JP2010111749A - Thermosetting organic-inorganic hybrid transparent material for functional fine particle sealing - Google Patents

Thermosetting organic-inorganic hybrid transparent material for functional fine particle sealing Download PDF

Info

Publication number
JP2010111749A
JP2010111749A JP2008284515A JP2008284515A JP2010111749A JP 2010111749 A JP2010111749 A JP 2010111749A JP 2008284515 A JP2008284515 A JP 2008284515A JP 2008284515 A JP2008284515 A JP 2008284515A JP 2010111749 A JP2010111749 A JP 2010111749A
Authority
JP
Japan
Prior art keywords
organic
fine particles
inorganic hybrid
hybrid transparent
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008284515A
Other languages
Japanese (ja)
Inventor
Minoru Kuniyoshi
稔 国吉
Chiharu Takimoto
千晴 瀧本
Yohei Sato
陽平 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2008284515A priority Critical patent/JP2010111749A/en
Priority to PCT/JP2009/067749 priority patent/WO2010053001A1/en
Publication of JP2010111749A publication Critical patent/JP2010111749A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that: when functional fine particles having a large specific gravity are dispersed in a transparent sealing material, the fine particles are liable to precipitate and it is necessary to adjust the viscosity of the sealing material so as to prevent the precipitation, and in particular, when heat is applied to the sealing material in a curing process, a main ingredient composition and curing conditions are restricted so as to prevent the precipitation due to the lowering of the viscosity; and the sealing material and the functional fine particles are liable to deteriorate under a use environment (heat, light, laser, and water molecules). <P>SOLUTION: An alkoxysilane as a starting material is hydrolyzed and/or polycondensed to obtain an organic modified polysiloxane (precursor) which is solid and does not flow at room temperature but exhibits fluidity by heating, and the polysiloxane (precursor) is mixed with functional fine particles, defoamed by heating under reduced pressure, and molded and cured, whereby the functional fine particles can be uniformly dispersed without precipitation, and a cured product excellent in resistance to heat, light, laser, and water can be obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、機能性微粒子を均一分散でき、耐熱性、耐光性、耐レーザー性、耐水性に優れた有機無機ハイブリッド透明封止材およびその製造方法に関する。   The present invention relates to an organic-inorganic hybrid transparent encapsulant that can uniformly disperse functional fine particles and is excellent in heat resistance, light resistance, laser resistance, and water resistance, and a method for producing the same.

紫外線、可視光、赤外線を遮断する微粒子材料を分散した遮光性部材のバインダーとして使用されている透明材料には優れた耐熱性、耐UV性が必要である。また、光源等の封止に使用されている透明封止材には、優れた耐熱性、耐UV性に加え耐光性、耐レーザー性が要求される(例えば特許文献1参照)。 A transparent material used as a binder of a light-shielding member in which a fine particle material that blocks ultraviolet rays, visible light, and infrared rays is dispersed needs to have excellent heat resistance and UV resistance. Further, a transparent sealing material used for sealing a light source or the like is required to have light resistance and laser resistance in addition to excellent heat resistance and UV resistance (see, for example, Patent Document 1).

しかし、比重が大きい機能性微粒子を分散させる場合、微粒子が沈殿しやすい問題があった。沈殿防止のためには封止材の粘度を調整する必要があり、特に硬化過程で封止材に熱がかかる場合は、粘度の低下により沈殿しないように注意を要した。   However, when functional fine particles having a large specific gravity are dispersed, there is a problem that the fine particles are likely to precipitate. In order to prevent precipitation, it is necessary to adjust the viscosity of the sealing material. In particular, when heat is applied to the sealing material during the curing process, care must be taken not to precipitate due to a decrease in viscosity.

