JP2010113810A - Transmission electron microscope - Google Patents

Transmission electron microscope Download PDF

Info

Publication number
JP2010113810A
JP2010113810A JP2008282776A JP2008282776A JP2010113810A JP 2010113810 A JP2010113810 A JP 2010113810A JP 2008282776 A JP2008282776 A JP 2008282776A JP 2008282776 A JP2008282776 A JP 2008282776A JP 2010113810 A JP2010113810 A JP 2010113810A
Authority
JP
Japan
Prior art keywords
pole piece
yoke
sample
outer yoke
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008282776A
Other languages
Japanese (ja)
Other versions
JP5502309B2 (en
Inventor
Mitsuru Uji
持 満 羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2008282776A priority Critical patent/JP5502309B2/en
Publication of JP2010113810A publication Critical patent/JP2010113810A/en
Application granted granted Critical
Publication of JP5502309B2 publication Critical patent/JP5502309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TEM improved significantly in vibration resistance by weighting an influence of each part of a lens barrel for image migration due to environmental disturbance from an electronic optical standpoint and performing such design that the rigidity of the part having the highest influence on vibration resistance is chiefly is enhanced in consideration of moment by inertial force. <P>SOLUTION: In order to enhance loop rigidity from a pole piece to a sample, two members of a compression flange 32 and a reinforcing ring 33 that join an outer yoke a25 to an inner yoke 27 are placed. Coupling between the two members by bolts 34 is performed, in which the respective whole joining areas of the inner yoke 27 and the outer yoke a25 are fixed by adhesion or the like. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は透過型電子顕微鏡に係わり、特に高分解能観察像を得るための耐振性を向上させる技術に関する。   The present invention relates to a transmission electron microscope, and more particularly to a technique for improving vibration resistance for obtaining a high-resolution observation image.

透過型電子顕微鏡(以下、TEMと略称する)は、原子分解能が得られる観察装置である。図5に、走査透過像(以下、STEM像)を観察可能なTEMの概略構成例を示す。図5において、試料1を保持する試料ホルダ2は、観察の位置決めを行なう試料ステージ3に抜き差しできるように保持されている。試料ステージ3は鏡筒4に固定されており、図中のX,Y,Z軸方向の直線動およびX軸周りの傾斜が可能になっている。鏡筒4は除振機5を介して床6上に置かれた架台7上に設置され、床6の振動は除振機5によって伝達が抑制される。除振機5の固有振動数は数Hz程度に設定されており、それ以上の高周波の振動伝達を抑制する。   A transmission electron microscope (hereinafter abbreviated as TEM) is an observation apparatus that can obtain atomic resolution. FIG. 5 shows a schematic configuration example of a TEM capable of observing a scanning transmission image (hereinafter, STEM image). In FIG. 5, a sample holder 2 for holding a sample 1 is held so that it can be inserted into and removed from a sample stage 3 for positioning observation. The sample stage 3 is fixed to the lens barrel 4, and linear movement in the X, Y, and Z axis directions in the drawing and tilting around the X axis are possible. The lens barrel 4 is installed on a gantry 7 placed on a floor 6 via a vibration isolator 5, and the vibration of the floor 6 is suppressed from being transmitted by the vibration isolator 5. The natural frequency of the vibration isolator 5 is set to about several Hz and suppresses vibration transmission at higher frequencies.

TEMの原理については良く知られており詳しい説明を省略するが、透過電子像(以下、TEM像)の観察時には、電子銃8のエミッタ9で発生した電子ビーム10をコンデンサレンズ11、コンデンサミニレンズ12、対物レンズを用いて、試料1に平行ビームとして照射し、透過した電子ビーム10を対物レンズ13、中間レンズ14、投影レンズ15で拡大し、蛍光板16あるいは
カメラフィルム17上に結像させることでTEM像を得る。
Although the principle of TEM is well known and will not be described in detail, when observing a transmission electron image (hereinafter referred to as TEM image), an electron beam 10 generated by an emitter 9 of an electron gun 8 is converted into a condenser lens 11 and a condenser mini lens. 12. Using the objective lens, the sample 1 is irradiated as a parallel beam, and the transmitted electron beam 10 is magnified by the objective lens 13, the intermediate lens 14, and the projection lens 15 to form an image on the fluorescent plate 16 or the camera film 17. A TEM image is obtained.

また、STEM像の観察時には図5中の破線で示すように、試料1の一点に電子ビームを収束させ,透過した電子ビーム量をSTEM検出器18により測定する。照射系偏向器19によって、ビーム照射位置20をXY平面上で2次元走査することによってSTEM像を得る。なお、本図の電子光学系は理解を容易にするための模式的なものであり、厳密なものではない。   Further, when observing the STEM image, as indicated by a broken line in FIG. 5, the electron beam is converged on one point of the sample 1 and the amount of transmitted electron beam is measured by the STEM detector 18. An STEM image is obtained by two-dimensionally scanning the beam irradiation position 20 on the XY plane by the irradiation system deflector 19. Note that the electron optical system in this figure is a schematic one for easy understanding and is not strict.

さて、除振機5を介して伝達した床振動などの外乱振動は装置全体を振動させる。このとき各部位には振動の加速度にともなう慣性力が発生する。これらの慣性力によって各機械要素は弾性変形する。STEM像取得時には、この弾性変形による試料1とビーム照射位置20との相対変位が観察分解能を超えたとき、振動の影響が問題となる。   Now, disturbance vibrations such as floor vibrations transmitted via the vibration isolator 5 vibrate the entire apparatus. At this time, an inertial force accompanying the acceleration of vibration is generated in each part. Each mechanical element is elastically deformed by these inertial forces. At the time of STEM image acquisition, if the relative displacement between the sample 1 and the beam irradiation position 20 due to this elastic deformation exceeds the observation resolution, the influence of vibration becomes a problem.

一方、TEM像観察時には、蛍光板16あるいはカメラフィルム17上に拡大された透過像の移動量が観察分解能を超えたときに、像振動として問題となる。   On the other hand, at the time of TEM image observation, if the amount of movement of the transmission image magnified on the fluorescent screen 16 or the camera film 17 exceeds the observation resolution, it becomes a problem as image vibration.

従来の設計では、TEMの耐振性を高めるために、各部位の剛性を高めることによりこれらの弾性変形を抑制している。この際、1自由度系への強制振動入力のモデルから、系の固有振動数を高めることが耐振性を高めるのに有利と考えられた。   In the conventional design, in order to increase the vibration resistance of the TEM, these elastic deformations are suppressed by increasing the rigidity of each part. At this time, from the model of forced vibration input to the one-degree-of-freedom system, it was considered that increasing the natural frequency of the system was advantageous for improving the vibration resistance.

図2は、1自由度系の振動モデルを示す図である。図2において、ベースが周波数fHz、変位aで強制振動した際、質量の変位をaとおいて、ベースと質量との間の標準化された相対変位|a−a|/aは下式(1)で表される。

Figure 2010113810
ここに、λは系の固有振動数fに対する周波数fの比、ξは1自由度系の減衰比である。 FIG. 2 is a diagram illustrating a one-degree-of-freedom vibration model. In FIG. 2, when the base is forced to vibrate at a frequency of fHz and a displacement a 0 , the mass displacement is a, and the standardized relative displacement | a 0 −a | / a 0 between the base and the mass is It is represented by (1).
Figure 2010113810
Here, λ is the ratio of the frequency f to the natural frequency f n of the system, and ξ is the damping ratio of the one-degree-of-freedom system.

λが1より十分に小さな領域において、相対変位はλに比例する。床振動でしばしば問題になるのは先に述べたように数Hzの周波数成分である。数Hzという周波数は装置の固有振動数より十分に低いため、λが1より十分に小さいという条件を満たす。強制振動の周波数fが一定のとき、相対変位は系の周波数fの2乗に反比例する。即ち、下式(2)のように表される。

Figure 2010113810
よって、相対変位を小さくしてTEMの耐振性を高めるためには、系の固有振動の周波数fを高くすることが必要である。そのため、ばね定数を高めるか、あるいは質量を軽減することが重要である。 In the region where λ is sufficiently smaller than 1, the relative displacement is proportional to λ. As described above, a frequency component of several Hz is often a problem in floor vibration. Since the frequency of several Hz is sufficiently lower than the natural frequency of the apparatus, the condition that λ is sufficiently smaller than 1 is satisfied. When the frequency f of the forced vibration is constant, the relative displacement is inversely proportional to the square of frequency f n of the system. That is, it is expressed as the following formula (2).
Figure 2010113810
Therefore, in order to increase the vibration resistance of the TEM by reducing the relative displacement, it is necessary to increase the frequency f n of the natural oscillation of the system. Therefore, it is important to increase the spring constant or reduce the mass.

特許文献1の特開平9−283067号公報には、電子銃部と鏡体本体とを一体的に結合して電子銃部の固有振動数を上げることによって剛性を向上し、電子銃部先端の電子源の揺れを小さくする技術が開示されている。
In Japanese Patent Application Laid-Open No. 9-283067 of Patent Document 1, rigidity is improved by integrally coupling the electron gun unit and the body of the body to increase the natural frequency of the electron gun unit. A technique for reducing the fluctuation of the electron source is disclosed.

特開平9−283067号公報Japanese Patent Laid-Open No. 9-283067

原子分解能を持つTEMの分解能は、近年開発された多極子の収差補正機の登場により0.1nm以下に達した。TEM設置室に存在する床振動や騒音の環境外乱は装置を弾性変形させ,同変形に起因する像振動が観察分解能の律速条件になる。TEMの高分解能化にともない,設置環境の許容外乱の上限はより厳しく制限された。そのため、環境外乱の対策としてTEM用の耐騒音試料ホルダの開発や、架台の固有モードと床の傾斜振動の連成による数10から数100Hzに渡る床振動増幅を抑制することが行なわれている。   The resolution of a TEM with atomic resolution has reached 0.1 nm or less due to the advent of a multipole aberration corrector developed in recent years. An environmental disturbance such as floor vibration and noise existing in the TEM installation room elastically deforms the apparatus, and image vibration caused by the deformation becomes a rate-determining condition for observation resolution. With the increase in resolution of TEM, the upper limit of allowable disturbance in the installation environment has been severely limited. Therefore, as a countermeasure against environmental disturbances, development of a noise-resistant sample holder for TEM, and suppression of floor vibration amplification over several tens to several hundreds of Hz due to the coupling of the natural mode of the gantry and the floor tilt vibration have been performed. .

しかし、これらの対策では数Hzの低周波床振動の影響を抑制することはできず、原子分解能を持つTEMに対しては、鏡筒の耐振設計方針を根本的に見直す必要がある。TEMの構造は複雑であり、その構成要素すべてが1自由度系でモデル化できるとは限らない。また、電子ビームは光学系の各部位において、その径が拡大され、また縮小される。よって、機械的剛性を設計するに当たっては電子ビームの拡大縮小の影響を考慮に入れる必要がある。   However, these measures cannot suppress the influence of low-frequency floor vibration of several Hz, and it is necessary to fundamentally review the vibration-proof design policy of the lens barrel for a TEM having atomic resolution. The structure of a TEM is complex, and not all of its components can be modeled with a one-degree-of-freedom system. Further, the diameter of the electron beam is enlarged and reduced at each part of the optical system. Therefore, when designing the mechanical rigidity, it is necessary to take into account the influence of the scaling of the electron beam.

ここで、TEMを照射系、結像系、対物レンズ部の3つの部位に分けて、その耐振性に関する検討を行なう。鏡筒4に対し水平方向で試料ホルダ2の軸方向の振動が入力する場合を考える。このとき各部位に慣性力が発生し弾性変形が生じる。これをイメージしやすくするために、図3に示すように、鏡筒4を水平方向に伸びた片持ち梁のように除振機位置において固定し、図中の矢印A方向に重力(加速度)がかかった場合を考える。   Here, the TEM is divided into three parts, that is, an irradiation system, an imaging system, and an objective lens part, and the vibration resistance is examined. Let us consider a case where vibration in the axial direction of the sample holder 2 is inputted in the horizontal direction with respect to the lens barrel 4. At this time, an inertial force is generated in each part, and elastic deformation occurs. In order to make this easy to imagine, as shown in FIG. 3, the lens barrel 4 is fixed at the position of the vibration isolator like a cantilever extending in the horizontal direction, and gravity (acceleration) is indicated in the direction of arrow A in the figure. Consider the case where it takes.

このとき、鏡筒4は片持ち梁のように弾性変形する。試料ステージ3と試料ホルダ2は、自重によるたわみでやはり下方向に移動する。さて、この状態において、電子光学的観点から各部位のたわみにより像がどのように影響を受けるかを検討する。一般的に電子光学系において、試料1の上側を照射系21、下側を結像系22と呼ぶが、ここでは中間に位置する対物レンズ部23を別の部位にして説明する。   At this time, the lens barrel 4 is elastically deformed like a cantilever. The sample stage 3 and the sample holder 2 also move downward due to deflection due to their own weight. Now, in this state, it will be examined how the image is affected by the deflection of each part from the viewpoint of electron optics. In general, in the electron optical system, the upper side of the sample 1 is referred to as an irradiation system 21 and the lower side is referred to as an imaging system 22. Here, the objective lens unit 23 positioned in the middle will be described as another part.

まず、STEM像観察モードでは、電子ビーム10と試料1との相対変位が像の移動量になる。照射系21においては、エミッタ部9のたわみ量が機械的な移動量であるが、電子ビームは照射系において1/1000ほどに縮小される。よって機械的たわみの1/1000が電子ビーム10の照射位置の移動量となる。STEM像の観察分解能が0.1nmであるとき、エミッタ部9のたわみの許容量は、電子ビーム10の照射位置の移動量を1000倍した0.1μmとなる。一方、試料ステージ3や試料ホルダ2、に関してはその機械的たわみ量はそのまま像移動量となる。従って、照射系21の機械的たわみよりも1000倍ほど像移動量に対して影響がある。   First, in the STEM image observation mode, the relative displacement between the electron beam 10 and the sample 1 is the amount of image movement. In the irradiation system 21, the deflection amount of the emitter section 9 is a mechanical movement amount, but the electron beam is reduced to about 1/1000 in the irradiation system. Therefore, 1/1000 of the mechanical deflection is the amount of movement of the irradiation position of the electron beam 10. When the observation resolution of the STEM image is 0.1 nm, the allowable amount of deflection of the emitter section 9 is 0.1 μm, which is 1000 times the amount of movement of the irradiation position of the electron beam 10. On the other hand, regarding the sample stage 3 and the sample holder 2, the amount of mechanical deflection becomes the amount of image movement as it is. Therefore, the amount of movement of the image is affected by about 1000 times the mechanical deflection of the irradiation system 21.

次に、TEM像観察モードにおける検討を行なう。照射系21は試料1に対して平行にビームを照射するため,そのたわみは像移動には関係しないため考慮しなくて良い。結像系22においては、電子ビーム径が拡大される。蛍光板上で観察される像が100万倍であるとき、結像系の拡大率は1万倍程度である。100万倍観察時、例えばTEM像の分解能が0.1nmとすると、蛍光板上での長さは0.1mmとなる。よって拡大系のたわみの許容量はこの1/10000の10nmと見積もられる。これは照射系21のSTEM像観察モードにおける影響に比較すれば10倍の影響であるが、試料ステージ3や試料ホルダ2の影響に比べれば小さい。   Next, examination in the TEM image observation mode is performed. Since the irradiation system 21 irradiates the sample 1 with a beam in parallel, the deflection thereof is not related to the image movement, so that it need not be taken into consideration. In the imaging system 22, the electron beam diameter is enlarged. When the image observed on the fluorescent screen is 1 million times, the magnification of the imaging system is about 10,000 times. For example, if the resolution of a TEM image is 0.1 nm during 1 million magnification observation, the length on the fluorescent screen is 0.1 mm. Therefore, the allowable amount of deflection of the expansion system is estimated to be 10 nm which is 1 / 10,000. This is 10 times the influence of the irradiation system 21 in the STEM image observation mode, but is smaller than the influence of the sample stage 3 and the sample holder 2.

最後に、対物レンズ部23に注目する。図4に、従来の対物レンズ113のより詳細な構造を示す。図4において、外ヨークa25は外ヨークb26とボルト24a、内ヨーク27とボルト24bにより締結されている。ステージ基台3aは試料ステージ3の一部で、試料ステージ3を鏡筒4に固定するための部材である。ステージ基台3aは外ヨークa25の上部にボルト24cにより固定されている。内ヨーク27の上面にはポールピース下極29とポールピース上極31とが対向しており、これらの間にはスペーサ31が設けられている。   Finally, attention is paid to the objective lens unit 23. FIG. 4 shows a more detailed structure of the conventional objective lens 113. In FIG. 4, the outer yoke a25 is fastened by an outer yoke b26 and a bolt 24a, and an inner yoke 27 and a bolt 24b. The stage base 3 a is a part of the sample stage 3 and is a member for fixing the sample stage 3 to the lens barrel 4. The stage base 3a is fixed to the upper part of the outer yoke a25 with bolts 24c. A pole piece lower pole 29 and a pole piece upper pole 31 are opposed to the upper surface of the inner yoke 27, and a spacer 31 is provided between them.

内ヨーク27と外ヨークa25との隙間にはコイル28が設けられ、電流を通すことによって磁場レンズが構成される。同レンズの磁気回路は、ポールピース下極29、内ヨーク27、外ヨークa25、外ヨークb26、ポールピース上極30から構成される。ここで、外ヨークb26とポールピース上極30とは機械的に接触しておらず、わずかに間隙が設けられている。   A coil 28 is provided in the gap between the inner yoke 27 and the outer yoke a25, and a magnetic field lens is configured by passing a current. The magnetic circuit of the lens includes a pole piece lower pole 29, an inner yoke 27, an outer yoke a 25, an outer yoke b 26, and a pole piece upper pole 30. Here, the outer yoke b26 and the pole piece upper pole 30 are not in mechanical contact, and a slight gap is provided.

この対物レンズ部23に対し重力(加速度)による照射系21のモーメントがかかったとき、外ヨークa25が図4中の実線(破線は撓みのない状態を示す)のように撓むと、これに固定されたステージ基台3a、試料ステージ3、試料ホルダ2がともに移動する。一方、内ヨーク27上に配置されたポールピース下極29とポールピース上極30には照射系のモーメントがかからないため、位置変動が起こらない。図4では、外ヨークb26がポールピース上極30にぶつかって描かれているが、実際にはたわみ量は小さいため接触しない。従って、外ヨークa25のたわみの影響度は、試料ステージ3や試料ホルダ2の影響と同等に大きい。さらに、試料ステージ3、試料ホルダ2の場合は自重のみによってたわみが発生するのに対して、外ヨークa25には照射系21の全モーメントがかかるため、外ヨークa25の曲げ剛性は非常に高い必要がある。外ヨークa25のたわみは、試料1の位置変動と等価であるので、TEM像、STEM像の両観察モードともに像振動に影響する。   When the moment of the irradiation system 21 due to gravity (acceleration) is applied to the objective lens part 23, the outer yoke a25 is fixed to the solid line in FIG. 4 (the broken line indicates an unbent state). The stage base 3a, the sample stage 3, and the sample holder 2 are moved together. On the other hand, the pole piece lower pole 29 and the pole piece upper pole 30 arranged on the inner yoke 27 are not subjected to the moment of irradiation system, and therefore no positional fluctuation occurs. In FIG. 4, the outer yoke b <b> 26 is drawn against the pole piece upper pole 30. Therefore, the degree of influence of the deflection of the outer yoke a25 is as great as the influence of the sample stage 3 and the sample holder 2. Further, in the case of the sample stage 3 and the sample holder 2, the deflection is generated only by its own weight, whereas the entire moment of the irradiation system 21 is applied to the outer yoke a25. Therefore, the bending rigidity of the outer yoke a25 needs to be very high. There is. Since the deflection of the outer yoke a25 is equivalent to the position fluctuation of the sample 1, both the TEM image and STEM image observation modes affect the image vibration.

以上の検討から、鏡筒4において最も高い剛性を必要とするのは、対物レンズ部23のヨークの曲げ剛性であり、換言すれば対物レンズのポールピースから試料までのループ構造の剛性(ループ剛性)であることが分かる。ここで、例えばポールピース上極30と試料1とのループ構造とは、ポールピース上極30と試料1とが僅かな距離を隔てて対向し、ポールピース上極30、外ヨークb26、ステージ基台3a、試料ステージ3、試料ホルダ2、試料1の順に、隣り合う構成要素同士が接して組み立てられているときの、一連の構成要素全体を意味している。また、ループ剛性とは、上述の一連の構成要素全体が持つ剛性を指す。   From the above examination, the lens barrel 4 that requires the highest rigidity is the bending rigidity of the yoke of the objective lens unit 23. In other words, the rigidity of the loop structure from the pole piece of the objective lens to the sample (loop rigidity) ). Here, for example, the loop structure of the pole piece upper electrode 30 and the sample 1 is such that the pole piece upper electrode 30 and the sample 1 face each other with a slight distance, and the pole piece upper electrode 30, the outer yoke b 26, and the stage base. This means the entire series of components when adjacent components are assembled in contact with each other in the order of the stage 3a, the sample stage 3, the sample holder 2, and the sample 1. The loop stiffness refers to the stiffness of the entire series of components described above.

さらに、照射系21の機械剛性は、対物レンズ部23に比較すれば剛性が低くてもかまわない。従って、例えば特許文献1の特開平9−283067号公報に開示されているように従来しばしば行なわれてきた設計方法、即ち照射系の剛性を高めるために鏡筒先端部の質量を大きくすることは、結果として対物レンズ13のヨークの撓み量を増加させるので、かえって耐振性を低下させる可能性があることも分かる。   Furthermore, the mechanical rigidity of the irradiation system 21 may be lower than that of the objective lens unit 23. Therefore, for example, as disclosed in Japanese Patent Application Laid-Open No. 9-283067 of Patent Document 1, a design method that has often been used in the past, that is, to increase the mass of the tip of the lens barrel in order to increase the rigidity of the irradiation system, As a result, since the amount of deflection of the yoke of the objective lens 13 is increased, it can be seen that the vibration resistance may be lowered.

本発明は上記した問題を解決するためになされたものであって、その目的は、環境外乱による像移動に対する鏡筒各部の影響度を電子光学的観点から重み付けし、また慣性力によるモーメントを考慮して最も耐振性に影響を及ぼす部分の剛性を重点的に高める設計を行なうことにより、顕著に耐振性を向上させたTEMを提供することに有る。   The present invention has been made to solve the above-mentioned problems, and its purpose is to weight the degree of influence of each part of the lens barrel with respect to image movement due to environmental disturbance from the viewpoint of electro-optics, and to take into account moments due to inertial forces. Thus, it is intended to provide a TEM that significantly improves the vibration resistance by performing a design that mainly increases the rigidity of the portion that most affects the vibration resistance.

上記の問題を解決するために、
請求項1に記載の発明は、第1の外ヨーク及び第2の外ヨーク及び内ヨークと、前記第1の外ヨークに固定されたポールピース上極と、前記第2の外ヨーク及び前記内ヨークに固定されたポールピース下極と、前記第2の外ヨークと前記内ヨークとの間に形成される空間に配置されたコイルからなる対物レンズと、該対物レンズ上に固定された試料ステージと、該試料ステージに支持された試料ホルダとを備えた透過型電子顕微鏡において、
前記試料ホルダに取り付けられた試料から前記ポールピースまでのループ構造を構成する各部材間に、前記試料と前記ポールピースの間の相対変位を抑制する部材を配設することにより、前記ループ構造の剛性を高めたことを特徴とする。
To solve the above problem,
The invention according to claim 1 includes a first outer yoke, a second outer yoke and an inner yoke, a pole piece upper pole fixed to the first outer yoke, the second outer yoke and the inner yoke. A pole piece lower pole fixed to the yoke, an objective lens including a coil disposed in a space formed between the second outer yoke and the inner yoke, and a sample stage fixed on the objective lens And a transmission electron microscope comprising a sample holder supported by the sample stage,
By disposing a member for suppressing relative displacement between the sample and the pole piece between the members constituting the loop structure from the sample to the pole piece attached to the sample holder, It is characterized by increased rigidity.

また請求項2に記載の発明は、前記対物レンズの前記第2の外ヨーク及び前記内ヨークが前記試料ステージを支持する側に開口部が設けられており、該開口部を塞ぐように補強部材を配設して、前記第2外ヨークと前記内ヨークとの相対変形を抑制するようにしたことを特徴とする。   In the invention according to claim 2, the opening is provided on the side of the objective lens where the second outer yoke and the inner yoke support the sample stage, and the reinforcing member is closed so as to close the opening. Is provided to suppress relative deformation between the second outer yoke and the inner yoke.

また請求項3に記載の発明は、前記補強部材は、補強フランジと補強リングとこれら2つの部材間を締結するボルトからなり、前記第2の外ヨークと前記内ヨークとの接合部は接着又は半田付け又はボルト締結又はロー付けの何れかにより固定されていることを特徴とする。   According to a third aspect of the present invention, the reinforcing member comprises a reinforcing flange, a reinforcing ring, and a bolt for fastening between the two members, and the joint between the second outer yoke and the inner yoke is bonded or bonded. It is fixed by either soldering, bolt fastening or brazing.

また請求項4に記載の発明は、前記試料ステージと前記補強フランジとをボルトにより締結したことを特徴とする。   The invention according to claim 4 is characterized in that the sample stage and the reinforcing flange are fastened by a bolt.

また請求項5に記載の発明は、前記対物レンズの前記ポールピース上極と前記ポールピース下極との間に配設するスペーサを用いて、前記試料ステージと前記ポールピースとを固定したことを特徴とする。   The invention according to claim 5 is that the sample stage and the pole piece are fixed by using a spacer disposed between the pole piece upper pole and the pole piece lower pole of the objective lens. Features.

また請求項6に記載の発明は、前記試料と前記ポールピースの間の相対変位を抑制する部材は非磁性材料であることを特徴とする。   The invention described in claim 6 is characterized in that the member for suppressing the relative displacement between the sample and the pole piece is a non-magnetic material.

本発明によれば、環境外乱による像移動に対する影響度が最も強い対物レンズのヨークの曲げ剛性を重点的に高める構造とすることにより、対物レンズのポールピースから試料までのループ剛性を高めたため、外乱振動により鏡筒が弾性変形して観察像が移動する量を抑制できるので、透過型電子顕微鏡における原子レベルの高分解能観察を可能とすることができる。   According to the present invention, the structure has a structure in which the bending stiffness of the yoke of the objective lens, which has the strongest influence on the image movement due to environmental disturbances, is mainly increased, thereby increasing the loop stiffness from the pole piece of the objective lens to the sample. Since the amount of movement of the observation image due to elastic deformation of the lens barrel due to disturbance vibration can be suppressed, high-resolution observation at the atomic level in a transmission electron microscope can be made possible.

以下図1を参照しながら、本発明の実施の形態について説明する。但し、この例示によって本発明の技術範囲が制限されるものでは無い。図1において図4と同一または類似の動作を行なうものには共通の符号を付し、詳しい説明の重複を避ける。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. However, the technical scope of the present invention is not limited by this illustration. 1 that perform the same or similar operations as those in FIG. 4 are denoted by the same reference numerals, and detailed description is not repeated.

図1は、本発明を実施する対物レンズ213の構造を示す図である。図1において、外ヨークa25は外ヨークb26とボルト24a、内ヨーク27とボルト24bにより締結されている。ステージ基台3aは試料ステージ3の一部で、試料ステージ3を鏡筒4に固定するための部材である。ステージ基台3aは外ヨークa25の上部にボルト24cにより固定されている。内ヨーク27の上面にはポールピース下極29とポールピース上極31とが対向しており、これらの間にはスペーサ31が設けられている。   FIG. 1 is a diagram showing the structure of an objective lens 213 for implementing the present invention. In FIG. 1, an outer yoke a25 is fastened by an outer yoke b26 and a bolt 24a, and an inner yoke 27 and a bolt 24b. The stage base 3 a is a part of the sample stage 3 and is a member for fixing the sample stage 3 to the lens barrel 4. The stage base 3a is fixed to the upper part of the outer yoke a25 with bolts 24c. A pole piece lower pole 29 and a pole piece upper pole 31 are opposed to the upper surface of the inner yoke 27, and a spacer 31 is provided between them.

内ヨーク27と外ヨークa25との隙間にはコイル28が設けられ、電流を通すことによって磁場レンズが構成される。同レンズの磁気回路は、ポールピース下極29、内ヨーク27、外ヨークa25、外ヨークb26、ポールピース上極30から構成される。ここで、外ヨークb26とポールピース上極30とは機械的に接触しておらず、わずかに間隙が設けられている。   A coil 28 is provided in the gap between the inner yoke 27 and the outer yoke a25, and a magnetic field lens is configured by passing a current. The magnetic circuit of the lens includes a pole piece lower pole 29, an inner yoke 27, an outer yoke a 25, an outer yoke b 26, and a pole piece upper pole 30. Here, the outer yoke b26 and the pole piece upper pole 30 are not in mechanical contact, and a slight gap is provided.

本発明を実施する対物レンズは、ポールピースから試料までのループ剛性を高めるため、外ヨークa25と内ヨーク27をつなぐ補強フランジ32と補強リング33の2つの部材を配置している。2つの部材間はボルト34による締結がなされている。ボルト34′は、ボルト34と同一の働きをするボルトで、異なる部位に配置されていることを示す。   In the objective lens embodying the present invention, two members of a reinforcing flange 32 and a reinforcing ring 33 that connect the outer yoke a25 and the inner yoke 27 are arranged in order to increase the loop rigidity from the pole piece to the sample. The two members are fastened with bolts 34. A bolt 34 ′ is a bolt that performs the same function as the bolt 34, and indicates that the bolt 34 ′ is arranged at a different part.

それぞれの内ヨーク27、外ヨークa25との接合部の全面が接着により固定され、高剛性に接合されている。これら接合部は必ずしも接着によらず、はんだ付けやボルト締結などで固定しても良い。これら補強フランジ32と補強リング33が、外ヨークと内ヨークとの相対変形を抑制し、試料とポールピースとの間のループ剛性を高める効果を生み出している。   The entire surfaces of the joint portions between the inner yoke 27 and the outer yoke a25 are fixed by bonding and are joined with high rigidity. These joints may be fixed by soldering or bolt fastening, not necessarily by bonding. The reinforcing flange 32 and the reinforcing ring 33 suppress the relative deformation between the outer yoke and the inner yoke, and produce the effect of increasing the loop rigidity between the sample and the pole piece.

次に、本発明を実施した他の対物レンズ313の例を、図7を参照しながら説明する。対物レンズ313は、対物レンズ213で実施される補強に加えて、さらに補強フランジ40の中心軸側(電子ビーム軸に近い側)をステージ基台3aとボルト35で固定する補強を行なっている。ボルト35′は、ボルト35と同一の働きをするボルトで、異なる部位に配置されていることを示す。補強フランジ40は、ボルト35によるステージ基台3aとの締結を強固にするため、対物レンズ213の補強フランジ32とは若干異なる形状とされているが、同じ形状として補強フランジ40とステージ基台3aとの間にスペーサ(図示せず)を組み込んでも良い。これらの補強によって、試料とポールピースとの間のループ剛性をより高めることができる。   Next, an example of another objective lens 313 embodying the present invention will be described with reference to FIG. In addition to the reinforcement performed by the objective lens 213, the objective lens 313 further performs reinforcement by fixing the central axis side (side closer to the electron beam axis) of the reinforcement flange 40 with the stage base 3 a and the bolt 35. A bolt 35 ′ is a bolt having the same function as the bolt 35, and indicates that the bolt 35 ′ is arranged at a different part. The reinforcing flange 40 has a slightly different shape from the reinforcing flange 32 of the objective lens 213 in order to strengthen the fastening of the bolt 35 to the stage base 3a, but the reinforcing flange 40 and the stage base 3a have the same shape. A spacer (not shown) may be incorporated between the two. These reinforcements can further increase the loop rigidity between the sample and the pole piece.

また、ステージ基台3aとポールピース下極29との間に配置されているスペーサ37は、ステージ基台3aとスペーサ37とをボルト36で締結することができるように、図4に示される従来のスペーサ31と異なった形状とされている。そのため、試料とポールピースとの間のより高いループ剛性を得ることが可能である。   Further, the spacer 37 disposed between the stage base 3a and the pole piece lower pole 29 is the conventional one shown in FIG. 4 so that the stage base 3a and the spacer 37 can be fastened with a bolt 36. The spacer 31 has a different shape. Therefore, it is possible to obtain a higher loop rigidity between the sample and the pole piece.

なお、図7においては、補強フランジ40とステージ基台3aとのボルト締結と、ステージ基台3aとスペーサ37とのボルト締結を同時に行なうようにしているが、何れか一方の締結のみ行なうようにしても良い。   In FIG. 7, the bolt fastening between the reinforcing flange 40 and the stage base 3a and the bolt fastening between the stage base 3a and the spacer 37 are performed at the same time, but only one of them is fastened. May be.

次に、本発明を実施した他のもうひとつの対物レンズ413の例を、図8を参照しながら説明する。対物レンズ413において、内ヨーク39には補強フランジ41をねじ込むためのねじ込み部39aが形成されている。補強フランジ41をねじ込んだ後に、ねじ込み部39aをはんだ付けで補強すればなお良い。また、外ヨークa38と補強フランジ41をボルト42で締結する。そのため、外ヨークa38と補強フランジ41は、図4に示される従来の外ヨークa25と補強フランジ32とは異なった形状とされている。ボルト42′は、ボルト42と同一の働きをするボルトで、異なる部位に配置されていることを示す。これらの補強によって、試料とポールピースとの間のループ剛性をより高めることができる。   Next, another example of the objective lens 413 embodying the present invention will be described with reference to FIG. In the objective lens 413, a screwed portion 39 a for screwing the reinforcing flange 41 is formed in the inner yoke 39. After screwing the reinforcing flange 41, the screwed portion 39a may be reinforced by soldering. Further, the outer yoke a 38 and the reinforcing flange 41 are fastened with bolts 42. Therefore, the outer yoke a38 and the reinforcing flange 41 have different shapes from the conventional outer yoke a25 and the reinforcing flange 32 shown in FIG. A bolt 42 ′ is a bolt having the same function as the bolt 42, and indicates that the bolt 42 ′ is arranged at a different part. These reinforcements can further increase the loop rigidity between the sample and the pole piece.

また、上記した対物レンズ213、313、413の説明において、補強フランジ32、補強フランジ41、補強リング33及び各ボルト等の締結部材には、磁路に影響が無いように非磁性材料を用いている。   In the description of the objective lenses 213, 313, and 413 described above, a nonmagnetic material is used for fastening members such as the reinforcing flange 32, the reinforcing flange 41, the reinforcing ring 33, and each bolt so as not to affect the magnetic path. Yes.

次に、本発明による鏡筒剛性の改善効果の検証について説明する。図6は、図1に示した鏡筒剛性の改善による効果を測定した実験結果のグラフである。耐振性の評価のためには、装置全体を加振機に搭載し、加振時の像の振動量を測定するのがよい。しかし、この方法による評価の結果にはゴニオメータなど他の部位の弾性変形による影響も含まれるため、鏡筒剛性改善の効果のみを評価できない。   Next, verification of the effect of improving the lens barrel rigidity according to the present invention will be described. FIG. 6 is a graph of experimental results obtained by measuring the effect of the lens barrel rigidity improvement shown in FIG. In order to evaluate vibration resistance, it is preferable to mount the entire apparatus on a shaker and measure the vibration amount of the image at the time of vibration. However, the result of the evaluation by this method includes the effect of elastic deformation of other parts such as a goniometer, so that only the effect of improving the lens barrel rigidity cannot be evaluated.

そこで、鏡筒の側面にばねばかりを用いて一定の荷重をかけた場合の像移動量について、従来設計の対物レンズと本発明を実施した対物レンズとの比較測定を行なった。測定はSTEM像、TEM像の両観察モードでそれぞれ実施した。荷重をかける位置を高さ方向に数点設け、それぞれによる像移動量を測定した。荷重は、試料ホルダの挿入方向とそれに直交する2方向にかけた。   In view of this, the comparative measurement between the objective lens of the conventional design and the objective lens embodying the present invention was performed for the amount of image movement when a constant load was applied to the side surface of the lens barrel. The measurement was carried out in both the STEM image and TEM image observation modes. Several positions for applying the load were provided in the height direction, and the amount of image movement by each was measured. The load was applied in the sample holder insertion direction and in two directions orthogonal thereto.

STEM像観察モードにおける結果を図6(a)に示す。電子銃の最上部を試料ホルダ挿入方向へ荷重したとき改良前の像移動量が1となるように係数を乗じて比較を行った。図の横軸は除振機位置から荷重を加えた位置までの高さであり、縦軸が上記の像移動量(比較値)である。改良の効果は顕著であった。試料ホルダに直交する方向で電子銃最上部に荷重をかけたときに像移動の方向が反転したことは、像移動に支配的な要素が顕著に抑制され、他の要素の影響が現れたことを示す。改良前の荷重高さと像移動量との関係はほぼ直線状に並び、像移動量との交点は、図1の外ヨークa25下部にほぼ一致した。これは改良前においては像移動の支配的な弾性変形原因が外ヨークa25に集中しており、弾性変形量が荷重による曲げモーメントに比例するためと推定された。   The result in the STEM image observation mode is shown in FIG. A comparison was made by multiplying the coefficient so that the image movement amount before improvement was 1 when the uppermost part of the electron gun was loaded in the sample holder insertion direction. The horizontal axis in the figure is the height from the position of the vibration isolator to the position where the load is applied, and the vertical axis is the image movement amount (comparison value). The effect of the improvement was remarkable. When the load was applied to the top of the electron gun in the direction perpendicular to the sample holder, the direction of image movement was reversed, which significantly suppressed the elements that controlled the image movement and the influence of other elements appeared. Indicates. The relationship between the load height before the improvement and the image movement amount is arranged substantially linearly, and the intersection point with the image movement amount substantially coincides with the lower part of the outer yoke a25 in FIG. It was estimated that this was because the dominant elastic deformation cause of image movement was concentrated on the outer yoke a25 before the improvement, and the elastic deformation amount was proportional to the bending moment due to the load.

次に、TEM像観察モードにおける同様の比較を図6(b)に示す。横軸は除振機位置から荷重を加えた位置までの高さ、縦軸は図6(a)と同様の係数を乗じた像移動量(比較値)である。改良の効果はTEM像観察モードにおいても顕著であった。改良前のTEM像観察モードの像移動量はSTEM像観察モードにおける量と同程度であった。また、改良前の荷重高さと像移動量との関係はSTEM像観察モードの場合と同様で、やはり図1の外ヨークa25下部のフランジ高さにほぼ一致した。よってTEM像観察モードにおいてもこの部位の剛性が像移動に対して支配的であった。以上の結果からSTEM像、TEM像両観察モードに対し鏡筒の電子光学的曲げ剛性は顕著に改善した。   Next, a similar comparison in the TEM image observation mode is shown in FIG. The horizontal axis is the height from the position of the vibration isolator to the position where the load is applied, and the vertical axis is the image movement amount (comparison value) multiplied by the same coefficient as in FIG. The effect of the improvement was also remarkable in the TEM image observation mode. The amount of image movement in the TEM image observation mode before the improvement was almost the same as that in the STEM image observation mode. Further, the relationship between the load height before the improvement and the image moving amount is the same as in the STEM image observation mode, and also substantially coincides with the flange height below the outer yoke a25 in FIG. Therefore, also in the TEM image observation mode, the rigidity of this portion is dominant with respect to image movement. From the above results, the electron optical bending rigidity of the lens barrel was remarkably improved with respect to both the STEM image and TEM image observation modes.

