JP2010112774A - Multilayer channel member and ultrasonic fluid meter using it - Google Patents

Multilayer channel member and ultrasonic fluid meter using it Download PDF

Info

Publication number
JP2010112774A
JP2010112774A JP2008283845A JP2008283845A JP2010112774A JP 2010112774 A JP2010112774 A JP 2010112774A JP 2008283845 A JP2008283845 A JP 2008283845A JP 2008283845 A JP2008283845 A JP 2008283845A JP 2010112774 A JP2010112774 A JP 2010112774A
Authority
JP
Japan
Prior art keywords
partition plate
insertion hole
plate
flow path
path member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008283845A
Other languages
Japanese (ja)
Other versions
JP5125996B2 (en
Inventor
Takehiko Shigeoka
武彦 重岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008283845A priority Critical patent/JP5125996B2/en
Priority to EP09824612A priority patent/EP2343516A4/en
Priority to PCT/JP2009/005889 priority patent/WO2010052912A1/en
Priority to US13/062,862 priority patent/US8418566B2/en
Priority to CN201210333384.XA priority patent/CN102944695B/en
Priority to CN200980134518.1A priority patent/CN102144147B/en
Publication of JP2010112774A publication Critical patent/JP2010112774A/en
Application granted granted Critical
Publication of JP5125996B2 publication Critical patent/JP5125996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer channel member capable of improving fluid measurement accuracy in an ultrasonic fluid meter. <P>SOLUTION: When a melt projection portion 20 is molten by a heating heat 21 under a condition of inserting a partition plate 11 between sideboards 13, 14, a deposition surface of a distal end of the melt projection portion 20 is inclined toward vertical direction, therefore, molten condition by the heating head 21 is different between upper and lower surfaces of the partition plate 11; and in a process that a leading edge of melt projection 25 where the heating head 21 initially contacts is molten and portions toward the root of the melt projection portion 25 are sequentially molten, the partition plate 11 is pressed against an end part of an insert hole 17a opposite to the initially molten leading edge, the partition plate 11 is positioned unevenly in relation to the insert hole 17a and fixed in the positional accuracy of the insert hole 17a, and deposition fixation can be performed with high accuracy even when there exists a gap between the partition plate 11 and the insert hole 17a. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、計測流路に複数の扁平流路を有する多層流路部材およびそれを用いた超音波式流体計測装置に関するものである。   The present invention relates to a multilayer flow path member having a plurality of flat flow paths in a measurement flow path, and an ultrasonic fluid measurement apparatus using the same.

超音波式流体計測装置は、計測用流路に流体を流し、計測用流路内に超音波を伝搬させて、超音波の伝搬時間を計測し、計測した情報に基づいて流体の流速を求めるものである。   The ultrasonic fluid measurement device flows a fluid through a measurement channel, propagates the ultrasonic wave in the measurement channel, measures the propagation time of the ultrasonic wave, and obtains the flow velocity of the fluid based on the measured information. Is.

この計測用流路部材は、断面長方形の角筒形状で対向する短辺側面にそれぞれ一対の送受波部が設けられている。   This measurement channel member has a rectangular tube shape with a rectangular cross section, and a pair of wave transmitting / receiving portions is provided on the opposing short side surfaces.

これら一対の送受波部は、計測用流路の流れ方向に対して所定の角度で交差する線に沿って超音波を送受するように配置されている。   The pair of transmission / reception units are arranged so as to transmit and receive ultrasonic waves along a line that intersects the flow direction of the measurement channel at a predetermined angle.

そして、近年では、計測精度を向上させるために、計測用流路に複数の隔壁を並行に配置することにより、計測用流路を多層流路とした超音波式流体計測装置が提案されている(例えば、特許文献1参照)。   In recent years, in order to improve the measurement accuracy, an ultrasonic fluid measurement device in which a plurality of partition walls are arranged in parallel in the measurement channel and the measurement channel is a multilayer channel has been proposed. (For example, refer to Patent Document 1).

また、計測用流路を多層流路として用いる場合の種々の改良がなされている。例えば、図9に示すように、複数の整流板40が積層された積層部によって複数の小流路に分割される流路を形成する流路ユニット41であって、前記積層部は、前記複数の整流板40と、この整流板40を支持する支持部42とが熱硬化性樹脂を用いて一体に形成されるとともに、積層部において、前記複数の整流板40を支持する支持部42は、前記複数の整流板40をインサートした状態で形成されている。   Various improvements have been made when the measurement channel is used as a multilayer channel. For example, as illustrated in FIG. 9, the flow path unit 41 forms a flow path that is divided into a plurality of small flow paths by a stacked portion in which a plurality of rectifying plates 40 are stacked. The rectifying plate 40 and the support portion 42 that supports the rectifying plate 40 are integrally formed using a thermosetting resin, and the support portion 42 that supports the plurality of rectifying plates 40 in the stacked portion includes: The plurality of rectifying plates 40 are inserted.

これによれば、整流板40と、この整流板40を支持する支持部42とが一体に形成されているため、整流板40を一枚、一枚、支持部42に差し込む作業を必要としない。   According to this, since the rectifying plate 40 and the support portion 42 that supports the rectifying plate 40 are integrally formed, it is not necessary to insert one rectifying plate 40 into the support portion 42. .

また、熱硬化性樹脂を用いて一体に形成されているため、例えば、熱可塑性の樹脂にて一体形成した場合に比べて、硬化時の収縮を抑えることができる。   Moreover, since it is integrally formed using a thermosetting resin, for example, shrinkage at the time of curing can be suppressed as compared with a case where it is integrally formed with a thermoplastic resin.

複数の整流板40を支持する支持部42は、複数の整流板40をインサートした状態で形成されたものであるため、整流板40を一枚、一枚、支持部42に差し込む作業を必要としない(例えば、特許文献2参照)。   The support portion 42 that supports the plurality of rectifying plates 40 is formed with the plurality of rectifying plates 40 inserted therein, and thus requires an operation of inserting one rectifying plate 40 into the support portion 42. No (see, for example, Patent Document 2).

また、図10に示すように、他の従来構成において、計測管部材50の溝部51は、開口部52と収納部53とからなる。収納部53は、開口部52よりも溝部51の深さ方向先端に形成されている。   As shown in FIG. 10, in another conventional configuration, the groove 51 of the measurement tube member 50 includes an opening 52 and a storage 53. The storage portion 53 is formed at the front end in the depth direction of the groove portion 51 rather than the opening portion 52.

開口部52の開口寸法は、整流板54の板厚よりも大きい。この開口部52から、整流板54が溝部51に挿入される。そして収納部53の収納高さ寸法は、整流板54の板厚と同等の大きさを有する。   The opening size of the opening 52 is larger than the plate thickness of the rectifying plate 54. From this opening 52, the current plate 54 is inserted into the groove 51. The storage height dimension of the storage portion 53 is equal to the plate thickness of the rectifying plate 54.

この収納部53に整流板54が収納される。収納された整流板54は、整流板54の厚み方向から収納部53の内壁面によって接触支持された状態となる。   A current plate 54 is stored in the storage portion 53. The accommodated rectifying plate 54 is in contact with and supported by the inner wall surface of the accommodating portion 53 from the thickness direction of the rectifying plate 54.

また、開口部52から収納部53に至る溝部51の部位(以下、案内部位と呼ぶ)は、その開口寸法が徐々に小さくなる形状に形成されている。   Further, a portion of the groove 51 (hereinafter referred to as a guide portion) extending from the opening 52 to the storage portion 53 is formed in a shape in which the opening size gradually decreases.

つまり案内部位には、開口部52から収納部53へと至る傾斜面が形成されている。   That is, an inclined surface extending from the opening 52 to the storage portion 53 is formed in the guide portion.

挿入動作時の整流板54が案内部位に接触すると、この傾斜面に沿って溝部51深さ方向先端へと整流板54が導かれる。   When the rectifying plate 54 in the insertion operation comes into contact with the guide portion, the rectifying plate 54 is guided to the front end in the depth direction of the groove 51 along the inclined surface.

同方向先端へと導かれた整流板54は、上述の通り同方向先端に位置する収納部53に収納されることとなる。   The rectifying plate 54 guided to the front end in the same direction is stored in the storage portion 53 located at the front end in the same direction as described above.

案内部位により整流板54が収納部53に案内されるため、挿入動作時の整流板54と収納部53とが開口部52の開口寸法の範囲内で傾いていた(若しくはズレていた)としても整流板54の挿入動作を継続することができる。   Since the rectifying plate 54 is guided to the storage portion 53 by the guide portion, even if the rectifying plate 54 and the storage portion 53 during the insertion operation are inclined (or misaligned) within the range of the opening dimension of the opening portion 52. The operation of inserting the current plate 54 can be continued.

このため、挿入時の整流板54と収納部53との位置関係の自由度が広がる。両者の位置関係の自由度が広がるだけ、整流板54の嵌め込み作業が容易となる。   For this reason, the freedom degree of the positional relationship of the baffle plate 54 and the accommodating part 53 at the time of insertion spreads. As the degree of freedom of the positional relationship between the two increases, the operation of fitting the current plate 54 becomes easier.

また、収納状態の整流板54を収納部53が接触支持するため、整流板54のガタつきを従来通り防止又は低減することができる(例えば、特許文献3参照)。
国際公開第2004/074783号パンフレット 特開2004−316685号公報 特開2006−029907号公報
Moreover, since the accommodating part 53 contacts and supports the rectifying plate 54 in the housed state, the play of the rectifying plate 54 can be prevented or reduced as usual (for example, see Patent Document 3).
International Publication No. 2004/074783 Pamphlet Japanese Patent Application Laid-Open No. 2004-316685 JP 2006-029907 A

しかしながら、計測用流路を多層流路とする際に、計測用流路に設けた一対の送受波部と、計測用流路を層流通路に分割する多層流路との位置関係や、さらに、多層流路を形成するための仕切板の両縁をフレームにより支持した場合の仕切板間の寸法ばらつきで、計測精度を低下させるという問題があり、高精度の計測を行うためには、高精度の多層流路部材が求められている。   However, when the measurement flow path is a multilayer flow path, the positional relationship between the pair of transmission / reception units provided in the measurement flow path and the multilayer flow path that divides the measurement flow path into laminar flow paths, and There is a problem that the measurement accuracy is reduced due to the dimensional variation between the partition plates when both edges of the partition plate for forming the multilayer flow path are supported by the frame. There is a need for an accurate multilayer channel member.

そして、計測用流路を多層流路として用いる場合の種々の改良の第1の例では、複数の整流板40と、この整流板40を支持する支持部42とが熱硬化性樹脂を用いて一体にインサート成形するようになっていて、熱硬化性樹脂を用いているため、硬化時間に時間を要し、成形型に樹脂を注入してから冷却して成形型から成型品を取り出す時間が非常に長くかかり、生産性にかけ、その分コストも高くなってしまう欠点があった。   In the first example of various improvements when the measurement flow path is used as a multilayer flow path, the plurality of rectifying plates 40 and the support portions 42 that support the rectifying plates 40 are made of a thermosetting resin. Insert molding is integrated and thermosetting resin is used, so it takes time to cure, time to inject the resin into the mold and cool it down to take out the molded product from the mold There is a drawback that it takes a very long time, which increases productivity and increases the cost accordingly.

そのため、熱硬化性樹脂を用いずに、熱可塑性の樹脂を用いると、収縮が大きいため、今度は寸法精度がでないという欠点がある。   For this reason, if a thermoplastic resin is used instead of a thermosetting resin, there is a drawback that the dimensional accuracy is not sufficient because the shrinkage is large.

また、成形型にインサートする複数の整流板41を狭いピッチでセットする手間は必要で、やはり、インサート成形する時間と手間を要してしまう欠点がある。   Further, it is necessary to set a plurality of rectifying plates 41 to be inserted into the mold at a narrow pitch, and there is a drawback that time and labor for insert molding are required.

また、第2の例では、溝部51は、整流板54の板厚よりも大きい開口部52と、整流板54の板厚と同等の大きさ収納部53とからなり、収納部53は開口部52よりも溝部51の深さ方向先端に形成されており、整流板54は開口部52の案内部位に案内され、収納部53に導かれるようになっているが、これは、整流板54を寸法精度良く保持させるためには、保持する収納部53にモーメントがかかるため、強度が必要で、収納部53の奥行き寸法が十分確保されている必要がある。   In the second example, the groove 51 includes an opening 52 that is larger than the plate thickness of the rectifying plate 54 and a storage portion 53 that is the same size as the plate thickness of the rectifying plate 54. 52 is formed at the front end of the groove 51 in the depth direction, and the rectifying plate 54 is guided to the guide portion of the opening 52 and guided to the storage portion 53. In order to hold with high dimensional accuracy, a moment is applied to the holding portion 53 to be held, so that strength is required and the depth dimension of the holding portion 53 needs to be sufficiently secured.

しかしながら、収納部53を形成する計測管部材50を成型性の観点より樹脂を用いると、保持強度を有させるためには、厚さを厚くしなければならないが、厚くすると収縮、ひけ等により寸法精度が低下すると言う相反する課題を生じ、そのため、強度と精度と併せて挿入のしやすさという作業性などのバランスが必要となり、結果的に高精度が追求できないという欠点があった。   However, if resin is used for the measuring tube member 50 forming the storage portion 53 from the viewpoint of moldability, the thickness must be increased in order to have a holding strength. There is a conflicting problem that the accuracy is lowered. Therefore, it is necessary to balance the workability such as the ease of insertion in combination with the strength and the accuracy, and as a result, there is a disadvantage that high accuracy cannot be pursued.

本発明は、従来の問題を解決するためになされたもので、超音波式流体計測装置における流体の計測精度を向上できる高精度な多層流路部材の製造方法を提供することにある。   The present invention has been made in order to solve the conventional problems, and it is an object of the present invention to provide a highly accurate multilayer flow path member manufacturing method capable of improving fluid measurement accuracy in an ultrasonic fluid measurement device.

本発明の多層流路部材は、超音波式流体計測装置に形成された角筒状の計測流路に配置されるもので、前記計測流路を複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と並行に上下に配設され、前記側板と結合して両縁部を支持し合う上、下板とから構成される多層流路部材であって、前記側板に前記仕切板の一部を挿入する挿入孔と、前記挿入孔の上下に溶融突起部を設け、前記側板に前記仕切板を挿入した状態で、前記溶融突起部を溶着手段で溶融することで前記側板に前記仕切板を固定するとともに、前記挿入孔と前記仕切板の隙間が一定方向に形成するように前記溶着手段による溶融状態が前記仕切板の表裏面で異なるように偏溶着手段を有するものである。   The multilayer flow path member of the present invention is arranged in a rectangular tubular measurement flow path formed in the ultrasonic fluid measurement device, and a partition plate that divides the measurement flow path into a plurality of flat flow paths, A multilayer composed of a side plate that is orthogonal to the partition plate and supports both edge portions, and a top plate that is disposed vertically in parallel with the partition plate and that supports the edge portions by being coupled to the side plate, and a lower plate. An insertion hole for inserting a part of the partition plate into the side plate, a melt projection part provided above and below the insertion hole, and the melt projection in a state where the partition plate is inserted into the side plate. The partition plate is fixed to the side plate by melting the portion with welding means, and the melted state by the welding means is such that the gap between the insertion hole and the partition plate is formed in a certain direction. And different welding means.

これにより、側板に前記仕切板を挿入した状態で、前記溶融突起部を溶着手段で溶融するときに、溶融突起部の先端部分の溶着面を上下方向に傾斜させてあるので、仕切板の上下面で溶着手段による溶融状態が異なり、溶着手段に最初に接する溶融突起部の最先端部分がまず最初に溶融していき、順次溶融突起部の根本部分に向かって溶融していく過程で、初めに溶融する最先端部分の近傍から挿入孔と仕切板の隙間を埋めていくこととなる。   Thus, when the fusion projection is melted by the welding means with the partition plate inserted in the side plate, the welding surface of the tip portion of the fusion projection is inclined in the vertical direction. The melting state of the welding means on the lower surface is different, and the most advanced part of the melt projection first contacting the welding means is melted first, and then gradually melts toward the root part of the melt projection. The gap between the insertion hole and the partition plate is filled from the vicinity of the most advanced portion that melts.

したがって、仕切板は初めに溶融する最先端部分と反対側の挿入孔の端部に押しつけられることとなり、仕切板は挿入孔に対し偏って位置するようになり、挿入孔の位置精度で固定され、仕切板と挿入孔に隙間があっても精度よく溶着固定することができるようになる。その結果、仕切板の間隔を挿入孔の位置精度に保持することができるので、挿入のしやすさという作業性を保持したまま、仕切板を取付ける側板の強度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができることとなる。   Therefore, the partition plate is pressed against the end of the insertion hole on the side opposite to the most advanced portion to be melted first, and the partition plate is positioned to be biased with respect to the insertion hole, and is fixed with the positional accuracy of the insertion hole. Even if there is a gap between the partition plate and the insertion hole, it can be welded and fixed with high accuracy. As a result, the spacing between the partition plates can be maintained at the position accuracy of the insertion hole, and the dimensional accuracy can be maintained without increasing the strength of the side plate to which the partition plates are mounted while maintaining the ease of insertion. Without using a separate member for securing the high-precision multi-layer flow path member with a simple configuration.

本発明によれば、仕切板と挿入孔に隙間を有していても仕切板を挿入孔に対し偏って位置させることができるので、仕切板の間隔を挿入孔の位置精度に保持することができ、挿入のしやすさという作業性を保持したまま、仕切板を取付ける側板の強度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができ、流体の計測精度を向上する高精度な多層流路部材および該多層流路部材を用いた超音波式流体計測装置を提供することができるようになる。   According to the present invention, even if there is a gap between the partition plate and the insertion hole, the partition plate can be positioned biased with respect to the insertion hole, so that the spacing between the partition plates can be maintained with the positional accuracy of the insertion hole. It is possible to achieve high accuracy with a simple configuration without increasing the strength of the side plate to which the partition plate is attached and without using a separate member for ensuring dimensional accuracy, while maintaining the workability of ease of insertion. A multilayer flow path member can be formed, and a highly accurate multilayer flow path member that improves fluid measurement accuracy and an ultrasonic fluid measurement apparatus using the multilayer flow path member can be provided.

第1の発明は、超音波式流体計測装置に形成された角筒状の計測流路に配置されるもので、前記計測流路を複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と並行に上下に配設され、前記側板と結合して両縁部を支持し合う上、下板とから構成される多層流路部材であって、前記側板に前記仕切板の一部を挿入する挿入孔と、前記挿入孔の上下に溶融突起部を設け、前記側板に前記仕切板を挿入した状態で、前記溶融突起部を溶着手段で溶融することで前記側板に前記仕切板を固定する
とともに、前記挿入孔と前記仕切板の隙間が一定方向に形成するように前記溶着手段による溶融状態が前記仕切板の表裏面で異なるように偏溶着手段を有するものである。
1st invention is arrange | positioned at the square-tube-shaped measurement flow path formed in the ultrasonic fluid measurement apparatus, The partition plate which divides the said measurement flow path into several flat flow paths, and the said partition plate A multi-layer flow path member that is formed by a side plate that is orthogonal to each other and that supports both edge portions, and is arranged vertically in parallel with the partition plate, and is coupled to the side plate to support both edge portions, and a lower plate. An insertion hole for inserting a part of the partition plate into the side plate, and a fusion projection portion provided above and below the insertion hole, and the fusion projection portion is welded in a state where the partition plate is inserted into the side plate. The partition plate is fixed to the side plate by being melted by the means, and the melted state by the welding means is different between the front and back surfaces of the partition plate so that the gap between the insertion hole and the partition plate is formed in a certain direction. And have a partial welding means.

第2の発明は、第1の発明において、偏溶着手段は、前記側板に前記仕切板の一部を挿入する挿入孔の上下に設けた前記溶融突起部の先端部分の溶着面を上下方向に傾斜させて、前記溶融突起部を溶着手段で溶融するときに、前記仕切板の上下面で溶融状態が異なるようにして、前記挿入孔と前記仕切板の隙間が一定方向に形成されるようにしてある。   According to a second aspect of the present invention, in the first aspect, the partial welding means is configured so that a welding surface of a tip end portion of the fusion projection portion provided above and below an insertion hole for inserting a part of the partition plate into the side plate is formed in the vertical direction. When the melting protrusion is melted by the welding means, the molten state is different between the upper and lower surfaces of the partition plate so that the gap between the insertion hole and the partition plate is formed in a certain direction. It is.

そして、側板に前記仕切板を挿入した状態で、前記溶融突起部を溶着手段で溶融するときに、溶融突起部の先端部分の溶着面を上下方向に傾斜させてあるので、仕切板の上下面で溶着手段による溶融状態が異なり、溶着手段に最初に接する溶融突起部の最先端部分がまず最初に溶融していき、順次溶融突起部の根本部分に向かって溶融していく過程で、初めに溶融する最先端部分の近傍から挿入孔と仕切板の隙間を埋めていくこととなる。   When the melting projection is melted by the welding means with the partition plate inserted in the side plate, the welding surface of the tip portion of the melting projection is inclined in the vertical direction. In the process where the melting state by the welding means is different, the most advanced part of the melting projection part first contacting the welding means is melted first and then gradually toward the root part of the melting projection part. The gap between the insertion hole and the partition plate is filled from the vicinity of the most advanced portion to be melted.

したがって、仕切板は初めに溶融する最先端部分と反対側の挿入孔の端部に押しつけられることとなり、仕切板は挿入孔に対し偏って位置するようになり、挿入孔の位置精度で固定され、仕切板と挿入孔に隙間があっても精度よく溶着固定することができるようになる。その結果、仕切板の間隔を挿入孔の位置精度に保持することができるので、挿入のしやすさという作業性を保持したまま、仕切板を取付ける側板の強度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができることとなる。   Therefore, the partition plate is pressed against the end of the insertion hole on the side opposite to the most advanced portion to be melted first, and the partition plate is positioned to be biased with respect to the insertion hole, and is fixed with the positional accuracy of the insertion hole. Even if there is a gap between the partition plate and the insertion hole, it can be welded and fixed with high accuracy. As a result, the spacing between the partition plates can be maintained at the position accuracy of the insertion hole, and the dimensional accuracy can be maintained without increasing the strength of the side plate to which the partition plates are mounted while maintaining the ease of insertion. Without using a separate member for securing the high-precision multi-layer flow path member with a simple configuration.

第3の発明は、特に、第1の発明において、仕切板の一部を挿入する挿入孔の上下に設けた溶融突起部の形状あるいは数を変えて、前記側板に前記仕切板の一部を挿入する挿入孔の上下に設けた溶融突起部の溶融量が前記仕切板の上下で異なるようにして、前記挿入孔と前記仕切板の隙間が一定方向に形成されるようにしてある。   According to a third aspect of the invention, in particular, in the first aspect of the invention, the shape or number of the melt projections provided above and below the insertion hole for inserting a part of the partition plate is changed, and a part of the partition plate is attached to the side plate. The melting amount of the melt projections provided above and below the insertion hole to be inserted is different between the upper and lower sides of the partition plate, so that the gap between the insertion hole and the partition plate is formed in a certain direction.

そして、偏溶着手段は、前記仕切板の一部を挿入する挿入孔の上下に設けた溶融突起部の形状あるいは数を変えて、前記側板に前記仕切板の一部を挿入する挿入孔の上下に設けた溶融突起部の溶融量が前記仕切板の上下で異なるようにしてあるので、仕切板の上下面で溶着手段による溶融状態が異なり、順次溶融突起部の溶融部分が溶融突起部の溶融量が大きい方から少ない方へ向かって流れ平滑化されていくため、溶融突起部の溶融量が大きい方の近傍から挿入孔と仕切板の隙間を埋めていくこととなる。   The uneven welding means changes the shape or number of the melt projections provided above and below the insertion hole into which the part of the partition plate is inserted to change the upper and lower sides of the insertion hole into which the part of the partition plate is inserted into the side plate. Since the melting amount of the melt projections provided on the upper and lower sides of the partition plate is different, the melting state by the welding means is different between the upper and lower surfaces of the partition plate, and the melted portions of the melt projection portions are sequentially melted by the melt projection portions. Since the flow is smoothed from the larger amount to the smaller amount, the gap between the insertion hole and the partition plate is filled from the vicinity of the larger melting amount of the melt projection.

したがって、仕切板は溶融突起部の溶融量が大きい方と反対側の挿入孔の端部に押しつけられることとなり、仕切板は挿入孔に対し偏って位置するようになり、挿入孔の位置精度で固定され、仕切板と挿入孔に隙間があっても精度よく溶着固定することができるようになる。その結果、仕切板の間隔を挿入孔の位置精度に保持することができるので、挿入のしやすさという作業性を保持したまま、仕切板を取付ける側板の強度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができることとなる。   Therefore, the partition plate is pressed against the end of the insertion hole on the side opposite to the side where the melting amount of the melt projection portion is large, and the partition plate is biased with respect to the insertion hole. Even if there is a gap between the partition plate and the insertion hole, it can be welded and fixed accurately. As a result, the spacing between the partition plates can be maintained at the position accuracy of the insertion hole, and the dimensional accuracy can be maintained without increasing the strength of the side plate to which the partition plates are mounted while maintaining the ease of insertion. Without using a separate member for securing the high-precision multi-layer flow path member with a simple configuration.

第4の発明は、特に、第1〜第3のいずれか1つの発明の多層流路部材を超音波式流体計測装置に用いたものである。   In the fourth invention, in particular, the multilayer flow path member of any one of the first to third inventions is used in an ultrasonic fluid measuring device.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1〜4において、超音波式流体計測装置1の流体路2は、左右の鉛直流路3a、3b
と、この左右の鉛直流路3a、3bの上端部同士を連結する水平流路4とで略逆U字状に形成されている。
(Embodiment 1)
1 to 4, the fluid path 2 of the ultrasonic fluid measuring apparatus 1 includes left and right vertical channels 3 a and 3 b.
And the horizontal flow path 4 that connects the upper ends of the left and right vertical flow paths 3a and 3b are formed in a substantially inverted U shape.

水平流路4は、流体を計測するための上面が開口した角筒状の計測流路収容部5を有しており、この計測流路収容部5における一対の対向するように両送受波器取付部8にそれぞれ送受波器(図示省略)を有する超音波計測部9が設けられている。   The horizontal flow path 4 has a square-tube-shaped measurement flow path accommodating portion 5 whose upper surface for measuring fluid is opened, and a pair of transducers so as to face each other in the measurement flow path accommodating portion 5. An ultrasonic measurement unit 9 having a transducer (not shown) is provided on the attachment unit 8.

さらに、計測流路収容部5には、流体を複数の扁平流路に区画する多層流路部材10と、多層流路部材10を計測流路収容部5に収容して密閉する蓋部7を有している。   Furthermore, the measurement flow path housing part 5 includes a multilayer flow path member 10 that divides the fluid into a plurality of flat flow paths, and a lid part 7 that houses the multilayer flow path member 10 in the measurement flow path storage part 5 and seals it. Have.

従って、蓋部7を水平流路4に被せると、計測流路収容部5は断面矩形の角筒状に形成されることになる。   Therefore, when the lid portion 7 is put on the horizontal flow path 4, the measurement flow path accommodating part 5 is formed in a rectangular tube shape having a rectangular cross section.

なお、両送受波器取付部8、8には、両送受波器取付部8、8を結ぶ方向に貫通する円形の貫通穴8aが設けて、超音波伝播路8bが形成され、送受波器同士を結ぶ計測方向の超音波伝搬路8bは、流体の流れる方向に対して斜めに交差するように設けられている。   In addition, both the transducer attachment parts 8 and 8 are provided with a circular through hole 8a penetrating in the direction connecting the both transducer attachment parts 8 and 8 to form an ultrasonic wave propagation path 8b. The ultrasonic wave propagation path 8b in the measurement direction connecting each other is provided so as to cross obliquely with respect to the fluid flowing direction.

このように、超音波伝搬路8bを流れに対して角度を有し対向して配置している配置パターンは、Zパス(Z−path)またはZ法と呼ばれており、本実施の形態では、このZパス配置について例示する。   In this way, the arrangement pattern in which the ultrasonic wave propagation path 8b is arranged opposite to the flow with an angle is called a Z path (Z-path) or a Z method. This Z path arrangement will be exemplified.

図2および図3に示すように、多層流路部材10は、計測流路収容部5を複数の扁平流路6に区画するための仕切板11と、仕切板11における流体の流れ方向に沿った縁部11aを支持する側板13、14と、左右の側板13、14の上下方向に配置させた天板15および底板16によって矩形箱状に形成されており、左右の側板13、14間に仕切板11が水平に所定間隔で保持される。   As shown in FIGS. 2 and 3, the multilayer flow path member 10 includes a partition plate 11 for partitioning the measurement flow path housing portion 5 into a plurality of flat flow paths 6, and a fluid flow direction in the partition plate 11. It is formed in a rectangular box shape by side plates 13 and 14 that support the edge 11a, and a top plate 15 and a bottom plate 16 that are arranged in the vertical direction of the left and right side plates 13 and 14, and between the left and right side plates 13 and 14 The partition plate 11 is held horizontally at a predetermined interval.

側板13、14の内面には、仕切板11を所定間隔で保持するため複数本のスリット17が設けられている。このスリット17は、各仕切板11によって仕切られる扁平流路6の断面積が均一になるように、流体の流れに対して直交する上下方に沿って等間隔で設けられている。   A plurality of slits 17 are provided on the inner surfaces of the side plates 13 and 14 in order to hold the partition plate 11 at a predetermined interval. The slits 17 are provided at equal intervals along the upper and lower sides orthogonal to the fluid flow so that the cross-sectional areas of the flat flow paths 6 partitioned by the partition plates 11 are uniform.

また、多層流路部材10を計測流路収容部5に嵌めた状態で、超音波伝搬路8bに位置する多層流路部材10の側板13、14には、超音波通過用の開口18が設けられている。この開口18には、超音波を透過させることができる例えば細かなメッシュ・パンチングメタル等のフィルタ部材19が取り付けられている。   In addition, in the state where the multilayer flow path member 10 is fitted in the measurement flow path accommodating portion 5, the side plates 13, 14 of the multilayer flow path member 10 located in the ultrasonic wave propagation path 8b are provided with openings 18 for passing ultrasonic waves. It has been. A filter member 19 such as a fine mesh punching metal that can transmit ultrasonic waves is attached to the opening 18.

仕切板11は全体矩形の薄板状部材であり、仕切板11における縁部11aに、仕切板11の四隅および中央部から幅方向外側へ突出して設けるとともに端面11cを有する複数個の鍔部11bと、流体の流れ方向の上流側と下流側に位置する長手方向両端部11d、11dが設けられている。   The partition plate 11 is an overall rectangular thin plate-like member, and is provided on the edge portion 11a of the partition plate 11 so as to protrude outward in the width direction from the four corners and the center portion of the partition plate 11, and has a plurality of flange portions 11b having end surfaces 11c. The longitudinal ends 11d and 11d are provided on the upstream side and the downstream side in the fluid flow direction.

一方、側板13、14に設けられているスリット17には、仕切板11の鍔部11bに対応した位置に挿入穴17aが設けられており、挿入穴17aを通して仕切板11の鍔部11bの端面11cが外側に露出するようになっていて、仕切板11は側板13、14に支持される。   On the other hand, the slit 17 provided in the side plates 13 and 14 is provided with an insertion hole 17a at a position corresponding to the flange 11b of the partition plate 11, and the end surface of the flange 11b of the partition plate 11 through the insertion hole 17a. 11 c is exposed to the outside, and the partition plate 11 is supported by the side plates 13 and 14.

また、側板13、14の挿入穴17aの上下に溶融突起部20を設けてあり、側板13、14に仕切板11の鍔部11bに挿入した状態で、溶融突起部20を溶融することで、側板13、14に仕切板11を溶着固定するようにしてある。   In addition, melting projections 20 are provided above and below the insertion holes 17a of the side plates 13 and 14, and the melting projections 20 are melted in a state where the side plates 13 and 14 are inserted into the flanges 11b of the partition plate 11, The partition plate 11 is welded and fixed to the side plates 13 and 14.

この溶融突起部20は図3、図4に示すように、その先端部分の溶着面を上下方向に傾斜させて、溶融突起部20を溶着手段の加熱ヘッド21で溶融するときに、仕切板11の上下面で溶融状態が異なるようにして、挿入孔17aと仕切板11の隙間が一定方向に形成されるようにしてある。   As shown in FIGS. 3 and 4, when the fusion projection 20 is melted by the heating head 21 of the welding means with the welding surface of the tip portion thereof being inclined in the vertical direction, the partition plate 11 is used. The upper and lower surfaces have different melting states so that the gap between the insertion hole 17a and the partition plate 11 is formed in a certain direction.

そして、溶着固定方法としては、側板13、14の横方向から、挿入穴17aの上下に溶融突起部20を溶融する手段として、図4(A)に示すように、例えばヒータ等で加熱された加熱ヘッド21を押し当て、挿入穴17aの上下に溶融突起部20およびその近傍を溶融する。   As a welding and fixing method, as shown in FIG. 4A, for example, a heater or the like was used as a means for melting the molten protrusion 20 above and below the insertion hole 17a from the lateral direction of the side plates 13 and 14. The heating head 21 is pressed to melt the melt projection 20 and its vicinity above and below the insertion hole 17a.

溶融した溶融突起部20の一部が仕切板11の端面11cと挿入穴17aの隙間を埋め、あるいは、挿入穴17a近傍の樹脂が溶融して仕切板11の端面11cと挿入穴17aの隙間を埋めて、固化する。   A part of the melted molten projection 20 fills the gap between the end surface 11c of the partition plate 11 and the insertion hole 17a, or the resin in the vicinity of the insertion hole 17a melts to leave the gap between the end surface 11c of the partition plate 11 and the insertion hole 17a. Fill and solidify.

そして、図5(B)に示すように、加熱ヘッド21を遠ざけて、溶融していた樹脂が冷却してが固化したら、側板13、14の上下に天板15および底板16を取付けて、多層流路部材10が完成する。   Then, as shown in FIG. 5B, when the heating head 21 is moved away and the molten resin is cooled and solidified, the top plate 15 and the bottom plate 16 are attached to the upper and lower sides of the side plates 13 and 14 to form a multilayer. The flow path member 10 is completed.

ここで、側板13、14の挿入孔17aに仕切板11を挿入した状態で、溶融突起部20を加熱ヘッド21で溶融するときに、溶融突起部20の先端部分の溶着面を上下方向に傾斜させてあるので、仕切板11の上下面で加熱ヘッド21による溶融状態が異なり、加熱ヘッド21に最初に接する溶融突起部20の最先端部分がまず最初に溶融していき、順次溶融突起部20の根本部分に向かって溶融していく過程で、初めに溶融する最先端部分の近傍から挿入孔17aと仕切板11の隙間を埋めていくこととなる。   Here, when the fusion projection 20 is melted by the heating head 21 with the partition plate 11 inserted into the insertion holes 17a of the side plates 13 and 14, the welding surface of the tip portion of the fusion projection 20 is inclined in the vertical direction. Therefore, the melting state by the heating head 21 is different between the upper and lower surfaces of the partition plate 11, and the most advanced portion of the melting projection 20 that is first in contact with the heating head 21 is melted first. In the process of melting toward the root portion of the first, the gap between the insertion hole 17a and the partition plate 11 is filled from the vicinity of the most advanced portion that melts first.

したがって、加熱ヘッド21に最初に接する溶融突起部20の最先端部分が下側に位置するようにしてあり、仕切板11の自重により、側板13、14の挿入孔17aに仕切板11を挿入した状態で、仕切板11は挿入孔17aに対し下方に位置しており、さらに、溶融突起部20の初めに溶融する最先端部分と反対側の挿入孔17aの下端部に仕切板11は押しつけられることとなり、仕切板11は挿入孔17aに対し偏って位置するようになり、挿入孔17aの位置精度で固定され、仕切板11と挿入孔17aに隙間があっても精度よく溶着固定することができるようになる。   Therefore, the most advanced portion of the melt projection 20 that first contacts the heating head 21 is positioned on the lower side, and the partition plate 11 is inserted into the insertion holes 17a of the side plates 13 and 14 by the dead weight of the partition plate 11. In this state, the partition plate 11 is positioned below the insertion hole 17a, and further, the partition plate 11 is pressed against the lower end portion of the insertion hole 17a opposite to the most distal portion that melts at the beginning of the melting projection 20. Thus, the partition plate 11 is biased with respect to the insertion hole 17a, and is fixed with the positional accuracy of the insertion hole 17a. Even if there is a gap between the partition plate 11 and the insertion hole 17a, the partition plate 11 can be welded and fixed with high accuracy. become able to.

これにより、仕切板11の間隔を挿入孔17aの位置精度に保持することができるので、挿入のしやすさという作業性を保持したまま、仕切板11を取付ける側板13、14の強度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができることとなる。   Thereby, since the space | interval of the partition plate 11 can be hold | maintained with the positional accuracy of the insertion hole 17a, the intensity | strength of the side plates 13 and 14 which attach the partition plate 11 is raised, hold | maintaining workability called the ease of insertion. In addition, a highly accurate multilayer flow path member can be formed with a simple configuration without using a separate member for ensuring dimensional accuracy.

なお、天板15および底板16は、接着剤等を用いて固定することができるが、側板13、14の上下両端面と天板15および底板16に嵌合部を設けておき、嵌合させた状態で、挿入穴17aの上下に溶融突起部20を溶融する際に同時に、加熱ヘッド21で嵌合部の一部分も同時に溶融させて固定することもできる。   The top plate 15 and the bottom plate 16 can be fixed using an adhesive or the like, but fitting portions are provided on the top and bottom end surfaces of the side plates 13 and 14 and the top plate 15 and the bottom plate 16 to be fitted. In this state, when the melting projection 20 is melted above and below the insertion hole 17a, a part of the fitting portion can be simultaneously melted and fixed by the heating head 21.

(実施の形態2)
図5〜7は本発明の実施の形態2を示し、図3,4と同作用を行う構成にいては同一符号を付し、具体的説明は実施の形態1のものを援用する。
(Embodiment 2)
5 to 7 show a second embodiment of the present invention. In the configuration that performs the same operation as in FIGS. 3 and 4, the same reference numerals are given, and the specific description is the same as that of the first embodiment.

図5、図6に示すように、仕切板11の一部を挿入する挿入孔17aの上下に設けた溶融突起部25は、その先端部分の溶着面を上下方向に傾斜させるとともにその形状、つま
り高さを変えて、側板13、14に仕切板11の一部を挿入する挿入孔17a17aの上下に設けた溶融突起部25の溶融量が仕切板11の上下で異なるようにして、挿入孔17aと仕切板11の隙間が一定方向に形成されるようにしてある。
As shown in FIG. 5 and FIG. 6, the melt projection 25 provided above and below the insertion hole 17 a into which a part of the partition plate 11 is inserted inclines the welding surface of the tip portion in the vertical direction and has its shape, that is, By changing the height, the amount of melting of the melting projections 25 provided above and below the insertion holes 17a17a for inserting a part of the partition plate 11 into the side plates 13 and 14 is different between the upper and lower sides of the partition plate 11, so that the insertion holes 17a And the partition plate 11 are formed in a certain direction.

また、組立は、図7に示すように、仕切板11間隔に設定されたスリット32を有する位置決め治具30を用いる。   As shown in FIG. 7, the assembly uses a positioning jig 30 having slits 32 set at intervals of the partition plate 11.

多層流路部材10の組立方法は、まず、位置決め治具30において、所望の仕切板11の間隔に設定されたスリット32を有する一対の保持部31a、31bを、スリット32が対向するように配置する。   In the assembly method of the multilayer flow path member 10, first, in the positioning jig 30, a pair of holding portions 31 a and 31 b having slits 32 set at a desired interval between the partition plates 11 are arranged so that the slits 32 face each other. To do.

図7(B)に示すように、対向配置された保持部31a、31bのスリット32に、各仕切板11の長手方向両端部11d、11dを挿入して保持する。   As shown in FIG. 7B, the longitudinal end portions 11d and 11d of each partition plate 11 are inserted and held in the slits 32 of the holding portions 31a and 31b arranged to face each other.

なお、保持部31a、31bのスリット32の位置および幅は、側板13、14に設けられているスリット17に比較して、高精度で仕切板11の間隔および厚さに設定されており、仕切板11を高精度で位置決めするものである。   The positions and widths of the slits 32 of the holding portions 31a and 31b are set with high accuracy to the interval and thickness of the partition plate 11 as compared with the slits 17 provided in the side plates 13 and 14. The plate 11 is positioned with high accuracy.

従って、仕切板11をスリット32に挿嵌することにより、仕切板11は高精度で間隔が設定される。   Therefore, by inserting the partition plate 11 into the slit 32, the partition plate 11 is set with high accuracy.

なお、保持部31a、31bのスリット32は、保持代が十分確保できるので、仕切板11の長手方向両端部11d、11dを挿入しやすいように、テーパ等のガイド部分(図示せず)を設けると、さらに作業性が向上する。   The slits 32 of the holding portions 31a and 31b can secure a sufficient holding allowance, so that a guide portion (not shown) such as a taper is provided so that the longitudinal end portions 11d and 11d of the partition plate 11 can be easily inserted. And workability is further improved.

次いで、図7(C)に示すように、側板13、14を位置決め治具30に保持されている仕切板11の側端面11cに接近させ、側板13、14のスリット17の挿入穴17aに仕切板11の縁部11aを挿入する。このとき、仕切板11に設けられている各鍔部11bがスリット17に設けられている挿入穴17aに嵌合するようにする。   Next, as shown in FIG. 7C, the side plates 13 and 14 are brought close to the side end surface 11 c of the partition plate 11 held by the positioning jig 30 and partitioned into the insertion holes 17 a of the slits 17 of the side plates 13 and 14. The edge 11a of the plate 11 is inserted. At this time, each flange portion 11 b provided in the partition plate 11 is fitted into the insertion hole 17 a provided in the slit 17.

側板13、14のスリット17および挿入穴17aは、保持部31のスリット31aに比して余裕を持って形成されているので、容易に仕切板11を挿入することができる。   Since the slits 17 and the insertion holes 17a of the side plates 13 and 14 are formed with a margin as compared with the slits 31a of the holding portion 31, the partition plate 11 can be easily inserted.

次に、側板13、14の横方向から、挿入穴17aの上下に溶融突起部25を溶融する手段として、図6(A)に示すように、例えばヒータ等で加熱された加熱ヘッド21を押し当て、挿入穴17aの上下に溶融突起部25およびその近傍を溶融する。   Next, as shown in FIG. 6A, the heating head 21 heated by a heater or the like is pressed as a means for melting the melt projection 25 above and below the insertion hole 17a from the lateral direction of the side plates 13 and 14, respectively. The melting projection 25 and the vicinity thereof are melted above and below the insertion hole 17a.

溶融した溶融突起部25の一部が仕切板11の端面11cと挿入穴17aの隙間を埋め、あるいは、挿入穴17a近傍の樹脂が溶融して仕切板11の端面11cと挿入穴17aの隙間を埋めて、位置決め治具30により正確に位置決めされた状態を保って固化する。   Part of the melted molten projection 25 fills the gap between the end surface 11c of the partition plate 11 and the insertion hole 17a, or the resin in the vicinity of the insertion hole 17a melts to leave the gap between the end surface 11c of the partition plate 11 and the insertion hole 17a. It is buried and solidified while maintaining the state of being accurately positioned by the positioning jig 30.

そして、図6(B)に示すように、加熱ヘッド21を遠ざけて、溶融していた樹脂が冷却してが固化したら、側板13、14の上下に天板15および底板16を取付けて、多層流路部材10が完成する。   Then, as shown in FIG. 6B, when the heated head 21 is moved away and the melted resin is cooled and solidified, the top plate 15 and the bottom plate 16 are attached to the upper and lower sides of the side plates 13 and 14 to form a multilayer. The flow path member 10 is completed.

ここで、溶融突起部25はその先端部分の溶着面を上下方向に傾斜させるとともにその形状つまり高さを変えてあるので、その先端部分の溶着面を上下方向に傾斜させる効果がえられる。   Here, since the fusion projection part 25 inclines the welding surface of the front-end | tip part to the up-down direction and has changed the shape, ie, height, the effect which inclines the welding surface of the front-end | tip part to an up-down direction is acquired.

また、仕切板11の一部を挿入する挿入孔17aの上下に設けた溶融突起部25はその
形状つまり高さを変えて、側板13、14に仕切板11の一部を挿入する挿入孔17aの上下に設けた溶融突起部25の溶融量が仕切板11の上下で異なるようにしてあるので、仕切板11の上下面で加熱ヘッド21による溶融状態が異なり、順次溶融突起部25の溶融部分が溶融突起部25の溶融量が大きい方から少ない方へ向かって流れ平滑化されていくため、溶融突起部25の溶融量が大きい方の近傍から挿入孔17aと仕切板11の隙間を埋めていくこととなる。
Further, the melt projections 25 provided above and below the insertion hole 17a for inserting a part of the partition plate 11 are changed in shape, that is, the height, and the insertion hole 17a for inserting a part of the partition plate 11 into the side plates 13 and 14 is inserted. Since the melting amount of the melt projections 25 provided on the upper and lower sides of the partition plate 11 is different between the upper and lower sides of the partition plate 11, the melting state by the heating head 21 is different on the upper and lower surfaces of the partition plate 11, Since the melted projection 25 is smoothed by flowing from the larger melting amount to the smaller melting amount, the gap between the insertion hole 17a and the partition plate 11 is filled from the vicinity of the larger melting amount of the melting projection 25. Will go.

したがって、よりいっそう、仕切板11は溶融突起部25の溶融量が大きい方から小さい方へ押しつけられることとなり、仕切板11は位置決め治具30のスリット32に対し偏って位置するようになり、位置決め治具30のスリット32の位置精度でさらに偏って固定されるようになり、仕切板11と挿入孔17aに隙間があっても精度よく溶着固定することができるようになる。   Therefore, the partition plate 11 is further pressed from the larger melting amount of the melt projection 25 to the smaller one, and the partition plate 11 is positioned to be biased with respect to the slit 32 of the positioning jig 30 and positioned. The position accuracy of the slit 32 of the jig 30 is further biased and fixed, and even if there is a gap between the partition plate 11 and the insertion hole 17a, it can be welded and fixed with high accuracy.

これにより、仕切板11の間隔を高精度に保持することができるので、挿入のしやすさという作業性を保持したまま、仕切板11を取付ける側板13、14の強度を上げることなく、また、寸法精度を確保するための別部材を用いることなく、簡易な構成で高精度の多層流路部材を形成することができることとなる。   Thereby, since the space | interval of the partition plate 11 can be hold | maintained with high precision, without raising the intensity | strength of the side plates 13 and 14 which attach the partition plate 11, maintaining workability | operativity of ease of insertion, A high-precision multilayer flow path member can be formed with a simple configuration without using a separate member for ensuring dimensional accuracy.

このように、多層流路部材10の組立方法で、位置決め治具30を用いるようにしても、位置決め治具30のスリット32の位置精度でさらに偏って固定することができるので、更に、簡易な構成で位置決め治具30以上の高精度の多層流路部材10を形成することができることとなる。   As described above, even if the positioning jig 30 is used in the assembly method of the multilayer flow path member 10, the positioning accuracy of the slit 32 of the positioning jig 30 can be further biased and fixed. With the configuration, it is possible to form the multi-layer flow path member 10 with a high accuracy of the positioning jig 30 or more.

なお、仕切板の一部を挿入する挿入孔17aの上下に設けた溶融突起部25はその本数を同じ本数で説明したが、これは、図8に示すように、本数を変化させてもよく、さらに溶融突起部25の径や断面形状(図示せず)を変えても良く、加熱ヘッド21の溶着条件等で調製してもよく、その他各部の構成も本発明の目的を達成する範囲であればその構成はどのようなものであってもよい。   In addition, although the melt projection part 25 provided above and below the insertion hole 17a for inserting a part of the partition plate has been described with the same number, this may be changed as shown in FIG. Further, the diameter and cross-sectional shape (not shown) of the melt projection 25 may be changed, and may be adjusted according to the welding conditions of the heating head 21, and the configuration of each other part is within the scope of achieving the object of the present invention. Any configuration may be used.

以上のように本発明にかかる多層流路部材の製造方法は、簡易な構成で高精度の多層流路部材を形成することができるようになり、信頼性の高い多層流路部材および該多層流路部材を用いた超音波式流体計測装置を提供することができるようになるので、ガスメータ等の用途に適用できる。   As described above, the method for manufacturing a multilayer flow path member according to the present invention can form a highly accurate multilayer flow path member with a simple configuration, and the highly reliable multilayer flow path member and the multilayer flow path member can be formed. Since an ultrasonic fluid measuring device using a road member can be provided, it can be applied to uses such as a gas meter.

本発明の実施の形態1における超音波式流体計測装置の全体分解斜視図1 is an overall exploded perspective view of an ultrasonic fluid measuring apparatus according to Embodiment 1 of the present invention. 同超音波式流体計測装置の要部断面図Cross-sectional view of the main part of the ultrasonic fluid measuring device (A)は多層流路部材の分解斜視図、(B)は要部拡大斜視図(A) is an exploded perspective view of the multilayer flow path member, (B) is an enlarged perspective view of the main part. 多層流路部材の溶着固定工程を示す説明図Explanatory drawing which shows the welding fixation process of a multilayer channel member (A)は本発明の実施の形態2における多層流路部材の分解斜視図、(B)は要部拡大斜視図(A) is an exploded perspective view of the multilayer flow path member in Embodiment 2 of this invention, (B) is a principal part expansion perspective view. 同多層流路部材の溶着固定工程を示す説明図Explanatory drawing which shows the welding fixation process of the multilayer flow path member 同多層流路部材の製造工程を示す説明図Explanatory drawing which shows the manufacturing process of the multilayer flow path member (A)は本発明の他の実施の形態における多層流路部材の分解斜視図、(B)は要部拡大斜視図(A) is an exploded perspective view of a multilayer flow path member according to another embodiment of the present invention, and (B) is an enlarged perspective view of a main part. (A)は従来の同超音波式流体計測装置の第1の例の要部正断面図、(B)は同側断面図(A) is a main part front sectional view of a first example of the conventional ultrasonic fluid measuring device, and (B) is a side sectional view of the same. 従来の同超音波式流体計測装置の第2の例の要部断面図Sectional drawing of the principal part of the second example of the conventional ultrasonic fluid measuring device

符号の説明Explanation of symbols

1 超音波式流体計測装置
5 計測流路収容部
10 多層流路部材
11 仕切板
13,14 側板
15 天板
16 底板
20 溶融突起部
21 加熱ヘッド(溶着手段)
DESCRIPTION OF SYMBOLS 1 Ultrasonic fluid measuring device 5 Measurement flow path accommodating part 10 Multilayer flow path member 11 Partition plate 13, 14 Side plate 15 Top plate 16 Bottom plate 20 Melting projection part 21 Heating head (welding means)

Claims (4)

超音波式流体計測装置に形成された角筒状の計測流路に配置されるもので、前記計測流路を複数の扁平流路に区画する仕切板と、前記仕切板に直交し両縁部を支持する側板と、前記仕切板と並行に上下に配設され、前記側板と結合して両縁部を支持し合う上、下板とから構成される多層流路部材であって、前記側板に前記仕切板の一部を挿入する挿入孔と、前記挿入孔の上下に溶融突起部を設け、前記側板に前記仕切板を挿入した状態で、前記溶融突起部を溶着手段で溶融することで前記側板に前記仕切板を固定するとともに、前記挿入孔と前記仕切板の隙間が一定方向に形成するように前記溶着手段による溶融状態が前記仕切板の表裏面で異なるように偏溶着手段を有する多層流路部材。 It is arranged in a rectangular tubular measurement channel formed in the ultrasonic fluid measurement device, and a partition plate that divides the measurement channel into a plurality of flat channels, and both edges perpendicular to the partition plate A multi-layer flow path member which is arranged in parallel with the side plate and supports the both edges by being coupled with the side plate, and a lower plate. An insertion hole into which a part of the partition plate is inserted, and a fusion projection part provided above and below the insertion hole, and the fusion projection part is melted by welding means in a state where the partition plate is inserted into the side plate. The partition plate is fixed to the side plate, and has a partial welding means so that the melted state by the welding means differs between the front and back surfaces of the partition plate so that a gap between the insertion hole and the partition plate is formed in a certain direction. Multi-layer channel member. 前記偏溶着手段は、前記側板に前記仕切板の一部を挿入する挿入孔の上下に設けた前記溶融突起部の先端部分の溶着面を上下方向に傾斜させて、前記溶融突起部を溶着手段で溶融するときに、前記仕切板の上下面で溶融状態が異なるようにして、前記挿入孔と前記仕切板の隙間が一定方向に形成するようにした請求項1記載の多層流路部材。 The uneven welding means is configured to incline the welding surface of the tip end portion of the melting projection portion provided above and below the insertion hole for inserting a part of the partition plate into the side plate in the vertical direction so as to weld the melting projection portion. 2. The multilayer flow path member according to claim 1, wherein when the material is melted, the melt state is different between the upper and lower surfaces of the partition plate so that the gap between the insertion hole and the partition plate is formed in a fixed direction. 前記偏溶着手段は、前記仕切板の一部を挿入する挿入孔の上下に設けた溶融突起部の形状あるいは数を変えて、前記側板に前記仕切板の一部を挿入する挿入孔の上下に設けた溶融突起部の溶融量が前記仕切板の上下で異なるようにして、前記挿入孔と前記仕切板の隙間が一定方向に形成するようにした請求項1記載の多層流路部材。 The uneven welding means changes the shape or number of the melt projections provided above and below the insertion hole for inserting a part of the partition plate, and above and below the insertion hole for inserting a part of the partition plate into the side plate. The multilayer flow path member according to claim 1, wherein a melting amount of the provided melt projection part is different between the upper and lower sides of the partition plate so that a gap between the insertion hole and the partition plate is formed in a certain direction. 請求項1〜3のいずれか1項に記載の多層流路部材を用いた超音波式流体計測装置。 An ultrasonic fluid measuring device using the multilayer flow path member according to claim 1.
JP2008283845A 2008-11-05 2008-11-05 Multi-layer channel member and ultrasonic fluid measuring device using the same Expired - Fee Related JP5125996B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008283845A JP5125996B2 (en) 2008-11-05 2008-11-05 Multi-layer channel member and ultrasonic fluid measuring device using the same
EP09824612A EP2343516A4 (en) 2008-11-05 2009-11-05 Multilayer channel member and ultrasonic fluid measuring device using same
PCT/JP2009/005889 WO2010052912A1 (en) 2008-11-05 2009-11-05 Multilayer channel member and ultrasonic fluid measuring device using same
US13/062,862 US8418566B2 (en) 2008-11-05 2009-11-05 Multi-layered flow passage member and ultrasonic wave fluid measuring device
CN201210333384.XA CN102944695B (en) 2008-11-05 2009-11-05 Multi-layered flow passage member and ultrasonic wave fluid measuring device
CN200980134518.1A CN102144147B (en) 2008-11-05 2009-11-05 Multilayer channel member and ultrasonic fluid measuring device using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283845A JP5125996B2 (en) 2008-11-05 2008-11-05 Multi-layer channel member and ultrasonic fluid measuring device using the same

Publications (2)

Publication Number Publication Date
JP2010112774A true JP2010112774A (en) 2010-05-20
JP5125996B2 JP5125996B2 (en) 2013-01-23

Family

ID=42301445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283845A Expired - Fee Related JP5125996B2 (en) 2008-11-05 2008-11-05 Multi-layer channel member and ultrasonic fluid measuring device using the same

Country Status (1)

Country Link
JP (1) JP5125996B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117199A (en) * 2008-11-12 2010-05-27 Panasonic Corp Multi-layered fluid passage component and ultrasonic fluid measuring device utilizing same
US8418566B2 (en) 2008-11-05 2013-04-16 Panasonic Corporation Multi-layered flow passage member and ultrasonic wave fluid measuring device
JP2015004516A (en) * 2013-06-19 2015-01-08 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269417A (en) * 2002-03-13 2003-09-25 Yazaki Corp Straightening mesh unit and fixing method of straightening mesh
JP2006017499A (en) * 2004-06-30 2006-01-19 Toyo Gas Meter Kk Gas meter
JP2006038627A (en) * 2004-07-27 2006-02-09 Toyo Gas Meter Kk Gas meter
JP2008107234A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Ultrasonic fluid measuring apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269417A (en) * 2002-03-13 2003-09-25 Yazaki Corp Straightening mesh unit and fixing method of straightening mesh
JP2006017499A (en) * 2004-06-30 2006-01-19 Toyo Gas Meter Kk Gas meter
JP2006038627A (en) * 2004-07-27 2006-02-09 Toyo Gas Meter Kk Gas meter
JP2008107234A (en) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd Ultrasonic fluid measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8418566B2 (en) 2008-11-05 2013-04-16 Panasonic Corporation Multi-layered flow passage member and ultrasonic wave fluid measuring device
JP2010117199A (en) * 2008-11-12 2010-05-27 Panasonic Corp Multi-layered fluid passage component and ultrasonic fluid measuring device utilizing same
JP2015004516A (en) * 2013-06-19 2015-01-08 パナソニックIpマネジメント株式会社 Ultrasonic flowmeter

Also Published As

Publication number Publication date
JP5125996B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
WO2010052912A1 (en) Multilayer channel member and ultrasonic fluid measuring device using same
US8388114B2 (en) Liquid jet recording head and manufacturing method thereof
JP6338623B2 (en) Method for manufacturing liquid supply member
JP5125996B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP5052850B2 (en) Ultrasonic welding and joining method of speaker cabinet and speaker cabinet manufactured thereby
JP5126004B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JPWO2010134160A1 (en) Heat exchanger and manufacturing method thereof
JP2009095800A (en) Fine passage structure and its manufacturing method
JP2009006472A (en) Method for manufacturing support and support
JP7150478B2 (en) LIQUID EJECTION HEAD AND MANUFACTURING METHOD THEREOF
JP4898724B2 (en) Method for manufacturing multilayer flow path member of ultrasonic fluid measuring device
JP2010127811A (en) Flow path device for measurement of fluid
JP2010164366A (en) Flow channel device for fluid measurement
JP4140973B2 (en) Method for producing molded product having liquid flow path inside and molded product
US8613495B2 (en) Liquid ejection head
JP5125997B2 (en) Multi-layer channel member and ultrasonic fluid measuring device using the same
JP4898723B2 (en) Multi-layer flow path member of ultrasonic fluid measuring device
JP2010179594A (en) Resin molded article
JP2015067086A (en) Vehicle configuration member
JP4741207B2 (en) Gas meter
JP3108609U (en) Mold structure
JP7351994B1 (en) Manufacturing method of rail with built-in scale
JP2007185972A (en) Method for manufacturing inkjet head unit
JP2016186967A (en) Substrate housing container and method of manufacturing the same
KR100881009B1 (en) A yoke of optical pick-up for disk drive and manufacturing method of it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees