JP2010108835A - Non-sintering type nickel electrode, and alkaline storage battery - Google Patents

Non-sintering type nickel electrode, and alkaline storage battery Download PDF

Info

Publication number
JP2010108835A
JP2010108835A JP2008281310A JP2008281310A JP2010108835A JP 2010108835 A JP2010108835 A JP 2010108835A JP 2008281310 A JP2008281310 A JP 2008281310A JP 2008281310 A JP2008281310 A JP 2008281310A JP 2010108835 A JP2010108835 A JP 2010108835A
Authority
JP
Japan
Prior art keywords
metal
positive electrode
nickel
average
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008281310A
Other languages
Japanese (ja)
Other versions
JP5355038B2 (en
Inventor
Takeshi Ito
武 伊藤
Takayuki Yano
尊之 矢野
Masahiko Tsukiashi
雅彦 月脚
Dai Takasu
大 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2008281310A priority Critical patent/JP5355038B2/en
Publication of JP2010108835A publication Critical patent/JP2010108835A/en
Application granted granted Critical
Publication of JP5355038B2 publication Critical patent/JP5355038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-sintering type nickel electrode in which discharge characteristics, and cycle service life of a battery are improved, and an internal short circuit is prevented when applied to an alkaline storage battery. <P>SOLUTION: The non-sintering type nickel electrode (24) is equipped with a core body of a three-dimensional net structure constituted of hollow metal fibers, and a mixture containing nickel oxide as an active material retained by the core body. The average outer diameter of the metal fibers is within a range of more than 70 μm and 140 μm or less, the average length of the metal fiber is within a range of 40 mm or more and 70 mm or less, and the average wall thickness of the metal fiber corresponding to a plating thickness of a metal material is within a range of 4 μm or more and 11 μm or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は非焼結式ニッケル極及びアルカリ蓄電池に関する。   The present invention relates to a non-sintered nickel electrode and an alkaline storage battery.

アルカリ蓄電池としては、含まれる活物質の種類によって、例えばニッケルカドミウム二次電池、ニッケル水素二次電池等をあげることができ、これらアルカリ蓄電池には円筒形状の外装缶を備えた円筒形のものがある。外装缶は、安全弁付きの蓋体で密封され、その内部には電極群がアルカリ電解液とともに収容される。電極群は、セパレータを間に挟んでそれぞれ帯状の負極板と正極板とを渦巻状に巻回して形成される。   Examples of the alkaline storage battery include a nickel cadmium secondary battery and a nickel metal hydride secondary battery, depending on the type of active material contained. These alkaline storage batteries include cylindrical ones having a cylindrical outer can. is there. The outer can is sealed with a lid with a safety valve, and an electrode group is accommodated together with an alkaline electrolyte in the inside. The electrode group is formed by winding a strip-shaped negative electrode plate and a positive electrode plate in a spiral shape with a separator in between.

正極板には非焼結式のニッケル極があり、ニッケル極は、3次元の網目形状の構造を有するニッケル製の金属体と、金属体に保持された正極合剤とから構成される。正極合剤は、正極活物質である水酸化ニッケル粒子と、添加剤粒子と、これら粒子を結着するバインダとを含む。
この種のニッケル製の金属体には、スポンジ状のものがある。スポンジ状の金属体は、現在、発泡ウレタンに金属めっきをしてから、発泡ウレタンを加熱分解させて作製されている。このとき、金属めっきの目付量は、例えば400g/mに設定される。
The positive electrode plate has a non-sintered nickel electrode, and the nickel electrode is composed of a nickel metal body having a three-dimensional network structure and a positive electrode mixture held on the metal body. The positive electrode mixture includes nickel hydroxide particles that are positive electrode active materials, additive particles, and a binder that binds these particles.
There is a sponge-like metal body of this type. The sponge-like metal body is currently produced by metallizing foamed urethane and then thermally decomposing the foamed urethane. At this time, the basis weight of the metal plating is set to 400 g / m 2 , for example.

また、この種のニッケル製の金属体にはフェルト状のものもある。例えば、特許文献1が開示するペースト式ニッケル正極は、フェルト状金属多孔体を有する。このフェルト状金属多孔体を構成する金属格子一本当たりの平均外径は30〜70μmの範囲にあり、且つ、隣接した金属格子同士の平均間隔が100〜400μmの範囲にある。
特開平3−222260号公報(例えば、特許請求の範囲等。)
Some of these nickel metal bodies are felt-like. For example, the paste type nickel positive electrode which patent document 1 discloses has a felt-like metal porous body. The average outer diameter per metal lattice constituting the felt-like metal porous body is in the range of 30 to 70 μm, and the average interval between adjacent metal lattices is in the range of 100 to 400 μm.
JP-A-3-222260 (for example, claims)

スポンジ状の金属体では、目付量を400g/mとした場合、めっき厚さが11μmを超えてしまう。このようなスポンジ状の金属体を含む非焼結式ニッケル極を巻回した場合、その表面から骨格が突出する。突出した骨格は、セパレータを突き破って負極と接触することにより、内部短絡を発生させる原因になる。
また、スポンジ状の金属体では、目付量を300g/mとした場合、めっき厚さが11μm以下にはなるものの、導電性が低下してしまう。このようなスポンジ状の金属体を含む非焼結式ニッケル極を用いてアルカリ蓄電池を作製した場合、高率放電特性等の特性が低下してしまう。
In the case of a sponge-like metal body, when the basis weight is 400 g / m 2 , the plating thickness exceeds 11 μm. When a non-sintered nickel electrode including such a spongy metal body is wound, the skeleton protrudes from the surface. The protruding skeleton breaks through the separator and comes into contact with the negative electrode, thereby causing an internal short circuit.
In the case of a sponge-like metal body, when the basis weight is 300 g / m 2 , the plating thickness is 11 μm or less, but the conductivity is lowered. When an alkaline storage battery is produced using such a non-sintered nickel electrode containing a sponge-like metal body, characteristics such as high rate discharge characteristics are degraded.

更に、特許文献1が開示するペースト式ニッケル正極では、フェルト状金属多孔体の金属格子一本当たりの平均外径が30〜70μmの範囲にあり、金属格子が細いため、金属格子の平均長を40〜70mmにすることは困難であった。このため、このフェルト状金属多孔体は、金属格子の平均長が40mmよりも短いため導電性が低く、このペースト式ニッケル正極を用いた電池にあっては、高率放電特性等の特性が低下してしまう。   Furthermore, in the paste type nickel positive electrode disclosed in Patent Document 1, the average outer diameter per metal lattice of the felt-like porous metal body is in the range of 30 to 70 μm, and the metal lattice is thin. It was difficult to make it 40-70 mm. For this reason, this felt-like metal porous body has low conductivity because the average length of the metal lattice is shorter than 40 mm, and the battery using this paste type nickel positive electrode has low characteristics such as high rate discharge characteristics. Resulting in.

また、金属格子の平均長が40mmよりも短いために、このペースト式ニッケル正極を巻回するときに、その表面から多数の金属格子の末端が突出し、内部短絡が発生するという問題もあった。
本発明は上述した事情に基づいてなされ、その目的とするところは、アルカリ蓄電池に適用したときに、当該電池の放電特性及びサイクル寿命が改善され、内部短絡が防止される非焼結式ニッケル極を提供することにある。
In addition, since the average length of the metal grid is shorter than 40 mm, when the paste type nickel positive electrode is wound, the ends of a large number of metal grids protrude from the surface, causing an internal short circuit.
The present invention has been made based on the above-described circumstances, and its object is to improve the discharge characteristics and cycle life of the battery and to prevent an internal short circuit when applied to an alkaline storage battery. Is to provide.

上記した目的を達成するため、本発明の一態様によれば、金属繊維によって構成される3次元の網目構造の芯体と、前記芯体に保持された活物質としてのニッケル酸化物を含む合剤とを備え、前記金属繊維の平均外径は、70μm超140μm以下の範囲にあり、前記金属繊維の平均長は、40mm以上70mm以下の範囲にあり、そして、前記金属材料のめっき厚さに対応する前記金属繊維の平均壁厚は、4μm以上11μm以下の範囲にあることを特徴とする非焼結式ニッケル極が提供される(請求項1)。   In order to achieve the above-described object, according to one aspect of the present invention, a composite body including a three-dimensional network core composed of metal fibers and a nickel oxide as an active material held by the core. An average outer diameter of the metal fibers is in the range of more than 70 μm and 140 μm or less, the average length of the metal fibers is in the range of 40 mm to 70 mm, and the plating thickness of the metal material A non-sintered nickel electrode is provided, wherein the corresponding average wall thickness of the metal fibers is in the range of 4 μm to 11 μm (Claim 1).

好ましくは、前記金属繊維は、有機材料からなる繊維を互いに密着させることにより形成された不織布に金属材料をめっきした後、前記有機材料を加熱分解して得られ、前記不織布の繊維の外形形状を複製した金属繊維である(請求項2)。
また、本発明の他の態様によれば、上記非焼結式ニッケル極と、負極と、アルカリ電解液とを備えることを特徴とするアルカリ蓄電池が提供される(請求項3)。
Preferably, the metal fiber is obtained by thermally decomposing the organic material after plating the metal material on a non-woven fabric formed by bringing fibers made of an organic material into close contact with each other. A duplicated metal fiber (Claim 2).
According to another aspect of the present invention, there is provided an alkaline storage battery comprising the non-sintered nickel electrode, a negative electrode, and an alkaline electrolyte (Claim 3).

本発明の請求項1の非焼結式ニッケル極は、金属繊維の平均長が40mm以上70mm以下の範囲にあるため、金属繊維の平均長がこれより短い従来の非焼結式ニッケル極に比べて、高い導電性を有する。
また、この非焼結式ニッケル極によれば、金属繊維の平均長が長いことにより、巻回されたときに表面から突出する金属繊維の数が少ない。その上、金属繊維の平均壁厚が11μm以下であり、表面から突出する金属繊維の強度が低い。
In the non-sintered nickel electrode of claim 1 of the present invention, the average length of the metal fibers is in the range of 40 mm to 70 mm, so that the average length of the metal fibers is shorter than the conventional non-sintered nickel electrode. And has high conductivity.
Further, according to this non-sintered nickel electrode, the average length of the metal fibers is long, so that the number of metal fibers protruding from the surface when wound is small. In addition, the average wall thickness of the metal fibers is 11 μm or less, and the strength of the metal fibers protruding from the surface is low.

請求項2の非焼結式ニッケル極の金属繊維は、有機材料からなる繊維を互いに密着させることにより形成された不織布に金属材料をめっきした後、前記有機材料を加熱分解することにより、簡単且つ確実に作製される。
請求項3のアルカリ蓄電池は、非焼結式ニッケル極の導電性が高いため、高率放電特性において優れている。また、導電性が高いことにより、非焼結式ニッケル極では活物質の利用率が高く、このアルカリ蓄電池は長寿命である。更に、この非焼結式ニッケル極によれば、巻回されたときに表面から突出する金属繊維の数が少なく、且つ、金属繊維の強度が低いので、金属繊維がセパレータを突き破ることが防止される。この結果として、このアルカリ蓄電池が円筒形の場合には、内部短絡も防止される。
The metal fiber of the non-sintered nickel electrode according to claim 2 can be obtained simply by plating a metal material on a nonwoven fabric formed by closely adhering fibers made of an organic material, and then thermally decomposing the organic material. Produced reliably.
The alkaline storage battery according to claim 3 is excellent in high rate discharge characteristics because the non-sintered nickel electrode has high conductivity. Further, due to the high conductivity, the non-sintered nickel electrode has a high active material utilization rate, and this alkaline storage battery has a long life. Furthermore, according to this non-sintered nickel electrode, the number of metal fibers protruding from the surface when wound is small and the strength of the metal fibers is low, so that the metal fibers are prevented from breaking through the separator. The As a result, when this alkaline storage battery is cylindrical, an internal short circuit is also prevented.

図1は、本発明の一実施形態のアルカリ蓄電池として、円筒形ニッケル水素二次電池を示す。電池は、一端が開口した有底円筒形状をなす外装缶10を備え、外装缶10は導電性を有して負極端子として機能する。外装缶10の開口内には、リング状の絶縁パッキン12を介して、導電性の蓋板14が配置されている。外装缶10の開口縁をかしめ加工することにより、絶縁パッキン12及び蓋板14は開口内に固定されている。   FIG. 1 shows a cylindrical nickel-hydrogen secondary battery as an alkaline storage battery according to an embodiment of the present invention. The battery includes an outer can 10 having a bottomed cylindrical shape with one end opened, and the outer can 10 has conductivity and functions as a negative electrode terminal. In the opening of the outer can 10, a conductive cover plate 14 is disposed via a ring-shaped insulating packing 12. The insulating packing 12 and the cover plate 14 are fixed in the opening by caulking the opening edge of the outer can 10.

蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いでゴム製の弁体18が配置されている。更に蓋板14の外面上には、弁体18を覆うフランジ付き円筒形状の正極端子20が固定され、正極端子20は弁体18を蓋板14に押圧している。従って、通常時、外装缶10は絶縁パッキン12及び弁体18とともに蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生してその内圧が高まった場合には弁体18が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18及び正極端子20は、安全弁を形成している。   The cover plate 14 has a gas vent hole 16 in the center, and a rubber valve element 18 is disposed on the outer surface of the cover plate 14 so as to close the gas vent hole 16. Further, a flanged cylindrical positive terminal 20 covering the valve body 18 is fixed on the outer surface of the cover plate 14, and the positive terminal 20 presses the valve body 18 against the cover plate 14. Accordingly, the outer can 10 is normally airtightly closed by the lid plate 14 together with the insulating packing 12 and the valve body 18. On the other hand, when gas is generated in the outer can 10 and its internal pressure increases, the valve body 18 is compressed and the gas is released from the outer can 10 through the gas vent hole 16. That is, the cover plate 14, the valve body 18, and the positive electrode terminal 20 form a safety valve.

外装缶10内には、アルカリ電解液(図示せず)とともに略円柱状の電極群22が収容され、電極群22はその最外周部が外装缶10の周壁に直接接触している。電極群22は、正極板24、負極板26及びセパレータ28からなり、アルカリ電解液としては、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液等を用いることができる。   A substantially cylindrical electrode group 22 is accommodated in the outer can 10 together with an alkaline electrolyte (not shown), and the outermost peripheral portion of the electrode group 22 is in direct contact with the peripheral wall of the outer can 10. The electrode group 22 includes a positive electrode plate 24, a negative electrode plate 26, and a separator 28. As an alkaline electrolyte, for example, a sodium hydroxide aqueous solution, a lithium hydroxide aqueous solution, a potassium hydroxide aqueous solution, or a mixture of two or more thereof is mixed. The aqueous solution etc. which were made can be used.

更に外装缶10内には、電極群22の一端と蓋板14との間に、正極リード30が配置され、正極リード30の両端は正極板24及び蓋板14に接続されている。従って、正極端子20と正極板24との間は、正極リード30及び蓋板14を介して電気的に接続されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。   Further, in the outer can 10, a positive electrode lead 30 is disposed between one end of the electrode group 22 and the lid plate 14, and both ends of the positive electrode lead 30 are connected to the positive electrode plate 24 and the lid plate 14. Therefore, the positive electrode terminal 20 and the positive electrode plate 24 are electrically connected via the positive electrode lead 30 and the lid plate 14. A circular insulating member 32 is disposed between the cover plate 14 and the electrode group 22, and the positive electrode lead 30 extends through a slit provided in the insulating member 32. A circular insulating member 34 is also disposed between the electrode group 22 and the bottom of the outer can 10.

図2を参照すると、電極群22において、正極板24及び負極板26は、セパレータ28を間に挟んだ状態で、電極群22の径方向でみて交互に重ね合わされている。これは、電極群22が、それぞれ帯状の正極板24、負極板26及びセパレータ28を用意し、これら正極板24及び負極板26を、セパレータ28を介してそれらの一端側から巻芯を用いて渦巻状に巻回して形成されるからである。   Referring to FIG. 2, in the electrode group 22, the positive electrode plate 24 and the negative electrode plate 26 are alternately overlapped when viewed in the radial direction of the electrode group 22 with the separator 28 interposed therebetween. This is because the electrode group 22 is provided with a strip-like positive electrode plate 24, a negative electrode plate 26, and a separator 28, respectively, and the positive electrode plate 24 and the negative electrode plate 26 are connected to each other by using a winding core from one end side of the separator 28. This is because it is formed in a spiral shape.

電極群22の最外周部は、負極板26の巻き終わり側の一部により形成され、この負極板26の巻き終わり側の一部が外装缶10と接触している。従って電極群22の最外周部において、負極板26と外装缶10とは互いに電気的に接続されている。
セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基を付与したものを用いることができる。
The outermost peripheral portion of the electrode group 22 is formed by a part on the winding end side of the negative electrode plate 26, and a part on the winding end side of the negative electrode plate 26 is in contact with the outer can 10. Therefore, the negative electrode plate 26 and the outer can 10 are electrically connected to each other at the outermost peripheral portion of the electrode group 22.
As a material of the separator 28, for example, a polyamide fiber nonwoven fabric or a polyolefin fiber nonwoven fabric such as polyethylene or polypropylene provided with a hydrophilic functional group can be used.

負極板26は、帯状をなす導電性の負極芯体を有し、この負極芯体に負極合剤が保持されている。負極芯体は、複数の貫通孔を有するシート状の金属材からなり、このようなものとして、例えば、パンチングメタル、金属粉末焼結体基板、エキスパンデッドメタル及びニッケルネット等を用いることができる。とりわけ、パンチングメタルや、金属粉末を成型してから焼結した金属粉末焼結体基板は負極芯体に好適する。   The negative electrode plate 26 has a conductive negative electrode core having a strip shape, and a negative electrode mixture is held in the negative electrode core. The negative electrode core is made of a sheet-like metal material having a plurality of through-holes. For example, a punching metal, a metal powder sintered body substrate, an expanded metal, and a nickel net can be used. . In particular, a punched metal or a metal powder sintered body substrate that is sintered after molding metal powder is suitable for the negative electrode core.

負極合剤は、電池がニッケル水素二次電池であることから、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子及び結着剤からなる。ただし、水素吸蔵合金に代えて、例えばカドミウム化合物を用いて電池をニッケルカドミウム二次電池としてもよく、負極活物質は特に限定されない。ただし、電池の高容量化には、ニッケル水素二次電池が好適する。   Since the battery is a nickel metal hydride secondary battery, the negative electrode mixture is composed of hydrogen storage alloy particles capable of occluding and releasing hydrogen as a negative electrode active material and a binder. However, instead of the hydrogen storage alloy, the battery may be a nickel cadmium secondary battery using, for example, a cadmium compound, and the negative electrode active material is not particularly limited. However, a nickel-hydrogen secondary battery is suitable for increasing the capacity of the battery.

水素吸蔵合金粒子は、電池の充電時にアルカリ電解液中で電気化学的に発生させた水素を吸蔵でき、なおかつ放電時にその吸蔵水素を容易に放出できるものであればよい。このような水素吸蔵合金としては、特に限定されないが、例えば、LaNiやMmNi(Mmはミッシュメタル)等のAB型系のものを用いることができる。また、結着剤としては親水性若しくは疎水性のポリマー等をそれぞれ用いることができる。 The hydrogen storage alloy particles are not particularly limited as long as they can store hydrogen generated electrochemically in an alkaline electrolyte during battery charging and can easily release the stored hydrogen during discharge. Such a hydrogen storage alloy is not particularly limited, and for example, an AB 5 type alloy such as LaNi 5 or MmNi 5 (Mm is a misch metal) can be used. As the binder, a hydrophilic or hydrophobic polymer can be used.

正極板24は、非焼結式のニッケル極であり、導電性の正極芯体と、正極芯体に保持された正極合剤とからなる。
正極合剤は、正極活物質粒子と、正極板の特性を改善するための種々の添加剤粒子と、これら正極活物質粒子及び添加剤粒子の混合粒子を正極芯体に結着するための結着剤とからなる。
The positive electrode plate 24 is a non-sintered nickel electrode, and is composed of a conductive positive electrode core and a positive electrode mixture held on the positive electrode core.
The positive electrode mixture includes positive electrode active material particles, various additive particles for improving the characteristics of the positive electrode plate, and a binder for binding the mixed particles of these positive electrode active material particles and additive particles to the positive electrode core. It consists of an adhesive.

正極活物質粒子は、電池がニッケル水素二次電池なので水酸化ニッケル粒子であるけれども、水酸化ニッケル粒子は、ニッケルの平均価数が2よりも大の高次水酸化ニッケル粒子であってもよい。また、水酸化ニッケル粒子及び高次水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよく、あるいは表面がコバルト化合物で表面が被覆されていてもよい。   The positive electrode active material particles are nickel hydroxide particles because the battery is a nickel metal hydride secondary battery, but the nickel hydroxide particles may be higher order nickel hydroxide particles having an average valence of nickel greater than 2. . Further, the nickel hydroxide particles and the higher-order nickel hydroxide particles may have solid solution of cobalt, zinc, cadmium or the like, or the surface may be coated with a cobalt compound.

また、特に限定されることはないが、添加剤としては、酸化イットリウムの他に、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等を用いることができる。
結着剤としては親水性若しくは疎水性のポリマー等をそれぞれ用いることができる。
具体的には、結着剤として、ヒドロキシプロピルセルロース(HPC)、カルボキシメチルセルロース(CMC)、及び、ポリアクリル酸ナトリウム(SPA)のうちから選択される1種以上を使用することができる。正極合剤は、例えば、正極活物質粒子100質量部に対して、例えば0.1質量部以上0.5質量部以下の結着剤を含む。
Further, although not particularly limited, as additives, in addition to yttrium oxide, cobalt compounds such as cobalt oxide, metal cobalt and cobalt hydroxide, zinc compounds such as metal zinc, zinc oxide and zinc hydroxide, Rare earth compounds such as erbium oxide can be used.
As the binder, a hydrophilic or hydrophobic polymer can be used.
Specifically, as the binder, one or more selected from hydroxypropyl cellulose (HPC), carboxymethyl cellulose (CMC), and sodium polyacrylate (SPA) can be used. The positive electrode mixture includes, for example, 0.1 to 0.5 parts by mass of a binder with respect to 100 parts by mass of the positive electrode active material particles.

正極芯体は、耐アルカリ性を有する金属材料からなり、フェルト状の3次元の網目構造を有する。耐アルカリ性を有する金属材料としては、例えばニッケルを用いることができる。
フェルト状の3次元の網目構造を有する正極芯体は、以下のように作製することが出来る。
The positive electrode core body is made of a metal material having alkali resistance and has a felt-like three-dimensional network structure. As the metal material having alkali resistance, for example, nickel can be used.
The positive electrode core having a felt-like three-dimensional network structure can be produced as follows.

まず、図2に示したような、有機材料からなる繊維40の不織布に、金属材料をめっきする。繊維40としては、例えばPE(ポリエチレン)とPP(ポリプロピレン)の混合繊維を用いることができる。
不織布の目付量は、例えば、25g/m以上60g/m以下の範囲にある。また、図3を参照すると、繊維40の外径Doの平均値は、例えば、50μm以上130μm以下の範囲にあり、繊維40の長さLoの平均値は、例えば、40mm以上70mm以下の範囲にある。このような不織布は、例えば、乾式法、湿式法、スパンボンド法、メルトブロー法等によって作製することができる。
First, a metal material is plated on a nonwoven fabric of fibers 40 made of an organic material as shown in FIG. As the fiber 40, for example, a mixed fiber of PE (polyethylene) and PP (polypropylene) can be used.
The basis weight of the nonwoven fabric is, for example, in the range of 25 g / m 2 to 60 g / m 2 . Referring to FIG. 3, the average value of the outer diameter Do of the fiber 40 is, for example, in the range of 50 μm to 130 μm, and the average value of the length Lo of the fiber 40 is, for example, in the range of 40 mm to 70 mm. is there. Such a nonwoven fabric can be produced by, for example, a dry method, a wet method, a spun bond method, a melt blow method, or the like.

それから、金属めっきされた不織布を酸化雰囲気で加熱し、有機材料を加熱・分解する。これにより、金属めっきの骨格のみが残る。この骨格を還元雰囲気で加熱(焙焼)し、フェルト状の3次元の網目構造を有する正極芯体が作製される。
従って、正極芯体は、繊維40の外形形状を複製した多数の中空の金属繊維によって構成されている。そして、正極芯体にあっては、不織布での繊維40同士の接合部の外形形状をも複製しており、金属繊維同士が接合されている。
Then, the metal-plated nonwoven fabric is heated in an oxidizing atmosphere to heat and decompose the organic material. Thereby, only the skeleton of the metal plating remains. This skeleton is heated (roasted) in a reducing atmosphere to produce a positive electrode core having a felt-like three-dimensional network structure.
Therefore, the positive electrode core is composed of a large number of hollow metal fibers that duplicate the outer shape of the fibers 40. And in the positive electrode core body, the external shape of the joint part of the fibers 40 in the nonwoven fabric is also replicated, and the metal fibers are joined together.

本実施形態では、正極芯体において、金属繊維の平均長は、40mm以上70mm以下の範囲にある。そして、図4を参照すると、金属繊維の外径Dmの平均値(平均外径)は、70μm超140μm以下の範囲にあり、金属材料のめっき厚さに対応する金属繊維の壁厚Tmの平均値(平均壁厚)は、4μm以上11μm以下の範囲にある。
また、正極芯体の単位面積当たりの質量、則ち目付量は、250g/m以上400g/m以下の範囲にある。
In this embodiment, in the positive electrode core body, the average length of the metal fibers is in the range of 40 mm to 70 mm. Then, referring to FIG. 4, the average value (average outer diameter) of the outer diameter Dm of the metal fibers is in the range of more than 70 μm and not more than 140 μm, and the average of the wall thickness Tm of the metal fibers corresponding to the plating thickness of the metal material. The value (average wall thickness) is in the range of 4 μm to 11 μm.
The mass per unit area of the positive electrode core, that is, the basis weight, is in the range of 250 g / m 2 to 400 g / m 2 .

正極芯体は、相互に連通した多数の空孔を有し、正極板24において、正極合剤は、これらの空孔内に充填された状態にて保持される。
正極板24は、以下のようにして作製することができる。
正極芯体に正極合剤になるペーストを充填し、ペーストを乾燥させる。それから、乾燥状態の正極合剤が充填された正極芯体を圧延して厚みを調整した後、所定の寸法に裁断し、正極板24が得られる。
The positive electrode core body has a large number of holes communicating with each other, and the positive electrode mixture is held in the positive electrode plate 24 in a state of being filled in these holes.
The positive electrode plate 24 can be produced as follows.
The positive electrode core is filled with a paste to be a positive electrode mixture, and the paste is dried. Then, after the positive electrode core body filled with the positive electrode mixture in a dry state is rolled to adjust the thickness, the positive electrode plate 24 is obtained by cutting into a predetermined dimension.

上述した正極板24、則ち非焼結式ニッケル極では、金属繊維の平均長が40mm以上70mm以下の範囲にあるため、金属繊維の平均長がこれより短い従来の非焼結式ニッケル極に比べて、導電性が高い。
そして、この正極板24によれば、金属繊維の平均長が長いことにより、巻回されたときに表面から突出する金属繊維の数が少ない。その上、金属繊維の平均壁厚が11μm以下であり、表面から突出する金属繊維の強度が低い。
In the above-described positive electrode plate 24, that is, the non-sintered nickel electrode, the average length of the metal fibers is in the range of 40 mm to 70 mm, so that the average length of the metal fibers is shorter than the conventional non-sintered nickel electrode. Compared with high conductivity.
And according to this positive electrode plate 24, since the average length of a metal fiber is long, there are few metal fibers which protrude from the surface when it is wound. In addition, the average wall thickness of the metal fibers is 11 μm or less, and the strength of the metal fibers protruding from the surface is low.

上述したニッケル水素二次電池は、正極板24の導電性が高いため、高率放電特性において優れている。また、導電性が高いことにより、正極板24では活物質の利用率が高く、このニッケル水素二次電池は長寿命である。更に、この正極板24によれば、巻回されたときに表面から突出する金属繊維の数が少なく、且つ、金属繊維の強度が低いので、金属繊維がセパレータ28を突き破ることが防止される。この結果として、このニッケル水素二次電池では、内部短絡も防止される。   The nickel hydride secondary battery described above is excellent in high rate discharge characteristics because the positive electrode plate 24 has high conductivity. Further, due to the high conductivity, the positive electrode plate 24 has a high utilization factor of the active material, and this nickel metal hydride secondary battery has a long life. Furthermore, according to this positive electrode plate 24, since the number of metal fibers protruding from the surface when wound is small and the strength of the metal fibers is low, the metal fibers are prevented from breaking through the separator 28. As a result, internal short circuit is also prevented in this nickel metal hydride secondary battery.

1.正極板の作製
まず、正極芯体としての金属体を以下のようにして作製した。
表1に示すa−1〜e4の条件でフェルト状の不織布の作製を試みた。これらの条件は、不織布の繊維の外径の平均値と長さの平均値において相互に異なっている。一方、いずれの条件でも、繊維はPPとPEの混合繊維であり、不織布の作製方法としては、乾式法を採用した。不織布の目付量は30g/mである。
1. Production of positive electrode plate First, a metal body as a positive electrode core was produced as follows.
An attempt was made to produce a felt-like nonwoven fabric under the conditions a-1 to e4 shown in Table 1. These conditions differ from each other in the average value of the outer diameter and the average value of the length of the fibers of the nonwoven fabric. On the other hand, under any condition, the fiber was a mixed fiber of PP and PE, and a dry method was adopted as a method for producing the nonwoven fabric. The basis weight of the nonwoven fabric is 30 g / m 2 .

ただし、上記条件のうち一部では、繊維を所定の長さにすることが困難であり、繊維及び不織布を作製することができなかった。
得られた不織布に、ニッケルを300g/mの目付量にてめっきした。それから、ニッケルめっきされた不織布を酸素の存在下で加熱して、PPとPEの混合繊維を分解した。続けて、残ったニッケルめっきを還元雰囲気下で焙焼し、ニッケルからなるフェルト状の3次元の網目構造を有する正極芯体を作製した。
However, in some of the above conditions, it was difficult to make the fiber a predetermined length, and the fiber and the nonwoven fabric could not be produced.
The resulting nonwoven fabric was plated with nickel at a basis weight of 300 g / m 2 . Then, the non-woven fabric plated with nickel was heated in the presence of oxygen to decompose the mixed fiber of PP and PE. Subsequently, the remaining nickel plating was roasted in a reducing atmosphere to produce a positive electrode core body having a felt-like three-dimensional network structure made of nickel.

得られた正極芯体における、金属繊維の平均外径、平均長、及び、平均壁厚を表2に示す。
一方、z−1及びz−2の条件では、フェルト状ではなく、発泡ウレタンを用意した。そして、発泡ウレタンに、ニッケルを300g/m及び400g/mの目付量にてそれぞれめっきした。それから、ニッケルめっきされた発泡ウレタンを酸素の存在下で加熱して、発泡ウレタンを分解した。続けて、残ったニッケルめっきを還元雰囲気下で焙焼し、ニッケルからなるスポンジ状の3次元の網目構造を有する正極芯体を作製した。
Table 2 shows the average outer diameter, average length, and average wall thickness of the metal fibers in the obtained positive electrode core.
On the other hand, under the conditions of z-1 and z-2, not urethane but urethane foam was prepared. Then, nickel was plated on the urethane foam at a basis weight of 300 g / m 2 and 400 g / m 2 , respectively. Then, the urethane foam plated with nickel was heated in the presence of oxygen to decompose the foamed urethane. Subsequently, the remaining nickel plating was roasted in a reducing atmosphere to produce a positive electrode core body having a sponge-like three-dimensional network structure made of nickel.

得られた正極芯体における、金属骨格の平均壁厚を表2に示す。
かくして得られた正極芯体としての金属体に、正極合剤になるペーストを充填し、ペーストを乾燥させた。そして、正極合剤が充填された金属体を、厚さが0.5mmになるよう圧延してから所定寸法に裁断し、正極板を作製した。
なお、ペーストは、活物質粉末100質量部に、濃度が0.3質量%のヒドロキシプロピルセルロース水溶液30質量部を添加混合して作製した。活物質粉末は、主成分として水酸化ニッケル粒子の表面に高導電性の被覆層が形成された粒子と、コバルト化合物とを含有する。被覆層はナトリウムを含有する高次コバルト化合物からなる。
Table 2 shows the average wall thickness of the metal skeleton in the obtained positive electrode core.
The metal body as the positive electrode core body thus obtained was filled with a paste to be a positive electrode mixture, and the paste was dried. And the metal body with which the positive mix was filled was rolled so that thickness might be set to 0.5 mm, and it cut | judged to the predetermined dimension, and produced the positive electrode plate.
The paste was prepared by adding and mixing 30 parts by mass of a hydroxypropyl cellulose aqueous solution having a concentration of 0.3% by mass to 100 parts by mass of the active material powder. The active material powder contains, as main components, particles having a highly conductive coating layer formed on the surface of nickel hydroxide particles and a cobalt compound. The coating layer is made of a higher cobalt compound containing sodium.

2.負極板の作製
市販の金属元素をMm1.0Ni3.4Co0.8Al0.2Mn0.6となるように秤量して混合したものを高周波溶解炉にて溶解し、この溶湯を鋳型に流し込んで水素吸蔵合金インゴットを作製した。そして、このインゴットを予め粗粉砕してから、不活性ガス雰囲気中で機械的に粉砕した。この後、粉砕された水素吸蔵合金の粉末を篩い分けし、平均粒径が50μm程度の水素吸蔵合金粉末を得た。
2. Production of Negative Electrode Plate A commercially available metal element was weighed and mixed so as to be Mm 1.0 Ni 3.4 Co 0.8 Al 0.2 Mn 0.6 and dissolved in a high-frequency melting furnace. Was poured into a mold to prepare a hydrogen storage alloy ingot. And this ingot was coarsely pulverized in advance and then mechanically pulverized in an inert gas atmosphere. Thereafter, the pulverized hydrogen storage alloy powder was sieved to obtain a hydrogen storage alloy powder having an average particle size of about 50 μm.

次に、得られた水素吸蔵合金粉末に、結着剤としてのポリエチレンオキサイド等、および、適量の水を加えて混合して負極合剤になるスラリーを作製し、このスラリーをパンチングメタルからなる負極芯体の両面に塗着して乾燥させた。それから、乾燥した負極合剤が両面に保持されたパンチングメタルを所定の厚みに圧延した後、所定寸法に切断して負極板を作製した。   Next, a polyethylene oxide or the like as a binder and an appropriate amount of water are added to and mixed with the obtained hydrogen storage alloy powder to prepare a slurry that becomes a negative electrode mixture, and this slurry is a negative electrode made of a punching metal. It was applied to both sides of the core and dried. Then, the punched metal in which the dried negative electrode mixture was held on both sides was rolled to a predetermined thickness, and then cut into a predetermined dimension to prepare a negative electrode plate.

3.電池の組立て
得られた正極板及び負極板を、セパレータとして厚み0.15mmのポリプロピレン製不織布を介して渦巻状に巻回して電極群を作製し、AAサイズの外装缶にこの電極群を挿入した。この後、蓋板に対する正極リードの取付工程を行うとともに、7.0Nのアルカリ電解液を外層缶内に注液した。このアルカリ電解液は、1.0NのLiOHと、1.0NのNaOHと、5.0NのKOHとを含む。それから、外装缶の開口縁をかしめて蓋板を固定し、容量が2000mAhであるAAサイズの円筒形のニッケル水素二次電池を作製した。
3. Assembling the battery The obtained positive electrode plate and negative electrode plate were spirally wound as a separator through a polypropylene non-woven fabric having a thickness of 0.15 mm to produce an electrode group, and this electrode group was inserted into an AA size outer can. . Then, while attaching the positive electrode lead to the cover plate, 7.0N alkaline electrolyte was injected into the outer layer can. This alkaline electrolyte contains 1.0 N LiOH, 1.0 N NaOH, and 5.0 N KOH. Then, the opening edge of the outer can was crimped to fix the cover plate, and an AA size cylindrical nickel metal hydride secondary battery having a capacity of 2000 mAh was produced.

4.電池の評価方法
(1)高率放電試験
得られた各電池について、25℃の周囲温度にて、200mA(0.1It)の充電電流で16時間充電を行ってから、25℃の周囲温度にて、20A(10It)の放電電流で0.6Vの放電終止電圧まで放電させた。この放電時に測定した各電池の平均作動電圧を、高率放電作動電圧として表2に示す。
4). Battery Evaluation Method (1) High Rate Discharge Test Each battery obtained was charged at an ambient temperature of 25 ° C. with a charging current of 200 mA (0.1 It) for 16 hours, and then at an ambient temperature of 25 ° C. Then, it was discharged to a discharge end voltage of 0.6 V with a discharge current of 20 A (10 It). The average operating voltage of each battery measured during this discharge is shown in Table 2 as a high rate discharge operating voltage.

(2)サイクル試験
得られた各電池について、2A(1.0It)の充電電流でdV制御(ΔV=−10mV)にて充電してから、30分の休止をおいて、5A(2.5It)の放電電流で0.8Vの終止電圧まで放電させる充放電サイクルを、放電容量が1200mAh以下になるまで繰り返し、そのサイクル数を測定した。この結果をサイクル寿命として表2に示す。
(3)短絡率
得られた電池のうち、(2)のサイクル試験の結果が550サイクル以上であったものと同じ仕様の各電池について、それぞれ10000個ずつ電池電圧の測定を行い、短絡不良の発生率を調べた。結果を表2に示す。
(2) Cycle test Each battery obtained was charged by dV control (ΔV = −10 mV) with a charging current of 2 A (1.0 It), and after a 30-minute pause, 5 A (2.5 It ) Was repeated until the discharge capacity was 1200 mAh or less, and the number of cycles was measured. The results are shown in Table 2 as the cycle life.
(3) Short-circuit rate Among the obtained batteries, for each battery having the same specifications as those in which the cycle test result of (2) was 550 cycles or more, the battery voltage was measured 10000 pieces each and the short-circuit failure was confirmed. The incidence was examined. The results are shown in Table 2.

Figure 2010108835
Figure 2010108835

Figure 2010108835
Figure 2010108835

5.評価結果
表2からは以下のことが明らかである。
(1)金属繊維平均外径が70μm超、かつ、金属繊維の平均長が40mm以上である実施例1及び2では、平均外径が70μm未満、且つ、平均長が40mm未満である比較例2及び3と比べて、短絡率が顕著に低い。これは、比較例2及び3で用いられた金属芯体は、相対的に多数の金属繊維を含み、正極板が巻回されたときに、正極板の表面から多数の金属繊維が突出したためと考えられる。
(2)また、実施例1、2、3及び4では、比較例1、2、3、4、5及び6と比べて、高率放電作動電圧が高く、そして、サイクル寿命が長い。これは、実施例1、2、3及び4で用いられた金属芯体の金属繊維平均長が40mm以上と長く、導電性が高いためと考えられる。
5). Evaluation results Table 2 clearly shows the following.
(1) In Examples 1 and 2 in which the average outer diameter of the metal fibers exceeds 70 μm and the average length of the metal fibers is 40 mm or more, Comparative Example 2 in which the average outer diameter is less than 70 μm and the average length is less than 40 mm Compared with 3 and 3, the short circuit rate is remarkably low. This is because the metal core used in Comparative Examples 2 and 3 includes a relatively large number of metal fibers, and when the positive electrode plate is wound, the large number of metal fibers protrude from the surface of the positive electrode plate. Conceivable.
(2) In Examples 1, 2, 3, and 4, the high rate discharge operating voltage is higher and the cycle life is longer than in Comparative Examples 1, 2, 3, 4, 5, and 6. This is presumably because the metal fiber average length of the metal core used in Examples 1, 2, 3, and 4 is as long as 40 mm or more, and the conductivity is high.

(3)金属繊維の平均壁厚が11μmを超えている比較例6、7、8及び9では、実施例3及び4と比べて、サイクル寿命が短い。これは、比較例6、7、8及び9では、金属繊維の本数が相対的に少なく、活物質の利用率が低下したためと考えられる。
(4)金属繊維の平均長が40mm以上70mm以下の範囲にあり、金属繊維の平均外径が70μm超140μm以下の範囲にあり、金属繊維の平均壁厚が4μm以上11μm以下の範囲にある実施例1〜4は、比較例1〜11に比べ、サイクル寿命が長い。
(3) In Comparative Examples 6, 7, 8 and 9, in which the average wall thickness of the metal fibers exceeds 11 μm, the cycle life is shorter than in Examples 3 and 4. This is presumably because in Comparative Examples 6, 7, 8 and 9, the number of metal fibers was relatively small, and the utilization factor of the active material was reduced.
(4) Implementation in which the average length of the metal fibers is in the range of 40 mm to 70 mm, the average outer diameter of the metal fibers is in the range of over 70 μm to 140 μm, and the average wall thickness of the metal fibers is in the range of 4 μm to 11 μm Examples 1 to 4 have a longer cycle life than Comparative Examples 1 to 11.

本発明は、上記した一実施形態及び実施例に限定されることはなく、種々変形が可能であり、例えば、アルカリ蓄電池の機械的な構造は、図1の構造に限定されることはない。   The present invention is not limited to the above-described embodiment and examples, and various modifications are possible. For example, the mechanical structure of the alkaline storage battery is not limited to the structure shown in FIG.

本発明の一実施形態に係るニッケル水素二次電池の部分切欠き斜視図である。It is a partial notch perspective view of the nickel-hydrogen secondary battery which concerns on one Embodiment of this invention. 図1の電池に用いられた正極板の正極芯体の作製に用いられる不織布の概略的な拡大図である。It is a schematic enlarged view of the nonwoven fabric used for preparation of the positive electrode core body of the positive electrode plate used for the battery of FIG. 図2の不織布の繊維の概略的な拡大図である。It is a schematic enlarged view of the nonwoven fabric fiber of FIG. 図1の電池に用いられた正極板の正極芯体を構成する金属繊維の概略的な断面図である。It is a schematic sectional drawing of the metal fiber which comprises the positive electrode core body of the positive electrode plate used for the battery of FIG.

符号の説明Explanation of symbols

10 外装缶
22 電極群
24 正極板(非焼結式ニッケル極)
26 負極板
28 セパレータ
10 outer can 22 electrode group 24 positive electrode plate (non-sintered nickel electrode)
26 Negative electrode plate 28 Separator

Claims (3)

中空の金属繊維によって構成される3次元の網目構造の芯体と、前記芯体に保持された活物質としてのニッケル酸化物を含む合剤とを備え、
前記金属繊維の平均外径は、70μm超140μm以下の範囲にあり、
前記金属繊維の平均長は、40mm以上70mm以下の範囲にあり、そして、
前記金属繊維の平均壁厚は、4μm以上11μm以下の範囲にある
ことを特徴とする非焼結式ニッケル極。
A core body having a three-dimensional network structure constituted by hollow metal fibers, and a mixture containing nickel oxide as an active material held by the core body,
The average outer diameter of the metal fiber is in the range of more than 70 μm and 140 μm or less,
The average length of the metal fibers is in the range of 40 mm to 70 mm, and
The non-sintered nickel electrode according to claim 1, wherein an average wall thickness of the metal fiber is in a range of 4 µm to 11 µm.
前記金属繊維は、有機材料からなる繊維を互いに密着させることにより形成された不織布に金属材料をめっきした後、前記有機材料を加熱分解して得られ、前記不織布の繊維の外形形状を複製した金属繊維であることを特徴とする非焼結式ニッケル極。   The metal fiber is obtained by plating a metal material on a nonwoven fabric formed by closely adhering fibers made of an organic material, and then thermally decomposing the organic material, and replicating the outer shape of the fiber of the nonwoven fabric. A non-sintered nickel electrode characterized by being a fiber. 請求項1又は2に記載の非焼結式ニッケル極と、負極と、アルカリ電解液とを備えることを特徴とするアルカリ蓄電池。   An alkaline storage battery comprising the non-sintered nickel electrode according to claim 1, a negative electrode, and an alkaline electrolyte.
JP2008281310A 2008-10-31 2008-10-31 Non-sintered nickel electrode and alkaline storage battery Expired - Fee Related JP5355038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281310A JP5355038B2 (en) 2008-10-31 2008-10-31 Non-sintered nickel electrode and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281310A JP5355038B2 (en) 2008-10-31 2008-10-31 Non-sintered nickel electrode and alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2010108835A true JP2010108835A (en) 2010-05-13
JP5355038B2 JP5355038B2 (en) 2013-11-27

Family

ID=42298067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281310A Expired - Fee Related JP5355038B2 (en) 2008-10-31 2008-10-31 Non-sintered nickel electrode and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP5355038B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04284360A (en) * 1991-03-14 1992-10-08 Toshiba Battery Co Ltd Nickel electrode for alkaline secondary battery
JPH05325979A (en) * 1991-02-18 1993-12-10 Toshiba Battery Co Ltd Nickel electrode for alkaline secondary battery
JPH05343069A (en) * 1992-06-03 1993-12-24 Japan Vilene Co Ltd Electrode substrate for battery and manufacture thereof
JPH09102317A (en) * 1995-10-05 1997-04-15 Toshiba Battery Co Ltd Alkaline secondary battery and its manufacture
JP2000353527A (en) * 1999-04-06 2000-12-19 Sumitomo Electric Ind Ltd Conductive porous body and metallic porous body and cell electrode plate using thereof
JP2001202969A (en) * 2000-01-17 2001-07-27 Toshiba Battery Co Ltd Alkaline secondary battery
JP2006040698A (en) * 2004-07-27 2006-02-09 Toyota Motor Corp Positive electrode for alkaline storage battery and alkaline storage battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325979A (en) * 1991-02-18 1993-12-10 Toshiba Battery Co Ltd Nickel electrode for alkaline secondary battery
JPH04284360A (en) * 1991-03-14 1992-10-08 Toshiba Battery Co Ltd Nickel electrode for alkaline secondary battery
JPH05343069A (en) * 1992-06-03 1993-12-24 Japan Vilene Co Ltd Electrode substrate for battery and manufacture thereof
JPH09102317A (en) * 1995-10-05 1997-04-15 Toshiba Battery Co Ltd Alkaline secondary battery and its manufacture
JP2000353527A (en) * 1999-04-06 2000-12-19 Sumitomo Electric Ind Ltd Conductive porous body and metallic porous body and cell electrode plate using thereof
JP2001202969A (en) * 2000-01-17 2001-07-27 Toshiba Battery Co Ltd Alkaline secondary battery
JP2006040698A (en) * 2004-07-27 2006-02-09 Toyota Motor Corp Positive electrode for alkaline storage battery and alkaline storage battery

Also Published As

Publication number Publication date
JP5355038B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP6132279B2 (en) Nickel metal hydride secondary battery
JP5119577B2 (en) Nickel metal hydride battery
JP3805876B2 (en) Nickel metal hydride battery
JP5959003B2 (en) Nickel metal hydride secondary battery and negative electrode for nickel metal hydride secondary battery
JP6422111B2 (en) Nickel metal hydride secondary battery
JP6730055B2 (en) Negative electrode for alkaline secondary battery, alkaline secondary battery including the negative electrode, and method for producing the negative electrode
KR20210044868A (en) Positive electrode for alkaline secondary battery and alkaline secondary battery containing the positive electrode
JPH10106550A (en) Hydrogen storage alloy electrode and its manufacture
JP5355038B2 (en) Non-sintered nickel electrode and alkaline storage battery
CN109768225B (en) Negative electrode for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery comprising same
JP2001266867A (en) Alkaline battery and positive electrode for use in alkaline battery
JP2001118597A (en) Alkaline secondary cell
WO2018116574A1 (en) Alkaline storage battery
JP2000012011A (en) Manufacture of nickel-hydrogen storage battery
JP2000200612A (en) Rectangular alkaline secondary battery
US20070077489A1 (en) Positive electrode for an alkaline battery
JP6049048B2 (en) Nickel metal hydride secondary battery
JP2020024784A (en) Alkaline storage battery
JP2733230B2 (en) Sealed nickel-hydrogen storage battery using hydrogen storage alloy
JPH04160763A (en) Nickel hydrogen secondary battery
JPH11297353A (en) Manufacture of nickel-hydrogen secondary battery
WO2001075993A1 (en) Nickel positive electrode plate and alkaline storage battery
JP5258375B2 (en) Cylindrical alkaline secondary battery
JP2021185560A (en) Negative electrode for zinc battery and zinc battery
JP2005183339A (en) Nickel electrode for alkaline storage battery and alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130827

LAPS Cancellation because of no payment of annual fees