JP2010112209A - Discharge abnormality detection device and ignition control system of internal combustion engine - Google Patents

Discharge abnormality detection device and ignition control system of internal combustion engine Download PDF

Info

Publication number
JP2010112209A
JP2010112209A JP2008283867A JP2008283867A JP2010112209A JP 2010112209 A JP2010112209 A JP 2010112209A JP 2008283867 A JP2008283867 A JP 2008283867A JP 2008283867 A JP2008283867 A JP 2008283867A JP 2010112209 A JP2010112209 A JP 2010112209A
Authority
JP
Japan
Prior art keywords
discharge
ignition
detection
abnormality
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008283867A
Other languages
Japanese (ja)
Other versions
JP4894846B2 (en
Inventor
Norio Yamamoto
則夫 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008283867A priority Critical patent/JP4894846B2/en
Priority to DE102009046397.6A priority patent/DE102009046397B4/en
Publication of JP2010112209A publication Critical patent/JP2010112209A/en
Application granted granted Critical
Publication of JP4894846B2 publication Critical patent/JP4894846B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/103Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector having a multi-hole nozzle for generating multiple sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • F02B23/105Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder the fuel is sprayed directly onto or close to the spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/10Measuring dwell or antidwell time

Abstract

<P>PROBLEM TO BE SOLVED: To provide discharge abnormality detection device of an internal combustion engine capable of highly accurately detecting the generation of smoking by discharge abnormality such as creeping discharge. <P>SOLUTION: This discharge abnormality detection device is applied to an igniter having an ignition coil composed of a primary coil and a secondary coil, and a spark plug for discharging a secondary current flowing to the secondary coil. Among electric power stored in the primary coil side before discharge, surplus electric power P remaining when finishing the discharge is made to instantly flow to the primary coil as a detecting current I1K when finishing its discharge t3, t13 and t23 (a detection current control means). A determination is made on whether or not the discharge is abnormal discharge of causing smoking based on the magnitude of the detecting current I1K (a discharge abnormality determining means). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、点火プラグでの放電の異常を検出する放電異常検出装置に関する。   The present invention relates to a discharge abnormality detection device that detects a discharge abnormality in a spark plug.

一次コイル及び二次コイルからなる点火コイルと点火プラグとを備えて構成された、従来の一般的な点火装置の放電作動を説明すると、先ず、一次コイルへ一次電流を流し、その後、一次電流を遮断することにより二次コイルにて二次電流を生じさせ、この二次電流が点火プラグの電極間で放電(火花放電)する。   The discharge operation of a conventional general ignition device configured by including an ignition coil composed of a primary coil and a secondary coil and an ignition plug will be described. First, a primary current is supplied to the primary coil, and then the primary current is supplied. By shutting off, a secondary current is generated in the secondary coil, and this secondary current is discharged between the electrodes of the spark plug (spark discharge).

ここで、点火プラグにおける正常な放電では、図3(a)中の波線SP1に示すように一方の電極12aから他方の電極12bに放電する。これに対し、電極12aを保持する碍子部12cに、燃焼時に生じるカーボン等の導電性物質12xが付着して堆積すると、一方の電極12aから導電性物質12xを通じて他方の電極12bに放電する沿面放電(波線SP10参照)が生じる場合がある。このような沿面放電が生じると、初期火炎から点火プラグの構成部材へ伝達される熱量が増加するので、周囲混合気への火炎の広がり速度が遅くなり、着火遅れの状態となる。また、沿面放電では放電位置が一定とならないため、着火時期のバラツキが生じ、内燃機関の出力トルクの変動が大きくなることが懸念される。   Here, in normal discharge in the spark plug, discharge is performed from one electrode 12a to the other electrode 12b as indicated by a dashed line SP1 in FIG. On the other hand, when a conductive substance 12x such as carbon generated during combustion adheres to and accumulates on the insulator 12c that holds the electrode 12a, the creeping discharge discharges from one electrode 12a to the other electrode 12b through the conductive substance 12x. (See the wavy line SP10). When such creeping discharge occurs, the amount of heat transferred from the initial flame to the constituent members of the spark plug increases, so that the spread speed of the flame to the surrounding air-fuel mixture becomes slow and the ignition is delayed. Further, since the discharge position is not constant in creeping discharge, there is a concern that variations in ignition timing occur and fluctuations in output torque of the internal combustion engine increase.

これらの懸念に対し、特許文献1には、沿面放電の発生を検出する装置が記載されている。この装置では、放電に先立ち実施される一次コイルへの通電時に現れる、一次電流波形中の脈動に着目している(特許文献1中の第2図参照)。つまり、この脈動の振幅は沿面放電発生時には小さくなるので、その脈動の波形を積分演算して得られた積分値が判定閾値よりも小さければ、沿面放電が発生していると判定できる。
特公平6−80312号公報
In response to these concerns, Patent Document 1 describes a device that detects the occurrence of creeping discharge. In this apparatus, attention is paid to the pulsation in the primary current waveform that appears when the primary coil is energized prior to discharge (see FIG. 2 in Patent Document 1). That is, since the amplitude of this pulsation is small when creeping discharge occurs, it can be determined that creeping discharge has occurred if the integral value obtained by integrating the pulsating waveform is smaller than the determination threshold.
Japanese Patent Publication No. 6-80312

しかしながら、一次電流の波形中に現れる脈動を検出し、その脈動の大きさを演算するといった上記従来装置では、脈動の大きさを高精度で演算するには限界があるため、沿面放電の発生を十分な精度で検出することは困難である。   However, in the above-mentioned conventional device that detects the pulsation appearing in the waveform of the primary current and calculates the magnitude of the pulsation, there is a limit to calculating the magnitude of the pulsation with high accuracy, so that the occurrence of creeping discharge is prevented. It is difficult to detect with sufficient accuracy.

なお、沿面放電が生じていなくても、燃焼室内の吸気流(例えばタンブル流やスワール流)の軌跡上、或いは筒内噴射された燃料の噴射軌跡上に電極12a,12bが配置されていると、図3(b)中の符号SP1に示す正常な点火放電によるアークは、吸気流や噴流(符号F参照)の影響を受けて、点火を繰り返す毎に徐々に屈曲して伸びるように変形する場合がある(符号SP2,SP3,SP4参照)。このようなアーク伸びが生じている場合においても、着火時期のバラツキが生じ易くなり、内燃機関の出力トルクの変動が大きくなることが懸念される。よって、アーク伸びの発生を検出することも沿面放電の検出と同様に望まれている。   Even if creeping discharge does not occur, the electrodes 12a and 12b are disposed on the locus of the intake air flow (for example, tumble flow or swirl flow) in the combustion chamber or on the injection locus of the fuel injected in the cylinder. The arc due to normal ignition discharge indicated by reference numeral SP1 in FIG. 3B is affected by the intake air flow and the jet flow (see reference numeral F) and is deformed so as to gradually bend and extend each time ignition is repeated. There are cases (see symbols SP2, SP3, SP4). Even in the case where such arc elongation occurs, there is a concern that variations in the ignition timing are likely to occur and fluctuations in the output torque of the internal combustion engine increase. Therefore, it is desired to detect the occurrence of arc elongation as well as the detection of creeping discharge.

本発明は、上記課題を解決するためになされたものであり、その目的は、沿面放電等の放電異常の発生を高精度で検出できる、内燃機関の放電異常検出装置及び点火制御システムを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a discharge abnormality detection device and an ignition control system for an internal combustion engine that can detect the occurrence of discharge abnormality such as creeping discharge with high accuracy. There is.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、点火プラグでの放電に先立ち一次コイル側に蓄えられた電力のうち、放電の終了時に残っている余剰電力を、その放電の終了時点で検出用電流として一次コイルへ瞬時的に流す検出電流制御手段と、/前記検出用電流の値に基づき、前記放電が異常な放電であったか否かを判定する放電異常判定手段と、を備えることを特徴とする。   According to the first aspect of the invention, of the power stored on the primary coil side prior to the discharge at the spark plug, the surplus power remaining at the end of the discharge is used as a detection current at the end of the discharge to the primary coil. And a detection abnormality control means for determining whether or not the discharge is an abnormal discharge based on a value of the detection current.

ここで、放電に先立ち実施される一次コイルへの通電により、一次コイル側には電力が蓄えられることとなるが、その蓄えられた電力のうち点火プラグでの放電終了時に残っている電力(余剰電力)の量は、沿面放電やアーク伸びが生じた場合には少なくなっている。これは、沿面放電やアーク伸びが生じた場合には、点火プラグでの放電量が増大するためと考えられる。   Here, power is stored on the primary coil side by energizing the primary coil prior to discharge, but the remaining power at the end of the discharge at the spark plug (surplus) of the stored power The amount of (electric power) is small when creeping discharge or arc elongation occurs. This is presumably because the amount of discharge at the spark plug increases when creeping discharge or arc elongation occurs.

本発明はこの知見に基づき為されたものであり、上述の余剰電力を、放電終了時点で検出用電流として一次コイルへ瞬時的に流す(検出電流制御手段)。すると、沿面放電やアーク伸びが生じた場合の余剰電力量は少なくなっているので、検出用電流の値は小さくなる筈である。そこで本発明では、検出用電流の値に基づき異常な放電であったか否かを判定する(放電異常判定手段)ので、沿面放電等の放電異常を検出できる。そして、特許文献1記載の従来装置では、「放電に供する一次電流の波形中に現れる脈動」に基づき放電異常を検出するのに対し、上記請求項1記載の本発明によれば、放電終了時点で「瞬時的に流れる検出用電流値」に基づき放電異常を検出できるので、前記従来装置に比べて放電異常の発生を高精度で検出できる。   The present invention has been made on the basis of this finding, and the above-described surplus power is instantaneously supplied to the primary coil as a detection current at the end of discharge (detection current control means). Then, since the surplus power amount when creeping discharge or arc elongation occurs is small, the value of the detection current should be small. Therefore, in the present invention, since it is determined whether or not the discharge is abnormal based on the value of the detection current (discharge abnormality determination means), a discharge abnormality such as creeping discharge can be detected. In the conventional device described in Patent Document 1, discharge abnormality is detected based on “pulsations appearing in the waveform of the primary current subjected to discharge”, whereas according to the present invention described in claim 1, the discharge end point is detected. Since the discharge abnormality can be detected based on the “current value for instantaneously flowing detection”, the occurrence of the discharge abnormality can be detected with higher accuracy than the conventional device.

ところで、上記放電異常判定手段が判定に用いる「検出用電流の値」とは、厳密に言えば、検出用電流が瞬時期間(図9中の符号t3〜t4に例示される期間)中に流れた量(つまり検出用電流の積分値)であってもよいし、請求項2記載の如く、放電終了時点(図5中の符号t3,t13,t23に例示されるタイミング)における検出用電流の絶対値であってもよい。具体的には、前記積分値が閾値を下回っている場合に異常な放電と判定してもよいし、請求項2記載の如く、放電終了時点における検出用電流の絶対値が閾値を下回っている場合に異常な放電と判定してもよい。但し、放電終了時点における検出用電流の絶対値に基づき判定する上記請求項2記載の発明によれば、検出用電流の積分値に基づき判定する場合に必要となる積分回路等を不要にできるので、簡素な回路構成で放電異常の発生を検出することができる。   By the way, the “detection current value” used for the determination by the discharge abnormality determination means, strictly speaking, the detection current flows during an instantaneous period (period illustrated by t3 to t4 in FIG. 9). (That is, the integrated value of the detection current) or, as described in claim 2, the detection current at the end of discharge (timing exemplified by reference numerals t3, t13, and t23 in FIG. 5). It may be an absolute value. Specifically, it may be determined that the discharge is abnormal when the integrated value is below a threshold value, and the absolute value of the detection current at the end of the discharge is below the threshold value as described in claim 2. In some cases, it may be determined that the discharge is abnormal. However, according to the second aspect of the invention, which is determined based on the absolute value of the detection current at the end of the discharge, an integration circuit or the like required for determination based on the integral value of the detection current can be eliminated. The occurrence of discharge abnormality can be detected with a simple circuit configuration.

請求項3記載の発明では、前記点火装置は、前記一次コイルへ供給する電力を蓄える電源回路を備えるとともに、前記電源回路に蓄えられた電力を前記一次コイルへ複数回供給することで、内燃機関の1回の燃焼行程中に前記放電を複数回行わせる多重放電を実施させるものであり、前記検出電流制御手段は、前記電源回路に蓄えられた前記余剰電力を前記検出用電流として前記一次コイルへ瞬時的に流すことを特徴とする。   According to a third aspect of the present invention, the ignition device includes a power supply circuit that stores electric power to be supplied to the primary coil, and supplies the electric power stored in the power supply circuit to the primary coil a plurality of times. Multiple discharges are performed during a single combustion stroke, and the detection current control means uses the surplus power stored in the power circuit as the detection current as the primary coil. It is characterized by flowing instantly.

ここで、多重放電を実施せずに燃焼行程中の放電を1回とする点火装置の場合には、電源回路を備えていない場合が多い。この場合には一次コイルにて電力が蓄えられることとなり、一次コイルでの余剰電力を検出用電流として瞬時的に流せばよい。但しこの場合には、異常放電の発生有無による検出用電流値の違いが顕著に現れにくくなる。これに対し、上記請求項3記載の多重放電用の点火装置においては、電源回路での余剰電力を検出用電流として瞬時的に流すので、異常放電の発生有無による検出用電流値の違いが顕著に現れる。よって、放電異常の発生を高精度で検出できる。   Here, in the case of an ignition device in which multiple discharges are not performed and the discharge during the combustion stroke is performed once, the power supply circuit is often not provided. In this case, electric power is stored in the primary coil, and surplus electric power in the primary coil may be instantaneously supplied as a detection current. However, in this case, the difference in the detection current value due to the presence or absence of abnormal discharge is not likely to appear. On the other hand, in the ignition device for multiple discharge according to the third aspect, the surplus power in the power supply circuit is instantaneously supplied as the detection current, so that the difference in the detection current value due to the occurrence of abnormal discharge is significant. Appear in Therefore, the occurrence of discharge abnormality can be detected with high accuracy.

請求項4記載の発明では、一次コイル及び二次コイルからなる点火コイルと、前記二次コイルに流れる二次電流を放電させる点火プラグと、を備える点火装置に適用され、/前記放電に先立ち前記一次コイル側に蓄えられた電力を検出する蓄電検出手段と、/前記蓄電検出手段による検出値のうち、前記放電期間中又は放電終了時点で検出された値に基づき、前記放電が異常な放電であったか否かを判定する放電異常判定手段と、を備えることを特徴とする。   The invention according to claim 4 is applied to an ignition device comprising: an ignition coil comprising a primary coil and a secondary coil; and an ignition plug for discharging a secondary current flowing through the secondary coil. An electrical storage detection means for detecting electric power stored on the primary coil side, and / or, based on a value detected during the discharge period or at the end of the discharge among the detection values by the electrical storage detection means, the discharge is an abnormal discharge. A discharge abnormality determining means for determining whether or not there is a discharge abnormality.

ここで、放電に先立ち実施される一次コイルへの通電により、一次コイル側には電力が蓄えられることとなるが、その蓄えられた電力は点火プラグでの放電に伴い減少していく。そして、その蓄電減少の速度は、沿面放電やアーク伸びが生じた場合には速くなる。これは、沿面放電やアーク伸びが生じた場合には、点火プラグでの放電量が増大するためと考えられる。したがって、上記請求項4記載の如く、一次コイル側に蓄えられた電力の検出値のうち、放電期間中又は放電終了時点で検出された値に基づけば、沿面放電等の放電異常を検出できる。   Here, power is stored on the primary coil side by energization of the primary coil that is performed prior to the discharge, but the stored power decreases with the discharge at the spark plug. And the speed | rate of the electrical storage reduction becomes quick when creeping discharge and arc elongation arise. This is presumably because the amount of discharge at the spark plug increases when creeping discharge or arc elongation occurs. Therefore, discharge abnormality such as creeping discharge can be detected based on the value detected during the discharge period or at the end of the discharge among the detected value of the electric power stored on the primary coil side.

特に、請求項5記載の如く、放電終了時点での検出値が予め設定された閾値を下回っている場合に異常な放電であったと判定すれば、「放電に供する一次電流の波形中に現れる脈動」に基づき放電異常を検出する従来装置に比べて、放電異常の発生を高精度で検出できる。   In particular, as described in claim 5, if it is determined that the discharge is abnormal when the detected value at the end of the discharge is below a preset threshold value, “pulsations appearing in the waveform of the primary current used for the discharge” The occurrence of discharge abnormality can be detected with higher accuracy than the conventional apparatus that detects discharge abnormality based on "."

ところで、沿面放電の発生時において、その沿面放電により導電性物質12xが焼き切られ、次回の放電では沿面放電が生じない場合がある。そこで、請求項6記載の発明では、前記放電異常判定手段により異常有りと判定された場合には、1回の燃焼行程中に行われる前記放電の回数を、正規回数よりも増加させる。これにより、前記焼き切りにより沿面放電が解消される可能性を高くできる。   By the way, when the creeping discharge occurs, the conductive substance 12x is burned out by the creeping discharge, and the creeping discharge may not occur in the next discharge. Therefore, in the invention according to claim 6, when it is determined that there is an abnormality by the discharge abnormality determination means, the number of discharges performed during one combustion stroke is increased from the normal number. Thereby, it is possible to increase the possibility that creeping discharge is eliminated by the burning.

但し、多重放電を実施させる点火装置の場合においては、例えば初回の放電時に沿面放電が検出されても、その時の沿面放電で導電性物質12xが焼き切られ、2回目の放電時には沿面放電が検出されない場合がある。このような場合にまで放電回数を増加させることは不要な放電を実施させることになるので望ましくない。そこで、請求項7記載の如く、前記正規回数の放電のうち最後の放電に対して異常有りと判定された場合に限り放電回数を増加させれば、上記不要な放電を回避できる。   However, in the case of an ignition device that performs multiple discharge, for example, even if a creeping discharge is detected at the first discharge, the conductive material 12x is burned out by the creeping discharge at that time, and a creeping discharge is detected at the second discharge. May not be. Increasing the number of discharges up to such a case is not desirable because unnecessary discharge is performed. Therefore, as described in claim 7, the unnecessary discharge can be avoided by increasing the number of discharges only when it is determined that there is an abnormality with respect to the last discharge among the regular number of discharges.

請求項8記載の発明では、前記増加に係る放電を、排気行程期間中に実行することを特徴とする。これによれば、前記焼き切りを目的として増加した放電が着火を生じさせてしまうことを、確実に回避できる。   The invention according to claim 8 is characterized in that the discharge related to the increase is performed during an exhaust stroke period. According to this, it can be avoided reliably that the discharge increased for the purpose of burning out causes ignition.

請求項9記載の発明は、上記放電異常検出装置と、前記点火コイル及び前記点火プラグの少なくとも一方と、を備えることを特徴とする点火制御システムである。この点火制御システムによれば、上述の各種効果を同様に発揮することができる。   The invention according to claim 9 is an ignition control system comprising the discharge abnormality detecting device and at least one of the ignition coil and the spark plug. According to this ignition control system, the various effects described above can be exhibited in the same manner.

以下、本発明を具体化した各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
本実施形態は、本発明にかかる放電異常検出装置を、車載多気筒ガソリンエンジン(内燃機関)の点火制御システムに適用したものである。また、本実施形態が適用されるエンジンは、図1に例示される如くスプレーガイド方式の筒内噴射式エンジン10である。スプレーガイド方式とは、燃料噴射弁11から筒内に直接燃料を噴射させるにあたり、理論空燃比よりも希薄側の空燃比となるよう圧縮行程中に噴射させ、噴射した燃料噴霧(図中の斜線部11a参照)が点火プラグ12の電極12a,12b(図3参照)近傍を通過している際に点火を行う方式であり、成層希薄燃焼が可能な内燃機関に適用されるものである。また、当該エンジン10には、排気を駆動力として吸気を過給する過給機13が備えられている。
(First embodiment)
In the present embodiment, the discharge abnormality detection device according to the present invention is applied to an ignition control system of an on-vehicle multi-cylinder gasoline engine (internal combustion engine). An engine to which the present embodiment is applied is a spray guide type in-cylinder injection engine 10 as illustrated in FIG. In the spray guide method, when fuel is directly injected from the fuel injection valve 11 into the cylinder, the fuel spray is injected during the compression stroke so that the air-fuel ratio is leaner than the stoichiometric air-fuel ratio. This is a method of performing ignition when the portion 11a) passes near the electrodes 12a, 12b (see FIG. 3) of the spark plug 12, and is applied to an internal combustion engine capable of stratified lean combustion. Further, the engine 10 is provided with a supercharger 13 that supercharges intake air using exhaust as a driving force.

次に、点火プラグ12での放電(スパーク)を制御するための点火制御システムの概略構成を、図2に基づき説明する。   Next, a schematic configuration of an ignition control system for controlling discharge (spark) at the spark plug 12 will be described with reference to FIG.

図2において、エンジン10の気筒ごとに設けられる点火コイル14は、一次コイル14aと二次コイル14bとからなる。一次コイル14aは、その一端が電源回路15を介してバッテリ16の高電位(+12ボルト)側に接続され、他端がスイッチ手段としてのIGBT17及び電流検出用の抵抗18(シャント抵抗)を介して接地されている。電流検出用の抵抗18の出力は点火制御回路19に入力される。IGBT17のゲートは点火制御回路19に接続されており、この点火制御回路19によりIGBT17がオンオフ制御されるようになっている。また、二次コイル14bは、その一端が点火プラグ12に接続され、他端がツェナーダイオード20を介して接地されている。なお、電源回路15はバッテリ電圧VBを昇圧しており、電源回路15の出力電圧をVoとし、一次コイル14a及び二次コイル14bを流れる電流をそれぞれ一次電流I1、二次電流I2とする。   In FIG. 2, the ignition coil 14 provided for each cylinder of the engine 10 includes a primary coil 14a and a secondary coil 14b. One end of the primary coil 14a is connected to the high potential (+12 volts) side of the battery 16 via the power supply circuit 15, and the other end thereof is connected to the IGBT 17 as a switch means and a current detection resistor 18 (shunt resistor). Grounded. The output of the current detection resistor 18 is input to the ignition control circuit 19. The gate of the IGBT 17 is connected to the ignition control circuit 19, and the IGBT 17 is controlled to be turned on / off by the ignition control circuit 19. The secondary coil 14 b has one end connected to the spark plug 12 and the other end grounded via the Zener diode 20. The power supply circuit 15 boosts the battery voltage VB, the output voltage of the power supply circuit 15 is Vo, and the currents flowing through the primary coil 14a and the secondary coil 14b are the primary current I1 and the secondary current I2, respectively.

電子制御ユニット(以下、ECU21という)は、周知の通りCPU、RAM、ROM等からなるマイクロコンピュータを主体として構成され、ROMに記憶された各種の制御プログラムを実行することによってエンジンの各種運転状態を制御するものである。点火時期制御においてECU21は、エンジン回転速度やアクセル操作量などのエンジンの運転状態を表す運転状態情報を取得し、その運転状態情報に基づいて最適な点火時期を算出する。そして、その点火時期に応じて点火信号IGt(図2参照)を生成し、点火制御回路19に出力する。また、本点火制御システムでは、点火プラグ12での点火放電を1回の燃焼行程内で間欠的に複数回生じさせる、多重放電制御を実施する。これにより、燃焼行程期間中に着火が生じないといった失火状態の回避を図る。   As is well known, the electronic control unit (hereinafter referred to as ECU 21) is mainly composed of a microcomputer comprising a CPU, a RAM, a ROM, etc., and executes various control programs stored in the ROM to change various operating states of the engine. It is something to control. In the ignition timing control, the ECU 21 acquires operating state information indicating the operating state of the engine such as the engine speed and the accelerator operation amount, and calculates an optimal ignition timing based on the operating state information. Then, an ignition signal IGt (see FIG. 2) is generated according to the ignition timing and output to the ignition control circuit 19. Further, in the present ignition control system, multiple discharge control is performed in which ignition discharge at the spark plug 12 is intermittently generated a plurality of times within one combustion stroke. This avoids a misfire state in which ignition does not occur during the combustion stroke period.

点火制御回路19は、ECU21より入力した点火信号IGtに基づきIGBT17をオンオフをさせるための駆動信号IG(図2及び図4参照)を出力する。詳しくは、多重放電の開始を指令する信号としての点火信号IGtが点火制御回路19に入力されたことをトリガとして、点火制御回路19は駆動信号IGを出力する。駆動信号IGは、一次コイル14aへの通電と二次コイル14bへの通電に対応してオンオフするパルス信号である。そして、IGBT17は、駆動信号IGのオンオフに応じて一次コイル14aへの通電と遮断とを切り替えるよう作動する。   The ignition control circuit 19 outputs a drive signal IG (see FIGS. 2 and 4) for turning on and off the IGBT 17 based on the ignition signal IGt input from the ECU 21. Specifically, the ignition control circuit 19 outputs a drive signal IG triggered by the input of the ignition signal IGt as a signal for instructing the start of multiple discharges to the ignition control circuit 19. The drive signal IG is a pulse signal that is turned on / off in response to energization of the primary coil 14a and energization of the secondary coil 14b. The IGBT 17 operates so as to switch between energization and interruption of the primary coil 14a in accordance with on / off of the drive signal IG.

ここで、図3(a)に示すように、点火プラグ12の碍子部12cに導電性物質12xが堆積すると、沿面放電(波線SP10参照)が生じることは先述した通りである。このような沿面放電が生じると、碍子部12cから漏電することとなるため、本来の放電箇所である中心電極12aにおいて十分な電圧が得られなくなる。すると、中心電極12aでの放電による着火がされない、といった燻りの状態となる。そして、燻り状態が発生すると、着火遅れや、着火時期のバラツキ、エンジン出力トルクの変動増大、失火等の不具合が懸念される。   Here, as shown in FIG. 3A, as described above, when the conductive material 12x is deposited on the insulator 12c of the spark plug 12, creeping discharge (see the wavy line SP10) occurs. When such creeping discharge occurs, current leaks from the insulator 12c, so that a sufficient voltage cannot be obtained at the center electrode 12a, which is the original discharge location. As a result, a state in which ignition is not caused by discharge at the center electrode 12a is brought about. Then, when the beat state occurs, there are concerns about problems such as ignition delay, variations in ignition timing, fluctuations in engine output torque, misfire, and the like.

この懸念に対し、本実施形態では、以下に説明する放電異常検出装置により、放電異常による燻り状態の発生を検出し、燻り状態の発生を検出した場合には、堆積した導電性物質12xが放電により焼き切られるといった自己清浄機能により燻り状態の再発防止を図っている(詳細は後述)。   In response to this concern, in the present embodiment, when the occurrence of a stagnation state due to a discharge abnormality is detected by the discharge abnormality detection device described below, and the occurrence of the swell state is detected, the deposited conductive material 12x is discharged. The self-cleaning function, such as burning out by, prevents the recurrence of the roaring state (details will be described later).

放電異常検出装置は、ECU21及び点火制御回路19により構成され、図4(a)及び図5(a)に示す如く駆動信号IGを出力するよう制御することで、燻り状態の発生を検出する。図4及び図5中の(a)(b)(c)(d)(e)は、多重放電を実施する際の駆動信号IG、一次電流I1、二次電流I2、二次電圧V2、及び一次コイル側に蓄えられた電力(チャージ量)の変化を示すタイムチャートである。   The discharge abnormality detection device includes an ECU 21 and an ignition control circuit 19, and detects the occurrence of a turning state by controlling to output a drive signal IG as shown in FIGS. 4 (a) and 5 (a). (A), (b), (c), (d), and (e) in FIG. 4 and FIG. 5 are a drive signal IG, a primary current I1, a secondary current I2, a secondary voltage V2, and It is a time chart which shows the change of the electric power (charge amount) stored in the primary coil side.

図に示す多重放電の例では、1回の燃焼行程期間に放電する正規回数を3回としており、各々の放電に対して燻りの発生有無を判定する。図4は放電3回とも燻りが発生しなかった場合を示し、図5は、初回の放電時に燻りが発生した場合を示す。但し、図5の例では、1回目の放電時に導電性物質12xが焼き切られて自己清浄しており、2回目及び3回目の放電では燻りが生じることなく正常に放電している。   In the example of the multiple discharge shown in the figure, the normal number of discharges in one combustion stroke period is set to 3, and the presence or absence of occurrence of sag is determined for each discharge. FIG. 4 shows a case where no sag has occurred in all three discharges, and FIG. 5 shows a case in which sag has occurred during the first discharge. However, in the example of FIG. 5, the conductive material 12x is burned out and self-cleaned at the time of the first discharge, and the second and third discharges are normally discharged without any distortion.

次に、図4及び図5を用いて多重放電の作動と、燻りを検出するための制御内容について説明する。   Next, the operation of the multiple discharge and the control contents for detecting the sag will be described with reference to FIGS. 4 and 5.

先ず、図中の符号t1は、ECU21から出力される点火信号IGtが多重放電開始指令状態(パルスオン状態)となった時点を示しており、点火制御回路19は、多重放電開始が指令されたt1時点で、駆動信号IGを通電指令状態(パルスオン状態)にする。すると、IGBT17がオンされて一次コイル14aに一次電流I1が流れるとともに、バッテリ16から供給される電力が電源回路15に蓄えられることとなる。   First, reference numeral t1 in the drawing indicates a point in time when the ignition signal IGt output from the ECU 21 is in a multiple discharge start command state (pulse-on state), and the ignition control circuit 19 is t1 when the multiple discharge start is commanded. At the time, the drive signal IG is set to the energization command state (pulse on state). Then, the IGBT 17 is turned on and the primary current I1 flows through the primary coil 14a, and the power supplied from the battery 16 is stored in the power supply circuit 15.

その後、予め設定された所定時間T10が経過したt2時点で駆動信号IGをオフにする。すると、IGBT17がオフされて一次電流I1の流れが遮断されることにより、二次コイル14bにて二次電流I2を生じさせ、この二次電流I2が電極12a,12b間で放電(スパーク)する。   Thereafter, the drive signal IG is turned off at time t2 when a preset predetermined time T10 has elapsed. Then, the IGBT 17 is turned off and the flow of the primary current I1 is interrupted, thereby generating a secondary current I2 in the secondary coil 14b, and this secondary current I2 is discharged (sparked) between the electrodes 12a and 12b. .

その後、予め設定された所定時間T20が経過したt3時点で、駆動信号IGを瞬時的にオンにする。すると、IGBT17が瞬時的ではあるがオンされて一次電流I1が流れることにより、電極12a,12b間での放電は終了する。つまり、多重放電の1回目の放電が終了する。   Thereafter, the drive signal IG is instantaneously turned on at time t3 when a preset predetermined time T20 has elapsed. Then, although the IGBT 17 is turned on instantaneously and the primary current I1 flows, the discharge between the electrodes 12a and 12b ends. That is, the first discharge of the multiple discharge is completed.

1回目の放電が終了した後、予め設定された所定時間T30が経過したt11時点で駆動信号IGをオンにする。これにより、2回目の放電に用いられる一次側での充電、つまり電源回路15での2回目の充電を開始する。その後は、1回目の放電作動と同様にして、t12時点で駆動信号IGをオフにして2回目の放電を開始し、t13時点で駆動信号IGを瞬時的にオンにして2回目の放電を終了する。   After the first discharge is completed, the drive signal IG is turned on at time t11 when a predetermined time T30 has passed. Thereby, charging on the primary side used for the second discharge, that is, second charging in the power supply circuit 15 is started. Thereafter, similarly to the first discharge operation, the drive signal IG is turned off at the time t12 to start the second discharge, and the drive signal IG is turned on at the time t13 to end the second discharge. To do.

その後も、1回目の放電作動と同様にして、t21時点で駆動信号IGをオンにして、3回目(最後)の放電に用いられる一次側での充電を開始する。その後、t22時点で駆動信号IGをオフにして3回目の放電を開始し、t23時点で駆動信号IGを瞬時的にオンにして3回目の放電を終了する。   Thereafter, similarly to the first discharge operation, the drive signal IG is turned on at time t21, and charging on the primary side used for the third (last) discharge is started. Thereafter, at time t22, the drive signal IG is turned off to start the third discharge, and at time t23, the drive signal IG is turned on instantaneously to end the third discharge.

次に、一次電流I1を流すt1〜t2、t11〜t12、t21〜t22の期間中に電源回路15に蓄えられる電力量(チャージ量)の変化等について、図4(e)及び図5(e)を用いて説明する。   Next, with respect to changes in the amount of power (charge amount) stored in the power supply circuit 15 during the periods t1 to t2, t11 to t12, and t21 to t22 in which the primary current I1 flows, FIGS. 4E and 5E ).

一次電流I1の通電開始時点(t1時点)からの経過時間に比例して、一次電流I1の値が増大するとともに、電源回路15のチャージ量も増大する(図4(e)参照)。そして、二次電流I2及び二次電圧V2の値は、放電開始時点(t2時点)からの時間経過に伴い低下する。また、放電開始時点で一次電流I1の値はゼロになるとともに、電源回路15のチャージ量は減少し始める。   The value of the primary current I1 increases and the charge amount of the power supply circuit 15 also increases in proportion to the elapsed time from the start of energization of the primary current I1 (time t1) (see FIG. 4E). Then, the values of the secondary current I2 and the secondary voltage V2 decrease with the passage of time from the discharge start time (time t2). Further, the value of the primary current I1 becomes zero at the start of discharge, and the charge amount of the power supply circuit 15 starts to decrease.

そして、駆動信号IGを瞬時的にオンにすることにより放電を終了させるので、この放電終了時点(t3時点)において一次電流I1が瞬時的に流れる。これは、放電終了時点でチャージ量が残存していることに起因する。以下、この残存量を余剰電力Pと呼ぶ。   Then, since the discharge is terminated by instantaneously turning on the drive signal IG, the primary current I1 flows instantaneously at the end of the discharge (time t3). This is because the charge amount remains at the end of discharge. Hereinafter, this remaining amount is referred to as surplus power P.

余剰電力Pが多いほど、放電終了時点で瞬時的に流れる一次電流I1の大きさは大きくなる。ここで、先述した沿面放電が生じていると、チャージ量の減少速度が速くなる(図5(e)参照)。つまり、符号Paに示す傾きが大きくなる(厳密には、傾き係数の絶対値が大きくなる)。その結果、余剰電力Pは小さくなるので、放電終了時点で瞬時的に流れる一次電流I1(以下、「検出用電流I1K」と記載)の値は小さくなる。要するに、沿面放電が生じると検出用電流I1Kが小さくなる。本実施形態はこの点に着目して、検出用電流I1Kが閾値I1thを下回っている場合に、沿面放電による燻りが生じていると判定する。   As the surplus power P increases, the magnitude of the primary current I1 that instantaneously flows at the end of discharge increases. Here, when the above-described creeping discharge occurs, the rate of decrease in the charge amount increases (see FIG. 5E). That is, the gradient indicated by the symbol Pa increases (strictly speaking, the absolute value of the gradient coefficient increases). As a result, the surplus power P is reduced, and the value of the primary current I1 (hereinafter referred to as “detection current I1K”) that flows instantaneously at the end of discharge is reduced. In short, when the creeping discharge occurs, the detection current I1K becomes small. In this embodiment, paying attention to this point, it is determined that the crease due to creeping discharge occurs when the detection current I1K is lower than the threshold value I1th.

ちなみに、図5(c)(d)中の放電期間t2〜t3に示す点線は、燻りの程度が悪い状態、つまり沿面放電に起因した漏電の量が多い場合を示しており、この場合には、二次電流I2の増加速度が速くなる。つまり、符号I2aに示す傾きが大きくなる(厳密には、傾き係数が大きくなる)。また、二次電圧の落込み量が大きくなる。つまり、符号V2peakに示す二次電流I2のピーク値が低くなる。この傾向は、燻りの程度が僅かである本実施形態の場合でも同様であり、正常放電時に比べれば、二次電流I2の増加速度は速くなっており、二次電圧V2の落込み量は大きくなっている(図5(c)(d)中の実線参照)。   Incidentally, the dotted lines shown in the discharge periods t2 to t3 in FIGS. 5 (c) and 5 (d) indicate a state where the degree of bending is poor, that is, a case where there is a large amount of electric leakage due to creeping discharge. The increase rate of the secondary current I2 becomes faster. That is, the inclination indicated by the symbol I2a increases (strictly, the inclination coefficient increases). In addition, the amount of drop in the secondary voltage increases. That is, the peak value of the secondary current I2 indicated by the symbol V2peak is lowered. This tendency is the same even in the case of the present embodiment where the degree of fluttering is slight. Compared with normal discharge, the increase rate of the secondary current I2 is faster, and the drop amount of the secondary voltage V2 is larger. (See the solid lines in FIGS. 5C and 5D).

但し、燻りの程度が悪い状態でなければこの傾向は顕著には現れない。しかも、二次電圧V2は一次電圧に比べて極めて高電圧であるとともに、重畳するノイズが多いため、実際には図5(c)(d)に示すような波形を取得することは極めて困難である。したがって、これら二次電流I2及び二次電圧V2に基づき燻り発生を検出しようとすると、その検出精度を十分には確保できない。   However, this tendency does not appear noticeably unless the degree of resentment is poor. In addition, since the secondary voltage V2 is extremely higher than the primary voltage and there is a lot of superimposed noise, it is actually very difficult to obtain a waveform as shown in FIGS. is there. Therefore, if it is attempted to detect the occurrence of a turn based on the secondary current I2 and the secondary voltage V2, the detection accuracy cannot be sufficiently ensured.

次に、ECU21のマイコンが上述の如く燻りを検出する制御の手順を、図6及び図7のフローチャートを用いて説明する。   Next, a control procedure in which the microcomputer of the ECU 21 detects the turning as described above will be described with reference to the flowcharts of FIGS.

図6及び図7は、ECU21のマイコンにより実行される、燻り検出制御の処理手順を示すフローチャートである。   6 and 7 are flowcharts showing the processing procedure of the turn detection control executed by the microcomputer of the ECU 21.

図に示す一連の処理は、多重放電の開始をトリガとして起動し、先ず、ステップS10において、IGBT17をオンさせて一次コイル側での蓄電、つまり電源回路15での蓄電を開始させる。そして、IGBT17をオンさせてから所定時間T10(図4参照)が経過したとステップS11で判定されると、続くステップS12において、IGBT17をオフさせて二次コイル側での放電を開始させる。そして、IGBT17をオフさせてから所定時間T20(図4参照)が経過したとステップS13で判定されると、続くステップS14(検出電流制御手段)において、IGBT17を瞬時オンさせて二次コイル側での放電を終了させる。   The series of processes shown in the figure is started with the start of multiple discharge as a trigger. First, in step S10, the IGBT 17 is turned on to start storage on the primary coil side, that is, storage in the power supply circuit 15. If it is determined in step S11 that the predetermined time T10 (see FIG. 4) has elapsed since the IGBT 17 was turned on, in the subsequent step S12, the IGBT 17 is turned off to start discharging on the secondary coil side. When it is determined in step S13 that a predetermined time T20 (see FIG. 4) has elapsed since the IGBT 17 was turned off, in the subsequent step S14 (detection current control means), the IGBT 17 is turned on instantaneously and on the secondary coil side. End the discharge.

ここで、瞬時オンさせるにあたりそのオン時間の長さは、例えばCPUの演算周期や、図6の処理の演算周期に設定することが具体例として挙げられる。また、このオン時間を過剰に長くすると、次回の放電に先立ち実施される蓄電の量が少なくなってしまうので、可能な限り短く設定することが望ましい。例えば、前記オン時間を放電時間T20よりも短い時間に設定することが望ましい。   Here, when turning on instantaneously, the length of the ON time is set to, for example, a calculation cycle of the CPU or a calculation cycle of the processing of FIG. Further, if the on-time is excessively long, the amount of power stored prior to the next discharge is reduced, so it is desirable to set it as short as possible. For example, it is desirable to set the on-time to a time shorter than the discharge time T20.

次に、ステップS15において、検出用電流I1Kの値を取得する。具体的には、シャント抵抗18に対してIGBT側の電位を点火制御回路19が検出し、その検出電位に基づき検出用電流I1Kの値をECUが算出する。なお、点火制御回路19での電位検出タイミングは放電終了時点t3,t13,t23に設定されており、その検出タイミングを、IGBT17を瞬時オンさせるタイミングと同期させれば、ピークホールド回路等の回路を要することなく放電終了時点t3,t13,t23での検出用電流I1Kの値を取得できる。   Next, in step S15, the value of the detection current I1K is acquired. Specifically, the ignition control circuit 19 detects the IGBT side potential with respect to the shunt resistor 18, and the ECU calculates the value of the detection current I1K based on the detected potential. It should be noted that the potential detection timing in the ignition control circuit 19 is set to the discharge end time t3, t13, t23, and if the detection timing is synchronized with the timing for instantaneously turning on the IGBT 17, a circuit such as a peak hold circuit can be used. The value of the detection current I1K at the discharge end times t3, t13, and t23 can be acquired without necessity.

次に、IGBT17を瞬時オンさせてから所定時間T30(図4参照)が経過したとステップS16で判定されると、ステップS12にて実施された放電の回数Nが多重放電の正規回数(本例では3回)に達したか否かを判定する。正規回数の放電が為されたと判定(S17:YES)した場合には図6の一連の処理を終了し、放電回数Nが正規回数に達していないと判定(S17:NO)した場合には、記憶されている放電回数N(初期値は1)を1回分加算して、ステップS10以降の処理を繰り返し実行する。   Next, when it is determined in step S16 that the predetermined time T30 (see FIG. 4) has elapsed since the IGBT 17 was turned on instantaneously, the number N of discharges performed in step S12 is the normal number of multiple discharges (this example) Then, it is determined whether or not it has reached 3 times. When it is determined that the regular number of discharges has been performed (S17: YES), the series of processes in FIG. 6 is terminated, and when it is determined that the number of discharges N has not reached the regular number (S17: NO), The stored number N of discharges (initial value is 1) is added by one, and the processes after step S10 are repeatedly executed.

図7は、図6のステップS15にて取得した検出用電流I1Kの値に基づき、放電異常による燻り状態の発生有無を判定する処理である。なお、図6の処理では、正規回数の放電毎に検出用電流I1Kを取得することとなるが、図7による燻り判定処理は、取得した各々の検出用電流I1Kに対して実施される。   FIG. 7 is a process for determining the presence or absence of a stagnation state due to discharge abnormality based on the value of the detection current I1K acquired in step S15 of FIG. In the process of FIG. 6, the detection current I1K is acquired for each regular number of discharges. However, the turning determination process in FIG. 7 is performed for each acquired detection current I1K.

当該燻り判定処理では先ず、ステップS20(放電異常判定手段)において、取得した検出用電流I1Kの値が予め設定した閾値I1thを下回っているか否かを判定する。なお、本実施形態では検出用電流I1Kがプラスの値となるが、マイナスの値となるよう構成された点火回路においては、検出用電流I1Kの絶対値について閾値I1thを下回っているか否かを判定する。I1K<I1thでない否定判定された場合(S20:NO)には、続くステップS21において、燻りが発生していない正常な放電状態であると判定(正常判定)する。一方、I1K<I1thであると肯定判定された場合(S20:YES)には、続くステップS22(放電異常判定手段)において、燻りが発生している放電異常の状態であると判定(燻り判定)する。   In the turning determination process, first, in step S20 (discharge abnormality determination means), it is determined whether or not the acquired value of the detection current I1K is lower than a preset threshold value I1th. In the present embodiment, the detection current I1K has a positive value, but in an ignition circuit configured to have a negative value, it is determined whether or not the absolute value of the detection current I1K is below the threshold value I1th. To do. When a negative determination is made that I1K <I1th is not satisfied (S20: NO), it is determined in the subsequent step S21 that the discharge state is normal and the discharge state is normal (normal determination). On the other hand, when an affirmative determination is made that I1K <I1th (S20: YES), it is determined in subsequent step S22 (discharge abnormality determination means) that the discharge is abnormal and the state of discharge is abnormal (brightness determination). To do.

燻り判定された場合には、続くステップS23において、該当する判定に用いられた検出用電流I1Kが、最後の放電つまり3回目の放電に対して取得された検出用電流I1Kであるか否かを判定する。そして、最後の放電に対する検出用電流I1Kであると判定した場合(S23:YES)には、正規回数を増加させて多重放電を実施する。図5中の一点鎖線は、このような追加放電を実施した場合の態様を示しており、図中の符号t32は追加放電を開始する時点を示し、符号t31は、追加放電に先立ち実施される電源回路15へ蓄電を開始する時点を示す。   If it is determined that the turn is detected, it is determined in subsequent step S23 whether or not the detection current I1K used for the corresponding determination is the detection current I1K acquired for the last discharge, that is, the third discharge. judge. If it is determined that the current I1K for the last discharge is the detection current I1K (S23: YES), multiple discharges are performed by increasing the normal number of times. A one-dot chain line in FIG. 5 shows a mode in the case where such an additional discharge is performed. Reference numeral t32 in the figure indicates a point in time when the additional discharge is started, and reference numeral t31 is performed prior to the additional discharge. A time point at which power storage to the power supply circuit 15 is started is shown.

この追加放電は、着火を目的とするものではなく、導電性物質12xを焼き切って自己清浄することを目的とするものである。そのため、この追加放電は、放電に伴い着火することのない排気行程期間に実施することが望ましい。   This additional discharge is not intended to ignite but is intended to self-clean by burning out the conductive material 12x. Therefore, it is desirable to perform this additional discharge during an exhaust stroke period that does not ignite with the discharge.

一方、ステップS22にて燻り判定された場合であっても、その判定が最後の放電に対して為された判定でなければ(S23:NO)、ステップS24による追加放電を実施することなく、図7の一連の処理を終了する。最後の放電でなければ、燻り判定された場合であってもその時の放電により焼き切られて自己清浄することがある。よって、最後の放電で燻り判定されなければ、追加放電は不要となる。   On the other hand, even if the determination is made in step S22, if the determination is not made for the last discharge (S23: NO), the additional discharge in step S24 is not performed, 7 is completed. If it is not the last discharge, even if it is judged to be worn, it may be burned out by the discharge at that time and self-cleaned. Therefore, if it is not determined that the last discharge is over, no additional discharge is required.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)放電終了時点t3,t13,t23で、電源回路15での余剰電力Pを検出用電流として一次コイル14aへ瞬時的に流す。すると、沿面放電やアーク伸びが生じた場合の余剰電力Pは少なくなっているので、検出用電流I1Kの大きさ(絶対値)は小さくなる筈である。そこで本実施形態では、検出用電流I1Kの大きさが閾値I1thを下回っている場合に、沿面放電による燻りが生じていると判定する。そして、特許文献1記載の従来装置では、「充電期間T10の初期に一次電流I1の波形中に現れる脈動」に基づき燻り発生を検出するのに対し、本実施形態によれば、放電終了時点t3,t13,t23で「瞬時的に流れる検出用電流I1Kの大きさ」に基づき燻り発生を検出できるので、前記従来装置に比べて燻り発生を高精度で検出できる。   (1) At the discharge end time t3, t13, t23, surplus power P in the power supply circuit 15 is instantaneously supplied to the primary coil 14a as a detection current. Then, since the surplus electric power P when creeping discharge or arc elongation occurs is small, the magnitude (absolute value) of the detection current I1K should be small. Therefore, in this embodiment, when the magnitude of the detection current I1K is less than the threshold value I1th, it is determined that the crease due to creeping discharge has occurred. In the conventional device described in Patent Document 1, the occurrence of swell is detected based on “pulsations appearing in the waveform of the primary current I1 at the beginning of the charging period T10”, whereas according to the present embodiment, the discharge end time t3 is detected. , T13, and t23, the occurrence of the beat can be detected based on “the magnitude of the detection current I1K that flows instantaneously”, so that the occurrence of the beat can be detected with higher accuracy than the conventional device.

(2)特許文献1記載の従来装置では、前記脈動の大きさに基づき燻りを判定するため、検出用電流I1Kの値を積分演算するための積分回路を要する。これに対し本実施形態では、瞬時的に流れる検出用電流I1Kの大きさに基づき燻りを判定するため、従来必要となっている積分回路を不要にでき、簡素な回路構成で燻り発生を検出できる。   (2) The conventional device described in Patent Document 1 requires an integration circuit for integrating the value of the detection current I1K in order to determine the sag based on the magnitude of the pulsation. On the other hand, in the present embodiment, since the sag is determined based on the magnitude of the detection current I1K that flows instantaneously, the conventionally required integration circuit can be dispensed with, and the sag occurrence can be detected with a simple circuit configuration. .

(3)ここで、電源回路15を備えていない点火制御システムにおいては、放電に先立ち一次電流I1を流すと、一次コイル14aにて電力が蓄えられることとなる。この場合には、一次コイル14aでの余剰電力を検出用電流として瞬時的に流せばよい。但しこの場合には、燻り発生有無による検出用電流の大きさの違いが顕著に現れにくくなる。これに対し、多重放電に要する電源回路15を備えた本実施形態では、電源回路15での余剰電力Pを検出用電流I1Kとして瞬時的に流すので、燻り発生有無による検出用電流I1Kの大きさの違いが顕著に現れる。よって、燻り発生を高精度で検出できる。   (3) Here, in the ignition control system that does not include the power supply circuit 15, when the primary current I1 is supplied prior to the discharge, electric power is stored in the primary coil 14a. In this case, the surplus power in the primary coil 14a may be instantaneously supplied as a detection current. However, in this case, the difference in the magnitude of the detection current due to the presence or absence of distorting is not likely to appear. On the other hand, in the present embodiment including the power supply circuit 15 required for multiple discharges, the surplus power P in the power supply circuit 15 is instantaneously supplied as the detection current I1K. The difference appears prominently. Therefore, it is possible to detect the occurrence of warp with high accuracy.

(4)燻り発生が検出された場合(S20:YES)には、多重放電にかかる正規回数の放電に加え、焼き切り用の放電を実施するので、焼き切りにより燻りが解消される可能性を高くできる。しかも、正規回数の最後の放電に対して燻り発生が検出された場合にのみ焼き切り用の放電を実施するので、不要な放電を追加実施することを回避できる。また、焼き切り用の放電を排気行程期間中に実施するので、焼き切り用の放電が着火を生じさせてしまうことを、確実に回避できる。   (4) When the occurrence of a blow is detected (S20: YES), in addition to the regular number of discharges required for multiple discharges, the discharge for burn-out is performed, so that the possibility of the burn being eliminated by burn-off can be increased. . In addition, since the burnout discharge is performed only when the occurrence of the burn is detected with respect to the last discharge of the regular number of times, it is possible to avoid performing unnecessary discharge. Moreover, since the discharge for burning is performed during the exhaust stroke, it is possible to reliably avoid the occurrence of ignition by the discharge for burning.

(5)図1に例示されるスプレーガイド方式の筒内噴射式エンジン10においては、電極12a,12bが燃料の噴射軌跡11a上に配置されることとなる。すると、図3(b)を用いて先述したように、正常な点火放電によるアークSP1が、噴流Fの影響を受けてアーク伸びSP2,SP3,SP4が生じ易くなる。また、燃焼時に生じるカーボン等の導電性物質12xが点火プラグ12に付着しやすくなるので沿面放電が生じやすくなる。よって、このようにアーク伸びや沿面放電が生じやすい筒内噴射式エンジン10に放電異常検出装置を適用させた本実施形態によれば、放電異常による燻り発生を高精度で検出できるといった上記効果が好適に発揮される。   (5) In the spray guide type in-cylinder injection engine 10 illustrated in FIG. 1, the electrodes 12a and 12b are disposed on the fuel injection locus 11a. Then, as described above with reference to FIG. 3B, the arc SP1 due to the normal ignition discharge is easily affected by the jet F and the arc elongation SP2, SP3, SP4 is likely to occur. Further, since the conductive substance 12x such as carbon generated during combustion easily adheres to the spark plug 12, creeping discharge is likely to occur. Therefore, according to the present embodiment in which the discharge abnormality detection device is applied to the in-cylinder injection engine 10 in which arc elongation or creeping discharge is likely to occur in this way, the above-described effect that the occurrence of the sag due to the discharge abnormality can be detected with high accuracy. It is suitably exhibited.

(6)さらに、本実施形態にかかる放電異常検出装置は、過給機13が備えられたエンジン10(図1参照)に適用されている。このようなエンジン10においては、過給された吸気流の影響を受けてアーク伸びSP2,SP3,SP4が生じ易くなる。よって、このようにアーク伸びが生じやすいエンジン10に適用させた本実施形態によれば、放電異常による燻り発生を高精度で検出できるといった上記効果が好適に発揮される。   (6) Furthermore, the discharge abnormality detection device according to the present embodiment is applied to the engine 10 (see FIG. 1) provided with the supercharger 13. In such an engine 10, the arc stretches SP2, SP3, and SP4 are likely to occur due to the influence of the supercharged intake air flow. Therefore, according to the present embodiment applied to the engine 10 in which arc elongation is likely to occur in this way, the above-described effect that it is possible to detect the occurrence of a sag due to a discharge abnormality with high accuracy is suitably exhibited.

(第2実施形態)
ところで、上記第1実施形態では、放電終了時点t3から次回の放電に供する一次電流I1の通電開始(蓄電開始)までの経過時間T30(図5参照)を設定するにあたり、放電終了時点t3から電源回路15のチャージ量が減少してゼロになった後に蓄電が開始されるようにしている。つまり、次回の蓄電開始時点t11での一次電流I1の値はゼロとなっている。
(Second Embodiment)
By the way, in the first embodiment, in setting the elapsed time T30 (see FIG. 5) from the discharge end time t3 to the start of energization of the primary current I1 used for the next discharge (power storage start), the power supply from the discharge end time t3 is set. Power storage is started after the charge amount of the circuit 15 decreases to zero. That is, the value of the primary current I1 at the next power storage start time t11 is zero.

これに対し本実施形態では、図8に示すように、次回の蓄電開始時点t11での一次電流I1の値はゼロより大きい値となっている。なお、図8の例では1回目の放電時に燻りが発生しており、2回目の放電時には燻りは発生していない。そのため、2回目の蓄電開始時点t11での一次電流I1の値は、3回目の蓄電開始時点t21での一次電流I1の値よりも小さくなっている。   On the other hand, in the present embodiment, as shown in FIG. 8, the value of the primary current I1 at the next power storage start time t11 is larger than zero. In the example of FIG. 8, wrinkles are generated during the first discharge, and no wrinkles are generated during the second discharge. Therefore, the value of the primary current I1 at the second power storage start time t11 is smaller than the value of the primary current I1 at the third power storage start time t21.

ところで、多重放電では何回目の放電で着火するかは成り行きであるため、放電間隔が短いほど着火時期のバラツキが少なくなる。但し、その背反として放電間隔を短くするほど短時間でIGBT17をオンオフさせることとなり、回路への負担が大きくなる。したがって、図5の方式で多重放電を実施する場合には、図8の方式に比べて回路への負担を小さくできるとのメリットがあり、図8の方式で多重放電を実施する場合には、図5の方式に比べて着火時期のバラツキを少なくできるとのメリットがある。   By the way, since it is a matter of how many times the discharge is ignited in the multiple discharge, the shorter the discharge interval, the less the variation in the ignition timing. However, as a contradiction, the shorter the discharge interval, the faster the IGBT 17 is turned on and off, increasing the burden on the circuit. Therefore, when performing multiple discharge by the method of FIG. 5, there is a merit that the burden on the circuit can be reduced compared to the method of FIG. 8, and when performing multiple discharge by the method of FIG. Compared with the method of FIG. 5, there is an advantage that variation in ignition timing can be reduced.

(第3実施形態)
上記第1実施形態では、検出用電流I1Kの大きさ(絶対値)に基づき燻り発生を検出している。これに対し本実施形態では、図9に示すように、検出用電流I1Kが瞬時期間中に流れた量、つまり検出用電流I1Kの積分値(図9(b)中の斜線に示す面積)に基づき燻り発生を検出している。
(Third embodiment)
In the first embodiment, the occurrence of sag is detected based on the magnitude (absolute value) of the detection current I1K. On the other hand, in the present embodiment, as shown in FIG. 9, the amount of detection current I1K that flows during the instantaneous period, that is, the integrated value of detection current I1K (the area indicated by the oblique lines in FIG. 9B). Based on this, the occurrence of squealing is detected.

本実施形態によれば、燻り発生をより一層高精度で検出できる。但し、本実施形態では積分回路を要するのに対し、第1実施形態によれば前記積分回路を不要にでき、簡素な回路構成で燻り発生を検出することができる。   According to the present embodiment, it is possible to detect the occurrence of warpage with higher accuracy. However, in this embodiment, an integration circuit is required. However, according to the first embodiment, the integration circuit can be made unnecessary, and the occurrence of sag can be detected with a simple circuit configuration.

(第4実施形態)
上記第1実施形態では、図1に示すように、点火プラグ12の電極12a,12bが、燃料の噴射軌跡11a上に配置されたエンジン10を適用対象としている。これに対し本実施形態では、図10に示すように、電極12a,12bが燃料の噴射軌跡11aから逸れた位置にあるものの、燃料噴射弁11からは複数の噴霧パターン11bで燃料が噴射されており、電極12a,12bは、これら複数の噴霧パターン11bの間に配置されている。なお、図10(b)は(a)のA矢視図である。
(Fourth embodiment)
In the first embodiment, as shown in FIG. 1, the application target is the engine 10 in which the electrodes 12a and 12b of the spark plug 12 are arranged on the fuel injection locus 11a. On the other hand, in this embodiment, as shown in FIG. 10, although the electrodes 12a and 12b are at positions deviating from the fuel injection locus 11a, the fuel is injected from the fuel injection valve 11 in a plurality of spray patterns 11b. The electrodes 12a and 12b are disposed between the plurality of spray patterns 11b. In addition, FIG.10 (b) is A arrow directional view of (a).

このような構成のエンジンにおいても、燃焼時に生じるカーボン等の導電性物質12xが点火プラグ12に付着しやすくなるので沿面放電が生じやすくなる。よって、このように沿面放電が生じやすいエンジンに上記第1実施形態と同様の放電異常検出装置を適用させた本実施形態によれば、第1実施形態にて説明した各種効果が好適に発揮される。   Even in an engine having such a configuration, a conductive substance 12x such as carbon generated during combustion easily adheres to the spark plug 12, and therefore creeping discharge is likely to occur. Therefore, according to the present embodiment in which the discharge abnormality detection device similar to that of the first embodiment is applied to the engine in which creeping discharge is likely to occur, various effects described in the first embodiment are suitably exhibited. The

(第5実施形態)
上記第1実施形態では、放電終了時点t3,t13,t23で瞬時的に流れる一次電流I1(検出用電流I1K)の大きさに基づき燻り発生を検出しているが、放電終了時点t3,t13,t23における電源回路15の余剰電力P(図5(e)参照)の大きさに基づき燻り発生を検出してもよい。具体的には、電源回路15のチャージ量を検出する回路(蓄電検出手段)を設け、放電終了時点t3,t13,t23でのチャージ量を余剰電力Pとして検出し、その検出値のうち所定タイミング(本実施形態では放電終了時点)で取得した余剰電力Pの値が、予め設定した閾値より小さければ、燻りが発生していると判定する。
(Fifth embodiment)
In the first embodiment, the occurrence of sag is detected based on the magnitude of the primary current I1 (detection current I1K) that instantaneously flows at the discharge end times t3, t13, and t23, but the discharge end times t3, t13, The occurrence of squealing may be detected based on the surplus power P (see FIG. 5E) of the power supply circuit 15 at t23. Specifically, a circuit (electric storage detection means) for detecting the charge amount of the power supply circuit 15 is provided, the charge amount at the discharge end points t3, t13, and t23 is detected as the surplus power P, and a predetermined timing among the detected values If the value of the surplus power P acquired at the time of the end of discharge (in the present embodiment) is smaller than a preset threshold value, it is determined that there is a twist.

また、所定タイミングで取得した余剰電力Pに基づき燻り発生を検出することに替え、放電期間t2〜t3における電源回路15のチャージ量の減少速度、つまり、図5(e)中の符号Paに示す傾きに基づき燻り発生を検出してもよい。具体的には、放電期間t2〜t3に余剰電力Pの値を複数サンプリングし、サンプリングした値に基づき前記傾きPaを算出し、算出した傾きPa(厳密には、傾き係数の絶対値)が、予め設定した閾値より大きければ、燻りが発生していると判定する。   In addition, instead of detecting the occurrence of the fluctuation based on the surplus power P acquired at a predetermined timing, the rate of decrease in the charge amount of the power supply circuit 15 in the discharge periods t2 to t3, that is, the symbol Pa in FIG. The occurrence of sag may be detected based on the inclination. Specifically, a plurality of values of the surplus power P are sampled during the discharge periods t2 to t3, the slope Pa is calculated based on the sampled values, and the calculated slope Pa (strictly, the absolute value of the slope coefficient) is If it is larger than the preset threshold value, it is determined that the beat has occurred.

また、チャージ量の傾きPaや余剰電力Pに基づき燻り発生を検出することに替え、放電期間t2〜t3の一部を少なくとも含む期間中にチャージ量が減少した量、つまりチャージ量の積分値に基づき燻り発生を検出するようにしてもよい。   In addition, instead of detecting the occurrence of squealing based on the charge amount gradient Pa and surplus power P, the amount of charge decreased during a period including at least a part of the discharge periods t2 to t3, that is, the integrated value of the charge amount. It is also possible to detect the occurrence of beat based on this.

(他の実施形態)
上記第1実施形態では、図2に示すように、電源回路15から点火コイル14に対し電気エネルギを供給するトランジスタ点火方式を採用しているが、容量放電式点火回路(CDI回路)が有するコンデンサから電気エネルギを供給するCDI点火方式を採用してもよい。
(Other embodiments)
In the first embodiment, as shown in FIG. 2, a transistor ignition system that supplies electric energy from the power supply circuit 15 to the ignition coil 14 is adopted. However, the capacitor included in the capacitive discharge ignition circuit (CDI circuit) A CDI ignition system for supplying electric energy from the battery may be employed.

なお、本発明は上記各実施形態の記載内容に限定されず、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。   In addition, this invention is not limited to the content of description of each said embodiment, You may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

本発明の第1実施形態にかかる放電異常検出装置が適用される、エンジンの概略を示す構成図である。It is a lineblock diagram showing an outline of an engine to which a discharge abnormality detecting device concerning a 1st embodiment of the present invention is applied. 第1実施形態にかかる点火制御システムの概略を示す構成図。The lineblock diagram showing the outline of the ignition control system concerning a 1st embodiment. (a)は沿面放電の現象を説明する図、(b)はアーク伸びの現象を説明する図。(A) is a figure explaining the phenomenon of creeping discharge, (b) is a figure explaining the phenomenon of arc elongation. 第1実施形態において燻り発生を検出する手法を説明するタイムチャートであり、燻りが発生していない場合の態様を示す図。It is a time chart explaining the method of detecting the occurrence of a wrinkle in the first embodiment, and is a diagram showing an aspect in a case where no wrinkle has occurred. 第1実施形態において燻り発生を検出する手法を説明するタイムチャートであり、初回の放電で燻りが発生した場合の態様を示す図。It is a time chart explaining the method of detecting the occurrence of the sag in the first embodiment, and shows a mode when the sag occurs in the first discharge. 第1実施形態において燻りを検出する制御の手順を示すフローチャート。The flowchart which shows the procedure of the control which detects a twist in 1st Embodiment. 第1実施形態において燻りを検出する制御の手順を示すフローチャート。The flowchart which shows the procedure of the control which detects a twist in 1st Embodiment. 本発明の第2実施形態において、燻り発生を検出する手法を説明するタイムチャート。In the second embodiment of the present invention, a time chart for explaining a technique for detecting the occurrence of a sag. 本発明の第3実施形態において、燻り発生を検出する手法を説明するタイムチャート。In the third embodiment of the present invention, a time chart for explaining a technique for detecting the occurrence of a wrinkle. 本発明の第4実施形態にかかる放電異常検出装置が適用される、エンジンの概略を示す構成図。The block diagram which shows the outline of an engine to which the discharge abnormality detection apparatus concerning 4th Embodiment of this invention is applied.

符号の説明Explanation of symbols

12…点火プラグ、14…点火コイル、14a…一次コイル、14b…二次コイル、15…電源回路、S14…検出電流制御手段、S20,S22…放電異常判定手段。   DESCRIPTION OF SYMBOLS 12 ... Spark plug, 14 ... Ignition coil, 14a ... Primary coil, 14b ... Secondary coil, 15 ... Power supply circuit, S14 ... Detection current control means, S20, S22 ... Discharge abnormality determination means.

Claims (9)

一次コイル及び二次コイルからなる点火コイルと、前記二次コイルに流れる二次電流を放電させる点火プラグと、を備える点火装置に適用され、
前記放電に先立ち前記一次コイル側に蓄えられた電力のうち、前記放電の終了時に残っている余剰電力を、その放電の終了時点で検出用電流として前記一次コイルへ瞬時的に流す検出電流制御手段と、
前記検出用電流の値に基づき、前記放電が異常な放電であったか否かを判定する放電異常判定手段と、
を備えることを特徴とする内燃機関の放電異常検出装置。
Applied to an ignition device comprising: an ignition coil comprising a primary coil and a secondary coil; and an ignition plug for discharging a secondary current flowing in the secondary coil;
Detection power control means for instantaneously flowing surplus power remaining at the end of the discharge among the power stored on the primary coil side prior to the discharge to the primary coil as a detection current at the end of the discharge When,
A discharge abnormality determining means for determining whether or not the discharge is an abnormal discharge based on a value of the detection current;
A discharge abnormality detection device for an internal combustion engine, comprising:
前記放電異常判定手段は、放電終了時点における前記検出用電流の絶対値が予め設定された閾値を下回っている場合に異常な放電であったと判定することを特徴とする請求項1に記載の内燃機関の放電異常検出装置。   2. The internal combustion engine according to claim 1, wherein the discharge abnormality determination unit determines that the discharge is abnormal when an absolute value of the detection current at a discharge end time is below a preset threshold value. Engine discharge abnormality detection device. 前記点火装置は、前記一次コイルへ供給する電力を蓄える電源回路を備えるとともに、前記電源回路に蓄えられた電力を前記一次コイルへ複数回供給することで、内燃機関の1回の燃焼行程中に前記放電を複数回行わせる多重放電を実施させるものであり、
前記検出電流制御手段は、前記電源回路に蓄えられた前記余剰電力を前記検出用電流として前記一次コイルへ瞬時的に流すことを特徴とする請求項1又は2に記載の内燃機関の放電異常検出装置。
The ignition device includes a power supply circuit that stores electric power to be supplied to the primary coil, and supplies the electric power stored in the power supply circuit to the primary coil a plurality of times during one combustion stroke of the internal combustion engine. The multiple discharge to perform the discharge a plurality of times is performed,
3. The discharge abnormality detection of the internal combustion engine according to claim 1, wherein the detection current control unit instantaneously flows the surplus power stored in the power circuit as the detection current to the primary coil. apparatus.
一次コイル及び二次コイルからなる点火コイルと、前記二次コイルに流れる二次電流を放電させる点火プラグと、を備える点火装置に適用され、
前記放電に先立ち前記一次コイル側に蓄えられた電力を検出する蓄電検出手段と、
前記蓄電検出手段による検出値のうち、前記放電期間中又は放電終了時点で検出された値に基づき、前記放電が異常な放電であったか否かを判定する放電異常判定手段と、
を備えることを特徴とする内燃機関の放電異常検出装置。
Applied to an ignition device comprising: an ignition coil comprising a primary coil and a secondary coil; and an ignition plug for discharging a secondary current flowing in the secondary coil;
Storage detection means for detecting power stored on the primary coil prior to the discharge;
Discharge abnormality determining means for determining whether or not the discharge is an abnormal discharge based on a value detected during the discharge period or at the end of discharge among the detection values by the power storage detecting means;
A discharge abnormality detection device for an internal combustion engine, comprising:
前記放電異常判定手段は、放電に伴い減少していく前記検出値のうち放電終了時点での検出値が予め設定された閾値を下回っている場合に、異常な放電であったと判定することを特徴とする請求項4に記載の内燃機関の放電異常検出装置。   The discharge abnormality determination means determines that the discharge is abnormal when the detection value at the end of the discharge is below a preset threshold among the detection values that decrease with discharge. The discharge abnormality detection device for an internal combustion engine according to claim 4. 前記放電異常判定手段により異常有りと判定された場合には、1回の燃焼行程中に行われる前記放電の回数を、異常無しと判定された場合の正規回数よりも増加させることを特徴とする請求項1〜5のいずれか1つに記載の内燃機関の放電異常検出装置。   When it is determined that there is an abnormality by the discharge abnormality determining means, the number of discharges performed during one combustion stroke is increased from the normal number of times when it is determined that there is no abnormality. The discharge abnormality detection device for an internal combustion engine according to any one of claims 1 to 5. 前記正規回数の放電のうち最後の放電に対して異常有りと判定された場合に限り、放電回数を増加させることを特徴とする請求項6に記載の内燃機関の放電異常検出装置。   The discharge abnormality detection device for an internal combustion engine according to claim 6, wherein the number of discharges is increased only when it is determined that there is an abnormality with respect to the last discharge among the regular number of discharges. 前記増加に係る放電を、排気行程期間中に実行することを特徴とする請求項6又は7に記載の内燃機関の放電異常検出装置。   The discharge abnormality detecting device for an internal combustion engine according to claim 6 or 7, wherein the discharge related to the increase is executed during an exhaust stroke period. 請求項1〜8のいずれか1つに記載の放電異常検出装置と、前記点火コイル及び前記点火プラグの少なくとも一方と、を備えることを特徴とする点火制御システム。   An ignition control system comprising: the discharge abnormality detection device according to any one of claims 1 to 8; and at least one of the ignition coil and the ignition plug.
JP2008283867A 2008-11-05 2008-11-05 Discharge abnormality detection device and ignition control system for internal combustion engine Active JP4894846B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008283867A JP4894846B2 (en) 2008-11-05 2008-11-05 Discharge abnormality detection device and ignition control system for internal combustion engine
DE102009046397.6A DE102009046397B4 (en) 2008-11-05 2009-11-04 Discharge abnormality detection device and ignition control system of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008283867A JP4894846B2 (en) 2008-11-05 2008-11-05 Discharge abnormality detection device and ignition control system for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010112209A true JP2010112209A (en) 2010-05-20
JP4894846B2 JP4894846B2 (en) 2012-03-14

Family

ID=42063232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008283867A Active JP4894846B2 (en) 2008-11-05 2008-11-05 Discharge abnormality detection device and ignition control system for internal combustion engine

Country Status (2)

Country Link
JP (1) JP4894846B2 (en)
DE (1) DE102009046397B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291142B2 (en) 2011-09-14 2016-03-22 Toyota Jidosha Kabushiki Kaisha Ignition control device for internal combustion engine
JP2016138476A (en) * 2015-01-26 2016-08-04 株式会社日本自動車部品総合研究所 Ignition device
US9709016B2 (en) 2011-12-27 2017-07-18 Continental Automotive Gmbh Method for operating an ignition device for an internal combustion engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014216024A1 (en) * 2013-11-14 2015-05-21 Robert Bosch Gmbh Method for operating an ignition system and corresponding ignition system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680312B2 (en) * 1984-07-13 1994-10-12 日本電装株式会社 Smoldering prevention device for spark plugs
JP2001271699A (en) * 2000-03-29 2001-10-05 Ngk Spark Plug Co Ltd Control device for direct injection type internal combustion engine
JP2005098235A (en) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp Capacity discharge ignition device
JP2007056778A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Controller for eliminating smoldering of ignition plug

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215067A (en) 1991-03-07 1993-06-01 Honda Giken Kogyo Kabushiki Kaisha Misfire-detecting system for internal combustion engines
JPH0680312A (en) 1992-08-31 1994-03-22 Norimasa Shoda Pneumatic tenser
US5606118A (en) 1995-09-05 1997-02-25 Ford Motor Company System and method for detecting misfire in an internal combustion engine
JP3228159B2 (en) 1996-12-06 2001-11-12 トヨタ自動車株式会社 Engine spark plug inspection method
US6006156A (en) 1997-12-11 1999-12-21 Cummins Engine Company, Inc. Apparatus and method for diagnosing and controlling an ignition system of an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680312B2 (en) * 1984-07-13 1994-10-12 日本電装株式会社 Smoldering prevention device for spark plugs
JP2001271699A (en) * 2000-03-29 2001-10-05 Ngk Spark Plug Co Ltd Control device for direct injection type internal combustion engine
JP2005098235A (en) * 2003-09-25 2005-04-14 Mitsubishi Electric Corp Capacity discharge ignition device
JP2007056778A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Controller for eliminating smoldering of ignition plug

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291142B2 (en) 2011-09-14 2016-03-22 Toyota Jidosha Kabushiki Kaisha Ignition control device for internal combustion engine
US9709016B2 (en) 2011-12-27 2017-07-18 Continental Automotive Gmbh Method for operating an ignition device for an internal combustion engine
JP2016138476A (en) * 2015-01-26 2016-08-04 株式会社日本自動車部品総合研究所 Ignition device

Also Published As

Publication number Publication date
JP4894846B2 (en) 2012-03-14
DE102009046397A1 (en) 2010-05-06
DE102009046397B4 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP5425575B2 (en) Method for determining the combustion state of a spark ignition internal combustion engine
JP4807379B2 (en) Ignition control device and ignition control system for internal combustion engine
JP2001032758A (en) Ignition device for internal combustion engine
JP2008088948A (en) Engine control device
JP2007170204A (en) Fuel injection device for internal combustion engine
JP4894846B2 (en) Discharge abnormality detection device and ignition control system for internal combustion engine
JP2010065548A (en) Internal combustion engine control device
JP6549901B2 (en) Igniter
WO2009116303A1 (en) Method for judging combustion state of internal combustion
JP5843047B2 (en) Ignition control device and ignition control method for internal combustion engine
JP6392535B2 (en) Control device for internal combustion engine
JP6349895B2 (en) Ignition device for internal combustion engine
JP6622513B2 (en) Ignition device
JPWO2019225070A1 (en) Control device for internal combustion engine
WO2015122003A1 (en) Ignition device and ignition method for internal combustion engine
JP2015200255A (en) ignition control device
JP2009203864A (en) Combustion state detection device and ignition control system
JP5800508B2 (en) Spark ignition control method for spark ignition internal combustion engine
JP5681425B2 (en) Spark ignition method for internal combustion engine
JPWO2020085042A1 (en) Control device for internal combustion engine
JP2016114039A (en) Ignitor of internal combustion engine
JP6411951B2 (en) Control device for internal combustion engine
JP6401011B2 (en) Multiple ignition device for internal combustion engine
JP6426365B2 (en) Ignition control device for internal combustion engine
JP6387658B2 (en) Ignition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

R151 Written notification of patent or utility model registration

Ref document number: 4894846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250