以上述べたように、本発明によれば、対物レンズから試料への機械的なループ剛性を高めることにより、外乱振動により鏡筒が弾性変形して観察像が移動する量を抑制し、原子レベルの高分解能観察を可能とすることができる。   As described above, according to the present invention, by increasing the mechanical loop rigidity from the objective lens to the sample, the amount of movement of the observation image due to the elastic deformation of the lens barrel due to disturbance vibration is suppressed, and the atomic level High-resolution observation can be made possible.


本発明を実施する対物レンズの構成例を示す図。The figure which shows the structural example of the objective lens which implements this invention. 1自由度系の振動モデルを示す図。The figure which shows the vibration model of a 1 degree-of-freedom system. 鏡筒の各部位に慣性力が発生し弾性変形するときの像移動量を検討するためのモデル図。FIG. 3 is a model diagram for examining an image moving amount when an inertial force is generated in each part of the lens barrel and elastically deforms. 従来の対物レンズの構成例を示す図。The figure which shows the structural example of the conventional objective lens. 走査透過像を観察可能な透過型電子顕微鏡の概略構成例を示す図。The figure which shows the schematic structural example of the transmission electron microscope which can observe a scanning transmission image. 本発明による鏡筒剛性の改善の効果を調べた実験結果のグラフ。The graph of the experimental result which investigated the effect of the lens-barrel rigidity improvement by this invention. 本発明を実施する対物レンズの他の構成例を示す図。The figure which shows the other structural example of the objective lens which implements this invention. 本発明を実施する対物レンズの他のもう1つの構成例を示す図。The figure which shows another structural example of the objective lens which implements this invention.

符号の説明Explanation of symbols

(同一または類似の動作を行なうものには共通の符号を付す。)
1…試料
2…試料ホルダ
3…試料ステージ
3a…ステージ基台
4…鏡筒
5…除振機
6…床
7…架台
8…電子銃
9…エミッタ
10…電子ビーム
11…コンデンサレンズ
12…コンデンサミニレンズ
13…対物レンズ
14…中間レンズ
15…投影レンズ
16…蛍光板
17…カメラフィルム
18…STEM検出器
19…照射系偏向器
20…ビーム照射位置
21…照射系
22…結像系
23…対物レンズ部
24a、24b、24c…ボルト
25…外ヨークa
26…外ヨークb
27…内ヨーク
28…コイル
29…ポールピース下極
30…ポールピース上極
31…スペーサ
32…補強フランジ
33…補強リング
34、35、36…ボルト
37…スペーサ
38…外ヨークa
39…内ヨーク
39a…ねじ込み部
40、41…補強フランジ
42…ボルト
(Common reference numerals are used for the same or similar operations.)
DESCRIPTION OF SYMBOLS 1 ... Sample 2 ... Sample holder 3 ... Sample stage 3a ... Stage base 4 ... Lens barrel 5 ... Vibration isolator 6 ... Floor 7 ... Base 8 ... Electron gun 9 ... Emitter 10 ... Electron beam 11 ... Condenser lens 12 ... Condenser mini Lens 13 ... Objective lens 14 ... Intermediate lens 15 ... Projection lens 16 ... Fluorescent screen 17 ... Camera film 18 ... STEM detector 19 ... Irradiation system deflector 20 ... Beam irradiation position 21 ... Irradiation system 22 ... Imaging system 23 ... Objective lens section 24a, 24b, 24c ... bolt 25 ... outer yoke a
26 ... Outer yoke b
27 ... Inner yoke 28 ... Coil 29 ... Pole piece lower pole 30 ... Pole piece upper pole 31 ... Spacer 32 ... Reinforcement flange 33 ... Reinforcement rings 34, 35, 36 ... Bolt 37 ... Spacer 38 ... Outer yoke a
39 ... Inner yoke 39a ... Screwed portions 40, 41 ... Reinforcement flange 42 ... Bolt

Claims (6)

第1の外ヨーク及び第2の外ヨーク及び内ヨークと、前記第1の外ヨークに固定されたポールピース上極と、前記第2の外ヨーク及び前記内ヨークに固定されたポールピース下極と、前記第2の外ヨークと前記内ヨークとの間に形成される空間に配置されたコイルからなる対物レンズと、該対物レンズ上に固定された試料ステージと、該試料ステージに支持された試料ホルダとを備えた透過型電子顕微鏡において、
前記試料ホルダに取り付けられた試料から前記ポールピースまでのループ構造を構成する各部材間に、前記試料と前記ポールピースの間の相対変位を抑制する部材を配設することにより、前記ループ構造の剛性を高めたことを特徴とする透過型電子顕微鏡。
A first outer yoke, a second outer yoke and an inner yoke, a pole piece upper pole fixed to the first outer yoke, and a pole piece lower pole fixed to the second outer yoke and the inner yoke; An objective lens composed of a coil disposed in a space formed between the second outer yoke and the inner yoke, a sample stage fixed on the objective lens, and supported by the sample stage In a transmission electron microscope equipped with a sample holder,
By disposing a member for suppressing relative displacement between the sample and the pole piece between the members constituting the loop structure from the sample to the pole piece attached to the sample holder, A transmission electron microscope characterized by increased rigidity.
前記対物レンズの前記第2の外ヨーク及び前記内ヨークが前記試料ステージを支持する側に開口部が設けられており、該開口部を塞ぐように補強部材を配設して、前記第2外ヨークと前記内ヨークとの相対変形を抑制するようにしたことを特徴とする請求項1に記載の透過型電子顕微鏡。 An opening is provided on the side of the objective lens where the second outer yoke and the inner yoke support the sample stage, and a reinforcing member is disposed so as to close the opening. The transmission electron microscope according to claim 1, wherein relative deformation between the yoke and the inner yoke is suppressed. 前記補強部材は、補強フランジと補強リングとこれら2つの部材間を締結するボルトからなり、前記第2の外ヨークと前記内ヨークとの接合部は接着又は半田付け又はボルト締結又はロー付けの何れかにより固定されていることを特徴とする請求項2に記載の透過型電子顕微鏡。 The reinforcing member includes a reinforcing flange, a reinforcing ring, and a bolt for fastening between the two members, and a joint portion between the second outer yoke and the inner yoke is bonded, soldered, bolted, or brazed. The transmission electron microscope according to claim 2, wherein the transmission electron microscope is fixed. 前記試料ステージと前記補強フランジとをボルトにより締結したことを特徴とする請求項3に記載の透過型電子顕微鏡。 The transmission electron microscope according to claim 3, wherein the sample stage and the reinforcing flange are fastened with bolts. 前記対物レンズの前記ポールピース上極と前記ポールピース下極との間に配設するスペーサを用いて、前記試料ステージと前記ポールピースとを固定したことを特徴とする請求項1に記載の透過型電子顕微鏡。 The transmission according to claim 1, wherein the sample stage and the pole piece are fixed using a spacer disposed between the pole piece upper pole and the pole piece lower pole of the objective lens. Type electron microscope. 前記試料と前記ポールピースの間の相対変位を抑制する部材は非磁性材料であることを特徴とする請求項1に記載の透過型電子顕微鏡。 The transmission electron microscope according to claim 1, wherein the member that suppresses relative displacement between the sample and the pole piece is a nonmagnetic material.
JP2008282776A 2008-11-04 2008-11-04 Transmission electron microscope Active JP5502309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008282776A JP5502309B2 (en) 2008-11-04 2008-11-04 Transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008282776A JP5502309B2 (en) 2008-11-04 2008-11-04 Transmission electron microscope

