JP2010112085A - Compound vibration-control frame - Google Patents

Compound vibration-control frame Download PDF

Info

Publication number
JP2010112085A
JP2010112085A JP2008286062A JP2008286062A JP2010112085A JP 2010112085 A JP2010112085 A JP 2010112085A JP 2008286062 A JP2008286062 A JP 2008286062A JP 2008286062 A JP2008286062 A JP 2008286062A JP 2010112085 A JP2010112085 A JP 2010112085A
Authority
JP
Japan
Prior art keywords
column
viscoelastic
axis
damper
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008286062A
Other languages
Japanese (ja)
Other versions
JP5369626B2 (en
Inventor
Takayuki Nanba
隆行 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008286062A priority Critical patent/JP5369626B2/en
Publication of JP2010112085A publication Critical patent/JP2010112085A/en
Application granted granted Critical
Publication of JP5369626B2 publication Critical patent/JP5369626B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound vibration-control frame with a simple structure reducing responses to external forces of both of an earthquake and the wind by installing viscoelastic dampers in a structural plane formed by columns and beams. <P>SOLUTION: In the compound vibration-control frame, first and second viscoelastic dampers are arranged to have a truncated chevron shape or an inverted truncated chevron shape in the structural plane forming a column-beam frame of a building. An end of each of axis lines of the first and second viscoelastic dampers intersects with an intersection of axis lines of a column and a beam at a column-beam joint part on each of right and left sides of the structural plane. The other end of each of the axis lines of the first and second viscoelastic dampers intersects with the axis line of the beam above or below the column-beam joint part in a manner that an interval is formed between the intersections of the axis lines of the first and second viscoelastic dampers and the axis line of the beam. The interval between the intersections on the beam has a smaller shear yield force than a vertical direction component of a maximum bearing force of the first and second viscoelastic dampers. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、建築物その他の構造物の複合制振架構に関し、柱と梁で構成される構面内に粘弾性ダンパーを設置して地震および風の両方の外力に対する応答を低減させるものに関する。   The present invention relates to a composite vibration control frame for buildings and other structures, and relates to a structure in which a viscoelastic damper is installed in a structural surface composed of columns and beams to reduce the response to both external forces of earthquake and wind.

建築物などの構造物では、快適な居住性や安全性を確保するため耐震性・制振性が要求され、制振ダンパーとして鋼製ダンパー、粘弾性ダンパーが提案されている。   For structures such as buildings, seismic resistance and vibration control are required to ensure comfortable living and safety, and steel dampers and viscoelastic dampers have been proposed as vibration dampers.

建築構造物に鋼製ダンパー、粘弾性ダンパーを配置すると地震、風等による構造物の振動を低減できる。例えば、特許文献1は制震鋼板ユニットおよび制震壁に関し、柱梁に囲まれた構面内に制震鋼板ユニット(鋼製ダンパー)を配置し、鋼製ダンパーを主架構よりも早期に降伏させて構造物の応答を低減することが記載されている。   If steel dampers and viscoelastic dampers are arranged in the building structure, vibrations of the structure due to earthquakes and winds can be reduced. For example, Patent Document 1 relates to a damping steel plate unit and a damping wall, placing a damping steel plate unit (steel damper) in a construction frame surrounded by column beams, and yielding the steel damper earlier than the main frame. To reduce the response of the structure.

しかし、鋼製ダンパーは強風による振動等、居住性が問題となる程度の振幅では作用せず、また強風による振動が構造物の安全性にかかわるほど大きな場合であっても数時間連続するような場合には振動エネルギーを吸収させるには不向きである。   However, steel dampers do not act at such amplitudes that comfort is a problem, such as vibrations caused by strong winds, and they continue for several hours even when vibrations caused by strong winds are large enough to affect the safety of the structure. In some cases, it is not suitable for absorbing vibration energy.

特許文献2は粘弾性ダンパーを用いた耐震建築物に関し、大減衰力を有する高剛性かつ高靭性の粘性耐震壁を備え、該粘性耐震壁に地震荷重を負担させ、柱および梁は長期荷重のみを負担させる耐震建築物が記載されている。粘性耐震壁(粘弾性ダンパー)は粘性抵抗の大きい粘性体を鋼板に対し粘着させた状態で挟み込み、低振幅からエネルギー吸収を行い、地震応答・風応答に作用する。   Patent Document 2 relates to an earthquake-resistant building using a viscoelastic damper, which has a highly rigid and tough viscous earthquake-resistant wall having a large damping force, and the viscous earthquake-resistant wall bears an earthquake load. The earthquake-resistant building that bears the cost is described. The viscous earthquake-resistant wall (viscoelastic damper) sandwiches a viscous material with a large viscous resistance against the steel sheet, absorbs energy from a low amplitude, and acts on the seismic response and wind response.

しかし、粘弾性ダンパーは数十年に一回の確率で発生する大地震に対してエネルギー吸収が行えるように設計すると粘弾性体量が多くなり経済性が損なわれる。   However, if the viscoelastic damper is designed to absorb energy for a large earthquake that occurs once every several decades, the amount of viscoelastic body increases and the economic efficiency is impaired.

そこで、風による微小振動から地震による大振動にいたるあらゆる振動入力に対して建築物などの構造物の応答を低減させるため弾塑性ダンパー(鋼製ダンパー)と粘弾性ダンパー両者の特性を備えた複合ダンパーが提案されている。   Therefore, in order to reduce the response of structures such as buildings to any vibration input from micro-vibration due to wind to large vibration due to earthquake, this is a composite with the characteristics of both elasto-plastic dampers (steel dampers) and viscoelastic dampers. A damper has been proposed.

複合ダンパーには弾塑性ダンパーと粘弾性ダンパーを並列に配置するものと直列に配置するものがある。並列に配置した場合、外乱による振動は弾塑性ダンパーと粘弾性ダンパーのそれぞれに外力が入力され、入力が微小振動の場合は粘弾性ダンパーの変位が剛性の高い弾塑性ダンパーにより拘束され制震効果が小さくなる。一方、直列に配置する場合、剛性低下により弾塑性ダンパーの効果が小さくなる。   Some composite dampers are arranged in series with an elastic-plastic damper and a viscoelastic damper arranged in parallel. When arranged in parallel, external force is input to the elasto-plastic damper and viscoelastic damper for vibration due to disturbance, and when the input is micro-vibration, the displacement of the viscoelastic damper is constrained by a highly rigid elasto-plastic damper. Becomes smaller. On the other hand, when arranged in series, the effect of the elasto-plastic damper is reduced due to a decrease in rigidity.

図4に、建物の柱1と梁2で構成される架構の構面6に地震時に作用する履歴型ダンパー7と風振動時に効果を発揮する粘弾性ダンパー3の両者を併設した場合の一例を示す。   FIG. 4 shows an example in which both a hysteretic damper 7 that acts during an earthquake and a viscoelastic damper 3 that exerts an effect during wind vibration are provided on a structural surface 6 of a frame composed of pillars 1 and beams 2 of a building. Show.

特許文献3には層間変形を横方向材の中央の剪断変形に置換し、エネルギー吸収を図り、かつ粘性系ダンパーを併設するものが記載されている。
特開平10−147999号公報 特開平11−141177号公報 特開平11−71034号公報
Patent Document 3 describes a technique in which interlayer deformation is replaced with shear deformation at the center of a transverse member, energy absorption is performed, and a viscous damper is also provided.
Japanese Patent Laid-Open No. 10-147999 JP-A-11-141177 JP-A-11-71034

しかしながら図4の構造は、鋼製ダンパーと粘弾性ダンパーの両方を設置し、鋼製ダンパーが塑性化する振幅では粘弾性ダンパーの粘弾性体に大変形にも対応できるだけの厚さを持たせなければならず、設置スペースを必要とし、建築計画に制限を加えることとなる。また、特開平11−71034号公報記載の方法は,一体型の複合ダンパーであり、風・地震の両者に有効であるが,貫梁,軸線材が追加で必要であり,コスト増になる.
そこで、本発明は、設置スペースが小さくて構造が簡便な複合ダンパーを提案することを目的とする。
However, in the structure of FIG. 4, both a steel damper and a viscoelastic damper are installed, and the viscoelastic body of the viscoelastic damper must be thick enough to cope with large deformation at the amplitude at which the steel damper plasticizes. It requires installation space and places restrictions on the architectural plan. Further, the method described in Japanese Patent Laid-Open No. 11-71034 is an integrated composite damper, which is effective for both wind and earthquake, but requires additional beams and shafts, which increases costs.
Therefore, an object of the present invention is to propose a composite damper having a small installation space and a simple structure.

本発明の課題は以下の手段で達成可能である。
1.建物の柱梁架構を構成する構面内に,第一と第二の粘弾性ダンパーをハの字形または逆ハの字形となるように配置した複合制振架構であって、
前記第一と前記第二の粘弾性ダンパーは、
それらの軸線の一端が前記構面の左右の柱梁接合部における柱と梁の軸線の交点と交差し、
他端は前記柱梁接合部の上方または下方となる梁の軸線と、前記第一と前記第二の粘弾性ダンパーの軸線と前記梁の軸線との交点間に間隔を有するように交差し、
前記梁で前記交点間となる区間は、前記第一と前記第二の粘弾性ダンパーの最大耐力より小さい剪断降伏力を有することを特徴とする複合制振架構。
2.前記交点間となる梁のせん断力負担要素が,梁の他の部分よりも降伏点の低い鋼材で構成されていることを特徴とする1記載の複合制振架構。
3.建物の柱梁架構を構成する構面内に,粘弾性ダンパーを略対角線をなすように配置した複合制振架構であって、
前記粘弾性ダンパーは、その材軸線の一端が、前記柱梁架構の柱梁接合部における柱と梁の材軸線の交点と交差し、他端は、前記柱梁接合部の対角線上となる柱梁接合部を構成する梁の材軸線と、前記柱梁接合部の柱の内法面から構面内となる位置において交差して配置され,前記梁と前記粘弾性ダンパーの交点と柱の内法面間となる区間は、前記粘弾性ダンパーの最大耐力より小さい剪断降伏力を有することを特徴とする複合制振架構。
4.前記交点と柱の内法面間となる梁のせん断力負担要素が,梁の他の部分よりも降伏点の低い鋼材で形成されることを特徴とする3記載の複合制振架構。
The object of the present invention can be achieved by the following means.
1. A composite vibration control structure in which the first and second viscoelastic dampers are arranged in a C-shape or reverse C-shape in the structural surface constituting the column beam structure of the building,
The first and second viscoelastic dampers are:
One end of those axes intersects the intersection of the column and beam axes at the left and right column beam joints of the construction surface,
The other end intersects with an axis between the axis of the beam above or below the beam-column joint and an intersection between the axis of the first and second viscoelastic dampers and the axis of the beam,
The composite vibration control frame according to claim 1, wherein a section between the intersections of the beams has a shear yield strength smaller than a maximum yield strength of the first and second viscoelastic dampers.
2. 2. The composite vibration control frame according to claim 1, wherein the shear force bearing element of the beam between the intersections is made of a steel material having a lower yield point than the other part of the beam.
3. It is a composite vibration control structure in which viscoelastic dampers are arranged in a substantially diagonal line in the structural surface constituting the column beam structure of the building,
The viscoelastic damper has a column in which one end of the material axis intersects the intersection of the column and beam material axis in the column beam joint of the column beam frame, and the other end is on the diagonal line of the column beam joint. It is arranged so as to intersect the beam axis constituting the beam joint at a position that is within the composition plane from the inner slope of the column of the beam-to-column joint, and the intersection of the beam and the viscoelastic damper and the inside of the column A composite vibration control frame characterized in that a section between the slopes has a shear yield strength smaller than the maximum yield strength of the viscoelastic damper.
4). 4. The composite vibration control frame according to claim 3, wherein the shear force bearing element of the beam between the intersection and the inner slope of the column is formed of a steel material having a lower yield point than the other part of the beam.

本発明によれば、居住性の指標となる小振幅の振動から、構造物の機能、安全性に影響する地震時の大振幅の振動まで効果的にエネルギーを吸収することが可能で、且つ、従来構造と比較して追加部材が不要でコストパフォーマンスに優れる複合ダンパーが得られ産業上極めて有用である。   According to the present invention, it is possible to effectively absorb energy from a small-amplitude vibration serving as a habitability index to a large-amplitude vibration during an earthquake that affects the function and safety of the structure, and Compared to the conventional structure, an additional member is not required and a composite damper having excellent cost performance is obtained, which is extremely useful in industry.

以下、本発明を図面に基づいて詳細に説明する。
図1に、本発明の一実施例に係る複合ダンパーの鉛直構面図を示す。図において、1は柱、
2は梁、3は粘弾性ダンパー、4はウェブパネル、5aは粘弾性ダンパーの支持部材、5bはスチフナ、6は構面、L1,L6は梁材軸、L2、L3は粘弾性ダンパーのダンパー材軸、L4、L5は柱軸,G1,G2,G3,G4は交点を示す。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a vertical plane view of a composite damper according to an embodiment of the present invention. In the figure, 1 is a pillar,
2 is a beam, 3 is a viscoelastic damper, 4 is a web panel, 5a is a support member for the viscoelastic damper, 5b is a stiffener, 6 is a construction surface, L1 and L6 are beam material axes, and L2 and L3 are dampers for the viscoelastic damper. The material axes, L4 and L5 are column axes, and G1, G2, G3 and G4 indicate intersections.

図示した複合ダンパーは、柱1、梁2に囲まれた構面6内に、粘弾性ダンパー3がハの字形となるように左右対称に2本配置する。   The two composite dampers shown in the figure are arranged symmetrically in the plane 6 surrounded by the pillars 1 and 2 so that the viscoelastic dampers 3 have a square shape.

2本の粘弾性ダンパー3は、それらの軸線L2(L3)の一端を構面6の左右の柱梁接合部における柱1の柱軸L4(L5)と梁2の梁材軸L1の交点G2(G1)と交差させる。   The two viscoelastic dampers 3 have one end of their axis L2 (L3) at the intersection G2 of the column axis L4 (L5) of the column 1 and the beam axis L1 of the beam 2 at the left and right column beam joints of the composition surface 6. Cross with (G1).

ダンパー材軸L2(L3)の他端は、交点G2(G1)を成す柱梁接合部の上方となる梁2の梁材軸L6と、前記粘弾性ダンパー3のダンパー材軸L2(L3)と前記梁材軸L6との交点G3と交点G4が間隔を有して交差するように、構面6内にハの字形に配置する。   The other end of the damper material axis L2 (L3) is connected to the beam material axis L6 of the beam 2 above the column beam junction forming the intersection point G2 (G1), and the damper material axis L2 (L3) of the viscoelastic damper 3 The crossing point G3 and the crossing point G4 with the beam material axis L6 are arranged in a square shape in the composition surface 6 so as to intersect with an interval.

そして、梁2において交点G3と交点G4の間となる区間のウェブパネル4を、2本の粘弾性ダンパー3の最大耐力の鉛直方向成分より小さい剪断降伏力を有するもので、梁の他の部分よりも降伏点の低い鋼材で構成とする。ウェブパネル4の両端にはウェブパネル4のせん断座屈を防止するため,鉛直方向にスチフナを配置することが望ましい。 また,ダンパー材軸L2に沿ったスチフナ5bは梁2のウェブへの応力集中を避けるため配置することが望ましい。粘弾性ダンパー3の両端部を十字型断面の支持部材で構成した場合、スチフナ5aと梁2の下方のフランジ間にスチフナ5bを設け、スチフナ5bは支持部材5aの延長線上に配置すると応力伝達がスムーズとなり好ましい。   The web panel 4 in the section between the intersection point G3 and the intersection point G4 in the beam 2 has a shear yield force smaller than the vertical component of the maximum proof stress of the two viscoelastic dampers 3, and other parts of the beam It is composed of a steel material having a lower yield point. In order to prevent shear buckling of the web panel 4 at both ends of the web panel 4, it is desirable to arrange stiffeners in the vertical direction. Further, the stiffener 5b along the damper material axis L2 is preferably arranged to avoid stress concentration on the web of the beam 2. When both ends of the viscoelastic damper 3 are constituted by support members having a cross-shaped cross section, if a stiffener 5b is provided between the stiffener 5a and the lower flange of the beam 2, and the stiffener 5b is disposed on an extension line of the support member 5a, stress transmission is performed. Smooth and preferable.

図示した複合ダンパーは粘弾性ダンパー3のダンパー材軸L2、L3と梁2の梁材軸L6の交点G3とG4が離れているので,層間変形を生じた際、交点G3,G4間にせん断力が生じ,大地震時にはウェブパネル4がせん断力負担要素である履歴型ダンパーとして機能しエネルギー吸収を行う。   In the illustrated composite damper, since the intersecting points G3 and G4 of the damper material axes L2 and L3 of the viscoelastic damper 3 and the beam material axis L6 of the beam 2 are separated, a shear force is generated between the intersecting points G3 and G4 when the interlayer deformation occurs. When a large earthquake occurs, the web panel 4 functions as a hysteretic damper, which is a shear force bearing element, and absorbs energy.

大地震時に粘弾性ダンパー3の変形が抑制され、粘弾性ダンパー3を大きな変形に追随するよう設計する必要が無くなり、その結果、粘弾性ダンパー3を構成する粘弾性体を従来よりも薄くすることが可能となり,剛性が高くなることから,小型化が可能となる。交点G3,G4間距離は梁2の「梁せい」と同程度とすることが好ましい。   The deformation of the viscoelastic damper 3 is suppressed during a large earthquake, and it is not necessary to design the viscoelastic damper 3 to follow the large deformation. As a result, the viscoelastic body constituting the viscoelastic damper 3 is made thinner than before. Since the rigidity is increased, the size can be reduced. It is preferable that the distance between the intersections G3 and G4 is approximately the same as the “beam cause” of the beam 2.

図1は上下の層間で2本の粘弾性ダンパー3をハの字形に連続して配置した場合を示すが、図2に示すように上下の層間(構面6)で2本の粘弾性ダンパー3を、上の層間(構面6)には逆ハの字形に配置し,下の層間(構面6)にはハの字形に上下対象に配置して、対称軸となる梁のウェブパネル4を降伏させることも可能である。   FIG. 1 shows a case where two viscoelastic dampers 3 are continuously arranged in a letter C shape between the upper and lower layers. As shown in FIG. 2, two viscoelastic dampers are formed between the upper and lower layers (composition surface 6). 3 is arranged in an inverted C shape in the upper layer (composition surface 6), and is arranged in a C shape in the lower layer (composition surface 6) in a vertical shape, and the web panel of the beam serving as the axis of symmetry 4 can be surrendered.

図3は柱梁架構の両側の柱1の間隔が狭い場合の複合ダンパーの一例を示し、1本の粘弾性ダンパー3を、その材軸線L10の一端を、柱梁接合部における柱1の材軸線L9と梁2の材軸線L8の交点と交差させる。   FIG. 3 shows an example of a composite damper when the interval between the columns 1 on both sides of the column beam frame is narrow. One viscoelastic damper 3 is connected to one end of the material axis L10, and the column 1 material at the column beam joint portion. It intersects with the intersection of the axis L9 and the material axis L8 of the beam 2.

そして、他端を、前記柱梁接合部の対角線上となる柱梁接合部を構成する梁2の材軸線L7と、前記柱梁接合部の柱1の内法面から構面内となる位置において交点G5で交差して配置する。   Then, the other end is located within the composition plane from the material axis L7 of the beam 2 constituting the beam-column joint portion on the diagonal line of the beam-column joint portion and the inner normal surface of the column 1 of the beam-column joint portion. At the intersection G5.

交点G5と柱1の内法面間となる区間のウェブパネル4は、粘弾性ダンパー3の最大耐力の鉛直方向成分より小さい剪断降伏力を有するもので、梁2の他の部分よりも降伏点の低い鋼材で構成とする。   The web panel 4 in the section between the intersection G5 and the inner slope of the column 1 has a shear yield force smaller than the vertical component of the maximum proof stress of the viscoelastic damper 3, and has a yield point higher than the other parts of the beam 2. It is composed of low steel materials.

ウェブパネル4の交点G5側にはウェブパネル4のせん断座屈を防止するため,鉛直方向にスチフナ5aを配置することが望ましい。粘弾性ダンパー3の両端部を十字型断面の支持部材で構成した場合、スチフナ5aと梁2の下方のフランジ間にスチフナ5bを設け、スチフナ5bは支持部材5aの延長線上に配置すると応力伝達がスムーズとなり好ましい。柱の内法面と,交点G5との距離は,「梁せい」と同程度であることが望ましい。   In order to prevent shear buckling of the web panel 4 on the intersection G5 side of the web panel 4, it is desirable to arrange a stiffener 5a in the vertical direction. When both ends of the viscoelastic damper 3 are constituted by support members having a cross-shaped cross section, if a stiffener 5b is provided between the stiffener 5a and the lower flange of the beam 2, and the stiffener 5b is disposed on an extension line of the support member 5a, stress transmission is performed. Smooth and preferable. It is desirable that the distance between the inner slope of the column and the intersection point G5 is about the same as that of “Beisei”.

風振動時(層間変位R=1/500)と,大地震時(層間変形R=1/100)のエネルギー吸収量が,図4に示す骨組(以下従来例)と等しくなるよう,図5に示す骨組(以下、本発明例)の履歴型ダンパー4および粘弾性ダンパー3を設計した.
柱1,梁2の部材サイズは比較例、本発明例で共通とし,図5の梁中央部のパネル4のみ低降伏点鋼を用いた。粘弾性ダンパーはせん断剛性が0.1N/mm,減衰定数が0.4の粘弾性体を鋼板に積層圧着し,粘弾性体のせん断変形によりエネルギー吸収を行うブレース型ダンパーであり,風振動時のエネルギー吸収量が等しくなるよう粘弾性体のせん断断面積を設計した。粘弾性体の厚さは大地震時の粘弾性体のせん断ひずみが400%となるよう設計した。
FIG. 5 shows that the energy absorption amount during wind vibration (interlayer displacement R = 1/500) and during a large earthquake (interlayer deformation R = 1/100) is equal to the framework shown in FIG. 4 (hereinafter, conventional example). The hysteretic damper 4 and the viscoelastic damper 3 of the frame shown (hereinafter, the present invention example) were designed.
The member sizes of the columns 1 and 2 are the same in the comparative example and the example of the present invention, and the low yield point steel is used only for the panel 4 at the center of the beam in FIG. The viscoelastic damper is a brace type damper that absorbs energy by shearing the viscoelastic body by laminating and pressing a viscoelastic body with a shear stiffness of 0.1 N / mm 2 and a damping constant of 0.4 on the steel plate. The shear cross section of the viscoelastic body was designed so that the amount of energy absorption at the time was equal. The thickness of the viscoelastic body was designed so that the shear strain of the viscoelastic body during a large earthquake was 400%.

履歴型ダンパーは降伏荷重が235N/mmの鋼材をエネルギー吸収部位に用いたブレース型ダンパーであり,大地震時の1サイクル当たりの履歴型ダンパー,梁中央パネル,粘弾性ダンパーのエネルギー吸収量が等しくなるように設計した。部材の諸元を表1〜3に示す。表1において柱C1は図4,5における左端の柱のみ、柱C2を残りの柱とする。 The hysteretic damper is a brace-type damper that uses a steel material with a yield load of 235 N / mm 2 as the energy absorption part. The hysteretic damper, the center panel of the beam, and the viscoelastic damper absorb energy by one cycle during a large earthquake. Designed to be equal. The specifications of the members are shown in Tables 1-3. In Table 1, the column C1 is only the leftmost column in FIGS. 4 and 5, and the column C2 is the remaining column.

設計の結果、得られた粘弾性ダンパーは42.5%減(400%変形時の耐力は1本当たり1019kN減),得られた履歴型ダンパーは12.4%増(降伏耐力は1本あたり621kN増)となり,一般に粘弾性ダンパーの方が単位荷重あたりの単価が高いことから,本発明による構造では,同じ制振性能を低いコストで実現できることが確認された。   As a result of the design, the obtained viscoelastic damper decreased by 42.5% (the yield strength at 400% deformation decreased by 1019 kN per one), and the obtained hysteretic damper increased by 12.4% (the yield strength per one) Since the unit price per unit load is generally higher for viscoelastic dampers, it has been confirmed that the structure according to the present invention can achieve the same damping performance at a low cost.

Figure 2010112085
Figure 2010112085

Figure 2010112085
Figure 2010112085

Figure 2010112085
Figure 2010112085

本発明の一実施例。1 shows an embodiment of the present invention. 本発明の他の実施例。Another embodiment of the present invention. 柱梁架構の両側の柱の間隔が狭い場合の複合ダンパーの一例。An example of a composite damper when the distance between columns on both sides of a column beam frame is narrow. 従来例。Conventional example. 実施例。Example.

符号の説明Explanation of symbols

1 柱
2 梁
3 粘弾性ダンパー
4 ウェブパネル
5a 粘弾性ダンパーの支持部材
5b スチフナ
5c スチフナ
6 構面
7 ブレース型履歴ダンパー
L1,L6 梁材軸
L2、L3 ダンパー材軸
L4、L5 柱軸
G1,G2,G3,G4 交点
DESCRIPTION OF SYMBOLS 1 Column 2 Beam 3 Viscoelastic damper 4 Web panel 5a Viscoelastic damper support member 5b Stiffener 5c Stiffener 6 Construction surface 7 Brace type hysteresis damper L1, L6 Beam material shaft L2, L3 Damper material shaft L4, L5 Column shaft G1, G2 , G3, G4 intersection

Claims (4)

建物の柱梁架構を構成する構面内に,第一と第二の粘弾性ダンパーをハの字形または逆ハの字形となるように配置した複合制振架構であって、
前記第一と前記第二の粘弾性ダンパーは、
それらの軸線の一端が前記構面の左右の柱梁接合部における柱と梁の軸線の交点と交差し、
他端は前記柱梁接合部の上方または下方となる梁の軸線と、前記第一と前記第二の粘弾性ダンパーの軸線と前記梁の軸線との交点間に間隔を有するように交差し、
前記梁で前記交点間となる区間は、前記第一と前記第二の粘弾性ダンパーの最大耐力の鉛直方向成分より小さい剪断降伏力を有することを特徴とする複合制振架構。
A composite vibration control structure in which the first and second viscoelastic dampers are arranged in a C-shape or reverse C-shape in the structural surface constituting the column beam structure of the building,
The first and second viscoelastic dampers are:
One end of those axes intersects the intersection of the column and beam axes at the left and right column beam joints of the construction surface,
The other end intersects with an axis between the axis of the beam above or below the beam-column joint and an intersection between the axis of the first and second viscoelastic dampers and the axis of the beam,
The composite damping structure according to claim 1, wherein a section between the intersections of the beams has a shear yield force smaller than a vertical component of a maximum proof stress of the first and second viscoelastic dampers.
前記交点間となる梁のせん断力負担要素が,梁の他の部分よりも降伏点の低い鋼材で構成されていることを特徴とする請求項1記載の複合制振架構。   2. The composite vibration control frame according to claim 1, wherein the shear force bearing element of the beam between the intersections is made of a steel material having a lower yield point than the other part of the beam. 建物の柱梁架構を構成する構面内に,粘弾性ダンパーを略対角線をなすように配置した複合制振架構であって、
前記粘弾性ダンパーは、その材軸線の一端が、前記柱梁架構の柱梁接合部における柱と梁の材軸線の交点と交差し、他端は、前記柱梁接合部の対角線上となる柱梁接合部を構成する梁の材軸線と、前記柱梁接合部の柱の内法面から構面内となる位置において交差して配置され,前記梁と前記粘弾性ダンパーの交点と柱の内法面間となる区間は、前記粘弾性ダンパーの最大耐力より小さい剪断降伏力を有することを特徴とする複合制振架構。
It is a composite vibration control structure in which viscoelastic dampers are arranged in a substantially diagonal line in the structural surface constituting the column beam structure of the building,
The viscoelastic damper has a column in which one end of the material axis intersects the intersection of the column and beam material axis in the column beam joint of the column beam frame, and the other end is on the diagonal line of the column beam joint. It is arranged so as to intersect the beam axis constituting the beam joint at a position that is within the composition plane from the inner slope of the column of the beam-to-column joint, and the intersection of the beam and the viscoelastic damper and the inside of the column A composite vibration control frame characterized in that a section between the slopes has a shear yield strength smaller than the maximum yield strength of the viscoelastic damper.
前記交点と柱の内法面間となる梁のせん断力負担要素が,梁の他の部分よりも降伏点の低い鋼材で形成されることを特徴とする請求項3記載の複合制振架構。   4. The composite vibration control frame according to claim 3, wherein the shear force bearing element of the beam between the intersection and the inner slope of the column is formed of a steel material having a lower yield point than other portions of the beam.
JP2008286062A 2008-11-07 2008-11-07 Composite vibration control frame Expired - Fee Related JP5369626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286062A JP5369626B2 (en) 2008-11-07 2008-11-07 Composite vibration control frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286062A JP5369626B2 (en) 2008-11-07 2008-11-07 Composite vibration control frame

Publications (2)

Publication Number Publication Date
JP2010112085A true JP2010112085A (en) 2010-05-20
JP5369626B2 JP5369626B2 (en) 2013-12-18

Family

ID=42300843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286062A Expired - Fee Related JP5369626B2 (en) 2008-11-07 2008-11-07 Composite vibration control frame

Country Status (1)

Country Link
JP (1) JP5369626B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089171A (en) * 2015-04-17 2015-11-25 华侨大学 Intelligent reinforced concrete frame structure with self-adaptive energy-consuming mechanism
CN115853123A (en) * 2022-10-31 2023-03-28 合肥工业大学 Wooden beam column node corner displacement spring damper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131543A (en) * 1996-10-30 1998-05-19 Shimizu Corp Vibration-mitigating structural member
JPH10299284A (en) * 1997-04-25 1998-11-10 Shimizu Corp Damper device
JPH1171934A (en) * 1997-08-28 1999-03-16 Shimizu Corp Vibration control structure
JP2002180692A (en) * 2000-12-11 2002-06-26 Shimizu Corp Horizontal force introducing method for hysteresis type damper
JP2008261105A (en) * 2007-04-10 2008-10-30 Jfe Steel Kk Vibration control panel and framed structure using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131543A (en) * 1996-10-30 1998-05-19 Shimizu Corp Vibration-mitigating structural member
JPH10299284A (en) * 1997-04-25 1998-11-10 Shimizu Corp Damper device
JPH1171934A (en) * 1997-08-28 1999-03-16 Shimizu Corp Vibration control structure
JP2002180692A (en) * 2000-12-11 2002-06-26 Shimizu Corp Horizontal force introducing method for hysteresis type damper
JP2008261105A (en) * 2007-04-10 2008-10-30 Jfe Steel Kk Vibration control panel and framed structure using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105089171A (en) * 2015-04-17 2015-11-25 华侨大学 Intelligent reinforced concrete frame structure with self-adaptive energy-consuming mechanism
CN115853123A (en) * 2022-10-31 2023-03-28 合肥工业大学 Wooden beam column node corner displacement spring damper
CN115853123B (en) * 2022-10-31 2024-04-19 合肥工业大学 Wooden beam column node corner displacement spring damper

Also Published As

Publication number Publication date
JP5369626B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
KR101263078B1 (en) Connection metal fitting and building with the same
JP5336145B2 (en) Damping structure and building with damping structure
JP2011256577A (en) Seismic control structure including viscoelastic damper
JP5369626B2 (en) Composite vibration control frame
JP2008274545A (en) Steel frame stairs
JP2010203150A (en) Seismic response control frame
JP4277649B2 (en) Composite damper and column beam structure
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP5940416B2 (en) building
JP7154328B2 (en) damping building
JP2006037585A (en) Earthquake-resisting wall using corrugated steel plate with opening
JP2008208612A (en) External aseismatic reinforcing structure
JP2008075314A (en) Aseismic control structure of connected buildings
JP6265422B2 (en) Reinforcement structure and building
JP2005314917A (en) Vibration control stud
JP4994009B2 (en) Buildings with steel frame vibration control frames
JP5600378B2 (en) Seismic control building
JP7438154B2 (en) vibration damping building
JP5338382B2 (en) Vibration control panel
JP5116587B2 (en) Gate-type frame with vibration control device by brace structure
JP2004300912A (en) Vibration control damper coping with habitability
JPH11324392A (en) Earthquake vibration control structure
JPH11343755A (en) Earthquake damping structure
JP6535157B2 (en) Seismic structure, building panels and buildings
JP5053554B2 (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees