JP2010111972A - Carbon fiber and method for producing the same - Google Patents

Carbon fiber and method for producing the same Download PDF

Info

Publication number
JP2010111972A
JP2010111972A JP2008286326A JP2008286326A JP2010111972A JP 2010111972 A JP2010111972 A JP 2010111972A JP 2008286326 A JP2008286326 A JP 2008286326A JP 2008286326 A JP2008286326 A JP 2008286326A JP 2010111972 A JP2010111972 A JP 2010111972A
Authority
JP
Japan
Prior art keywords
fiber
carbonization
carbon fiber
temperature
carbonized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008286326A
Other languages
Japanese (ja)
Other versions
JP5383158B2 (en
Inventor
Masako Obata
真子 小幡
Taro Oyama
太郎 尾山
Hidekazu Yoshikawa
秀和 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2008286326A priority Critical patent/JP5383158B2/en
Publication of JP2010111972A publication Critical patent/JP2010111972A/en
Application granted granted Critical
Publication of JP5383158B2 publication Critical patent/JP5383158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing carbon fibers having a high crystal orientation even if having a small micro-crystal size. <P>SOLUTION: The method for producing the carbon fibers having (the degree of crystal orientation)(%)/(the micro-crystal size, Lc)(nm)≥50 and 235≤ elastic modulus (GPa)≤295 by heat-treating flame retardance-treated fibers at the final temperature of 500 to 700°C in an inert atmosphere to obtain a first carbonization-treated fibers, heat-treating the first carbonization-treated fibers until the final temperature of 750 to 900°C at 100 to 400°C/min temperature elevation rate and at 1.0 to 1.2 fold stretching magnitude to obtain a second carbonization-treated fibers, and heat-treating the second carbonization-treated fibers until the final temperature of 1,000 to 1,300°C at 100 to 400°C/min temperature elevation rate and at 0.95 to 1.1 fold stretching magnitude, wherein the stretching magnitude in a second carbonization treatment is larger than that in the third carbonization treatment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、結晶の成長が低く抑えられているにも拘らず結晶の配向度が高く、単繊維圧縮強度が高い炭素繊維及びその製造方法に関する。   The present invention relates to a carbon fiber having a high degree of crystal orientation and a high single fiber compressive strength despite a low crystal growth, and a method for producing the same.

従来、炭素繊維製造用の前駆体繊維を原料として用い、これに耐炎化処理を施して耐炎化繊維を得ること、更にこの耐炎化繊維に炭素化処理を施して高性能炭素繊維を得ることは広く知られている。また、この方法は工業的にも実施されている。   Conventionally, a precursor fiber for producing carbon fiber is used as a raw material, and flameproofing treatment is performed on this to obtain a flameproofing fiber. Further, carbonization treatment is applied to this flameproofing fiber to obtain a high-performance carbon fiber. Widely known. This method is also practiced industrially.

近年、炭素繊維を利用する複合材料[例えば、炭素繊維強化プラスチック(CFRP)など]の工業的な用途は、大きく広がりつつある。複合材料として使用する炭素繊維に、向上が求められる機械的物性として、繊維軸方向の引張強度だけでなく、繊維断面方向の圧縮強度も重要であることが最近認識され始め、これらの物性向上について種々の提案がされている(例えば、特許文献1〜4参照)。   In recent years, industrial applications of composite materials using carbon fibers [for example, carbon fiber reinforced plastic (CFRP) and the like] have been greatly expanded. Recently, it has been recognized that not only the tensile strength in the fiber axis direction but also the compressive strength in the fiber cross-sectional direction is important as a mechanical property that is required to improve the carbon fiber used as a composite material. Various proposals have been made (see, for example, Patent Documents 1 to 4).

繊維に必要な弾性率(剛性)を得るためには、グラファイト結晶構造を成長させる(結晶子サイズを増大)ことが有効である。しかし、グラファイト結晶構造を成長させると、脆性化のため、引張及び圧縮強度が低下するという問題がある。特に繊維断面方向の圧縮強度は、結晶成長の影響を受け易く、1200℃以上の焼成温度では著しく低下する。この引張・圧縮強度の低下を抑制するためには、グラファイト結晶を成長させないように、炭素化温度を下げることが有効策のひとつである。しかし、炭素化温度を下げる場合は、弾性率の低下が起きる為、必要な弾性率を得られないという問題がある。
特開2000−96354号公報 (特許請求の範囲) 特開2006−307407号公報 (特許請求の範囲) 特開2005−344254号公報 (特許請求の範囲) 特開2005−179794号公報 (特許請求の範囲)
In order to obtain the necessary elastic modulus (rigidity) of the fiber, it is effective to grow a graphite crystal structure (increase the crystallite size). However, when the graphite crystal structure is grown, there is a problem that the tensile and compressive strength is lowered due to embrittlement. In particular, the compressive strength in the fiber cross-sectional direction is easily affected by crystal growth and is significantly reduced at a firing temperature of 1200 ° C. or higher. In order to suppress this decrease in tensile / compressive strength, it is one effective measure to lower the carbonization temperature so that graphite crystals do not grow. However, when the carbonization temperature is lowered, there is a problem that a necessary elastic modulus cannot be obtained because the elastic modulus is lowered.
JP 2000-96354 A (Claims) JP 2006-307407 A (Claims) JP-A-2005-344254 (Claims) JP-A-2005-179794 (Claims)

本発明者は、上記問題を解決するため検討しているうちに、特許文献4に記載の第二炭素化処理の一次処理条件から二次処理条件に切り替える際の温度は、950℃を超えるかなり高いものであることが解った。そのため、処理中の繊維のグラファイト結晶子サイズはかなり大きくなることが解った。その上、処理条件の切替後もより高温での二次処理が続いているので、結晶子サイズは更に大きくなって脆性化が進み、引張及び圧縮強度が低下することが解った。   While the inventor is studying to solve the above problem, the temperature when switching from the primary treatment condition of the second carbonization treatment described in Patent Document 4 to the secondary treatment condition is considerably higher than 950 ° C. It turns out that it is expensive. Therefore, it has been found that the graphite crystallite size of the fiber being processed is considerably increased. In addition, since the secondary treatment at a higher temperature continues after the switching of the treatment conditions, it has been found that the crystallite size is further increased, the embrittlement is advanced, and the tensile and compressive strength is lowered.

更に検討を重ねた結果、炭素繊維のストランド引張弾性率は、結晶子サイズ以外に、結晶配向度にも依存することを見出した。結晶配向度を高くするには、750〜900℃の低い第二炭素化処理温度において延伸倍率を高くすればできることを見出した。第二炭素化処理温度が低いので、第二炭素化処理繊維のストランド引張弾性率は低い。   As a result of further studies, it has been found that the strand tensile modulus of carbon fiber depends not only on the crystallite size but also on the degree of crystal orientation. It has been found that the degree of crystal orientation can be increased by increasing the draw ratio at the second carbonization temperature as low as 750 to 900 ° C. Since the second carbonization treatment temperature is low, the strand tensile elastic modulus of the second carbonization treatment fiber is low.

そこで、第二炭素化処理繊維を、延伸倍率を低くし且つ比較的低い1300℃以下の温度で第三炭素化処理した。その結果、以上の炭素化処理で得られる炭素繊維は、そのストランド引張弾性率が235〜295GPaであり、実用上問題の無い弾性率のものであった。   Therefore, the second carbonization-treated fiber was subjected to a third carbonization treatment at a relatively low temperature of 1300 ° C. or lower with a low draw ratio. As a result, the carbon fiber obtained by the above carbonization treatment had a strand tensile elastic modulus of 235 to 295 GPa, and had an elastic modulus with no practical problem.

更に、この炭素繊維は、結晶子サイズに対する結晶配向度の比率が高いので、単繊維断面方向圧縮強度が高くなっていることを見出した。   Furthermore, since this carbon fiber has a high ratio of crystal orientation to crystallite size, it has been found that the compressive strength in the single fiber cross-sectional direction is high.

この結晶子サイズが小さいにも拘らず結晶配向度が高い炭素繊維は、不活性雰囲気中で耐炎化繊維を700℃以下の温度で熱処理して第一炭素化処理繊維を得、この第一炭素化処理繊維を900℃以下の終了温度で延伸して第二炭素化処理繊維を得、この第二炭素化処理繊維を1300℃以下の終了温度で、前記第二炭素化処理時の延伸倍率よりも小さい延伸倍率で熱処理して第三炭素化することにより得られることを見出し、本発明を完成するに到った。   The carbon fiber having a high crystal orientation degree despite the small crystallite size is obtained by heat-treating the flame-resistant fiber at a temperature of 700 ° C. or lower in an inert atmosphere to obtain the first carbonized fiber. The carbonized fiber is drawn at an end temperature of 900 ° C. or less to obtain a second carbonized fiber, and the second carbonized fiber is drawn at an end temperature of 1300 ° C. or less from the draw ratio during the second carbonization treatment. Has been found to be obtained by heat treatment at a low draw ratio to form a third carbon, and the present invention has been completed.

よって、本発明の目的とするところは、上記問題を解決した炭素繊維及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a carbon fiber and a method for producing the same, which have solved the above problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 結晶配向度(%)/結晶子サイズLc(nm)≧50で、
235≦弾性率(GPa)≦295の炭素繊維。
[1] Degree of crystal orientation (%) / crystallite size Lc (nm) ≧ 50,
Carbon fiber of 235 ≦ elastic modulus (GPa) ≦ 295.

〔2〕 繊維断面方向圧縮強度(MPa)/引張弾性率(GPa)≧5.5である請求項1に記載の炭素繊維。   [2] The carbon fiber according to claim 1, wherein the fiber cross-sectional direction compressive strength (MPa) / tensile elastic modulus (GPa) ≧ 5.5.

〔3〕 結晶子サイズLcが1.3〜1.8nmである〔1〕に記載の炭素繊維。   [3] The carbon fiber according to [1], wherein the crystallite size Lc is 1.3 to 1.8 nm.

〔4〕 不活性雰囲気中で耐炎化繊維を500〜700℃の終了温度で熱処理して第一炭素化処理繊維を得、第一炭素化処理繊維を750〜900℃の終了温度まで昇温速度100〜400℃/分、延伸倍率1.0〜1.2倍で熱処理して第二炭素化処理繊維を得、第二炭素化処理繊維を1000〜1300℃の終了温度まで昇温速度100〜400℃/分、延伸倍率0.95〜1.1倍で熱処理して第三炭素化する炭素繊維の製造方法において、第二炭素化処理時の延伸倍率が第三炭素化処理時の延伸倍率よりも大きいことを特徴とする〔1〕に記載の炭素繊維の製造方法。   [4] Heat-treating the flame-resistant fiber in an inert atmosphere at an end temperature of 500 to 700 ° C. to obtain a first carbonized fiber, and increasing the temperature of the first carbonized fiber to an end temperature of 750 to 900 ° C. A second carbonized fiber is obtained by heat treatment at 100 to 400 ° C./min and a draw ratio of 1.0 to 1.2, and the second carbonized fiber is heated to a finishing temperature of 1000 to 1300 ° C. at a rate of temperature increase of 100 to 100 ° C. In the method for producing carbon fiber which is heat treated at 400 ° C./min and a draw ratio of 0.95 to 1.1, the draw ratio at the second carbonization treatment is the draw ratio at the third carbonization treatment. It is larger than this, The manufacturing method of the carbon fiber as described in [1] characterized by the above-mentioned.

本発明の炭素繊維は、結晶の成長が低く抑えられているにも拘らず結晶の配向度が高い炭素繊維である。また、繊維軸方向のストランド引張弾性率及び強度が高いことと、単繊維断面方向圧縮強度が高いこととを両立させることが可能であるため、繊維軸方向の剛性に優れ、且つ、繊維断面方向からの応力に対しても高い強度を示すことができる。そのため、複合材料用炭素繊維として有用である。   The carbon fiber of the present invention is a carbon fiber having a high degree of crystal orientation although the crystal growth is kept low. In addition, since it is possible to achieve both high strand tensile modulus and strength in the fiber axis direction and high single fiber cross-sectional direction compressive strength, the fiber axis direction has excellent rigidity, and the fiber cross-sectional direction. High strength can be shown even against stress from. Therefore, it is useful as a carbon fiber for composite materials.

本発明の製造方法によれば、不活性雰囲気中で耐炎化繊維を第一炭素化処理、第二炭素化処理、次いで第三炭素化処理する炭素繊維の製造方法において、第二炭素化終了温度を750〜900℃の低い温度とし、第二炭素化処理時の延伸倍率を従来よりも大きくし、第三炭素化終了温度を1300℃以下の低い温度とし、第二炭素化処理時の延伸倍率を第三炭素化処理時の延伸倍率よりも大きくしているので、結晶子サイズの成長を抑制でき、且つ、結晶配向度が高く単繊維断面方向圧縮強度が高い炭素繊維を容易に得ることができる。   According to the production method of the present invention, in the carbon fiber production method in which the flame resistant fiber is subjected to the first carbonization treatment, the second carbonization treatment, and then the third carbonization treatment in an inert atmosphere, the second carbonization end temperature is obtained. Is set to a low temperature of 750 to 900 ° C., the stretching ratio at the time of the second carbonization treatment is made larger than before, the end temperature of the third carbonization is set to a temperature lower than 1300 ° C. Is larger than the draw ratio at the time of the third carbonization treatment, so that growth of crystallite size can be suppressed, and carbon fibers having a high degree of crystal orientation and high compressive strength in the single fiber cross-sectional direction can be easily obtained. it can.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の炭素繊維は、結晶子サイズに対する結晶配向度の比率[結晶配向度(%)/結晶子サイズLc(nm)]が50以上、好ましくは50〜100で、ストランド引張弾性率が235〜295GPaの炭素繊維である。結晶子サイズに対する結晶配向度の比率が50未満の場合は、繊維断面方向圧縮強度が低下するので好ましくない。   The carbon fiber of the present invention has a ratio of crystal orientation to crystallite size [crystal orientation (%) / crystallite size Lc (nm)] of 50 or more, preferably 50 to 100, and strand tensile elastic modulus of 235 to It is a carbon fiber of 295 GPa. A ratio of the degree of crystal orientation to the crystallite size of less than 50 is not preferable because the compressive strength in the fiber cross-sectional direction decreases.

ストランド引張弾性率が235GPa未満の場合は、ストランド引張強度が低下するので好ましくない。ストランド引張弾性率が295GPaを超える場合は、繊維断面方向圧縮強度が低下するので好ましくない。   When the strand tensile elastic modulus is less than 235 GPa, the strand tensile strength decreases, which is not preferable. When the strand tensile modulus exceeds 295 GPa, it is not preferable because the compressive strength in the fiber cross-sectional direction decreases.

本発明の炭素繊維のストランド引張弾性率に対する繊維断面方向圧縮強度の比率[繊維断面方向圧縮強度(MPa)/ストランド引張弾性率(GPa)]は、5.5以上が好ましく、5.7〜10がより好ましい。引張弾性率に対する圧縮強度の比率が5.5未満の場合は脆性であるため、複合材料用炭素繊維として好ましくない。   The ratio of the fiber cross-sectional direction compressive strength to the strand tensile elastic modulus of the carbon fiber of the present invention [fiber cross-sectional direction compressive strength (MPa) / strand tensile elastic modulus (GPa)] is preferably 5.5 or more, and 5.7 to 10 Is more preferable. When the ratio of the compressive strength to the tensile elastic modulus is less than 5.5, it is not preferable as a carbon fiber for composite materials because it is brittle.

本発明の炭素繊維の結晶子サイズLcは1.3〜1.8nmが好ましく、1.3〜1.6がより好ましい。結晶子サイズLcが1.3nm未満の場合は、ストランド引張弾性率やストランド引張強度が低下するので好ましくない。結晶子サイズLcが1.8nmを超える場合は、繊維断面方向圧縮強度が低下するので好ましくない。   The crystallite size Lc of the carbon fiber of the present invention is preferably 1.3 to 1.8 nm, more preferably 1.3 to 1.6. When the crystallite size Lc is less than 1.3 nm, the strand tensile elastic modulus and the strand tensile strength decrease, which is not preferable. When the crystallite size Lc exceeds 1.8 nm, the compressive strength in the fiber cross-sectional direction decreases, which is not preferable.

本発明の炭素繊維の製造方法は、特に限定されるものではないが、例えば、以下の方法により製造することができる。   Although the manufacturing method of the carbon fiber of this invention is not specifically limited, For example, it can manufacture with the following method.

<耐炎化繊維>
本発明の炭素繊維の製造方法に用いる耐炎化繊維は、ポリアクリロニトリル(PAN)系、ピッチ系、フェノール系、レーヨン系等の前駆体繊維を、酸化性雰囲気中で酸化させる耐炎化処理して得られるもので、従来公知のものが何ら制限なく使用できる。これら耐炎化繊維のうちでも、PAN系耐炎化繊維を用いる場合は、最も高強度の炭素繊維が得られるので特に好ましい。
<Flame resistant fiber>
The flame-resistant fiber used in the carbon fiber production method of the present invention is obtained by subjecting a precursor fiber such as polyacrylonitrile (PAN), pitch-type, phenol-type, rayon-type, etc. to a flame-proof treatment in which it is oxidized in an oxidizing atmosphere. Conventionally known ones can be used without any limitation. Among these flame-resistant fibers, the use of PAN-based flame resistant fibers is particularly preferable because the highest strength carbon fibers can be obtained.

炭素繊維の製造用の耐炎化繊維がPAN系耐炎化繊維の場合、以下の方法で得ることができる。用いるPAN系前駆体繊維は、アクリロニトリルを90質量%以上、好ましくは95質量%以上含有する単量体を重合した紡糸溶液を湿式又は乾湿式紡糸法において紡糸した後、水洗・乾燥・延伸して得られる。共重合する単量体としては、アクリル酸アルキル、メタクリル酸アルキル、アクリル酸、アクリルアミド、イタコン酸、マレイン酸等が例示される。   When the flame resistant fiber for producing carbon fiber is a PAN flame resistant fiber, it can be obtained by the following method. The PAN-based precursor fiber to be used is obtained by spinning a spinning solution obtained by polymerizing a monomer containing acrylonitrile at 90% by mass or more, preferably 95% by mass or more in a wet or dry wet spinning method, and then washing, drying and stretching. can get. Examples of the monomer to be copolymerized include alkyl acrylate, alkyl methacrylate, acrylic acid, acrylamide, itaconic acid, maleic acid and the like.

得られた前駆体繊維は、引き続き加熱空気中200〜280℃で耐炎化処理される。この時の処理は、一般的に、延伸倍率0.85〜1.30の範囲で処理され、繊維比重1.3〜1.5のPAN系耐炎化繊維とするものであり、耐炎化時の張力(延伸配分)は特に限定されるものでは無い。   The obtained precursor fiber is subsequently flameproofed at 200 to 280 ° C. in heated air. The treatment at this time is generally a PAN-based flameproof fiber having a fiber specific gravity of 1.3 to 1.5, which is treated in a range of draw ratio of 0.85 to 1.30. The tension (stretch distribution) is not particularly limited.

<炭素化処理>
上記耐炎化繊維を、不活性雰囲気中、500〜700℃の終了温度で熱処理して第一炭素化処理繊維が得られる。
<Carbonization treatment>
The flame-resistant fiber is heat-treated at an end temperature of 500 to 700 ° C. in an inert atmosphere to obtain a first carbonized fiber.

この第一炭素化処理繊維を、不活性雰囲気中で750〜900℃、好ましくは750〜850℃の終了温度まで昇温速度100〜400℃/分、好ましくは150〜300℃/分、延伸倍率1.0〜1.2倍、好ましくは1.05〜1.15倍で熱処理して第二炭素化処理繊維が得られる。   The first carbonized fiber is heated to an end temperature of 750 to 900 ° C., preferably 750 to 850 ° C. in an inert atmosphere, and the heating rate is 100 to 400 ° C./min, preferably 150 to 300 ° C./min. The second carbonized fiber is obtained by heat treatment at 1.0 to 1.2 times, preferably 1.05 to 1.15 times.

第二炭素化処理時の延伸倍率が1.0倍未満の場合は、延伸の効果が少なく、充分に結晶配向度が向上されないため好ましくない。第二炭素化処理時の延伸倍率が1.2倍を超える場合は、糸切れが起こり易いので好ましくない。   When the stretching ratio during the second carbonization treatment is less than 1.0, the stretching effect is small, and the degree of crystal orientation is not sufficiently improved. If the draw ratio during the second carbonization treatment exceeds 1.2 times, yarn breakage tends to occur, which is not preferable.

第二炭素化終了温度が750℃未満の場合は、延伸に適した繊維構造を持つことのできる焼成温度領域から外れるため、結晶配向度向上の効果が十分に得られないので好ましくない。第二炭素化終了温度が900℃を超える場合も、延伸に適した繊維構造を持つことのできる焼成温度領域から外れるため、結晶配向度向上の効果が十分に得られないので好ましくない。   When the second carbonization end temperature is less than 750 ° C., it is not preferable because the effect of improving the degree of crystal orientation cannot be sufficiently obtained because it is out of the firing temperature region where the fiber structure suitable for stretching can be obtained. Even when the second carbonization end temperature exceeds 900 ° C., it is not preferable because the effect of improving the degree of crystal orientation cannot be sufficiently obtained because it is out of the firing temperature region where the fiber structure suitable for stretching can be obtained.

上記第二炭素化処理繊維を、不活性雰囲気中、1000〜1300℃、好ましくは1000〜1200℃の終了温度まで昇温速度100〜400℃/分、好ましくは150〜300℃/分で熱処理して第三炭素化処理繊維を得る。第三炭素化するに際しては、延伸倍率を、0.95〜1.1倍であって第二炭素化処理時延伸倍率が第三炭素化処理時延伸倍率よりも大きい倍率に制御する。好ましくは0.95〜0.98倍に制御する。これにより、第三炭素化処理された本発明の炭素繊維が得られる。   The second carbonized fiber is heat-treated in an inert atmosphere at a temperature rising rate of 100 to 400 ° C./min, preferably 150 to 300 ° C./min, to an end temperature of 1000 to 1300 ° C., preferably 1000 to 1200 ° C. To obtain a third carbonized fiber. In the third carbonization, the draw ratio is controlled to 0.95 to 1.1 times, and the draw ratio during the second carbonization treatment is larger than the draw ratio during the third carbonization treatment. Preferably, it is controlled to 0.95 to 0.98 times. Thereby, the carbon fiber of this invention by which the third carbonization process was carried out is obtained.

第三炭素化処理時の延伸倍率が1.1倍を超える場合は、糸切れが起こり易いので好ましくない。第三炭素化処理時の延伸倍率が0.95倍未満の場合は、第二炭素化処理時の延伸倍率向上による結晶配向度向上の効果を、炭素繊維の構造に、充分反映できないため好ましくない。   If the draw ratio during the third carbonization treatment exceeds 1.1 times, yarn breakage tends to occur, which is not preferable. When the draw ratio at the time of the third carbonization treatment is less than 0.95 times, the effect of improving the degree of crystal orientation due to the improvement of the draw ratio at the time of the second carbonization treatment cannot be sufficiently reflected in the structure of the carbon fiber. .

また、第三炭素化処理時の延伸倍率が、第二炭素化処理時の延伸倍率以上になると、糸切れが起こり、品質の低下や工程の不安定化が起こるため好ましくない。   Moreover, when the draw ratio at the time of the third carbonization treatment is equal to or higher than the draw ratio at the time of the second carbonization treatment, yarn breakage occurs, and the quality is deteriorated and the process becomes unstable.

第三炭素化終了温度が1000℃未満の場合は、ストランド引張弾性率やストランド引張強度が低下するので好ましくない。第三炭素化終了温度が1300℃を超える場合は、結晶子サイズLcが大きくなり、繊維断面方向圧縮強度が低下するので好ましくない。   When the third carbonization end temperature is less than 1000 ° C., the strand tensile elastic modulus and the strand tensile strength decrease, which is not preferable. When the third carbonization end temperature exceeds 1300 ° C., the crystallite size Lc is increased, and the compressive strength in the fiber cross-sectional direction is decreased, which is not preferable.

昇温速度が100℃/分未満の場合は、結晶子サイズLcが大きくなり、繊維断面方向圧縮強度が低下するので好ましくない。昇温速度が400℃/分を超える場合は、ストランド引張弾性率やストランド引張強度が低下するので好ましくない。   When the rate of temperature increase is less than 100 ° C./min, the crystallite size Lc is increased, and the compressive strength in the fiber cross-section direction is decreased, which is not preferable. When the rate of temperature rise exceeds 400 ° C./min, the strand tensile modulus and the strand tensile strength decrease, which is not preferable.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例における処理条件、並びに、耐炎化繊維及び炭素繊維の物性についての評価方法は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the evaluation method about the processing conditions in each Example and a comparative example, and the physical property of a flame-resistant fiber and carbon fiber was implemented with the following method.

<比重>
アルキメデス法により測定した。試料繊維はアセトン中にて脱気処理し測定した。
<Specific gravity>
Measured by Archimedes method. The sample fiber was degassed in acetone and measured.

<結晶子サイズ、結晶配向度>
X線回折装置:リガク社製RINT2000を使用し、透過法により面指数(002)の回折ピークの半値幅βから、下式(1)
結晶子サイズLc(nm) = 0.9λ/βcosθ ・・・ (1)
λ:X線の波長、β:半値幅、θ:回折角
を用いて、結晶子サイズLcを算出した。また、この回折ピーク角度を円周方向にスキャンして得られる二つのピークの半値幅H1/2及びH'1/2(強度分布に由来)から下式(2)
結晶配向度(%) = 100×[360−(H1/2−H'1/2)]/360 ・・・ (2)
1/2及びH’1/2:半値幅
を用いて結晶配向度を算出した。
<Crystallite size, crystal orientation>
X-ray diffractometer: RINT2000 manufactured by Rigaku Corporation is used, and from the half-value width β of the diffraction peak of the plane index (002) by the transmission method, the following formula (1)
Crystallite size Lc (nm) = 0.9λ / βcosθ (1)
The crystallite size Lc was calculated using λ: X-ray wavelength, β: half width, and θ: diffraction angle. In addition, the half-value widths H 1/2 and H ′ 1/2 of the two peaks obtained by scanning the diffraction peak angle in the circumferential direction (from the intensity distribution)
Degree of crystal orientation (%) = 100 × [360− (H 1/2 −H ′ 1/2 )] / 360 (2)
H 1/2 and H ′ 1/2 : The degree of crystal orientation was calculated using the half width.

<単繊維断面方向圧縮強度>
単繊維断面方向圧縮強度は、単繊維の軸方向に直角の方向に応力を印加した場合における圧縮強度を意味する。測定に際しては、スライドガラス上に炭素繊維の単繊維を固定したサンプルを作製した。島津製作所製微小圧縮試験機MCTM-200を用い、上記サンプルの単繊維の表面に、圧縮試験機の平面50μm圧子を負荷速度0.071mN/sec(7.25mgf/sec)で押しつけ、単繊維表面が破断した時点の荷重を測定し(n=10で測定)、この荷重から単繊維断面方向圧縮強度を求めた。
<Single fiber cross-sectional direction compressive strength>
The single fiber cross-sectional direction compressive strength means the compressive strength when stress is applied in a direction perpendicular to the axial direction of the single fiber. In the measurement, a sample in which a single fiber of carbon fiber was fixed on a slide glass was prepared. Using a micro compression tester MCTM-200 manufactured by Shimadzu Corporation, a flat 50 μm indenter of the compression tester was pressed against the surface of the single fiber of the sample at a load speed of 0.071 mN / sec (7.25 mgf / sec), and the surface of the single fiber The load at the time of breaking was measured (measured at n = 10), and the single fiber cross-sectional direction compressive strength was determined from this load.

<ストランド強度、弾性率>
JIS R 7608に規定された方法により炭素繊維のストランド強度、弾性率を測定した。
<Strand strength, elastic modulus>
The strand strength and elastic modulus of the carbon fiber were measured by the method specified in JIS R 7608.

実施例1
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を湿式又は乾湿式紡糸し、水洗・乾燥・延伸・オイリングして繊維直径10.4μmの前駆体繊維を得た。この繊維を加熱空気中、入口温度(最低温度)200℃、出口温度(最高温度)260℃の熱風循環式耐炎化炉で耐炎化処理し、繊維比重1.35のPAN系耐炎化繊維を得た。
Example 1
A precursor fiber having a fiber diameter of 10.4 μm is prepared by wet or dry-wet spinning of a copolymer spinning solution of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid, followed by washing with water, drying, drawing and oiling. Got. This fiber is flameproofed in heated air in a hot air circulation type flameproofing furnace having an inlet temperature (minimum temperature) of 200 ° C and an outlet temperature (maximum temperature) of 260 ° C to obtain a PAN-based flameproofing fiber having a fiber specific gravity of 1.35. It was.

次いで、この耐炎化繊維を、不活性雰囲気中、入口温度300℃、出口温度(第一炭素化終了温度)600℃の第一炭素化炉において熱処理し、第一炭素化処理繊維を得た。この第一炭素化処理繊維を、第二炭素化炉において不活性雰囲気中、表1に示す第二炭素化処理時の延伸倍率(第二炭素化延伸倍率)、第二炭素化終了温度の条件で熱処理し、第二炭素化処理繊維を得た。この第二炭素化処理繊維を、第二炭素化炉において不活性雰囲気中、表1に示す第三炭素化処理時の延伸倍率(第三炭素化延伸倍率)、第三炭素化終了温度の条件で熱処理した。第二炭素化処理時の昇温速度は200℃/分であった。第三炭素化処理時の昇温速度は200℃/分であった。その結果、表1に示す諸物性の繊維直径6.5μmの炭素繊維を得た。   Next, the flame-resistant fiber was heat-treated in an inert atmosphere in a first carbonization furnace having an inlet temperature of 300 ° C. and an outlet temperature (first carbonization end temperature) of 600 ° C. to obtain a first carbonized fiber. The first carbonization-treated fiber is subjected to a second carbonization treatment draw ratio (second carbonization draw ratio) and a second carbonization end temperature condition shown in Table 1 in an inert atmosphere in a second carbonization furnace. To obtain a second carbonized fiber. The second carbonization-treated fiber is subjected to a third carbonization treatment draw ratio (third carbonization draw ratio) and a third carbonization end temperature condition shown in Table 1 in an inert atmosphere in a second carbonization furnace. And heat treated. The temperature rising rate during the second carbonization treatment was 200 ° C./min. The heating rate during the third carbonization treatment was 200 ° C./min. As a result, carbon fibers having a fiber diameter of 6.5 μm and various physical properties shown in Table 1 were obtained.

実施例2
実施例1で得られた第一炭素化処理繊維を、表1に示す第二炭素化延伸倍率、第二炭素化終了温度、第三炭素化延伸倍率、第三炭素化終了温度の条件で第二炭素化、第三炭素化処理した以外は、実施例1と同様に処理を行い、表1に示す諸物性の炭素繊維を得た。
Example 2
The first carbonized fiber obtained in Example 1 was measured under the conditions of the second carbonization stretch ratio, the second carbonization end temperature, the third carbonization stretch ratio, and the third carbonization end temperature shown in Table 1. The carbon fibers having various physical properties shown in Table 1 were obtained in the same manner as in Example 1 except that the two carbonization treatment and the third carbonization treatment were performed.

比較例1〜3
実施例1及び2における第二炭素化炉のような高倍率延伸のための炭素化炉を設けず、低倍率延伸の第二炭素化炉のみにおいて不活性雰囲気中、実施例1で得られた第一炭素化処理繊維を、表1に示す第二炭素化延伸倍率、第二炭素化終了温度の条件で熱処理した以外は、実施例1と同様に処理を行い、表1に示す諸物性の炭素繊維を得た。
Comparative Examples 1-3
The carbonization furnace for high-magnification drawing as in the second carbonization furnace in Examples 1 and 2 was not provided, and was obtained in Example 1 in an inert atmosphere only in the low-magnification second carbonization furnace. The first carbonized fiber was treated in the same manner as in Example 1 except that it was heat-treated under the conditions of the second carbonization stretch ratio and the second carbonization end temperature shown in Table 1, and various physical properties shown in Table 1 were obtained. Carbon fiber was obtained.

比較例4
第三炭素化終了温度を1900℃とした以外は、実施例1と同様に炭素化処理を行い、表1に示す物性の炭素繊維を得た。
Comparative Example 4
Carbonization treatment was performed in the same manner as in Example 1 except that the third carbonization end temperature was 1900 ° C., and carbon fibers having physical properties shown in Table 1 were obtained.

比較例5
第三炭素化延伸倍率を1.20と第二炭素化延伸倍率より大きくした以外は、実施例1と同様にして、炭素化処理を行った。しかし、糸切れにより工程が不安定となり、所望の炭素繊維は得られなかった。
Comparative Example 5
Carbonization treatment was performed in the same manner as in Example 1 except that the third carbonization stretch ratio was 1.20, which was larger than the second carbonization stretch ratio. However, the process became unstable due to yarn breakage, and the desired carbon fiber could not be obtained.

Figure 2010111972
Figure 2010111972

Claims (4)

結晶配向度(%)/結晶子サイズLc(nm)≧50で、235≦弾性率(GPa)≦295の炭素繊維。 Carbon fiber of crystal orientation degree (%) / crystallite size Lc (nm) ≧ 50 and 235 ≦ elastic modulus (GPa) ≦ 295. 繊維断面方向圧縮強度(MPa)/引張弾性率(GPa)≧5.5である請求項1に記載の炭素繊維。 The carbon fiber according to claim 1, wherein the fiber cross-sectional direction compressive strength (MPa) / tensile modulus (GPa) ≧ 5.5. 結晶子サイズLcが1.3〜1.8nmである請求項1に記載の炭素繊維。 The carbon fiber according to claim 1, wherein the crystallite size Lc is 1.3 to 1.8 nm. 不活性雰囲気中で耐炎化繊維を500〜700℃の終了温度で熱処理して第一炭素化処理繊維を得、第一炭素化処理繊維を750〜900℃の終了温度まで昇温速度100〜400℃/分、延伸倍率1.0〜1.2倍で熱処理して第二炭素化処理繊維を得、第二炭素化処理繊維を1000〜1300℃の終了温度まで昇温速度100〜400℃/分、延伸倍率0.95〜1.1倍で熱処理して第三炭素化する炭素繊維の製造方法において、第二炭素化処理時の延伸倍率が第三炭素化処理時の延伸倍率よりも大きいことを特徴とする請求項1に記載の炭素繊維の製造方法。 The flame-resistant fiber is heat-treated at an end temperature of 500 to 700 ° C. in an inert atmosphere to obtain a first carbonized fiber, and the temperature increase rate of the first carbonized fiber is 100 to 400 up to an end temperature of 750 to 900 ° C. A second carbonized fiber is obtained by heat treatment at a rate of 1.0 to 1.2 times at a rate of ° C / minute, and the temperature increase rate is 100 to 400 ° C / second until the second carbonized fiber is finished at 1000 to 1300 ° C. In the method for producing carbon fiber to be third carbonized by heat treatment at a draw ratio of 0.95 to 1.1 times, the draw ratio during the second carbonization treatment is larger than the draw ratio during the third carbonization treatment The method for producing a carbon fiber according to claim 1.
JP2008286326A 2008-11-07 2008-11-07 Carbon fiber and method for producing the same Active JP5383158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286326A JP5383158B2 (en) 2008-11-07 2008-11-07 Carbon fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286326A JP5383158B2 (en) 2008-11-07 2008-11-07 Carbon fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010111972A true JP2010111972A (en) 2010-05-20
JP5383158B2 JP5383158B2 (en) 2014-01-08

Family

ID=42300745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286326A Active JP5383158B2 (en) 2008-11-07 2008-11-07 Carbon fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP5383158B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025222A (en) * 2013-07-26 2015-02-05 東邦テナックス株式会社 Carbon fiber, production method therefor and composite material
JP2015074844A (en) * 2013-10-08 2015-04-20 東邦テナックス株式会社 Carbon fiber and method for producing the same
JP2019143287A (en) * 2018-02-23 2019-08-29 帝人株式会社 Manufacturing method of carbon fiber and carbon fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217734A (en) * 1997-11-21 1999-08-10 Toray Ind Inc Carbon fiber and its production
JP2002339170A (en) * 2001-05-21 2002-11-27 Mitsubishi Rayon Co Ltd Carbon fiber having excellent property in twisting direction, and carbon fiber-reinforced composite material using the carbon fiber as reinforcing material
JP2004091961A (en) * 2002-08-30 2004-03-25 Toho Tenax Co Ltd Method for producing carbon fiber
JP2005179794A (en) * 2003-12-16 2005-07-07 Toho Tenax Co Ltd Method for producing carbon fiber
WO2007069511A1 (en) * 2005-12-13 2007-06-21 Toray Industries, Inc. Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217734A (en) * 1997-11-21 1999-08-10 Toray Ind Inc Carbon fiber and its production
JP2002339170A (en) * 2001-05-21 2002-11-27 Mitsubishi Rayon Co Ltd Carbon fiber having excellent property in twisting direction, and carbon fiber-reinforced composite material using the carbon fiber as reinforcing material
JP2004091961A (en) * 2002-08-30 2004-03-25 Toho Tenax Co Ltd Method for producing carbon fiber
JP2005179794A (en) * 2003-12-16 2005-07-07 Toho Tenax Co Ltd Method for producing carbon fiber
WO2007069511A1 (en) * 2005-12-13 2007-06-21 Toray Industries, Inc. Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025222A (en) * 2013-07-26 2015-02-05 東邦テナックス株式会社 Carbon fiber, production method therefor and composite material
JP2015074844A (en) * 2013-10-08 2015-04-20 東邦テナックス株式会社 Carbon fiber and method for producing the same
JP2019143287A (en) * 2018-02-23 2019-08-29 帝人株式会社 Manufacturing method of carbon fiber and carbon fiber
JP7360244B2 (en) 2018-02-23 2023-10-12 帝人株式会社 Carbon fiber manufacturing method and carbon fiber

Also Published As

Publication number Publication date
JP5383158B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
JP6950526B2 (en) Carbon fiber bundle and its manufacturing method
JP5036182B2 (en) Carbon fiber, precursor and method for producing carbon fiber
TW201414892A (en) Flame-resistant fiber bundle, carbon fiber bundle and method for producing them
JP4662450B2 (en) Carbon fiber manufacturing method
JP5383158B2 (en) Carbon fiber and method for producing the same
JPS6211089B2 (en)
KR20130078788A (en) The method of producing complex precursor multi filament and carbon fiber
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
JP5849127B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP5635740B2 (en) Polyacrylonitrile-based carbon fiber strand and method for producing the same
JP6020202B2 (en) Carbon fiber bundle and method for producing the same
JP4271019B2 (en) Carbon fiber manufacturing method
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP4088500B2 (en) Carbon fiber manufacturing method
JP5667380B2 (en) Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof
JP4565978B2 (en) Carbon fiber manufacturing method
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JP2004197278A (en) Method for producing carbon fiber
JP4088543B2 (en) High-strength carbon fiber and method for producing the same
JPH02264011A (en) Acrylic fiber for graphite fibers
JP7286987B2 (en) Carbon fiber bundle and its manufacturing method
JP7360244B2 (en) Carbon fiber manufacturing method and carbon fiber
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
JP4454364B2 (en) Carbon fiber manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Ref document number: 5383158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350