JP2010109135A - Method for producing multilayer ceramic substrate - Google Patents

Method for producing multilayer ceramic substrate Download PDF

Info

Publication number
JP2010109135A
JP2010109135A JP2008279447A JP2008279447A JP2010109135A JP 2010109135 A JP2010109135 A JP 2010109135A JP 2008279447 A JP2008279447 A JP 2008279447A JP 2008279447 A JP2008279447 A JP 2008279447A JP 2010109135 A JP2010109135 A JP 2010109135A
Authority
JP
Japan
Prior art keywords
pressure
multilayer substrate
ceramic multilayer
laminate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008279447A
Other languages
Japanese (ja)
Inventor
Yuji Goto
雄治 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008279447A priority Critical patent/JP2010109135A/en
Publication of JP2010109135A publication Critical patent/JP2010109135A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a multilayer ceramic substrate capable of preventing the contraction factor of the multilayer ceramic substrate after baking from exceeding 0.17%. <P>SOLUTION: The method for producing the multilayer ceramic substrate by laminating a plurality of green sheets includes: a first step for producing a laminated body to produce a tentative laminated body by adding first pressure after the plurality of green sheets are laminated; a pressure release step to release the tentative laminated body from the first pressure after the first step for producing the laminated body is completed; and a second step for producing the laminated body to add second pressure, which is smaller than the first pressure, to the tentative laminated body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、セラミック多層基板の製造方法に関するもので、特に、焼成収縮率を小さく出来るセラミック多層基板の製造方法に関する。  The present invention relates to a method for manufacturing a ceramic multilayer substrate, and more particularly to a method for manufacturing a ceramic multilayer substrate capable of reducing the firing shrinkage rate.

近年、半導体素子及び、実装部品を実装するための絶縁基板としてガラスセラミック多層基板が使用されている。このガラスセラミック多層基板には、寸法精度良く造られた超小型の実装部品を、精度良く実装するため、高い寸法精度が要求される。ガラスセラミック多層基板は、ガラス粉末とセラミック粉末との無機粉末に、有機バインダー、可塑剤、溶剤と混ぜてスラリーを作製し、これをドクターブレード法などによりシート化することによりグリーンシートを作製する。   In recent years, a glass ceramic multilayer substrate has been used as an insulating substrate for mounting semiconductor elements and mounting components. This glass ceramic multilayer substrate is required to have high dimensional accuracy in order to mount an ultra-small mounting component made with high dimensional accuracy with high accuracy. A glass-ceramic multilayer substrate produces a green sheet by mixing an inorganic powder of glass powder and ceramic powder with an organic binder, a plasticizer, and a solvent to prepare a slurry, and forming the slurry by a doctor blade method or the like.

次に、このグリーンシートに必要に応じてパンチングによる穴加工を行った後、銀、金などの低抵抗金属を主成分とする導体ペーストを使用し印刷を行い、複数枚のグリーンシートを積層し、この表裏面に拘束グリーンシートを配置した後、熱圧着を行い、次に800〜1000℃の温度で焼結を行い、表裏面に配置している拘束グリーンシートをウエットブラスト法などにより除去した後、この焼成済み基板の表面及び裏面へ最外層導体配線を印刷することにより、ガラスセラミック多層基板を製造する。   Next, after punching the green sheet as necessary, printing is performed using a conductive paste mainly composed of a low-resistance metal such as silver or gold, and a plurality of green sheets are laminated. After placing the constrained green sheets on the front and back surfaces, thermocompression bonding was performed, followed by sintering at a temperature of 800 to 1000 ° C., and the constrained green sheets disposed on the front and back surfaces were removed by a wet blast method or the like. Then, a glass-ceramic multilayer substrate is manufactured by printing outermost layer conductor wiring on the front and back surfaces of the baked substrate.

ところがガラスセラミック多層基板は、焼成過程で寸法変化を伴う縮むことにより焼結収縮が生じる。この焼結収縮は一般的に収縮率として呼ばれている。この収縮率はグリーンシートへの導体配線を印刷するパターン面積の違いや、積層する際の高さ方向の厚さなどのさまざまな要因により異なり、収縮率が平面方向で一定で無く、部分的な不均一が生じているため、一般的に収縮率は0.2%程度縮む。一般的に収縮率は、設計値の寸法Xに対する焼成後の寸法値Yの比率を指し、(Y/X−1)×100(%)で表される。収縮率がゼロより大きいと寸法Yが寸法Xより大きくなり、伸びていることを表し、逆に収縮率がゼロより小さいと、縮むことを表している。0.2%程度縮むとは寸法Yが、寸法Xより小さくなることを示している。   However, the glass ceramic multilayer substrate undergoes sintering shrinkage due to shrinkage accompanied by dimensional change during the firing process. This sintering shrinkage is generally called the shrinkage rate. This shrinkage rate varies depending on various factors such as the difference in pattern area for printing the conductor wiring on the green sheet and the thickness in the height direction when laminating. Since non-uniformity occurs, the shrinkage rate generally shrinks by about 0.2%. Generally, the shrinkage rate indicates the ratio of the dimension value Y after firing to the dimension X of the design value, and is represented by (Y / X-1) × 100 (%). When the shrinkage rate is greater than zero, the dimension Y is larger than the dimension X, indicating that it is stretched. Conversely, when the shrinkage rate is less than zero, it indicates that the dimension is shrinking. The contraction of about 0.2% indicates that the dimension Y is smaller than the dimension X.

さらに収縮率を下げるため、図3に示す技術が知られている。図3(a)に示すように、ビア導体3が埋め込まれたグリーンシート1や、このビア導体3の上に導体パターン2が印刷されたグリーンシート1を複数枚用意して、位置合わせして重ね積層体を作製する。その後、図3(b)に示すように、アルミナと微量のガラス粉末と有機バインダーを含む拘束シート12とこの拘束シート12の有機バインダーより分子量の小さい有機バインダーを含む拘束シート13を積層体の表裏面に置き圧力を加える。こうして、両面に拘束シートを持つ積層体を作製する。その後、焼成を行った後、拘束シート12及び13を除去することで図3(c)に示すセラミック多層基板が作製できる(例えば、特許文献1参照。)。
特開2004−256358号公報
In order to further reduce the shrinkage rate, a technique shown in FIG. 3 is known. As shown in FIG. 3A, a plurality of green sheets 1 in which via conductors 3 are embedded and green sheets 1 in which conductor patterns 2 are printed on the via conductors 3 are prepared and aligned. A stacked laminate is produced. Thereafter, as shown in FIG. 3B, a constraining sheet 12 containing alumina, a small amount of glass powder and an organic binder, and a constraining sheet 13 containing an organic binder having a molecular weight smaller than the organic binder of the constraining sheet 12 are displayed on the surface of the laminate. Place on the back and apply pressure. In this way, a laminate having constraining sheets on both sides is produced. Then, after firing, the ceramic multilayer substrate shown in FIG. 3C can be produced by removing the restraining sheets 12 and 13 (see, for example, Patent Document 1).
JP 2004-256358 A

しかしながら、前記従来の構成では、焼成後のセラミック多層基板の収縮率を0.17%以下に抑制することが出来ないという課題を有していた。   However, the conventional configuration has a problem that the shrinkage ratio of the fired ceramic multilayer substrate cannot be suppressed to 0.17% or less.

本発明は、従来の課題を解決するもので、焼成後のセラミック多層基板の収縮率を0.17%以下に抑制することが出来るセラミック多層基板の製造方法を提供することを目的とする。  SUMMARY OF THE INVENTION An object of the present invention is to solve the conventional problem and to provide a method for producing a ceramic multilayer substrate capable of suppressing the shrinkage ratio of the fired ceramic multilayer substrate to 0.17% or less.

前記従来の課題を解決するために、本発明のガラスセラミック多層基板の製造方法は、複数のグリーンシートを積層してセラミック多層基板を作製するセラミック多層基板の製造方法において、前記複数のグリーンシートを積層して第1の圧力を加えた仮積層体を作製する第1の積層体作製工程と、前記第1の積層体作製工程の後、前記仮積層体を前記第1の圧力から開放する圧力開放工程と、前記圧力開放工程の後、前記仮積層体を前記第1の圧力よりも小さい第2の圧力を加える第2の積層体作製工程とからなることを特徴としたものである。 In order to solve the above-described conventional problems, a method for producing a glass ceramic multilayer substrate according to the present invention is the method for producing a ceramic multilayer substrate in which a plurality of green sheets are laminated to form the ceramic multilayer substrate. A first laminated body production step for producing a temporary laminated body to which a first pressure is applied by stacking, and a pressure for releasing the temporary laminated body from the first pressure after the first laminated body production step After the release step, and after the pressure release step, the temporary laminate is composed of a second laminate manufacturing step in which a second pressure smaller than the first pressure is applied.

本発明のガラスセラミック多層基板の製造方法によれば、焼成後の収縮率を0.17%以下に抑制することが出来るセラミック多層基板を作製することができる。   According to the method for producing a glass ceramic multilayer substrate of the present invention, a ceramic multilayer substrate capable of suppressing the shrinkage ratio after firing to 0.17% or less can be produced.

本発明のセラミック多層基板の製造方法の実施の形態を図面とともに詳細に説明する。
(実施の形態1)
本発明のセラミック多層基板を作製する例を示す。図1(a)〜(i)に本発明のセラミック多層基板の製造工程を表す。簡単に図示するため、3層のセラミック多層基板の例を挙げているが、実際には8層のセラミック多層基板を作製した。
An embodiment of a method for producing a ceramic multilayer substrate according to the present invention will be described in detail with reference to the drawings.
(Embodiment 1)
The example which produces the ceramic multilayer substrate of this invention is shown. 1A to 1I show a process for manufacturing a ceramic multilayer substrate of the present invention. For the sake of simplicity, an example of a three-layer ceramic multilayer substrate is given, but actually an eight-layer ceramic multilayer substrate was fabricated.

工程(a)
各層のセラミック多層基板を作製するためのグリーンシート1を示す。グリーンシート1は、ガラス粉末、セラミック粉末および、有機バインダー、有機溶剤などから成る。本実施例では、ガラス粉末にSiO2−B2O3−MO系(但し、Mはアルカリ金属、アルカリ金属土類金属)を、セラミック粉末はAl2O3を使用した。このガラス粉末、セラミック粉末、有機バインダー、有機溶剤などを最適な割合で混合しスラリーを作製すれば、公知のドクターブレード法などでシート化することが出来る。本実施例では、厚みが0.11mmのグリーンシート1を作製した。これらのグリーンシート1は、レーザ加工機などで寸法測定用の貫通穴を形成し、メタルスクリーン製版を使用し貫通穴の全てにビア導体3を充填し、必要に応じてスクリーン製版を使用して、銀、パラジウム及び、有機バインダーを最適な混合比率でペースト化した内部電極ペースト使用し、配線導体2を印刷する。
Step (a)
The green sheet 1 for producing the ceramic multilayer substrate of each layer is shown. The green sheet 1 is made of glass powder, ceramic powder, an organic binder, an organic solvent, and the like. In this example, SiO2-B2O3-MO system (where M is an alkali metal or an alkali metal earth metal) was used for the glass powder, and Al2O3 was used for the ceramic powder. If a slurry is prepared by mixing the glass powder, ceramic powder, organic binder, organic solvent and the like at an optimum ratio, it can be formed into a sheet by a known doctor blade method or the like. In this example, a green sheet 1 having a thickness of 0.11 mm was produced. These green sheets 1 are formed with through holes for dimension measurement using a laser processing machine, filled with via conductors 3 in all the through holes using a metal screen plate making, and using screen plate making as needed. The wiring conductor 2 is printed using an internal electrode paste obtained by pasting silver, palladium and an organic binder at an optimum mixing ratio.

工程(b)
工程(a)で準備したグリーンシート1を仮積層体作製用専用積層治具4の上に順次積層する。この時、積層したグリーシート1の最上面と最下面側にはPETフィルム5を配置する。これは、その後の工程で、積層したグリーシート1と専用積層治具4との剥離を容易に行えるようにする目的である。本実施例では、これらの積層物に温度65℃を保ちつつ、圧力10kg/cm2を一定時間保持することができる加工機にて、グリーンシート1同士を熱圧着した。
Step (b)
The green sheets 1 prepared in the step (a) are sequentially laminated on the temporary lamination body-dedicated lamination jig 4. At this time, the PET film 5 is disposed on the uppermost surface and the lowermost surface side of the laminated green sheets 1. This is for the purpose of facilitating separation of the laminated grease sheet 1 and the dedicated laminating jig 4 in the subsequent steps. In this example, the green sheets 1 were thermocompression bonded to these laminates with a processing machine capable of maintaining a pressure of 10 kg / cm 2 for a certain time while maintaining a temperature of 65 ° C.

工程(c)
このグリーシート1とPETフィルム5とからなる積層物を専用積層治具4から取り出し、仮積層体6とした。
Step (c)
A laminate composed of the green sheet 1 and the PET film 5 was taken out from the dedicated laminating jig 4 to obtain a temporary laminate 6.

工程(d)
仮積層体6を静水圧プレス専用積層治具7に乗せ、静水圧プレス機にて温度75℃、圧力100kg/cm2(本発明の第1の圧力とする。)で20分間保持した。
Step (d)
The temporary laminate 6 was placed on a laminating jig 7 dedicated to a hydrostatic press, and held at a temperature of 75 ° C. and a pressure of 100 kg / cm 2 (referred to as the first pressure of the present invention) for 20 minutes with a hydrostatic press.

工程(e)
この第1の圧力を20分間保持した積層体を積層治具7から取り出し、これを第1の積層体11とした。
Step (e)
The laminated body holding this first pressure for 20 minutes was taken out from the laminating jig 7 and used as the first laminated body 11.

工程(f)
この第1の積層体11からPETフィルム5を取り除き、第1の積層体11の表裏面に拘束シート8を配置する。拘束シート8は、セラミック粉末、有機バインダー、有機溶剤から成るスラリーを作製し、ドクターブレード法を用いて厚みが0.15mmのシートを用いた。さらに、これらの拘束シートの外側にPETフィルム5を配置した。このPETフィルム5は、先に取り除いたPETフィルムを再使用しても良い。この第1の積層体11を、圧力を加えることができる加工機にて温度85℃、圧力130kg/cm2(本発明の第2の圧力とする。)で2分間保持した。
Step (f)
The PET film 5 is removed from the first laminate 11, and the restraint sheet 8 is disposed on the front and back surfaces of the first laminate 11. As the restraint sheet 8, a slurry made of ceramic powder, an organic binder, and an organic solvent was prepared, and a sheet having a thickness of 0.15 mm was used by using a doctor blade method. Furthermore, the PET film 5 was arrange | positioned on the outer side of these restraint sheets. The PET film 5 may be reused from the previously removed PET film. This first laminate 11 was held for 2 minutes at a temperature of 85 ° C. and a pressure of 130 kg / cm 2 (referred to as the second pressure of the present invention) in a processing machine capable of applying pressure.

工程(g)
この加工機から第1の積層体11を取り出し、第1の積層体11の表裏面のPETフィルム5を剥離して第2の積層体9を作製した。
Step (g)
The 1st laminated body 11 was taken out from this processing machine, PET film 5 of the front and back of the 1st laminated body 11 was peeled, and the 2nd laminated body 9 was produced.

工程(h)
この第2の積層体9中に含まれる有機バインダーを熱分解させる為、脱バインダー装置にて大気中にて600℃で2時間加熱した後、900℃で2時間焼成を行い表裏面に残材している拘束シート8をAl2O3の微粉粉末と純水とを混合した高圧空気を投射するウエットブラストにて除去することでセラミック多層基板10を得た。
Step (h)
In order to thermally decompose the organic binder contained in the second laminate 9, after heating at 600 ° C. for 2 hours in the air with a debinding apparatus, baking is performed at 900 ° C. for 2 hours, and the remaining materials on the front and back surfaces The constraining sheet 8 being removed was removed by wet blasting by projecting high-pressure air in which Al2O3 fine powder and pure water were mixed, to obtain a ceramic multilayer substrate 10.

本発明者は、実験を重ねるに連れて、図1に示した工程(d)での第1の圧力と工程(f)での第2の圧力との条件を変えることで、焼成後のセラミック基板の収縮率が大きく変化する現象を発見した。この関係を求めるために、セラミック多層基板には予め寸法測定用の穴部にビア導体3が充填し、この寸法測定部の寸法を測定することにより焼成後寸法値Yを側長し、収縮率を計算した。収縮率は、(Y/X−1)×100(%)で算出し、設計値の寸法値Xに対するセラミック多層基板焼成後の寸法値Yの比率で表す。すなわち、収縮率0%は、焼成後のセラミック多層基板が全く収縮しないことを表す。収縮率がプラスであれば、焼成後のセラミック基板が焼成前より大きくなることを表し、マイナスであれば、焼成後のセラミック基板が焼成前より小さくなることを表す。   The present inventor changed the conditions of the first pressure in the step (d) and the second pressure in the step (f) shown in FIG. We found a phenomenon in which the shrinkage rate of the substrate changes greatly. In order to obtain this relationship, the ceramic multilayer substrate is previously filled with the via conductor 3 in the hole for dimension measurement, the dimension value Y after firing is measured by measuring the dimension of this dimension measurement part, and the shrinkage rate Was calculated. The shrinkage rate is calculated by (Y / X-1) × 100 (%), and is represented by the ratio of the dimension value Y after firing the ceramic multilayer substrate to the dimension value X of the design value. That is, a shrinkage rate of 0% indicates that the fired ceramic multilayer substrate does not shrink at all. If the shrinkage rate is positive, it means that the ceramic substrate after firing becomes larger than before firing, and if it is minus, it means that the ceramic substrate after firing becomes smaller than before firing.

圧力条件は、第2の圧力を100kg/cm2、130kg/cm2、160kg/cm2としたとき、第1の圧力を100〜400kg/cm2まで変化させるものとした。第1の圧力を加える際の温度は75℃で、第2の圧力を加える際の温度は85℃とした。これらの条件で、焼成後のセラミック基板の収縮率を測定した。 Pressure conditions, when the second pressure was 100kg / cm 2, 130kg / cm 2, 160kg / cm 2, was assumed to change the first pressure to 100~400kg / cm 2. The temperature when applying the first pressure was 75 ° C., and the temperature when applying the second pressure was 85 ° C. Under these conditions, the shrinkage ratio of the fired ceramic substrate was measured.

図2に、実験で得られた第1の圧力と第2の圧力との関係と焼成後のセラミック基板の収縮率を示す。 横軸は、工程(d)での第1の圧力を示し、縦軸は収縮率である。第1の圧力を100kg/cm2とし、第2の圧力を100kg/cm2とすると収縮率は−0.14%となる。すなわち、焼成後のセラミック基板が収縮していることを示す。次に、第1の圧力が400kg/cm2すると、/cm2の場合、収縮率が0.02%となり焼成後のセラミック基板は膨張している。従って、焼成後のセラミック基板を完全に無収縮(収縮率0%)に出来る第1の圧力が存在することになる。本実験で得られた結果から、第2の圧力を100kg/cm2とした際には、第1の圧力が370kg/cm2程度となる。同様に、第2の圧力を130、160kg/cm2とした際には、焼成後のセラミック基板を完全に無収縮(収縮率0%)に出来る第1の圧力は、それぞれ315、270kg/cm2程度となる。 FIG. 2 shows the relationship between the first pressure and the second pressure obtained in the experiment and the shrinkage ratio of the ceramic substrate after firing. The horizontal axis represents the first pressure in step (d), and the vertical axis represents the contraction rate. When the first pressure is 100 kg / cm 2 and the second pressure is 100 kg / cm 2 , the shrinkage rate is −0.14%. That is, it indicates that the fired ceramic substrate is contracted. Next, when the first pressure is 400 kg / cm 2 , in the case of / cm 2 , the shrinkage rate is 0.02%, and the fired ceramic substrate is expanded. Therefore, there is a first pressure at which the fired ceramic substrate can be made completely non-shrinkable (shrinkage rate 0%). From the results obtained in this experiment, when the second pressure is 100 kg / cm 2 , the first pressure is about 370 kg / cm 2 . Similarly, when the second pressure is set to 130 and 160 kg / cm 2 , the first pressures that can make the fired ceramic substrate completely non-shrinkable (shrinkage rate 0%) are 315 and 270 kg / cm, respectively. 2 or so.

以上の結果より、第1の積層体11の表裏面に拘束シート8を配置するまえに、工程(d)により第1の圧力を第1の積層体11に加え、この第1の圧力を工程(d)で加える第2の圧力に応じて収縮率が0%になる値に調節することで、焼成後のセラミック基板を完全に無収縮(収縮率0%)にすることが出来る。この第2の圧力に応じて収縮率が0%になる第1の圧力の値は、予め、測定しておけば良い。   From the above results, before placing the constraining sheet 8 on the front and back surfaces of the first laminate 11, the first pressure is applied to the first laminate 11 in the step (d), and this first pressure is applied to the step. The ceramic substrate after firing can be made completely non-shrinkable (shrinkage rate 0%) by adjusting to a value at which the shrinkage rate becomes 0% according to the second pressure applied in (d). The value of the first pressure at which the shrinkage rate becomes 0% according to the second pressure may be measured in advance.

このように、従来の収縮率より更に小さい収縮率でセラミック多層基板を作製することが可能であり、第1の圧力の値を適切に調節することで、焼成後のセラミック基板の収縮率を−0.15から0.1程度の範囲で調節することができる。   Thus, it is possible to produce a ceramic multilayer substrate with a shrinkage rate smaller than the conventional shrinkage rate, and by appropriately adjusting the value of the first pressure, the shrinkage rate of the ceramic substrate after firing is − It can be adjusted within a range of about 0.15 to 0.1.

本発明を用いてファインピッチのICチップ実装する為の18層のセラミック多層基板80枚製造した。このときの第1の圧力は370kg/cm2で、第2の圧力は100kg/cm2とした。このときの、温度と圧力をかけた時間は、図1に示した内容と同じ条件とした。作製した18層のセラミック多層基板の焼成後の収縮率は、−0.01%〜+0.02%の範囲であった。その後の工程で実装するICチップの寸法ズレが無く、非常に良好な部品実装を行うことができた。 80 sheets of 18-layer ceramic multilayer substrates for mounting fine pitch IC chips were manufactured using the present invention. At this time, the first pressure was 370 kg / cm 2 and the second pressure was 100 kg / cm 2 . At this time, the temperature and pressure were applied under the same conditions as those shown in FIG. The shrinkage ratio after firing of the produced 18-layer ceramic multilayer substrate was in the range of -0.01% to + 0.02%. There was no dimensional deviation of the IC chip to be mounted in the subsequent process, and very good component mounting could be performed.

本発明にかかるガラスセラミック多層基板の製造方法は、ガラスセラミック多層基板の収縮率を桁違いに小さくし実質収縮しないガラスセラミック多層基板を作製することができる効果を有し、位置精度が必要なガラスセラミック多層基板に有用である。   The method for producing a glass-ceramic multilayer substrate according to the present invention has the effect of producing a glass-ceramic multilayer substrate that does not substantially shrink by reducing the shrinkage rate of the glass-ceramic multilayer substrate by orders of magnitude, and that requires positional accuracy. Useful for ceramic multilayer substrates.

本発明の実施を行ったガラスセラミック多層基板の製造方法の図The figure of the manufacturing method of the glass ceramic multilayer substrate which implemented this invention 本発明の実施の形態1における、第1の圧力と第2の圧力との関係から得られた収縮率の関係を示す図The figure which shows the relationship of the shrinkage rate obtained from the relationship between the 1st pressure and the 2nd pressure in Embodiment 1 of this invention 従来のガラスセラミック多層基板の製造方法の図Diagram of conventional glass ceramic multilayer substrate manufacturing method

符号の説明Explanation of symbols

1 グリーンシート
2 配線導体
3 ビア導体
4 仮積層体作製用専用積層治具
5 PETフィルム
6 仮積層体
7 静水圧プレス専用積層治具
8 拘束シート
9 焼成用拘束シートを付けた第2の積層体
10 焼成後、拘束シートを除去した基板
11 第1の積層体
12 拘束シート
13 拘束シート
14 最外層導体配線
DESCRIPTION OF SYMBOLS 1 Green sheet 2 Wiring conductor 3 Via conductor 4 Dedicated lamination jig for preparation of temporary laminated body 5 PET film 6 Temporary laminated body 7 Lamination jig only for hydrostatic pressure press
8 Constraint Sheet 9 Second Laminated Body with Constraint Sheet for Firing 10 Substrate after Constraint Sheet is Removed After Firing 11 First Laminated Body 12 Constraint Sheet 13 Constraint Sheet 14 Outermost Layer Conductor Wiring

Claims (8)

複数のグリーンシートを積層してセラミック多層基板を作製するセラミック多層基板の製造方法において、
前記複数のグリーンシートを積層して第1の圧力を加えた仮積層体を作製する第1の積層体作製工程と、
前記第1の積層体作製工程の後、前記仮積層体を前記第1の圧力から開放する圧力開放工程と、
前記圧力開放工程の後、前記仮積層体を前記第1の圧力よりも小さい第2の圧力を加える第2の積層体作製工程とからなるセラミック多層基板の製造方法。
In a method for producing a ceramic multilayer substrate in which a plurality of green sheets are laminated to produce a ceramic multilayer substrate,
A first laminate production step of producing a temporary laminate by applying a first pressure by laminating the plurality of green sheets;
A pressure release step of releasing the temporary laminate from the first pressure after the first laminate production step;
After the said pressure release process, the manufacturing method of the ceramic multilayer substrate which consists of the 2nd laminated body preparation process which applies the 2nd pressure smaller than the said 1st pressure to the said temporary laminated body.
前記グリーンシートは、ガラスセラミックグリーンシートである請求項1に記載のセラミック多層基板の製造方法。 The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein the green sheet is a glass ceramic green sheet. 前記第1の積層体作製工程において、前記第1の圧力を加える時間は約20分とする請求項1に記載のセラミック多層基板の製造方法。 2. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein, in the first laminate manufacturing step, the time for applying the first pressure is about 20 minutes. 前記第1の積層体作製工程において、前記第1の圧力を加えるときの温度は、約75度とする請求項1に記載のセラミック多層基板の製造方法。 2. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein in the first laminate manufacturing step, a temperature when the first pressure is applied is about 75 degrees. 前記第1の積層体作製工程において、静水圧プレスを用いて前記第1の圧力を加える請求項1に記載のセラミック多層基板の製造方法。 The method for producing a ceramic multilayer substrate according to claim 1, wherein in the first laminate manufacturing step, the first pressure is applied using an isostatic press. 前記第2の積層体作製工程において、前記第2の圧力を加えるときの温度は、約85度とする請求項1に記載のセラミック多層基板の製造方法。 2. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein, in the second laminate manufacturing step, the temperature when the second pressure is applied is about 85 degrees. 前記第2の積層体作製工程において、前記第2の圧力を加える時間は約2分とする請求項1に記載のセラミック多層基板の製造方法。 2. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein, in the second laminate manufacturing step, the time for applying the second pressure is about 2 minutes. 前記第2の積層体作製工程において、前記仮積層体の両面に前記仮積層体の焼成時の熱収縮を抑制するための拘束シートを積層し後、前記第2の圧力を加える請求項1に記載のセラミック多層基板の製造方法。 In the second laminate manufacturing step, the second pressure is applied after laminating a constraining sheet for suppressing thermal shrinkage during firing of the temporary laminate on both surfaces of the temporary laminate. The manufacturing method of the ceramic multilayer substrate of description.
JP2008279447A 2008-10-30 2008-10-30 Method for producing multilayer ceramic substrate Pending JP2010109135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279447A JP2010109135A (en) 2008-10-30 2008-10-30 Method for producing multilayer ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279447A JP2010109135A (en) 2008-10-30 2008-10-30 Method for producing multilayer ceramic substrate

Publications (1)

Publication Number Publication Date
JP2010109135A true JP2010109135A (en) 2010-05-13

Family

ID=42298291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279447A Pending JP2010109135A (en) 2008-10-30 2008-10-30 Method for producing multilayer ceramic substrate

Country Status (1)

Country Link
JP (1) JP2010109135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101805074B1 (en) * 2016-12-20 2017-12-06 에스케이씨 주식회사 Preparation method of ceramic multilayer circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101805074B1 (en) * 2016-12-20 2017-12-06 에스케이씨 주식회사 Preparation method of ceramic multilayer circuit board

Similar Documents

Publication Publication Date Title
US8105453B2 (en) Method for producing multilayer ceramic substrate
US6815046B2 (en) Method of producing ceramic multilayer substrate
EP2051570B1 (en) Method of producing multilayer ceramic substrate
US20060061019A1 (en) Method of producing ceramic multilayer substrates, and green composite laminate
JP3511982B2 (en) Method for manufacturing multilayer wiring board
JP2001230548A (en) Method for manufacturing multil ayer ceramic substrate
JP5170684B2 (en) Multilayer ceramic package
JP2006108529A (en) Ceramic multilayer substrate and method for manufacturing the same
JP2010109135A (en) Method for producing multilayer ceramic substrate
JP2009141366A (en) Method of manufacturing ceramic laminated substrate, and ceramic laminated substrate manufactured by the manufacturing method
JP2007053294A (en) Process for manufacturing multilayer ceramic electronic component
JP2007335732A (en) Method for manufacturing multilayer ceramic substrate
JP6291452B2 (en) Manufacturing method of multilayer ceramic electronic component
JP5682342B2 (en) Manufacturing method of multilayer ceramic electronic component
JP4439257B2 (en) Ceramic green sheet and manufacturing method thereof
JP2009114009A (en) Method of manufacturing laminated ceramic substrate
JP2006173240A (en) Method for manufacturing ceramic substrate
JP4196093B2 (en) Manufacturing method of ceramic substrate
JP2009152614A (en) Multilayer ceramic substrate manufacturing method
JP2009111239A (en) Multilayer ceramic substrate and method of manufacturing multilayer ceramic substrate
JP2006303055A (en) Multilayer ceramic substrate and manufacturing method thereof
JP2011114189A (en) Method of manufacturing multilayer wiring board
JPH0828579B2 (en) Method for manufacturing ceramic multilayer substrate
JPH10294561A (en) Highly de-bindered multilayered wiring board and its manufacture
JP2014011314A (en) Ceramic substrate and manufacturing method therefor