A (en) A kind of method that pectin is extracted from kiwifruit peel
JP2009165452A (en) Pectin extraction method and pectin
JP6004313B2 (en) Method for producing resin raw material from lignocellulosic biomass and method for avoiding blockage of solid line in reactor outlet line in the apparatus
CN103803689B (en) A kind of low molecule pectin compound flocculating agent and On-line testing technique thereof
WO2017216720A2 (en) Process for treating and generating energy from biomasses
CN114395441A (en) Extraction method of peony pistil oil
CN103122039A (en) Process for extracting pectin from acid discharge liquor generated in canned citrus production
SE535702C2 (en) Process for the treatment of organic material to produce methane gas
Lei Microwave hydrothermal carbonization of orange peel waste
EA016871B1 (en) Method for processing sun flower into pectin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160712

R150 Certificate of patent or registration of utility model

Ref document number: 5975453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees