JP2010107950A - Focus detecting device - Google Patents

Focus detecting device Download PDF

Info

Publication number
JP2010107950A
JP2010107950A JP2009184476A JP2009184476A JP2010107950A JP 2010107950 A JP2010107950 A JP 2010107950A JP 2009184476 A JP2009184476 A JP 2009184476A JP 2009184476 A JP2009184476 A JP 2009184476A JP 2010107950 A JP2010107950 A JP 2010107950A
Authority
JP
Japan
Prior art keywords
light
reflective
focus detection
light source
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009184476A
Other languages
Japanese (ja)
Other versions
JP2010107950A5 (en
Inventor
Yasuharu Nakajima
康晴 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2009184476A priority Critical patent/JP2010107950A/en
Publication of JP2010107950A publication Critical patent/JP2010107950A/en
Publication of JP2010107950A5 publication Critical patent/JP2010107950A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Focus Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a focus detecting device which has a small number of parts and a simple configuration and is reduced in size and cost and capable of automatic focusing. <P>SOLUTION: The focus detecting device 100 is configured to include a reflecting optical element 20 having: a first reflecting surface 20a which is arranged on the side of a light source 10 for irradiating a target 60 with light and reflects the light from the light source 10, to guide it in an optical axial direction; and a second reflecting surface 20b which is arranged on the side of a photodetecting means 80 for detecting the displacement amount of the light reflected by the target 60 from an optical axis and reflects the light from the target 60, to guide it to the photodetecting means 80. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、焦点検出装置に関する。   The present invention relates to a focus detection apparatus.

従来、落射照明型顕微鏡に用いられる焦点検出装置としては、レーザーダイオード等の点光源、若しくはスリットパターン等を被検物体に投影し、その反射像を受光素子で検出する方式が知られている(例えば、特許文献1参照)。この従来の焦点検出装置での焦点検出手順について図15を用いて説明する。光源1から放射される光束は、遮光板2により光束を半分にされ、コリメータレンズ3で平行光に変換され、ハーフミラー4で反射された後、対物レンズ5により被検物体6上に結像している。被検物体6で反射された光は再び対物レンズ5を通り、ハーフミラー4を透過して、集光レンズ7により2分割受光素子8上に結像している。2分割受光素子8では、2つの受光領域8a,8bへの入射光量の差から焦点ずれの方向と、ずれ量を検出する。この焦点ずれの方向及びずれ量から対物レンズ5、または被検物体6を光軸方向に移動させて合焦点位置に位置決めを行っている。   Conventionally, as a focus detection device used for an epi-illumination microscope, a method of projecting a point light source such as a laser diode or a slit pattern onto a test object and detecting a reflected image by a light receiving element is known ( For example, see Patent Document 1). A focus detection procedure in this conventional focus detection apparatus will be described with reference to FIG. The light beam emitted from the light source 1 is halved by the light shielding plate 2, converted into parallel light by the collimator lens 3, reflected by the half mirror 4, and then formed on the object 6 by the objective lens 5. is doing. The light reflected by the test object 6 passes through the objective lens 5 again, passes through the half mirror 4, and forms an image on the two-divided light receiving element 8 by the condenser lens 7. The two-divided light receiving element 8 detects the direction of defocus and the amount of deviation from the difference in the amount of incident light to the two light receiving areas 8a and 8b. The objective lens 5 or the test object 6 is moved in the direction of the optical axis based on the direction and amount of defocus to position the in-focus position.

米国特許第3721827号U.S. Pat. No. 3,721,827

しかしながら、このような焦点検出装置においては、光学系の構造が複雑であるため製造コストが高価になるとともに、装置が大型化するという課題があった。   However, such a focus detection apparatus has a problem that the manufacturing cost is high because the structure of the optical system is complicated, and the apparatus becomes large.

本発明はこのような課題に鑑みてなされたものであり、簡素な構成により小型化、低コスト化を実現することができる焦点検出装置を提供することを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a focus detection apparatus that can achieve downsizing and cost reduction with a simple configuration.

前記課題を解決するために、本発明に係る焦点検出装置は、被検物体に光を照射するための光源と、被検物体で反射された光の光軸からの変位量を検出するための光検出手段と、光源側に配置され、光源からの光を反射して光軸方向に導く第1の反射面、及び、光検出手段側に配置され、被検物体からの光を反射し光検出手段に導く第2の反射面を有する反射光学素子と、を有して構成される。   In order to solve the above-described problems, a focus detection apparatus according to the present invention is a light source for irradiating light to a test object, and a displacement amount from the optical axis of light reflected by the test object. Light detection means, a first reflection surface arranged on the light source side, reflecting the light from the light source and guiding it in the direction of the optical axis, and arranged on the light detection means side, reflecting light from the object to be detected and reflecting light And a reflecting optical element having a second reflecting surface that leads to the detecting means.

このような焦点検出装置において、第1の反射面は光源を通る線を回転軸とするコーニック面であり、第2の反射面は光検出手段を通る線を回転軸とするコーニック面であることが好ましい。   In such a focus detection apparatus, the first reflection surface is a conic surface having a line passing through the light source as a rotation axis, and the second reflection surface is a conic surface having a line passing through the light detection means as the rotation axis. Is preferred.

また、このような焦点検出装置において、第1の反射面は、光源及び光軸上にあって被検物体と共役な像点を焦点とし、当該2つの焦点を結ぶ線を回転軸とする回転楕円面の一部であり、第2の反射面は、像点及び光検出手段を焦点とし、当該2つの焦点を結ぶ線を回転軸とする回転楕円面の一部であることが好ましい。   In such a focus detection apparatus, the first reflecting surface is on the light source and the optical axis and has an image point conjugate with the object to be examined as a focal point, and a rotation with a line connecting the two focal points as a rotation axis. The second reflecting surface, which is a part of the ellipsoid, is preferably a part of the ellipsoid having the image point and the light detection means as a focal point, and a line connecting the two focal points as a rotation axis.

また、このような焦点検出装置において、第1の反射面は、光源を焦点とし、当該焦点を通り光軸に平行な線を回転軸とする回転放物面の一部であり、第2の反射面は、光検出手段を焦点とし、当該焦点を通り光軸に平行な線を回転軸とする回転放物面の一部であることが好ましい。   In such a focus detection apparatus, the first reflecting surface is a part of a rotating paraboloid having a light source as a focal point and a line passing through the focal point and parallel to the optical axis as a rotation axis. The reflecting surface is preferably a part of a paraboloid of revolution having a light detection means as a focal point and a line passing through the focal point and parallel to the optical axis as a rotation axis.

また、このような焦点検出装置において、第1の反射面は、光源及び光軸上であって被検物体と共役な像点を焦点とし、当該2つの焦点を結ぶ線を回転軸とする回転双曲面の一部であり、第2の反射面は、像点及び光検出手段を焦点とし、当該2つの焦点を結ぶ線を回転軸とする回転双曲面の一部であることが好ましい。   Further, in such a focus detection apparatus, the first reflecting surface rotates on the light source and the optical axis, with the image point conjugate with the object to be detected as the focus, and with the line connecting the two focal points as the rotation axis. A part of the hyperboloid, and the second reflecting surface is preferably a part of a rotating hyperboloid having the image point and the light detection means as a focal point and a line connecting the two focal points as a rotation axis.

また、このような焦点検出装置において、反射光学素子は、被検物体を観察するための対物レンズの瞳面と共役に配置され、反射光学素子の有効径をφ1、対物レンズの瞳径をφ2、反射光学素子から対物レンズの瞳への倍率をβとしたとき、次式
φ2 = βφ1
の条件を満足するように構成されていることが好ましい。
Further, in such a focus detection apparatus, the reflective optical element is disposed in a conjugate manner with the pupil plane of the objective lens for observing the object to be examined, the effective diameter of the reflective optical element is φ 1 , and the pupil diameter of the objective lens is φ 2 , where β is the magnification from the reflecting optical element to the pupil of the objective lens, φ 2 = βφ 1
It is preferable to be configured to satisfy the above condition.

また、このような焦点検出装置において、第1の反射面及び第2の反射面は、被検物体からの光束の一部を反射し、残りを透過する半反射面であることが好ましい。   In such a focus detection apparatus, the first reflection surface and the second reflection surface are preferably semi-reflective surfaces that reflect a part of the light beam from the object to be measured and transmit the rest.

このとき、半反射面は、光束の偏光特性に応じて一部を反射し、残りを透過する偏光分離面であることが好ましい。   At this time, the semi-reflective surface is preferably a polarization separation surface that reflects part of the semi-reflective surface according to the polarization characteristics of the light beam and transmits the remaining light.

あるいは、半反射面は、光束の波長に応じて一部を反射し、残りを透過する波長選択面であることが好ましい。   Alternatively, the semi-reflective surface is preferably a wavelength selection surface that reflects part of the light depending on the wavelength of the light beam and transmits the rest.

また、このような焦点検出装置は、光源、反射光学素子、及び、光検出手段を保持する保持部材を更に有し、この保持部材を構成する材料の熱膨張率は、反射光学素子を構成する材料の熱膨張率に略等しいことが好ましい。   Further, such a focus detection apparatus further includes a light source, a reflection optical element, and a holding member that holds the light detection means, and the coefficient of thermal expansion of the material constituting the holding member constitutes the reflection optical element. It is preferable to be approximately equal to the coefficient of thermal expansion of the material.

本発明に係る焦点検出装置を以上のように構成すると、従来に比べ部品点数が少なく簡素な構成で小型化、低コスト化を実現でき、かつ、自動焦点調節が可能となる。   When the focus detection apparatus according to the present invention is configured as described above, it is possible to achieve downsizing and cost reduction with a simple configuration with a smaller number of parts than in the past, and automatic focus adjustment is possible.

第1の実施形態に係る焦点検出装置の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the focus detection apparatus which concerns on 1st Embodiment. 第1の実施形態における反射光学素子の構成を説明するための説明図であり、(a)は反射光学素子の正面図、平面図、及び左右の側面図を示し、(b)は(a)のH−H′線における断面図を示し、(c)は反射光学素子の斜視図を示す。It is explanatory drawing for demonstrating the structure of the reflective optical element in 1st Embodiment, (a) shows the front view, top view, and left and right side view of a reflective optical element, (b) is (a). FIG. 5C is a cross-sectional view taken along line H-H ′, and FIG. 5C is a perspective view of the reflective optical element. 第1の実施形態に係る焦点検出装置を有する顕微鏡光学系の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the microscope optical system which has the focus detection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る焦点検出装置を有する他の顕微鏡光学系の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the other microscope optical system which has the focus detection apparatus which concerns on 1st Embodiment. 第1の実施形態に係る焦点検出装置を、有限遠対物レンズに適用したものの構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of what applied the focus detection apparatus which concerns on 1st Embodiment to a finite objective lens. 第2の実施形態に係る焦点検出装置の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the focus detection apparatus which concerns on 2nd Embodiment. 第2の実施形態における反射光学素子の構成を説明するための説明図であり、(a)は反射光学素子の正面図、平面図、及び左右の側面図を示し、(b)は(a)のH−H′線における断面図を示し、(c)は反射光学素子の斜視図を示す。It is explanatory drawing for demonstrating the structure of the reflective optical element in 2nd Embodiment, (a) shows the front view, top view, and left and right side view of a reflective optical element, (b) is (a). FIG. 5C is a cross-sectional view taken along line H-H ′, and FIG. 5C is a perspective view of the reflective optical element. 第3の実施形態に係る焦点検出装置の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the focus detection apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る焦点検出装置を、スリットパターンを投影する光学系に適用したものの構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of what applied the focus detection apparatus which concerns on 3rd Embodiment to the optical system which projects a slit pattern. 第4の実施形態に係る焦点検出装置の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the focus detection apparatus which concerns on 4th Embodiment. 第5の実施形態に係る焦点検出装置の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the focus detection apparatus which concerns on 5th Embodiment. 第6の実施形態に係る焦点検出装置の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the focus detection apparatus which concerns on 6th Embodiment. 第6の実施形態における反射光学素子の構成を説明するための説明図であり、(a)は反射光学素子の正面図、平面図、及び左右の側面図を示し、(b)は(a)のH−H′線における断面図を示し、(c)は反射光学素子の斜視図を示す。It is explanatory drawing for demonstrating the structure of the reflective optical element in 6th Embodiment, (a) shows the front view of a reflective optical element, a top view, and the side view on either side, (b) shows (a). FIG. 5C is a cross-sectional view taken along line H-H ′, and FIG. 5C is a perspective view of the reflective optical element. 第6の実施形態に係る焦点検出装置を、無限遠対物レンズに適用したものの構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of what applied the focus detection apparatus which concerns on 6th Embodiment to the infinity objective lens. 従来技術に係る焦点検出装置の構成を示すレンズ構成図である。It is a lens block diagram which shows the structure of the focus detection apparatus which concerns on a prior art.

以下、本発明の好ましい実施形態について図面を参照して説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)
まず、図1を用いて、第1の実施形態に係る焦点検出装置の構成について説明する。この図1に示す焦点検出装置100は、被検物体60に光を照射するための光源10と、反射光学素子20と、対物レンズ50と、被検物体60で反射された光の光軸からの変位量を検出するための光検出手段としての2分割受光素子80とを有して構成されている。
(First embodiment)
First, the configuration of the focus detection apparatus according to the first embodiment will be described with reference to FIG. The focus detection apparatus 100 shown in FIG. 1 includes a light source 10 for irradiating a test object 60 with light, a reflection optical element 20, an objective lens 50, and an optical axis of light reflected by the test object 60. And a two-divided light receiving element 80 as a light detecting means for detecting the amount of displacement.

反射光学素子20は、光源10側に配置され、この光源10からの光を反射して光軸方向に導く第1の反射面20aと、2分割受光素子80側に配置され、被検物体60からの光を反射し2分割受光素子80に導く第2の反射面20bとを有して構成されている。   The reflective optical element 20 is disposed on the light source 10 side, and is disposed on the first reflecting surface 20a that reflects light from the light source 10 and guides the light in the optical axis direction, and the two-divided light receiving element 80 side, and the object 60 to be inspected. And a second reflecting surface 20 b that reflects the light from the light and guides it to the two-divided light receiving element 80.

図1に示すように、光源10から放射される光束は、反射光学素子20の第1の反射面20aで反射されて平行光に変換され、対物レンズ50に入射する。この第1の実施形態に係る対物レンズ50は無限遠対物レンズであり、反射光学素子20からの平行光を被検物体60上に集光して光源像を結像している。被検物体60で反射された光は、再び対物レンズ50を通り、平行光となって反射光学素子20の第2の反射面20bに入射する。この第2の反射面20bで反射された光束は、2分割受光素子80に集光する。この2分割受光素子80は、隣接する2つの受光領域80a,80bを有し、これらの受光領域80a,80bの境界が、この焦点検出装置100の光軸上に位置するように配置されている。そのため、2分割受光素子80では、2つの受光領域80a,80bへの入射光量の差(すなわち、被検物体60上で反射された光源10の像の光軸からのずれ量)から焦点ずれの方向と、そのずれ量を検出することができる。この焦点ずれの方向及びずれ量から対物レンズ50、または被検物体60を光軸方向に移動させて合焦点位置に位置決めを行う。   As shown in FIG. 1, the light beam emitted from the light source 10 is reflected by the first reflecting surface 20 a of the reflective optical element 20, converted into parallel light, and enters the objective lens 50. The objective lens 50 according to the first embodiment is an infinite objective lens, and focuses the parallel light from the reflective optical element 20 on the object 60 to form a light source image. The light reflected by the test object 60 passes through the objective lens 50 again and becomes parallel light and enters the second reflecting surface 20b of the reflecting optical element 20. The light beam reflected by the second reflecting surface 20 b is condensed on the two-divided light receiving element 80. The two-divided light receiving element 80 has two adjacent light receiving regions 80a and 80b, and is arranged such that the boundary between the light receiving regions 80a and 80b is located on the optical axis of the focus detection apparatus 100. . Therefore, in the two-divided light receiving element 80, defocusing is caused by the difference in the amount of incident light on the two light receiving regions 80a and 80b (that is, the amount of deviation from the optical axis of the image of the light source 10 reflected on the object 60). The direction and the amount of deviation can be detected. The objective lens 50 or the test object 60 is moved in the direction of the optical axis based on the direction and amount of defocus to position the in-focus position.

図2に、第1の実施形態における反射光学素子20の詳細な構成を示す。この反射光学素子20は光源10からの光を反射して光軸C方向に導く第1の反射面20aと、被検物体60からの光を反射して2分割受光素子80に導く第2の反射面20bとを有している。ここで、第1の反射面20aは、光源10を通り光軸Cと平行な直線l1を回転軸として放物線を回転することで得られる回転放物面Paの部分領域であって、この回転放物面Paの焦点Faに光源10が配置されている。また、反射面20bは、2分割受光素子80を通り光軸Cと平行な直線l2を回転軸として放物線を回転することで得られる回転放物面Pbの部分領域であって、回転放物面Pbの焦点Fbに2分割受光素子80が配置されている。このように構成することで、光源10から放射される光束を平行光に変換し、光軸Cの方向に導くことができる。また、被検物体60で反射された光は対物レンズ50により平行光となった後、2分割受光素子80上に集光する。 FIG. 2 shows a detailed configuration of the reflective optical element 20 in the first embodiment. The reflection optical element 20 reflects the light from the light source 10 and guides it in the direction of the optical axis C, and the second reflection surface 20a reflects the light from the object 60 and guides it to the two-divided light receiving element 80. And a reflecting surface 20b. Here, the first reflecting surface 20a is a partial region of the rotating paraboloid Pa obtained by rotating the parabola around the straight line l 1 passing through the light source 10 and parallel to the optical axis C as a rotation axis. The light source 10 is disposed at the focal point Fa of the paraboloid Pa. The reflecting surface 20b is a partial region of the rotating paraboloid Pb obtained by rotating the parabola with the straight line l 2 passing through the two-divided light receiving element 80 and parallel to the optical axis C as the rotation axis. A two-divided light receiving element 80 is disposed at the focal point Fb of the surface Pb. With this configuration, the light beam emitted from the light source 10 can be converted into parallel light and guided in the direction of the optical axis C. Further, the light reflected by the test object 60 is collimated by the objective lens 50 and then condensed on the two-divided light receiving element 80.

反射光学素子20は、ガラス表面にクロムやアルミニウムを蒸着したもの、金属の板金加工、切削加工等により反射鏡形状を形成したもの、熱可塑性樹脂によるモールド成型品の表面にクロムやアルミニウムを蒸着したものなどを用いることが好ましい。このように、この第1の実施形態においては、外面に反射面(20a,20b)を設け、外面反射タイプの反射光学素子20としている。   The reflective optical element 20 is made by vapor-depositing chromium or aluminum on a glass surface, formed by reflecting metal plate processing, cutting processing, etc., or vapor-depositing chromium or aluminum on the surface of a molded product made of a thermoplastic resin. It is preferable to use things. As described above, in the first embodiment, the reflection surfaces (20a, 20b) are provided on the outer surface, and the reflection optical element 20 of the outer surface reflection type is obtained.

このとき、材料の熱膨張により反射面20a,20bの焦点ズレが生じることを防ぐため、光源10、反射光学素子20及び2分割受光素子80を保持する不図示の保持部材は、熱膨張率が反射光学素子を構成する材料の熱膨張率に略等しい材料であることが望ましい。即ち、熱膨張により反射面20a,20bの焦点距離が変化した分、保持部材の大きさも変化することにより、反射光学素子20と光源10、2分割受光素子80の共役関係を保つよう比例拡大(縮小)するよう構成されることで、装置を使用する温度環境によらず安定した焦点検出をおこなうことが可能となる。   At this time, in order to prevent the focal planes of the reflecting surfaces 20a and 20b from being caused by thermal expansion of the material, the holding member (not shown) that holds the light source 10, the reflecting optical element 20, and the two-divided light receiving element 80 has a coefficient of thermal expansion. It is desirable that the material is substantially equal to the coefficient of thermal expansion of the material constituting the reflective optical element. That is, the size of the holding member is changed by the amount of change in the focal length of the reflecting surfaces 20a and 20b due to thermal expansion, so that the proportional enlargement is performed so as to maintain the conjugate relationship between the reflecting optical element 20 and the light source 10 and the two-divided light receiving element 80 By being configured so that the image is reduced, stable focus detection can be performed regardless of the temperature environment in which the apparatus is used.

なお、実際の無限遠対物レンズを用いた顕微鏡光学系においては、上述の焦点検出装置100のほかに、被検物体60からの光により対物レンズ及び第2対物レンズで被検物体60の拡大像を結像し、この拡大像を観察する観察光学系、及び被検物体60を照明する観察用照明光学系を具備している。これについて図3及び図4を参照して説明する。   In the microscope optical system using an actual infinity objective lens, in addition to the focus detection device 100 described above, an enlarged image of the test object 60 by the objective lens and the second objective lens by light from the test object 60. And an observation optical system for observing the magnified image, and an observation illumination optical system for illuminating the object 60 to be examined. This will be described with reference to FIGS.

図3に示す顕微鏡光学系500は、図1に示した焦点検出装置100の光学系に加えて観察光学系300を構成するために、一部の光を反射し残りの光を透過する第1の分割ミラー40及び第2の分割ミラー41と、観察用照明光学系200と、第2対物レンズ70とを更に有している。また、観察用照明光学系200は、観察用光源201と集光レンズ202とを有して構成されている。この観察用照明光学系200から放出された光は第1の分割ミラー41及び第2の分割ミラー40で反射され、対物レンズ50で被検物体60上に集光されて照射される。被検物体60から反射した光は、対物レンズ50により略平行化された後、第1の分割ミラー40で反射し、第2の分割ミラー41を透過して第2対物レンズ70により被検物体60の拡大像Iを結像する。拡大像Iは不図示の接眼レンズを通して目視で観察されるか、或いは不図示の2次元撮像素子(CCD等)により撮像される。   3 constitutes the observation optical system 300 in addition to the optical system of the focus detection apparatus 100 shown in FIG. 1, and reflects a part of light and transmits the remaining light. The splitting mirror 40 and the second splitting mirror 41, the observation illumination optical system 200, and the second objective lens 70 are further provided. The observation illumination optical system 200 includes an observation light source 201 and a condensing lens 202. The light emitted from the observation illumination optical system 200 is reflected by the first split mirror 41 and the second split mirror 40, collected by the objective lens 50 onto the object 60 to be irradiated. The light reflected from the test object 60 is substantially collimated by the objective lens 50, reflected by the first split mirror 40, transmitted through the second split mirror 41, and the test object by the second objective lens 70. 60 enlarged images I are formed. The magnified image I is visually observed through an eyepiece (not shown), or captured by a two-dimensional image sensor (CCD or the like) not shown.

ここで、観察光学系300の光路と焦点検出装置100の光学系の光路を分割する為の第1の分割ミラー40は、光の波長により選択的に光を透過または反射するダイクロイックミラーを用いるのが望ましい。例えば、光源10の放射する光の波長を赤外光とし、観察用照明光学系200の観察用光源201の放射する光の波長を可視光とした場合、第1の分割ミラー40を、可視光を反射し、赤外光を透過するダイクロイックミラーとすることで、観察光学系300の光路(可視光)と焦点検出装置100の光学系の光路(赤外光)とを分岐することが可能となる。   Here, the first split mirror 40 for splitting the optical path of the observation optical system 300 and the optical path of the optical system of the focus detection apparatus 100 uses a dichroic mirror that selectively transmits or reflects light according to the wavelength of light. Is desirable. For example, when the wavelength of light emitted from the light source 10 is infrared light and the wavelength of light emitted from the observation light source 201 of the observation illumination optical system 200 is visible light, the first split mirror 40 is made visible light. By using a dichroic mirror that reflects infrared light and transmits infrared light, the optical path of the observation optical system 300 (visible light) and the optical path of the optical system of the focus detection apparatus 100 (infrared light) can be branched. Become.

図3に示す顕微鏡光学系500においては、第1の分割ミラー40で反射する光路を観察用照明光学系200及び観察光学系300とし、透過する光路を焦点検出装置100の光学系としたが、図4に示す顕微鏡光学系500′のように、反射する光路を焦点検出装置100の光学系とし、透過する光路を観察用照明光学系200及び観察光学系300としてもよい。   In the microscope optical system 500 shown in FIG. 3, the optical path reflected by the first split mirror 40 is the observation illumination optical system 200 and the observation optical system 300, and the optical path that is transmitted is the optical system of the focus detection apparatus 100. As in the microscope optical system 500 ′ shown in FIG. 4, the reflected optical path may be the optical system of the focus detection apparatus 100, and the transmitted optical path may be the observation illumination optical system 200 and the observation optical system 300.

なお本実施の形態において、対物レンズ50は無限遠対物レンズであるとしたが、図5に示すように、有限遠対物レンズに適用することも可能である。図5に示す焦点検出装置110は、光源10、反射光学素子20、対物レンズ51、2分割受光素子80、及び、集光レンズ90から構成されている。   In the present embodiment, the objective lens 50 is an infinite objective lens. However, as shown in FIG. 5, the objective lens 50 can be applied to a finite objective lens. A focus detection apparatus 110 shown in FIG. 5 includes a light source 10, a reflective optical element 20, an objective lens 51, a split light receiving element 80, and a condenser lens 90.

光源10から放射される光束は、反射光学素子20の第1の反射面20aで反射され平行光に変換された後、集光レンズ90に入射する。この集光レンズ90は、その焦点が対物レンズ51の像面上の点Fcに位置するよう配置されており、集光レンズ90に入射した平行光は対物レンズ51の像面上(点Fc)に集光し光源10の像を結像する。対物レンズ51は有限遠対物レンズであり、この対物レンズ51の像面上に集光した光源像を被検物体60上に結像している。被検物体60で反射された光は再び対物レンズ51を通り、像面上(点Fc)で一端集光したのち集光レンズ90により平行光に変換され反射光学素子20の第2の反射面20bに入射する。そして、この第2の反射面20bで反射された光束は2分割受光素子80に集光する。2分割受光素子80では、2つの受光領域80a,80bへの入射光量の差から焦点ずれの方向と、ずれ量を検出し、この焦点ずれの方向及びずれ量から対物レンズ51、または被検物体60を光軸方向に移動させて合焦点位置に位置決めを行う。   The light beam emitted from the light source 10 is reflected by the first reflecting surface 20 a of the reflective optical element 20 and converted into parallel light, and then enters the condenser lens 90. The condensing lens 90 is arranged so that its focal point is located at a point Fc on the image plane of the objective lens 51, and the parallel light incident on the condensing lens 90 is on the image plane of the objective lens 51 (point Fc). And an image of the light source 10 is formed. The objective lens 51 is a finite objective lens, and a light source image condensed on the image plane of the objective lens 51 is formed on the object 60 to be examined. The light reflected by the object to be examined 60 passes through the objective lens 51 again, is condensed once on the image plane (point Fc), and then converted into parallel light by the condenser lens 90 to be converted into the parallel light by the second reflective surface of the reflective optical element 20. 20b. The light beam reflected by the second reflecting surface 20 b is condensed on the two-divided light receiving element 80. The two-divided light receiving element 80 detects the direction and amount of defocus from the difference in the amount of incident light to the two light receiving regions 80a and 80b, and the objective lens 51 or the object to be tested is detected from the direction and amount of defocus. 60 is moved in the direction of the optical axis and positioned at the in-focus position.

(第2の実施形態)
次に、図6を参照して第2の実施形態に係る焦点検出装置120の構成について説明する。なお、この図6及び以降の図においても、図1に示す焦点検出装置100と同じ機能の構成要素は同じ符号を付し、詳細な説明は省略する。この第2の実施形態における焦点検出装置120は、光源10、反射光学素子21、対物レンズ51、及び、2分割受光素子80から構成されている。
(Second Embodiment)
Next, the configuration of the focus detection apparatus 120 according to the second embodiment will be described with reference to FIG. In FIG. 6 and subsequent drawings, the same reference numerals are given to components having the same functions as those of the focus detection apparatus 100 shown in FIG. 1, and detailed description thereof will be omitted. The focus detection apparatus 120 according to the second embodiment includes a light source 10, a reflective optical element 21, an objective lens 51, and a two-divided light receiving element 80.

図6に示すように、光源10から放射される光束は、反射光学素子21の第1の反射面21aで反射され、対物レンズ51の像面上(点Fc)に集光された後、対物レンズ51に入射する。第2の実施形態に係る対物レンズ51は有限遠対物レンズであり、反射光学素子21からの光を被検物体60上で集光し、光源10の像を結像する。被検物体60で反射された光は再び対物レンズ51を通り、この対物レンズ51の像面上に集光された後、反射光学素子21の第2の反射面21bに入射する。そして、第2の反射面21bで反射された光束は、2分割受光素子80上に集光する。この2分割受光素子80では、第1の実施形態で説明したように、2つの受光領域80a,80bへの入射光量の差から焦点ずれの方向と、ずれ量を検出し、この焦点ずれの方向及びずれ量から対物レンズ51、または被検物体60を移動させて合焦点位置に位置決めを行う。   As shown in FIG. 6, the light beam emitted from the light source 10 is reflected by the first reflecting surface 21 a of the reflecting optical element 21, condensed on the image plane (point Fc) of the objective lens 51, and then the objective. The light enters the lens 51. The objective lens 51 according to the second embodiment is a finite objective lens, and condenses the light from the reflective optical element 21 on the test object 60 to form an image of the light source 10. The light reflected by the test object 60 passes through the objective lens 51 again, is condensed on the image plane of the objective lens 51, and then enters the second reflecting surface 21b of the reflecting optical element 21. Then, the light beam reflected by the second reflecting surface 21 b is condensed on the two-divided light receiving element 80. As described in the first embodiment, the two-divided light receiving element 80 detects the direction of defocus and the amount of deviation from the difference in the amount of incident light to the two light receiving regions 80a and 80b, and this defocus direction. Then, the objective lens 51 or the test object 60 is moved from the amount of deviation and positioned at the in-focus position.

図7に、本実施の形態における反射光学素子21の詳細な構成を示す。この反射光学素子21は光源10からの光を反射して光軸C上の点Fcへ導く第1の反射面21aと、光軸C上の点Fcからの光を反射して2分割受光素子80に導く第2の反射面21bとを有している。ここで、第1の反射面21aは、点Faと光軸上の点Fcとをそれぞれ焦点とする楕円を、Fa,Fcを通る線m1を回転軸として回転することで得られる回転楕円面haの部分領域であって、この回転楕円面haの焦点Faに光源10が配置され、点Fcに像面が位置するよう対物レンズ51が配置されている。また、第2の反射面21bは、点Fbと点Fcとをそれぞれ焦点とする楕円を、Fb,Fcを通る線m2を回転軸として回転することで得られる回転楕円面hbの部分領域であって、回転楕円面hbの焦点Fbに2分割受光素子80が配置され、像面がFcに位置するよう対物レンズ51が配置されている。このように構成することで、図6に示すように、光源10から放射される光束を対物レンズ51の像面上の点Fcに集光することができる。また、被検物体60で反射された光は対物レンズ51により像面上の点Fcに集光したのち、2分割受光素子80上に集光する。 FIG. 7 shows a detailed configuration of the reflective optical element 21 in the present embodiment. The reflective optical element 21 reflects the light from the light source 10 and guides it to the point Fc on the optical axis C, and reflects the light from the point Fc on the optical axis C to reflect the two-divided light receiving element. And a second reflecting surface 21 b led to 80. Here, the first reflecting surface 21a is an ellipsoid obtained by rotating an ellipse having the point Fa and the point Fc on the optical axis as focal points, and a line m 1 passing through Fa and Fc as a rotation axis. The light source 10 is disposed at the focal point Fa of the spheroid ha, and the objective lens 51 is disposed such that the image plane is located at the point Fc. The second reflective surface 21b is the point Fb and the point Fc of the ellipse and the focal point, respectively, Fb, the line m 2 passing through the Fc in partial regions of the spheroid hb obtained by rotating a rotation axis Thus, the two-divided light receiving element 80 is disposed at the focal point Fb of the spheroid ellipsoid hb, and the objective lens 51 is disposed such that the image plane is located at Fc. With this configuration, the light beam emitted from the light source 10 can be condensed on the point Fc on the image plane of the objective lens 51 as shown in FIG. Further, the light reflected by the test object 60 is condensed on the point Fc on the image plane by the objective lens 51 and then condensed on the two-divided light receiving element 80.

(第3の実施形態)
次に、図8を参照して第3の実施形態に係る焦点検出装置130の構成について説明する。この第3の実施形態における焦点検出装置130は、光源10、第2の実施形態で示した反射光学素子21、対物レンズ50、2分割受光素子80、及び、集光レンズ90から構成されている。この焦点検出装置130において、集光レンズ90は、その焦点が第2の実施形態で説明した点Fc上に位置するように配置されている。
(Third embodiment)
Next, the configuration of the focus detection apparatus 130 according to the third embodiment will be described with reference to FIG. The focus detection device 130 in the third embodiment includes the light source 10, the reflective optical element 21, the objective lens 50, the two-divided light receiving element 80, and the condenser lens 90 shown in the second embodiment. . In the focus detection device 130, the condensing lens 90 is disposed so that the focal point thereof is located on the point Fc described in the second embodiment.

図8に示すように、光源10から放射される光束は、反射光学素子21の第1の反射面21aで反射され、点Fcに集光したのち、集光レンズ90により平行光に変換され、対物レンズ50に入射する。この第3の実施形態に係る対物レンズ50は無限遠対物レンズであり、集光レンズ90からの平行光を被検物体60上に集光し、光源10の像を結像している。被検物体60で反射された光は再び対物レンズ50を通り、平行光となって集光レンズ90に入射し、点Fcで一端集光した後、反射光学素子21の第2の反射面21bに入射する。そして、この第2の反射面21bで反射された光束は、2分割受光素子80に集光する。2分割受光素子80では、2つの受光領域80a,80bへの入射光量の差から焦点ずれの方向と、ずれ量を検出し、この焦点ずれの方向及びずれ量から対物レンズ50、または被検物体60を光軸方向に移動させて合焦点位置に位置決めを行う。   As shown in FIG. 8, the light beam emitted from the light source 10 is reflected by the first reflecting surface 21a of the reflective optical element 21, condensed at the point Fc, and then converted into parallel light by the condenser lens 90. The light enters the objective lens 50. The objective lens 50 according to the third embodiment is an infinite objective lens, and condenses the parallel light from the condenser lens 90 on the test object 60 to form an image of the light source 10. The light reflected by the test object 60 passes through the objective lens 50 again, becomes parallel light, enters the condensing lens 90, and is condensed once at the point Fc, and then the second reflecting surface 21b of the reflecting optical element 21. Is incident on. The light beam reflected by the second reflecting surface 21 b is condensed on the two-divided light receiving element 80. The two-divided light receiving element 80 detects the direction of defocus and the amount of deviation from the difference in the amount of incident light to the two light receiving regions 80a and 80b, and the objective lens 50 or the object to be tested is detected from the direction and amount of defocus. 60 is moved in the direction of the optical axis and positioned at the in-focus position.

ここで、第3の実施形態に係る反射光学素子21は、集光レンズ90を介して対物レンズ50の瞳面Pと共役に配置されており、反射光学素子21の有効径をφ1、対物レンズ50の瞳径をφ2、反射光学素子21から対物レンズ50の瞳面Pへの倍率をβとしたとき、以下に示す条件式(1)を概ね満足するよう構成されている。 Here, the reflective optical element 21 according to the third embodiment is arranged in a conjugate manner with the pupil plane P of the objective lens 50 via the condenser lens 90, and the effective diameter of the reflective optical element 21 is φ 1 . When the pupil diameter of the lens 50 is φ 2 and the magnification from the reflective optical element 21 to the pupil plane P of the objective lens 50 is β, the following conditional expression (1) is generally satisfied.

φ2 = βφ1 (1) φ 2 = βφ 1 (1)

この条件式(1)を満足するよう反射光学素子21を配置することで、照明光として、対物レンズ50に必要充分な光束を入射させることが可能となり、フレアの原因となる対物レンズ50内での乱反射を防ぐことが可能となる。また、焦点ずれによらず対物レンズ50の瞳から放射される光束を全て受光可能となるため、焦点のずれた際にも検出光量低下の少ない焦点検出装置130を構成することが可能となる。   By disposing the reflective optical element 21 so as to satisfy this conditional expression (1), it becomes possible to make a necessary and sufficient light beam incident on the objective lens 50 as illumination light, and within the objective lens 50 that causes flare. It becomes possible to prevent irregular reflection. Further, since all the light beams emitted from the pupil of the objective lens 50 can be received regardless of the defocus, it is possible to configure the focus detection device 130 with a small decrease in the detected light amount even when the focus is deviated.

また、光源10の軸外光を、光学系でのケラレがなく良好に被検物体60に投影することが可能となる。そのため、例えば図9に示すように、焦点検出装置140の光源ユニット10′を、照明用光源11と、集光レンズ12と、スリット13とから構成し、スリットパターンを被検物体60上に投影する場合に好適である。   Further, off-axis light from the light source 10 can be projected onto the test object 60 without any vignetting in the optical system. Therefore, for example, as shown in FIG. 9, the light source unit 10 ′ of the focus detection device 140 includes an illumination light source 11, a condenser lens 12, and a slit 13, and a slit pattern is projected onto the object 60 to be examined. It is suitable when doing.

(第4の実施形態)
以下、図10を参照して第4の実施形態に係る焦点検出装置150の構成について説明する。この第4の実施形態における焦点検出装置150は、光源10、反射光学素子22、対物レンズ50、及び、2分割受光素子80から構成されている。なお、第4の実施形態における反射光学素子22は、光源10から放射される波長の光を透過する透明体で構成し、反射面(22a,22b)を内側に設けて内面反射とした点において、第1〜第3の実施形態の外面反射タイプの反射光学素子20,21と異なる。また、この反射光学素子22は、対物レンズ50側に界面22cが配置され、光源10側に界面22dが配置され、さらに、2分割受光素子80側に界面22eが配置されている。なお、界面22cは光軸Cに垂直な平面であり、界面22dは光源10の光路に垂直な平面であり,界面22eは2分割受光素子80の受光面に平行な平面である。
(Fourth embodiment)
The configuration of the focus detection apparatus 150 according to the fourth embodiment will be described below with reference to FIG. The focus detection device 150 according to the fourth embodiment includes a light source 10, a reflective optical element 22, an objective lens 50, and a two-divided light receiving element 80. In addition, the reflective optical element 22 in the fourth embodiment is configured by a transparent body that transmits light having a wavelength emitted from the light source 10, and the reflective surfaces (22a, 22b) are provided on the inner side to provide internal reflection. These are different from the external reflection type reflective optical elements 20 and 21 of the first to third embodiments. The reflective optical element 22 has an interface 22c on the objective lens 50 side, an interface 22d on the light source 10 side, and an interface 22e on the two-divided light receiving element 80 side. The interface 22 c is a plane perpendicular to the optical axis C, the interface 22 d is a plane perpendicular to the optical path of the light source 10, and the interface 22 e is a plane parallel to the light receiving surface of the two-divided light receiving element 80.

図10に示すように、光源10から放射される光束は、光源10側の界面22dから反射光学素子22に入射し、第1の反射面22aで反射され平行光に変換された後、対物レンズ50側の界面22cから反射光学素子22を射出する。この反射光学素子22から射出された平行光は対物レンズ50に入射する。この第4の実施形態に係る対物レンズ50は無限遠対物レンズであり、反射光学素子22からの平行光を被検物体60上に集光して光源10の像を結像している。そして、被検物体60で反射された光は、再び対物レンズ50を通り、平行光となって界面22cから再び反射光学素子22に入射し、第2の反射面22bで反射され、2分割受光素子80側の界面22eから反射光学素子22を射出した後、2分割受光素子80に集光する。2分割受光素子80では、2つの受光領域80a,80bへの入射光量の差から焦点ずれの方向と、ずれ量を検出し、この焦点ずれの方向及びずれ量から対物レンズ50、または被検物体60を移動させて合焦点位置に位置決めを行う。   As shown in FIG. 10, the light beam emitted from the light source 10 enters the reflective optical element 22 from the interface 22d on the light source 10 side, is reflected by the first reflecting surface 22a and converted into parallel light, and then the objective lens. The reflective optical element 22 is emitted from the interface 22c on the 50 side. The parallel light emitted from the reflective optical element 22 enters the objective lens 50. The objective lens 50 according to the fourth embodiment is an infinite objective lens, and focuses the parallel light from the reflective optical element 22 on the test object 60 to form an image of the light source 10. Then, the light reflected by the test object 60 passes through the objective lens 50 again, becomes parallel light, enters the reflective optical element 22 again from the interface 22c, is reflected by the second reflecting surface 22b, and is divided into two parts. After the reflective optical element 22 is emitted from the interface 22 e on the element 80 side, the light is condensed on the two-divided light receiving element 80. The two-divided light receiving element 80 detects the direction of defocus and the amount of deviation from the difference in the amount of incident light to the two light receiving regions 80a and 80b, and the objective lens 50 or the object to be tested is detected from the direction and amount of defocus. 60 is moved and positioned at the in-focus position.

なお、第4の実施形態に係る反射光学素子22は、熱可塑性樹脂によるモールド成型品を用いることが好ましく、安価に製造することができる。   The reflective optical element 22 according to the fourth embodiment is preferably a molded product made of a thermoplastic resin, and can be manufactured at low cost.

(第5の実施形態)
以下、図11を参照して観察光学系310の光路に焦点検出装置150′を挿入した第5の実施形態について説明する。この第5の実施形態では、第4の実施形態と同様の構成の焦点検出装置150′を、観察光学系310の光路中に挿入することで装置の小型化を可能としている。この観察光学系310を構成するために、焦点検出装置150′に加え、透明体で形成した光学素子23、及び、第2対物レンズ70を更に具備している。
(Fifth embodiment)
Hereinafter, a fifth embodiment in which a focus detection device 150 ′ is inserted in the optical path of the observation optical system 310 will be described with reference to FIG. In the fifth embodiment, the focus detection device 150 ′ having the same configuration as that of the fourth embodiment is inserted into the optical path of the observation optical system 310, so that the size of the device can be reduced. In order to configure the observation optical system 310, in addition to the focus detection device 150 ', an optical element 23 formed of a transparent body and a second objective lens 70 are further provided.

なお、この第5の実施形態における焦点検出装置150′については、第4の実施形態における反射光学素子22の第1及び第2の反射面22a,22bを、この面に入射する光の一部を透過し、残りを反射する半反射面からなる第1及び第2の半反射面22a′,22b′で構成した反射光学素子22′としていること以外は、第4の実施形態と同様である。例えば、光源10の放射する光の波長を赤外光とし、第1及び第2の半反射面22a′,22b′を、可視光を透過し、赤外光を反射する波長選択面とすることで、観察光学系300の光路(可視光)と焦点検出装置150′の光学系の光路とを分岐することができる。   As for the focus detection device 150 ′ in the fifth embodiment, a part of the light incident on the first and second reflection surfaces 22a and 22b of the reflection optical element 22 in the fourth embodiment is used. Except that the reflective optical element 22 'is composed of first and second semi-reflective surfaces 22a' and 22b 'composed of semi-reflective surfaces that transmit light and reflect the rest. . For example, the wavelength of light emitted from the light source 10 is infrared light, and the first and second semi-reflective surfaces 22a ′ and 22b ′ are wavelength selection surfaces that transmit visible light and reflect infrared light. Thus, the optical path (visible light) of the observation optical system 300 and the optical path of the optical system of the focus detection device 150 ′ can be branched.

観察光学系310をこのような構成とすると、第4の実施形態で説明したように、光源10から放射された光(赤外光)は、第1及び第2の半反射面22a′,22b′で反射されて2分割受光素子80に集光する。一方、被検物体60からの光(可視光)は対物レンズ50により略平行化された後、反射光学素子22′(第1及び第2の半反射面22a′,22b′)及び光学素子23を透過し、第2対物レンズ70により被検物体60の拡大像Iを結像する。この拡大像Iは、不図示の接眼レンズを通して目視で観察される。   When the observation optical system 310 has such a configuration, as described in the fourth embodiment, the light (infrared light) emitted from the light source 10 is the first and second semi-reflective surfaces 22a ′ and 22b. The light is reflected by ′ and condensed on the two-divided light receiving element 80. On the other hand, light (visible light) from the test object 60 is substantially collimated by the objective lens 50, and then the reflection optical element 22 ′ (first and second semi-reflection surfaces 22 a ′ and 22 b ′) and the optical element 23. , And an enlarged image I of the test object 60 is formed by the second objective lens 70. This magnified image I is visually observed through an eyepiece (not shown).

ここで、光学素子23は、観察光学系300の光束が反射光学素子22′の第1及び第2の半反射面22a′,22b′で屈折することを防ぐ目的で用いられ、反射光学素子22′と光学素子23とは屈折率の等しい材料で構成されて、第1及び第2の半反射面22a′,22b′で接合されている。また、光学素子23の界面23cは光軸Cに垂直な平面である。このように構成することで対物レンズ50からの光は反射光学素子22′、光学素子23で屈折することなく第2対物レンズ70により拡大像Iを結像する。   Here, the optical element 23 is used for the purpose of preventing the light beam of the observation optical system 300 from being refracted by the first and second semi-reflective surfaces 22a ′ and 22b ′ of the reflective optical element 22 ′. 'And the optical element 23 are made of materials having the same refractive index, and are joined by the first and second semi-reflective surfaces 22a' and 22b '. The interface 23c of the optical element 23 is a plane perpendicular to the optical axis C. With this configuration, the light from the objective lens 50 forms an enlarged image I by the second objective lens 70 without being refracted by the reflection optical element 22 ′ and the optical element 23.

この第5の実施形態に示すような構成とすることにより、被検物体60を観察するための観察光学系310の光路中に、焦点検出装置150′を配置することができるため、全体として小型化することが可能となる。   By adopting the configuration as shown in the fifth embodiment, the focus detection device 150 ′ can be arranged in the optical path of the observation optical system 310 for observing the object 60 to be examined. Can be realized.

なお、この第5の実施形態においては、反射光学素子22′に形成された第1及び第2の半反射面22a′,22b′を、入射する光の波長に応じて一部を反射し、残りを透過する波長選択面で構成した場合について説明したが、光源10から放射される光の偏光状態と、被検物体60の像を形成するための光の偏光状態とが異なる場合に、これらの半反射面22a′,22b′を、この面に入射する光の偏光特性に応じて一部を反射し、残りを透過する偏光分離面で構成することも可能である。   In the fifth embodiment, the first and second semi-reflective surfaces 22a ′ and 22b ′ formed on the reflective optical element 22 ′ are partially reflected according to the wavelength of incident light, The case where the remaining light is transmitted through the wavelength selection surface has been described. However, when the polarization state of the light emitted from the light source 10 and the polarization state of the light for forming the image of the test object 60 are different, these are used. The semi-reflective surfaces 22a 'and 22b' can be configured by a polarization separation surface that reflects part of the light and reflects the light depending on the polarization characteristics of the light incident on the surfaces.

(第6の実施形態)
次に、図12を参照して第6の実施形態に係る焦点検出装置160の構成について説明する。この第6の実施形態における焦点検出装置160は、光源10、反射光学素子24、対物レンズ51、及び、2分割受光素子80から構成されている。この第6の実施形態は、第2の実施形態における反射光学素子21の反射面21a,21bを楕円面から双曲面とした点において異なる。これにより第2の実施形態においては光軸C上の点Fc(対物レンズの像面上の点)が光源の実像を結ぶ点であったのに対し、第6の実施形態では図12に示すように虚像を結ぶ点となる。そのため、第6の実施形態では実像を形成するための空間が不要となるため、特に有限遠対物レンズの焦点検出装置の小型化が可能となる利点がある。
(Sixth embodiment)
Next, the configuration of the focus detection apparatus 160 according to the sixth embodiment will be described with reference to FIG. The focus detection device 160 in the sixth embodiment includes the light source 10, the reflective optical element 24, the objective lens 51, and the two-divided light receiving element 80. The sixth embodiment is different in that the reflecting surfaces 21a and 21b of the reflecting optical element 21 in the second embodiment are changed from an ellipsoid to a hyperboloid. As a result, in the second embodiment, the point Fc (point on the image plane of the objective lens) on the optical axis C is a point connecting the real image of the light source, whereas in the sixth embodiment, it is shown in FIG. It becomes the point which connects a virtual image. Therefore, in the sixth embodiment, a space for forming a real image is not necessary, and there is an advantage that the focus detection device of the finite objective lens can be particularly downsized.

図12に示すように、光源10から放射される光束は、反射光学素子24の第1の反射面24aで反射された後、対物レンズ51に入射する。第6の実施形態に係る対物レンズ51は有限遠対物レンズであり、反射光学素子24からの光を被検物体60上で集光し、光源10の像を結像する。被検物体60で反射された光は再び対物レンズ51を通り、反射光学素子24の第2の反射面24bに入射する。そして、第2の反射面24bで反射された光束は、2分割受光素子80上に集光する。この2分割受光素子80では、第1の実施形態で説明したように、2つの受光領域80a,80bへの入射光量の差から焦点ずれの方向と、ずれ量を検出し、この焦点ずれの方向及びずれ量から対物レンズ51、または被検物体60を光軸方向に移動させて合焦点位置に位置決めを行う。   As shown in FIG. 12, the light beam emitted from the light source 10 is incident on the objective lens 51 after being reflected by the first reflecting surface 24 a of the reflecting optical element 24. The objective lens 51 according to the sixth embodiment is a finite objective lens, and condenses the light from the reflective optical element 24 on the test object 60 to form an image of the light source 10. The light reflected by the test object 60 passes through the objective lens 51 again and enters the second reflecting surface 24b of the reflecting optical element 24. The light beam reflected by the second reflecting surface 24 b is condensed on the two-divided light receiving element 80. As described in the first embodiment, the two-divided light receiving element 80 detects the direction of defocus and the amount of deviation from the difference in the amount of incident light to the two light receiving regions 80a and 80b, and this defocus direction. Then, the objective lens 51 or the test object 60 is moved in the optical axis direction based on the amount of deviation, and positioning is performed at the in-focus position.

図13に、本実施の形態における反射光学素子24の詳細な構成を示す。この反射光学素子24は光源10からの光を反射して光軸C上の点Fcから発散するのと同等の光に変換する第1の反射面24aと、光軸C上の点Fcへ集光する光を反射して2分割受光素子80に導く第2の反射面24bとを有している。ここで、第1の反射面24aは、点Faと光軸上の点Fcとをそれぞれ焦点とする双曲線を、Fa,Fcを通る線n1を回転軸として回転することで得られる回転双曲面haの部分領域であって、この回転双曲面haの焦点Faに光源10が配置され、点Fcに像面が位置するように対物レンズ51が配置されている。また、第2の反射面24bは、点Fbと点Fcとをそれぞれ焦点とし、Fb,Fcを通る線n2を回転軸として回転することで得られる回転双曲面hbの部分領域であって、回転双曲面hbの焦点Fbに2分割受光素子80が配置され、像面がFcに位置するように対物レンズ51が配置されている。このように構成することで、図12に示すように、光源10から放射される光束を対物レンズ51の像面上の点Fcから発散するのと同等の光に変換することができる。また、被検物体60で反射された光は対物レンズ51により像面上の点Fcに集光する光束となり、第2の反射面24bにより反射され、点Fcと共役に配置された2分割受光素子80上に集光する。 FIG. 13 shows a detailed configuration of the reflective optical element 24 in the present embodiment. The reflection optical element 24 collects light at the first reflection surface 24a that reflects light from the light source 10 and converts it into light equivalent to that emitted from the point Fc on the optical axis C, and the point Fc on the optical axis C. And a second reflecting surface 24 b that reflects the light to be guided to the two-divided light receiving element 80. Here, the first reflecting surface 24a is a rotating hyperboloid obtained by rotating a hyperbola with the point Fa and the point Fc on the optical axis as focal points, and a line n 1 passing through Fa and Fc as a rotation axis. The light source 10 is arranged at the focal point Fa of the rotating hyperboloid ha, and the objective lens 51 is arranged so that the image plane is located at the point Fc. The second reflective surface 24b is to focus the point Fb and the point Fc, respectively, Fb, a partial area of the rotating hyperboloid hb obtained by rotating a line n 2 through Fc as a rotation axis, A two-divided light receiving element 80 is disposed at the focal point Fb of the rotating hyperboloid hb, and the objective lens 51 is disposed such that the image plane is located at Fc. With this configuration, as shown in FIG. 12, the light beam emitted from the light source 10 can be converted into light equivalent to diverging from a point Fc on the image plane of the objective lens 51. Further, the light reflected by the object to be examined 60 becomes a light beam condensed at the point Fc on the image plane by the objective lens 51, is reflected by the second reflecting surface 24b, and is divided into two parts received in a conjugate manner with the point Fc. The light is condensed on the element 80.

なお本実施の形態において、対物レンズ51は有限遠対物レンズであるとしたが、図14に示すように、無限遠対物レンズに適用することも可能である。この図14に示す焦点検出装置170は、光源10、反射光学素子24、対物レンズ50、2分割受光素子80、及び、集光レンズ90,91から構成されている。光源10から放射される光束は、反射光学素子24の第1の反射面24aで反射された後、集光レンズ91に入射する。この集光レンズ91は、光源10の虚像を成す点Fcと、光軸上の点Fc′とを共役とするように配置されており、集光レンズ91に入射した光束は点Fc′に集光し光源の実像を形成する。集光レンズ91により点Fc′に集光した光束は、集光レンズ90により平行光に変換され、対物レンズ50に入射する。対物レンズ50は無限遠対物レンズであり、集光レンズ90からの平行光を被検物体60上に集光し、光源10の像を結像している。この被検物体60で反射された光は再び対物レンズ50を通り、平行光となって集光レンズ90に入射し、点Fc′で一端集光し、集光レンズ91を通り反射光学素子24の第2の反射面24bに入射する。そして、この第2の反射面24bで反射された光束は、2分割受光素子80に集光する。2分割受光素子80では、2つの受光領域80a,80bへの入射光量の差から焦点ずれの方向と、ずれ量を検し、この焦点ずれの方向及びずれ量から対物レンズ50、または被検物体60を光軸方向に移動させて合焦点位置に位置決めを行う。   In the present embodiment, the objective lens 51 is a finite objective lens. However, as shown in FIG. 14, the objective lens 51 can also be applied to an infinity objective lens. A focus detection apparatus 170 shown in FIG. 14 includes a light source 10, a reflective optical element 24, an objective lens 50, a two-divided light receiving element 80, and condenser lenses 90 and 91. The light beam emitted from the light source 10 is reflected by the first reflecting surface 24 a of the reflective optical element 24 and then enters the condenser lens 91. The condensing lens 91 is arranged so that the point Fc forming the virtual image of the light source 10 and the point Fc ′ on the optical axis are conjugate, and the light beam incident on the condensing lens 91 is collected at the point Fc ′. Light and form a real image of the light source. The light beam condensed at the point Fc ′ by the condenser lens 91 is converted into parallel light by the condenser lens 90 and enters the objective lens 50. The objective lens 50 is an infinite objective lens, and condenses the parallel light from the condenser lens 90 on the test object 60 to form an image of the light source 10. The light reflected by the test object 60 again passes through the objective lens 50, becomes parallel light, enters the condenser lens 90, is condensed once at the point Fc ', passes through the condenser lens 91, and is reflected by the reflective optical element 24. Is incident on the second reflecting surface 24b. The light beam reflected by the second reflecting surface 24 b is condensed on the two-divided light receiving element 80. In the two-divided light receiving element 80, the direction of the focus shift and the shift amount are detected from the difference in the amount of incident light to the two light receiving regions 80a and 80b, and the objective lens 50 or the object to be tested is determined from the direction and the shift amount of the focus shift. 60 is moved in the direction of the optical axis and positioned at the in-focus position.

以上のように、反射光学素子に形成する2つの反射面は、第1の実施形態に示す回転放物面、第2の実施形態に示す回転楕円面、もしくは、この第6の実施形態に示す回転双曲面のように、光源10及び2分割受光素子80を通る線を回転軸とするコーニック面で構成することができる。   As described above, the two reflecting surfaces formed on the reflecting optical element are the paraboloid of revolution shown in the first embodiment, the spheroidal surface shown in the second embodiment, or the sixth embodiment. Like a rotating hyperboloid, it can be constituted by a conic surface having a rotation axis that is a line passing through the light source 10 and the two-divided light receiving element 80.

10,10′ 光源 20,21,22,22′,24 反射光学素子
50,51 対物レンズ 60 被検物体
70,90,91 集光レンズ 80 2分割受光素子(光検出手段)
20a,21a,22a,24a 第1の反射面 22a′ 第1の半反射面
20b,21b,22b,24b 第2の反射面 22b′ 第2の半反射面
100,100′,110〜170 焦点検出装置
10, 10 'Light source 20, 21, 22, 22', 24 Reflective optical element 50, 51 Objective lens 60 Test object 70, 90, 91 Condensing lens 80 Divided light receiving element (light detection means)
20a, 21a, 22a, 24a First reflective surface 22a 'First semi-reflective surface 20b, 21b, 22b, 24b Second reflective surface 22b' Second semi-reflective surface 100, 100 ', 110-170 Focus detection apparatus

Claims (10)

被検物体に光を照射するための光源と、
前記被検物体で反射された光の光軸からの変位量を検出するための光検出手段と、
前記光源側に配置され、前記光源からの光を反射して光軸方向に導く第1の反射面、及び、前記光検出手段側に配置され、前記被検物体からの光を反射し前記光検出手段に導く第2の反射面を有する反射光学素子と、を有する焦点検出装置。
A light source for irradiating a test object with light;
A light detection means for detecting a displacement amount of the light reflected from the test object from the optical axis;
A first reflection surface disposed on the light source side, which reflects light from the light source and guides the light in an optical axis direction; and is disposed on the light detection means side, which reflects light from the object to be examined and transmits the light. And a reflective optical element having a second reflective surface leading to the detection means.
前記第1の反射面は前記光源を通る線を回転軸とするコーニック面であり、前記第2の反射面は前記光検出手段を通る線を回転軸とするコーニック面である請求項1に記載の焦点検出装置。   The first reflection surface is a conic surface having a line passing through the light source as a rotation axis, and the second reflection surface is a conic surface having a line passing through the light detection means as a rotation axis. Focus detection device. 前記第1の反射面は、前記光源及び前記光軸上にあって前記被検物体と共役な像点を焦点とし、当該2つの焦点を結ぶ線を回転軸とする回転楕円面の一部であり、
前記第2の反射面は、前記像点及び前記光検出手段を焦点とし、当該2つの焦点を結ぶ線を回転軸とする回転楕円面の一部である請求項2に記載の焦点検出装置。
The first reflecting surface is a part of a spheroid having a focal point at an image point conjugate with the object to be examined on the light source and the optical axis, and a line connecting the two focal points as a rotation axis. Yes,
The focus detection apparatus according to claim 2, wherein the second reflection surface is a part of a spheroid with the image point and the light detection unit as a focal point and a line connecting the two focal points as a rotation axis.
前記第1の反射面は、前記光源を焦点とし、当該焦点を通り前記光軸に平行な線を回転軸とする回転放物面の一部であり、
前記第2の反射面は、前記光検出手段を焦点とし、当該焦点を通り前記光軸に平行な線を回転軸とする回転放物面の一部である請求項2に記載の焦点検出装置。
The first reflecting surface is a part of a rotating paraboloid with the light source as a focal point and a line passing through the focal point and parallel to the optical axis as a rotation axis.
3. The focus detection device according to claim 2, wherein the second reflection surface is a part of a rotating paraboloid having the light detection unit as a focal point and a line passing through the focus and parallel to the optical axis as a rotation axis. .
前記第1の反射面は、前記光源及び前記光軸上であって前記被検物体と共役な像点を焦点とし、当該2つの焦点を結ぶ線を回転軸とする回転双曲面の一部であり、
前記第2の反射面は、前記像点及び前記光検出手段を焦点とし、当該2つの焦点を結ぶ線を回転軸とする回転双曲面の一部である請求項2に記載の焦点検出装置。
The first reflecting surface is a part of a rotating hyperboloid having a focal point at an image point conjugate with the object to be examined on the light source and the optical axis, and a line connecting the two focal points as a rotation axis. Yes,
3. The focus detection apparatus according to claim 2, wherein the second reflection surface is a part of a rotation hyperboloid having the image point and the light detection unit as a focal point and a line connecting the two focal points as a rotation axis.
前記反射光学素子は、前記被検物体を観察するための対物レンズの瞳面と共役に配置され、前記反射光学素子の有効径をφ1、前記対物レンズの瞳径をφ2、前記反射光学素子から前記対物レンズの瞳への倍率をβとしたとき、次式
φ2 = βφ1
の条件を満足するように構成された請求項1〜5いずれか一項に記載の焦点検出装置。
The reflective optical element is disposed in a conjugate manner with the pupil plane of the objective lens for observing the test object, the effective diameter of the reflective optical element is φ 1 , the pupil diameter of the objective lens is φ 2 , and the reflective optics When the magnification from the element to the pupil of the objective lens is β, the following formula φ 2 = βφ 1
The focus detection apparatus according to claim 1, wherein the focus detection apparatus is configured to satisfy the following condition.
前記第1の反射面及び前記第2の反射面は、前記被検物体からの光束の一部を反射し、残りを透過する半反射面である請求項1〜6いずれか一項に記載の焦点検出装置   The said 1st reflective surface and the said 2nd reflective surface are semi-reflective surfaces which reflect a part of light beam from the said to-be-tested object, and permeate | transmit the remainder. Focus detection device 前記半反射面は、光束の偏光特性に応じて一部を反射し、残りを透過する偏光分離面である請求項7に記載の焦点検出装置。   The focus detection apparatus according to claim 7, wherein the semi-reflective surface is a polarization separation surface that reflects a part of the semi-reflective surface according to a polarization characteristic of a light beam and transmits the remaining part. 前記半反射面は、光束の波長に応じて一部を反射し、残りを透過する波長選択面である請求項7に記載の焦点検出装置。   The focus detection apparatus according to claim 7, wherein the semi-reflective surface is a wavelength selection surface that reflects part of the semi-reflective surface according to the wavelength of the light beam and transmits the rest. 前記光源、前記反射光学素子、及び、前記光検出手段を保持する保持部材を更に有し、前記保持部材を構成する材料の熱膨張率は、前記反射光学素子を構成する材料の熱膨張率に略等しい請求項1〜9いずれか一項に記載の焦点検出装置   It further has a holding member that holds the light source, the reflective optical element, and the light detection means, and the coefficient of thermal expansion of the material that constitutes the holding member is equal to the coefficient of thermal expansion of the material that constitutes the reflective optical element. The focus detection apparatus according to claim 1, which is substantially equal.
JP2009184476A 2008-10-04 2009-08-07 Focus detecting device Pending JP2010107950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184476A JP2010107950A (en) 2008-10-04 2009-08-07 Focus detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008259129 2008-10-04
JP2009184476A JP2010107950A (en) 2008-10-04 2009-08-07 Focus detecting device

Publications (2)

Publication Number Publication Date
JP2010107950A true JP2010107950A (en) 2010-05-13
JP2010107950A5 JP2010107950A5 (en) 2012-09-27

Family

ID=42297409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184476A Pending JP2010107950A (en) 2008-10-04 2009-08-07 Focus detecting device

Country Status (1)

Country Link
JP (1) JP2010107950A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827117A (en) * 1981-08-11 1983-02-17 Olympus Optical Co Ltd Stereoscopic binocular microscope
JPS6132235A (en) * 1984-07-24 1986-02-14 Toshiba Corp Optical information processor
JPS61156011A (en) * 1984-12-28 1986-07-15 Konishiroku Photo Ind Co Ltd Optical system having luminous flux dividing element
JPH0277609U (en) * 1988-12-02 1990-06-14
JPH0547004A (en) * 1991-08-13 1993-02-26 Asahi Optical Co Ltd Signal detecting system for optical disk
JPH08136813A (en) * 1994-11-07 1996-05-31 Olympus Optical Co Ltd Focusing device for operating microscope apparatus
JPH08254650A (en) * 1995-03-15 1996-10-01 Nikon Corp Focus detector
JPH1068866A (en) * 1996-06-29 1998-03-10 Carl Zeiss:Fa Microscope provided with autofocusing device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827117A (en) * 1981-08-11 1983-02-17 Olympus Optical Co Ltd Stereoscopic binocular microscope
JPS6132235A (en) * 1984-07-24 1986-02-14 Toshiba Corp Optical information processor
JPS61156011A (en) * 1984-12-28 1986-07-15 Konishiroku Photo Ind Co Ltd Optical system having luminous flux dividing element
JPH0277609U (en) * 1988-12-02 1990-06-14
JPH0547004A (en) * 1991-08-13 1993-02-26 Asahi Optical Co Ltd Signal detecting system for optical disk
JPH08136813A (en) * 1994-11-07 1996-05-31 Olympus Optical Co Ltd Focusing device for operating microscope apparatus
JPH08254650A (en) * 1995-03-15 1996-10-01 Nikon Corp Focus detector
JPH1068866A (en) * 1996-06-29 1998-03-10 Carl Zeiss:Fa Microscope provided with autofocusing device

Similar Documents

Publication Publication Date Title
JP4927182B2 (en) Laser distance meter
JP6360825B2 (en) Imaging optical system, illumination device and observation device
JPWO2008081729A1 (en) Laser scanning confocal microscope
US8933417B2 (en) Combined lens and reflector, and an optical apparatus using the same
JP6385974B2 (en) Optical instrument and measuring device for measuring total reflection absorption spectrum
JP6116142B2 (en) Scanning confocal laser microscope
JP2013167654A (en) Confocal microscope imaging system
US20040245445A1 (en) Laser microscope
JP5962968B2 (en) Microscope adjustment method and microscope
JP2009288075A (en) Aberration measuring device and aberration measuring method
US9268121B2 (en) Sensor device with double telecentric optical system
JP4454980B2 (en) Microscope imaging optical system and microscope using the same
JP2007264322A (en) Infrared microscope
US11971531B2 (en) Method and microscope for determining the thickness of a cover slip or slide
JP2010107950A (en) Focus detecting device
JP5248903B2 (en) Line illumination device, line illumination method, optical inspection device, and optical processing device
JP2571859B2 (en) Scanning optical microscope
JP2017072709A (en) Imaging optical member and optical system of surveying instrument
JP4593139B2 (en) Optical scanning confocal observation device
JP2006118944A (en) Evaluation device of lens
JP2011227317A (en) Optical element and focus detector
US8773759B2 (en) Microscope having an adjustment device for the focus range
JP3575586B2 (en) Scratch inspection device
GB2520541A (en) Optical arrangement for imaging a sample
JP6579403B2 (en) Microscope and microscope adjustment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131031