Publications (2)

Publication Number Publication Date
JP2010113810A true JP2010113810A (en) 2010-05-20
JP5502309B2 JP5502309B2 (en) 2014-05-28

Family

ID=42302239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008282776A Active JP5502309B2 (en) 2008-11-04 2008-11-04 Transmission electron microscope

Country Status (1)

Country Link
JP (1) JP5502309B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262996A (en) * 2011-05-31 2011-11-30 北京工业大学 Comprehensive test sample rod for double-shaft tilting in-situ force and electric property of transmission electron microscope
WO2013015019A1 (en) * 2011-07-25 2013-01-31 株式会社日立ハイテクノロジーズ Charged particle device
US8987682B2 (en) 2012-12-10 2015-03-24 Jeol Ltd. Specimen positioning device, charged particle beam system, and specimen holder
WO2023167414A1 (en) * 2022-03-03 2023-09-07 한국기초과학지원연구원 Transmission electron microscope system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276555A (en) * 1988-04-28 1989-11-07 Jeol Ltd Sample device for electron microscope
JPH06176729A (en) * 1992-12-01 1994-06-24 Topcon Corp Scanning type electron microscope and similar device
JPH08264145A (en) * 1995-03-28 1996-10-11 Hitachi Ltd Beam application apparatus
JP2001093456A (en) * 1999-09-27 2001-04-06 Jeol Ltd Charged particle beam device
JP2005294712A (en) * 2004-04-05 2005-10-20 Hitachi High-Technologies Corp Electron beam lithography system
JP2006234977A (en) * 2005-02-22 2006-09-07 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007080668A (en) * 2005-09-14 2007-03-29 Hitachi High-Technologies Corp Apparatus for moving sample in charged particle beam device
JP2008123891A (en) * 2006-11-14 2008-05-29 Hitachi High-Technologies Corp Charged beam device and its lens body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276555A (en) * 1988-04-28 1989-11-07 Jeol Ltd Sample device for electron microscope
JPH06176729A (en) * 1992-12-01 1994-06-24 Topcon Corp Scanning type electron microscope and similar device
JPH08264145A (en) * 1995-03-28 1996-10-11 Hitachi Ltd Beam application apparatus
JP2001093456A (en) * 1999-09-27 2001-04-06 Jeol Ltd Charged particle beam device
JP2005294712A (en) * 2004-04-05 2005-10-20 Hitachi High-Technologies Corp Electron beam lithography system
JP2006234977A (en) * 2005-02-22 2006-09-07 Ricoh Co Ltd Optical scanner and image forming apparatus
JP2007080668A (en) * 2005-09-14 2007-03-29 Hitachi High-Technologies Corp Apparatus for moving sample in charged particle beam device
JP2008123891A (en) * 2006-11-14 2008-05-29 Hitachi High-Technologies Corp Charged beam device and its lens body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262996A (en) * 2011-05-31 2011-11-30 北京工业大学 Comprehensive test sample rod for double-shaft tilting in-situ force and electric property of transmission electron microscope
WO2013015019A1 (en) * 2011-07-25 2013-01-31 株式会社日立ハイテクノロジーズ Charged particle device
JP2013026150A (en) * 2011-07-25 2013-02-04 Hitachi High-Technologies Corp Charged particle device
CN103597571A (en) * 2011-07-25 2014-02-19 株式会社日立高新技术 Charged particle device
US8987682B2 (en) 2012-12-10 2015-03-24 Jeol Ltd. Specimen positioning device, charged particle beam system, and specimen holder
WO2023167414A1 (en) * 2022-03-03 2023-09-07 한국기초과학지원연구원 Transmission electron microscope system

Also Published As

Publication number Publication date
JP5502309B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
EP2753979B1 (en) Vibration isolation module and substrate processing system
JP5502309B2 (en) Transmission electron microscope
JP6676407B2 (en) Charged particle beam device and vibration damper for charged particle beam device
WO2010146790A1 (en) Charged particle radiation device
US20130070223A1 (en) Projection system with flexible coupling
Nazaretski et al. A new Kirkpatrick–Baez-based scanning microscope for the Submicron Resolution X-ray Spectroscopy (SRX) beamline at NSLS-II
JP6038144B2 (en) Method and apparatus for operating a dynamic nanofocus system
JP5947128B2 (en) Apparatus and method for imaging, inspecting or processing a sample using charged particles
US8927930B2 (en) Charged particle device
US11302512B2 (en) Electron beam inspection apparatus stage positioning
JP4223971B2 (en) Scanning probe microscope with scanning electron microscope
JP6633986B2 (en) Charged particle beam equipment
JP6362941B2 (en) Charged particle beam equipment
WO2005121901A1 (en) System and method for damping structural modes using active vibration control
JP2018005975A (en) Vibration suppression mechanism mounted in charged particle beam device, and charged particle beam device
JP2008052947A (en) Charged particle beam device
JP2005032588A (en) Magnetic field objective lens for electron microscope
WO2012117998A1 (en) Electron microscope
JP2007218677A (en) Scanning probe microscope
TWM608262U (en) Charged particle beam device, objective lens module, and electrode device
JP6118169B2 (en) Charged particle beam equipment
JPH08273570A (en) Device for performing precision work on sample
JP7336594B2 (en) Charged particle beam device
US20230035686A1 (en) Charged Particle Beam Device and Vibration-Suppressing Mechanism
JP7556054B2 (en) Charged Particle Microscope and Stage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140313

R150 Certificate of patent or registration of utility model

Ref document number: 5502309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150