また、導電性の微粒子を分散させた導電性透明部材、抗菌性の金属(酸化物)微粒子を分散させた防汚・抗菌性透明部材、色素や顔料で着色された透明材料等にも同様に優れた耐熱性、耐UV性、分散性などが必要である。
特開平8−262459号公報
Similarly, conductive transparent members in which conductive fine particles are dispersed, antifouling and antibacterial transparent members in which antibacterial metal (oxide) fine particles are dispersed, transparent materials colored with pigments and pigments, and the like. Excellent heat resistance, UV resistance, dispersibility, etc. are required.
Japanese Patent Application Laid-Open No. 8-26259

比重が大きい機能性微粒子を透明封止材中に分散させる場合、微粒子が沈殿しやすい問題があった。沈殿防止のためには封止材の粘度を調整する必要があり、特に硬化過程で封止材に熱がかかる場合は、粘度の低下により沈殿しないように、主剤組成および硬化条件が制約される問題があった。さらに使用環境(熱、光、レーザー、水分子)によって封止材や機能性微粒子が劣化しやすい問題があった。   When functional fine particles having a large specific gravity are dispersed in a transparent sealing material, there is a problem that the fine particles are likely to precipitate. In order to prevent precipitation, it is necessary to adjust the viscosity of the encapsulant, especially when heat is applied to the encapsulant during the curing process, and the main agent composition and curing conditions are restricted so that precipitation does not occur due to a decrease in viscosity. There was a problem. Furthermore, there has been a problem that the sealing material and functional fine particles are likely to deteriorate depending on the use environment (heat, light, laser, water molecule).

本発明は、出発原料であるアルコキシシランを加水分解・重縮合することで得た、室温では固体だが50℃以上の加熱により流動性を示す有機修飾ポリシロキサン(前駆体)に機能性微粒子を混合し、減圧加熱により脱泡、成形、硬化させて得ることを特徴とする、有機無機ハイブリッド透明封止材である。   In the present invention, functional fine particles are mixed with an organically modified polysiloxane (precursor) obtained by hydrolysis and polycondensation of alkoxysilane as a starting material, which is solid at room temperature but exhibits fluidity by heating at 50 ° C. or higher. And an organic-inorganic hybrid transparent encapsulant obtained by degassing, molding and curing by heating under reduced pressure.

また、100〜400℃の温度で減圧加熱することにより硬化することを特徴とする、上記の有機無機ハイブリッド透明封止材である。   Moreover, it is said organic-inorganic hybrid transparent sealing material characterized by hardening by heating under reduced pressure at the temperature of 100-400 degreeC.

また、成形・硬化時に前駆体を加熱して流動性を示すときの粘度が200mPa・s以上であり機能性微粒子が沈降しないことを特徴とする、上記の有機無機ハイブリッド透明封止材である。   In addition, the organic-inorganic hybrid transparent encapsulant is characterized in that when the precursor is heated during molding / curing and exhibits fluidity, the viscosity is 200 mPa · s or more and the functional fine particles do not settle.

また、硬化後に波長300〜800nmにおいて平均透過率が85%以上であることを特徴とする上記の有機無機ハイブリッド透明封止材である。   In addition, the organic-inorganic hybrid transparent sealing material according to the above, wherein the average transmittance is 85% or more at a wavelength of 300 to 800 nm after curing.

また、飽和吸水率が0.5wt%未満であることを特徴とする、上記の有機無機ハイブリッド透明封止材である。   Moreover, it is said organic-inorganic hybrid transparent sealing material characterized by having a saturated water absorption of less than 0.5 wt%.

また、フィラーを含有させることにより放熱性や強度を高めることを特徴とする、上記の有機無機ハイブリッド透明封止材である。   Moreover, it is said organic-inorganic hybrid transparent sealing material characterized by improving heat dissipation and intensity | strength by containing a filler.

また、前駆体に混合する機能性微粒子が、金属、金属酸化物、色素、顔料、セラミックスから選ばれる少なくとも1種以上からなることを特徴とする、上記の有機無機ハイブリッド透明封止材である。   Further, the organic-inorganic hybrid transparent sealing material described above, wherein the functional fine particles to be mixed with the precursor comprise at least one selected from metals, metal oxides, dyes, pigments, and ceramics.

さらに、出発原料のアルコキシシランが、有機置換基として飽和炭化水素基を含有することを特徴とする、上記の有機無機ハイブリッド透明封止材である。   Furthermore, the organic-inorganic hybrid transparent sealing material described above, wherein the starting alkoxysilane contains a saturated hydrocarbon group as an organic substituent.

さらにまた、出発原料のアルコキシシランが、有機置換基として芳香族または芳香族を含む炭化水素基を含有することを特徴とする、上記の有機無機ハイブリッド透明封止材である。   Furthermore, the above-mentioned organic-inorganic hybrid transparent sealing material is characterized in that the starting material alkoxysilane contains an aromatic or aromatic-containing hydrocarbon group as an organic substituent.

室温では流動しないが加熱により流動性を示す有機修飾ポリシロキサン(前駆体)に機能性微粒子を混合し、減圧加熱により脱泡、成形、硬化させることにより、機能性微粒子を沈殿させることなく均一分散でき、耐熱性、耐光性、耐レーザー性、耐水性に優れた硬化体を得ることができる。   Mixing functional fine particles with organically modified polysiloxane (precursor) that does not flow at room temperature but exhibits fluidity when heated, and defoaming, molding and curing by heating under reduced pressure to uniformly disperse functional fine particles without precipitation And a cured product excellent in heat resistance, light resistance, laser resistance and water resistance can be obtained.

本発明は、出発原料であるアルコキシシランを加水分解・重縮合することで得た、室温では固体であり流動しないが、50℃以上の加熱により流動性を示す有機修飾ポリシロキサン(前駆体)に機能性微粒子を混合し、減圧加熱により脱泡、成形、硬化させる有機無機ハイブリッド透明封止材およびその製造方法に関する。   The present invention provides an organically modified polysiloxane (precursor) obtained by hydrolysis and polycondensation of an alkoxysilane as a starting material, which is solid at room temperature and does not flow, but exhibits fluidity by heating at 50 ° C. or higher. The present invention relates to an organic-inorganic hybrid transparent sealing material in which functional fine particles are mixed and defoamed, shaped, and cured by heating under reduced pressure, and a method for producing the same.

また、100〜400℃の温度で減圧加熱することにより硬化することが好ましい。100℃未満の場合、硬化に長時間を要し生産性等の産業上のメリットが小さいからである。400℃を超える温度の場合、有機基が分解し所望の組成の硬化体が得られないからである。また、硬化加熱時に減圧しない場合、硬化に長時間を要し生産性等の産業上のメリットが小さく、さらには泡が残りやすい問題があるからである。   Moreover, it is preferable to harden | cure by heating under reduced pressure at the temperature of 100-400 degreeC. This is because when the temperature is lower than 100 ° C., it takes a long time to cure and the industrial merit such as productivity is small. This is because when the temperature exceeds 400 ° C., the organic group is decomposed and a cured product having a desired composition cannot be obtained. Further, if the pressure is not reduced during curing and heating, a long time is required for curing, and industrial advantages such as productivity are small, and bubbles are likely to remain.

また、成形・硬化時に前駆体を加熱して流動性を示すときの粘度が200mPa・s以上であり機能性微粒子が沈降しないことが好ましい。流動性を示すときの粘度が200mPa・s未満の場合、機能性微粒子が沈降しやすいからである。   Moreover, it is preferable that the viscosity when the precursor is heated during molding / curing to show fluidity is 200 mPa · s or more and the functional fine particles do not settle. This is because, when the viscosity when exhibiting fluidity is less than 200 mPa · s, the functional fine particles are likely to settle.

また、シリコーンゴム製モールドを用いることで硬化後に良好な離型性を有することが好ましい。シリコーンゴム製以外のモールドを用いる場合、離型性が悪くモールド表面に離型剤の塗布が必要となる場合があるからである。   Moreover, it is preferable to have a good releasability after curing by using a silicone rubber mold. This is because when a mold other than silicone rubber is used, the releasability is poor and it may be necessary to apply a release agent to the mold surface.

また、硬化後に波長300〜800nmにおいて平均透過率が85%以上であることが好ましい。透明基材や透明バインダーとして用いる場合、十分な透明性を確保するためである。また、発光素子に用いる場合、十分な発光効率を確保し、かつ発光光による劣化を抑制するためであり、90%以上がより好ましい。   Moreover, it is preferable that an average transmittance | permeability is 85% or more in wavelength 300-800 nm after hardening. This is to ensure sufficient transparency when used as a transparent substrate or transparent binder. Moreover, when using for a light emitting element, in order to ensure sufficient luminous efficiency and to suppress the deterioration by emitted light, 90% or more is more preferable.

また、レーザー光照射に対して波長300〜800nmにおける平均透過率が80%未満に低下しないことが好ましい。レーザー励起による発光素子に用いる場合、十分な発光効率を確保し、かつ発光光による劣化を抑制するためである。   Further, it is preferable that the average transmittance at a wavelength of 300 to 800 nm does not decrease to less than 80% with respect to laser light irradiation. This is because when used for a light emitting element by laser excitation, sufficient light emission efficiency is secured and deterioration due to emitted light is suppressed.

また、UV光照射に対して波長300〜800nmにおける平均透過率が80%未満に低下しないことが好ましい。透明基材や透明バインダーとして用いる場合、十分な透明性を確保するためである。また、発光素子に用いる場合、十分な発光効率を確保し、かつ発光光による劣化を抑制するためである。   Moreover, it is preferable that the average transmittance at a wavelength of 300 to 800 nm does not decrease to less than 80% with respect to UV light irradiation. This is to ensure sufficient transparency when used as a transparent substrate or transparent binder. In addition, when used for a light emitting element, sufficient light emission efficiency is ensured and deterioration due to emitted light is suppressed.

また、200℃の加熱に対して波長300〜800nmにおける平均透過率が80%未満に低下しないことが好ましい。十分な透明性や発光効率を確保し、かつ微粒子による光吸収や発光に伴う熱による劣化を抑制するためである。   Moreover, it is preferable that the average transmittance | permeability in wavelength 300-800nm does not fall to less than 80% with respect to 200 degreeC heating. This is to ensure sufficient transparency and light emission efficiency, and to suppress deterioration due to light absorption and light emission by the fine particles.

また、飽和吸水率が0.5wt%未満であることが好ましい。耐水性の低い機能性微粒子を水分子から保護するためである。   Moreover, it is preferable that a saturated water absorption is less than 0.5 wt%. This is because functional fine particles having low water resistance are protected from water molecules.

また、フィラーを含有させることにより放熱性や強度を高めることが好ましい。フィラーとして酸化ケイ素、窒化ケイ素、炭化ケイ素、アルミニウム、酸化アルミニウム、窒化アルミニウム、酸化マグネシウム、窒化ホウ素、酸化亜鉛、金属類および酸化金属、金属酸化物、金属炭化物、金属窒化物などのセラミック粒子等が挙げられる。   Moreover, it is preferable to improve heat dissipation and intensity | strength by containing a filler. As filler, ceramic particles such as silicon oxide, silicon nitride, silicon carbide, aluminum, aluminum oxide, aluminum nitride, magnesium oxide, boron nitride, zinc oxide, metals and metal oxides, metal oxide, metal carbide, metal nitride, etc. Can be mentioned.

また、前駆体に混合する機能性微粒子が金属、金属酸化物、色素、顔料、セラミックスから選ばれる少なくとも1種以上からなることが好ましい。   Moreover, it is preferable that the functional fine particles mixed with the precursor comprise at least one selected from metals, metal oxides, dyes, pigments, and ceramics.

紫外線、可視光、赤外線を遮断する遮光性部材中に分散される微粒子材料は、紫外線遮断微粒子として酸化チタン、酸化亜鉛、酸化セリウムなどが、可視光遮断微粒子としてカーボン、遷移金属複合酸化物などが、赤外線遮断微粒子としてインジウム錫酸化物(ITO)、錫アンチモン酸化物(ATO)、タングステン酸化物、窒化チタン(TiN)、導電性酸化亜鉛、無水アンチモン酸亜鉛、六ホウ化化合物などが挙げられる。六ホウ化化合物としては六ホウ化ランタン(LaB)、六ホウ化セリウム(CeB)、六ホウ化プラセオジム(PrB)、六ホウ化ネオジム(NdB)、六ホウ化ガドリニウム(GdB)あるいはこれらの混合物がある。 The fine particle material dispersed in the light blocking member that blocks ultraviolet rays, visible light, and infrared rays includes titanium oxide, zinc oxide, cerium oxide, etc. as ultraviolet blocking fine particles, and carbon, transition metal composite oxide, etc. as visible light blocking fine particles. Infrared shielding fine particles include indium tin oxide (ITO), tin antimony oxide (ATO), tungsten oxide, titanium nitride (TiN), conductive zinc oxide, anhydrous zinc antimonate, hexaboride compound, and the like. Examples of hexaboride compounds include lanthanum hexaboride (LaB 6 ), cerium hexaboride (CeB 6 ), praseodymium hexaboride (PrB 6 ), neodymium hexaboride (NdB 6 ), and gadolinium hexaboride (GdB 6 ). Or there is a mixture of these.

また、導電性部材中に分散される導電性の微粒子として、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムチタン酸化物(ITiO)、インジウムジルコニウム酸化物、錫アンチモン酸化物(ATO)、フッ素錫酸化物(FTO)、アルミニウム亜鉛酸化物(AZO)、ガリウム亜鉛酸化物(GZO)等の酸化インジウム、酸化錫、酸化亜鉛を主成分とする微粒子が挙げられる。   Further, as conductive fine particles dispersed in the conductive member, indium tin oxide (ITO), indium zinc oxide (IZO), indium titanium oxide (ITiO), indium zirconium oxide, tin antimony oxide ( ATO, fluorine tin oxide (FTO), aluminum zinc oxide (AZO), fine particles containing indium oxide such as gallium zinc oxide (GZO), tin oxide, and zinc oxide as main components.

また、防汚・抗菌性部材中に分散された抗菌性の微粒子として、酸化チタン(TiO)、酸化マンガン(MnO)、白金微粒子等が挙げられる。 Examples of the antibacterial fine particles dispersed in the antifouling / antibacterial member include titanium oxide (TiO 2 ), manganese oxide (MnO 2 ), and platinum fine particles.

また、出発原料のアルコキシシランが、有機置換基として飽和炭化水素基を含有することが好ましい。飽和炭化水素基を含有する有機基で修飾することで、硬化後に温度変化に対するクラックの発生を抑制できるためである。   Moreover, it is preferable that the starting alkoxysilane contains a saturated hydrocarbon group as an organic substituent. This is because modification with an organic group containing a saturated hydrocarbon group can suppress the occurrence of cracks due to temperature changes after curing.

また、出発原料のアルコキシシランが、有機置換基として芳香族または芳香族を含む炭化水素基を含有することが好ましい。芳香族または芳香族を含む炭化水素基を含有する有機基で修飾することで、室温では固体であり流動しないが50℃以上の加熱により流動性を示す前駆体の状態をとることが可能となるためである。   The starting alkoxysilane preferably contains an aromatic or aromatic hydrocarbon group as the organic substituent. By modifying with an organic group containing an aromatic or aromatic hydrocarbon group, it becomes a solid that does not flow at room temperature, but can be in a precursor that exhibits fluidity by heating at 50 ° C. or higher. Because.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

(前駆体の作製)
室温でベンジルトリエトキシシラン(C6H5CH2Si(OEt)3)17g、エチルトリエトキシシラン(EtSi(OEt)3)1g、ジメチルジメトキシシラン(Me2Si(OMe)2)9g、イソプロピルアルコール90g、水135g、氷酢酸9mgを加えて混合した。混合溶液を開放系で100℃で3時間加熱撹拌し無色透明な粘性液体を得た。これをジイソプロピルエーテルに溶解し、純水で酢酸を抽出した。ジイソプロピルエーテルを留去し、無色透明な粘性液体を得た。さらにこの粘性液体を150℃で減圧しながら加熱し、室温で無色透明な固形状の前駆体を得た。
(Precursor production)
At room temperature, 17 g of benzyltriethoxysilane (C 6 H 5 CH 2 Si (OEt) 3 ), 1 g of ethyltriethoxysilane (EtSi (OEt) 3 ), 9 g of dimethyldimethoxysilane (Me 2 Si (OMe) 2 ), isopropyl alcohol 90 g, water 135 g and glacial acetic acid 9 mg were added and mixed. The mixed solution was heated and stirred at 100 ° C. for 3 hours in an open system to obtain a colorless and transparent viscous liquid. This was dissolved in diisopropyl ether, and acetic acid was extracted with pure water. Diisopropyl ether was distilled off to obtain a colorless and transparent viscous liquid. Further, this viscous liquid was heated at 150 ° C. under reduced pressure to obtain a colorless and transparent solid precursor at room temperature.

(機能性微粒子分散サンプルの作製)
あらかじめ粉砕した前駆体にフィラーとして窒化ケイ素微粒子を、機能性微粒子(赤外線遮断微粒子)としてインジウム錫酸化物(ITO)を混合し、シリコーンゴムモールドに入れた後、130℃で1時間減圧加熱し、次いで150℃で3時間、200℃で2時間減圧加熱して硬化させた。なお、この前駆体は130℃で流動性を示したが(粘度約70000mPa・s)、ITOは沈殿しなかった。さらに硬化体はモールドからの離型性が良好で容易に取り出すことができた。この硬化体には泡残りがなく、ITOが均一に分散していた。この硬化体の波長900〜2000nmの平均透過率は20%以下であり、赤外線を遮断していることが確認された。
(Preparation of functional fine particle dispersion sample)
Silicon nitride fine particles as fillers and pre-ground precursors are mixed with indium tin oxide (ITO) as functional fine particles (infrared shielding fine particles), put into a silicone rubber mold, and heated under reduced pressure at 130 ° C. for 1 hour, Subsequently, it was cured by heating under reduced pressure at 150 ° C. for 3 hours and at 200 ° C. for 2 hours. This precursor showed fluidity at 130 ° C. (viscosity: about 70,000 mPa · s), but ITO did not precipitate. Furthermore, the cured product had good releasability from the mold and could be easily taken out. This cured body had no foam residue and ITO was uniformly dispersed. The average transmittance of the cured product with a wavelength of 900 to 2000 nm was 20% or less, and it was confirmed that infrared rays were blocked.

また、ITOを混合せずに硬化させた場合、波長300〜800nmにおいて平均透過率が91%であった。さらにこの硬化体に波長460nmのレーザー照射を1000時間継続しても波長300〜800nmの平均透過率は90%であった。同様にこの硬化体にUV光を1000時間照射しても波長300〜800nmの平均透過率は90%であった。またこの硬化体を200℃で1000時間加熱しても波長300〜800nmの平均透過率は91%であった。またこの硬化体の飽和吸水率は0.05wt%であった。   Moreover, when it hardened | cured without mixing ITO, the average transmittance | permeability was 91% in wavelength 300-800 nm. Furthermore, even if laser irradiation with a wavelength of 460 nm was continued for 1000 hours on this cured product, the average transmittance at a wavelength of 300 to 800 nm was 90%. Similarly, even when this cured product was irradiated with UV light for 1000 hours, the average transmittance at a wavelength of 300 to 800 nm was 90%. Moreover, even if this cured body was heated at 200 ° C. for 1000 hours, the average transmittance at a wavelength of 300 to 800 nm was 91%. The cured product had a saturated water absorption of 0.05 wt%.

(比較例1)
封止・接着用に市販されている熱硬化性シリコーン樹脂にLaBを混合し、130℃で硬化を試みたところ、LaBがすべて沈殿した。このシリコーン樹脂硬化体の飽和吸水率は0.8wt%であり、長時間保存時にLaBが水分子により分解され赤外線遮断性能が低下してしまった。
(Comparative Example 1)
When LaB 6 was mixed with a thermosetting silicone resin commercially available for sealing and adhesion and curing was attempted at 130 ° C., all LaB 6 was precipitated. The saturated water absorption of this cured silicone resin was 0.8 wt%, and LaB 6 was decomposed by water molecules during long-term storage, and the infrared shielding performance was lowered.

(比較例2)
封止・接着用に市販されている光硬化性エポキシ樹脂にITOを混合し、UV照射により硬化させた。この硬化体を200℃で1000時間加熱すると茶色く着色し可視光波長領域で透明性が著しく損なわれた。
(Comparative Example 2)
ITO was mixed with a photocurable epoxy resin commercially available for sealing and adhesion, and cured by UV irradiation. When this cured body was heated at 200 ° C. for 1000 hours, it was colored brown and the transparency was significantly impaired in the visible light wavelength region.

バックライト、表示板、ディスプレイ、各種インジケーター等に使用されている発光ダイオード(LED)等の半導体発光素子の封止、レーザー励起による光源の封止、ディスプレイ部品の封着・被覆用材料、光情報通信デバイス材料、光学機器材料、光機能性(非線形)光学材料、接着材料等、低融点ガラスが使われている分野、エポキシ等の有機材料が使われている分野に利用可能である。   Sealing of semiconductor light emitting devices such as light emitting diodes (LEDs) used in backlights, display boards, displays, various indicators, etc., sealing of light sources by laser excitation, sealing and covering materials for display components, optical information It can be used in fields where low-melting glass is used, such as communication device materials, optical equipment materials, optical functional (non-linear) optical materials, adhesive materials, and fields where organic materials such as epoxy are used.

Claims (9)

出発原料であるアルコキシシランを加水分解・重縮合することで得た、室温では固体だが50℃以上の加熱により流動性を示す有機修飾ポリシロキサン(前駆体)に、機能性微粒子を混合し、減圧加熱により脱泡、成形、硬化させて得ることを特徴とする、有機無機ハイブリッド透明封止材。 Functional fine particles are mixed with organically modified polysiloxane (precursor) obtained by hydrolysis and polycondensation of alkoxysilane, the starting material, which is solid at room temperature but exhibits fluidity when heated to 50 ° C or higher. An organic-inorganic hybrid transparent encapsulant obtained by heating, defoaming, molding, and curing. 100〜400℃の温度で減圧加熱することにより硬化することを特徴とする、請求項1に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent encapsulant according to claim 1, which is cured by heating under reduced pressure at a temperature of 100 to 400 ° C. 成形・硬化時に前駆体を加熱して流動性を示すときの粘度が200mPa・s以上であり機能性微粒子が沈降しないことを特徴とする、請求項1または2に記載の有機無機ハイブリッド透明封止材。 3. The organic-inorganic hybrid transparent sealing according to claim 1 or 2, wherein the viscosity when the precursor is heated during molding / curing and exhibits fluidity is 200 mPa · s or more and the functional fine particles do not settle. Wood. 硬化後に波長300〜800nmにおいて平均透過率が85%以上であることを特徴とする、請求項1乃至3のいずれか1項に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent encapsulant according to any one of claims 1 to 3, wherein the average transmittance is 85% or more at a wavelength of 300 to 800 nm after curing. 飽和吸水率が0.5wt%未満であることを特徴とする、請求項1乃至4のいずれか1項に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent sealing material according to any one of claims 1 to 4, wherein the saturated water absorption is less than 0.5 wt%. フィラーを含有させることにより放熱性や強度を高めることを特徴とする、請求項1乃至5のいずれか1項に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent sealing material according to any one of claims 1 to 5, wherein heat dissipation and strength are increased by containing a filler. 前駆体に混合する機能性微粒子が、金属、金属酸化物、色素、顔料、セラミックスから選ばれる少なくとも1種以上からなることを特徴とする、請求項1乃至6のいずれか1項に記載の有機無機ハイブリッド透明封止材。 The organic fine particles according to any one of claims 1 to 6, wherein the functional fine particles mixed with the precursor are composed of at least one selected from metals, metal oxides, dyes, pigments, and ceramics. Inorganic hybrid transparent encapsulant. 出発原料のアルコキシシランが、有機置換基として飽和炭化水素基を含有することを特徴とする、請求項1乃至7のいずれか1項に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent sealing material according to any one of claims 1 to 7, wherein the starting alkoxysilane contains a saturated hydrocarbon group as an organic substituent. 出発原料のアルコキシシランが、有機置換基として芳香族または芳香族を含む炭化水素基を含有することを特徴とする、請求項1乃至8のいずれか1項に記載の有機無機ハイブリッド透明封止材。 The organic-inorganic hybrid transparent sealing material according to any one of claims 1 to 8, wherein the starting alkoxysilane contains an aromatic or aromatic hydrocarbon group as an organic substituent. .
JP2008284515A 2008-11-05 2008-11-05 Thermosetting organic-inorganic hybrid transparent material for functional fine particle sealing Pending JP2010111749A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008284515A JP2010111749A (en) 2008-11-05 2008-11-05 Thermosetting organic-inorganic hybrid transparent material for functional fine particle sealing
PCT/JP2009/067749 WO2010053001A1 (en) 2008-11-05 2009-10-14 Transparent heat-curable organic-inorganic hybrid material for sealing functional microparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284515A JP2010111749A (en) 2008-11-05 2008-11-05 Thermosetting organic-inorganic hybrid transparent material for functional fine particle sealing

Publications (1)

Publication Number Publication Date
JP2010111749A true JP2010111749A (en) 2010-05-20

Family

ID=42152810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284515A Pending JP2010111749A (en) 2008-11-05 2008-11-05 Thermosetting organic-inorganic hybrid transparent material for functional fine particle sealing

Country Status (2)

Country Link
JP (1) JP2010111749A (en)
WO (1) WO2010053001A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4079898B2 (en) * 2003-03-14 2008-04-23 セントラル硝子株式会社 Organic inorganic hybrid glassy material
KR100740804B1 (en) * 2003-06-26 2007-07-19 샌트랄 글래스 컴퍼니 리미티드 Organic-inorganic hybrid vitreous material and method for producing same
JP2005097030A (en) * 2003-09-24 2005-04-14 Central Glass Co Ltd Organic inorganic hybrid glass-like material and its manufacturing method
JP2005239498A (en) * 2004-02-27 2005-09-08 Central Glass Co Ltd Organic-inorganic hybrid glassy material and its production method
JP2007211165A (en) * 2006-02-10 2007-08-23 Central Glass Co Ltd Organic-inorganic hybrid glassy material and process for producing the same
JP2008019396A (en) * 2006-07-14 2008-01-31 Central Glass Co Ltd Organic/inorganic hybrid glassy substance and its manufacturing method
JP2008133378A (en) * 2006-11-29 2008-06-12 Central Glass Co Ltd Organic/inorganic hybrid-type transparent sealing material and method for producing the same
JP5109387B2 (en) * 2007-02-02 2012-12-26 セントラル硝子株式会社 Organic-inorganic hybrid transparent encapsulant and method for producing the same
JP2009203423A (en) * 2008-02-29 2009-09-10 Central Glass Co Ltd Adhesion improving oligomer for thermosetting organic/inorganic hybrid material
JP2009203424A (en) * 2008-02-29 2009-09-10 Central Glass Co Ltd Precursor of thermosetting organic inorganic hybrid material
JP2009215344A (en) * 2008-03-07 2009-09-24 Central Glass Co Ltd Thermosetting organic and inorganic hybrid transparent material

Also Published As

Publication number Publication date
WO2010053001A1 (en) 2010-05-14

Similar Documents

Publication Publication Date Title
JP6712589B2 (en) Transparent siloxane encapsulant and adhesive
KR101302277B1 (en) Transparent inorganic-oxide dispersion, resin composition containing inorganic oxide particles, composition for encapsulating luminescent element, luminescent element, hard coat, optical functional film, optical part, and process for producing resin composition containing inorganic oxide particles
JP5167582B2 (en) Zirconia transparent dispersion, transparent composite, and method for producing transparent composite
JP5012230B2 (en) Zirconia-containing silicone resin composition
JP2017525834A5 (en)
JP2008120848A (en) Transparent inorganic oxide dispersion, transparent composite, method for producing the same, composition for sealing light-emitting element and light-emitting element
US20230102420A1 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing dispersion liquid
TWI722552B (en) Silicone composition
JP2012021131A (en) Two-liquid type curable polyorganosiloxane composition for semiconductor light-emitting device member, polyorganosiloxane cured product obtained by curing the composition, and method for producing the same
US20220177709A1 (en) Dispersion liquid, composition, sealing member, light-emitting device, illumination tool, display device, and method for producing dispersion liquid
TWI496827B (en) Silicon oxide resin compositions for light semiconductors and their hardened products
JP5176380B2 (en) Surface-modified zirconia particles, surface-modified zirconia particle dispersion and composite, and method for producing surface-modified zirconia particles
JP2015120888A (en) Curable organopolysiloxane composition for semiconductor light-emitting device sealing material, organopolysiloxane cured product obtained by curing the composition, and semiconductor light-emitting device sealed by using the cured product
JP2007308631A (en) Zirconia-containing epoxy resin composition, transparent composite containing the same, light-emitting element and photosemiconductor device
JP2009173757A (en) Zirconia-containing silicone resin composition
JP2008189743A (en) Organic-inorganic hybrid transparent sealing material and method for producing the same
JP2010111749A (en) Thermosetting organic-inorganic hybrid transparent material for functional fine particle sealing
JP2015115494A (en) Semiconductor light-emitting device
TWI516544B (en) Organic-inorganic hybrid resin, composition employing the same, and photoelectric device
TWI634160B (en) Organic-silicon metal composites, curable organopolysiloxane composition comprising thereof, and optical material comprising the composition
JP2015177183A (en) semiconductor light-emitting device
KR101855558B1 (en) Curing composition for siloxane polymer and composition for transparent film comprising same
JP2013049834A (en) Sealing material for led
KR101293735B1 (en) Composition for preparing transparent film being capable of controlling curing temperature
JP2014210911A (en) Thermosetting white coating agent, and white cured film and substrate for mounting optical semiconductor element using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100326