JP4454980B2 - Microscope imaging optical system and microscope using the same - Google Patents

Microscope imaging optical system and microscope using the same Download PDF

Info

Publication number
JP4454980B2
JP4454980B2 JP2003273650A JP2003273650A JP4454980B2 JP 4454980 B2 JP4454980 B2 JP 4454980B2 JP 2003273650 A JP2003273650 A JP 2003273650A JP 2003273650 A JP2003273650 A JP 2003273650A JP 4454980 B2 JP4454980 B2 JP 4454980B2
Authority
JP
Japan
Prior art keywords
imaging
optical path
total reflection
convergent
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003273650A
Other languages
Japanese (ja)
Other versions
JP2005031589A (en
Inventor
寧 青野
敦宏 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2003273650A priority Critical patent/JP4454980B2/en
Publication of JP2005031589A publication Critical patent/JP2005031589A/en
Application granted granted Critical
Publication of JP4454980B2 publication Critical patent/JP4454980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、顕微鏡の撮像光学系及びそれを用いた顕微鏡に関し、特に、標本からの光を波長等の光学特性によって分割し、夫々を撮像面内の異なる位置に投影する顕微鏡の撮像光学系およびそれを用いた顕微鏡に関する。 The present invention relates to an imaging optical system of a microscope and a microscope using the same , and in particular, splits light from a specimen according to optical characteristics such as a wavelength, and projects each to different positions in an imaging plane , and The present invention relates to a microscope using the same .

従来、生細胞等の標本の物性を解析する研究分野においては、細胞内の異なる組織を異なる蛍光波長の試薬で標識し、多波長励起と多波長測光による観察が一般的に行われている。また、近年、多波長測光による標本像の時間的同一性と撮像装置の感度の同一性を確保する手段として、一つの撮像装置の画角を複数の領域に分割して、波長等の光学特性ごとに分離した標本の投影像を各々異なる領域に投影するように構成された撮像光学系を具備した装置が考案され、例えば、特許文献1および特許文献2に示されるように広く一般的に用いられている。特許文献1においては、図9に示されるように、撮像光学系において、標本内の点106から発散した光を、対物レンズ110で平行光線にした後、分離選択手段111によって波長等の光学特性ごとに分離し、各々の光軸を光軸変換手段112によって位置設定した後、結像レンズ113を通して撮像装置の画角内の異なる位置A,Bに投影する構成となっている。   Conventionally, in the research field for analyzing physical properties of specimens such as living cells, different tissues in cells are labeled with reagents having different fluorescence wavelengths, and observation by multiwavelength excitation and multiwavelength photometry is generally performed. Also, in recent years, as a means to ensure the temporal identity of specimen images by multiwavelength photometry and the sensitivity of the imaging device, the angle of view of one imaging device is divided into a plurality of regions, and optical characteristics such as wavelength An apparatus equipped with an imaging optical system configured to project a projection image of a specimen separated for each of the specimens onto different regions has been devised, and widely used, for example, as shown in Patent Document 1 and Patent Document 2 It has been. In Patent Document 1, as shown in FIG. 9, in an imaging optical system, light diverging from a point 106 in a sample is converted into parallel rays by an objective lens 110, and then optical characteristics such as wavelength are separated by a separation selection unit 111. In this configuration, the optical axes are separated by the optical axis conversion means 112 and then projected onto different positions A and B within the angle of view of the imaging device through the imaging lens 113.

特許文献2においては、図10に示されるように、撮像光学系において、標本内の点200から発散した光を、レンズ群214および216を通して視野絞り220上に中間像218として投影し、中間像218から発散した光をコリメートレンズ224で平行光線にした後、分割プリズム226によって分割し、各々の平行光線を全反射ミラー228およびフィルタ230を透過した後、結像レンズ234を通して撮像装置236の画角の異なる位置に投影する構成となっている。
特開平5−164687号公報 特表2001−525534号公報
In Patent Document 2, as shown in FIG. 10, in an imaging optical system, light diverging from a point 200 in a specimen is projected as an intermediate image 218 onto a field stop 220 through lens groups 214 and 216, and the intermediate image is obtained. The light diverging from 218 is converted into parallel rays by a collimator lens 224 and then split by a splitting prism 226. It is configured to project to positions with different corners.
JP-A-5-164687 Special Table 2001-525534

単一の撮像装置の画角内の異なる領域に複数の投影像を投影するにあたっては、各々の投影像の焦点位置は撮像装置の撮像面において合致するように構成してあるのが通常である。上記特許文献1および特許文献2による撮像装置においては、観察光路の分割は平行光線束中で行われ、各々の平行光線束は同一の結像レンズによって集光されることから、各々の投影像の焦点位置は撮像面において合致する。一方で、生細胞研究分野における観察対象は、標本内の特定の高さの面に限定されず、例えば細胞内部と細胞膜近辺で起こる現象を同時に観察したい場合がある。対物レンズで観察した像を撮像装置の画角内の異なる位置に分割して投影する撮像光学系を使用して、単一の撮像装置で標本上の異なる高さの情報を同時に撮像することが出来れば、時間的同一性の観察、検出、測定等を実現できると共に、撮像装置を一台しか必要とせずコスト的にも優れた装置になる。ところが、特許文献1および特許文献2に示される撮像装置おいては、先に述べたように、分割された各々の投影像の焦点位置は撮像面において合致するように固定されており、焦点位置を変えることは考慮されていない。     When projecting a plurality of projection images onto different regions within the angle of view of a single imaging device, it is usual that the focal position of each projection image is configured to match on the imaging surface of the imaging device. . In the imaging devices according to Patent Document 1 and Patent Document 2, the observation light path is divided in parallel light beams, and each parallel light beam is collected by the same imaging lens. The focal positions of the images coincide with each other on the imaging surface. On the other hand, the observation target in the field of living cell research is not limited to a specific height surface in the specimen, and there are cases where it is desired to observe simultaneously, for example, phenomena occurring inside the cell and in the vicinity of the cell membrane. By using an imaging optical system that divides and projects an image observed with an objective lens into different positions within the angle of view of the imaging device, information of different heights on the specimen can be simultaneously imaged with a single imaging device. If possible, observation, detection, measurement, and the like of temporal identity can be realized, and only one imaging device is required and the device is excellent in terms of cost. However, in the imaging apparatuses shown in Patent Document 1 and Patent Document 2, as described above, the focal positions of the divided projection images are fixed so as to coincide with each other on the imaging surface. Is not considered.

本発明は上記のような課題に鑑みて成されたものであり、標本の異なる高さの面を撮像装置の撮像面に分割して投影し、同時に観察することを可能とした撮像光学系およびそれを用いた顕微鏡を提供することを目的とする。 The present invention has been made in view of the above problems, and an imaging optical system capable of dividing and projecting surfaces with different heights of a specimen on an imaging surface of an imaging apparatus and simultaneously observing the imaging surface An object is to provide a microscope using the same .

上記目的を達成するために、本発明の顕微鏡の撮像光学系は、標本からの光を像面に至る観察光路に導く対物レンズと、前記対物レンズから像側に出射された平行光線束または収束光線束を撮像面で集光する収束光線束に変換する結像レンズと、前記結像レンズより像側に配置されていて前記結像レンズによって変換された収束光線束を波長等の光学特性によって分割する分割手段と、前記分割手段によって分割された各々の収束光線束の投影像を前記撮像面内の異なる位置で形成するように配置構成された全反射手段群と、前記分割手段によって分割された各々の収束光線束のうち少なくとも一方の光路長または光路長の空気換算値を増減して収束光線束の焦点位置を移動する光路長変換手段と、を具備し、前記標本上の異なる高さの面を同時に観察することを特徴とする。 In order to achieve the above object, an imaging optical system of a microscope according to the present invention includes an objective lens that guides light from a specimen to an observation optical path that reaches an image plane, and a parallel light flux emitted from the objective lens toward the image side or convergent. an imaging lens for converting the light beam into a convergent light beam for focusing on the imaging surface, the optical characteristics of the wavelength, such as a convergent light bundle converted by the imaging lens the imaging lens be disposed on the image side of the dividing means for dividing, and the total reflection means a group of the projected image of the converging light beam of each divided are arranged to form at different positions within the imaging plane by said dividing means, divided by the previous SL dividing means anda optical path length conversion means for moving the focal position of the converging light beam by increasing or decreasing the air conversion value of at least one of the optical path length or optical path length of converging light bundle of each that is, different on the specimen Surface of height Characterized by simultaneously observed.

また、本発明の顕微鏡の撮像光学系は、前記光路長変換手段は、前記全反射手段群のうち少なくとも2ケ所の全反射面を一体的に移動する移動手段によって構成されることを特徴とする。
また、本発明の顕微鏡の撮像光学系は、少なくとも一つの全反射蛍光照明手段を含む複数の励起波長による同時照明が可能な励起光照明手段を具備し、全反射蛍光照明手段によって励起された蛍光は前記光路長変換手段を含む光路側または他方の光路側の何れか一方で撮像されることを特徴とする。
また、本発明の顕微鏡の撮像光学系は、前記分割手段によって分割された第一の収束光線束の投影像と第二の収束光線束の投影像との重なりを防ぐための遮光手段を具備したことを特徴とする。
Further, the microscope imaging optical system of the present invention, before Kihikariro length conversion means, and characterized by being constituted by a moving means for integrally moving the total reflection surface of the at least two positions of the total reflection means group To do.
The imaging optical system of the microscope of the present invention includes excitation light illumination means capable of simultaneous illumination with a plurality of excitation wavelengths including at least one total reflection fluorescence illumination means, and is excited by the total reflection fluorescence illumination means. Is picked up either on the optical path side including the optical path length converting means or on the other optical path side.
In addition, the imaging optical system of the microscope of the present invention includes a light shielding unit for preventing an overlap between the projection image of the first convergent beam bundle and the projected image of the second convergent beam bundle divided by the dividing unit. It is characterized by that.

また、上記目的を達成するために、本発明の顕微鏡は、標本からの光を像面に至る観察光路に導く対物レンズと、前記対物レンズから像側に出射された平行光線束または収束光線束を撮像面で集光する収束光線束に変換する結像レンズと、前記結像レンズより像側に配置されていて前記結像レンズによって変換された収束光線束を波長等の光学特性によって分割する分割手段と、前記分割手段によって分割された各々の収束光線束の投影像を前記撮像面内の異なる位置で形成するように配置構成された全反射手段群と、前記分割手段によって分割された各々の収束光線束のうち少なくとも一方の光路長または光路長の空気換算値を増減して該収束光線束の焦点位置を移動する光路長変換手段と、前記異なる位置で形成された各々の投影像を前記撮像面で撮像する撮像装置と、を具備し、前記標本上の異なる高さの面を同時に観察することを特徴とする。 In order to achieve the above object, the microscope of the present invention includes an objective lens that guides light from a specimen to an observation optical path that reaches an image plane, and a parallel ray bundle or a convergent ray bundle emitted from the objective lens to the image side. an imaging lens for converting the convergent light flux condensed by the imaging plane, to divide the convergent light beam, wherein they are arranged on the image side of the imaging lens is converted by the imaging lens by the optical characteristics of the wavelength, etc. dividing means, and the total reflection means group arranged the projection image of the convergent light beam of each divided to form at different positions within the imaging plane by said dividing means, divided by the previous SL dividing means Optical path length conversion means for moving the focal position of the convergent ray bundle by increasing or decreasing the optical path length of at least one of the convergent ray bundles or an air-converted value of the optical path length, and each projection image formed at the different positions Before Anda imaging device for imaging the imaging surface, characterized by observing the surface of different heights on the specimen at the same time.

上記のように本願発明によれば、単一の撮像装置で標本上の異なる高さの面を同時に観察および撮像することが可能で、コスト的に有利な装置を提供できる。   As described above, according to the present invention, it is possible to simultaneously observe and image surfaces of different heights on a specimen with a single imaging device, and it is possible to provide a cost-effective device.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の顕微鏡の撮像光学系の第1の実施例の全体構成の概念図である。本実施例の説明で用いる記号は、他の実施例の説明においても共通に用いられる。   FIG. 1 is a conceptual diagram of the overall configuration of the first embodiment of the imaging optical system of the microscope of the present invention. The symbols used in the description of the present embodiment are commonly used in the description of the other embodiments.

図1において、1は標本であり、2は標本1からの光を像面に至る観察光路0に導く対物レンズであり、3は対物レンズ2から出射された平行光線束を収束光線束に変換する結像レンズであり、4は結像レンズから出射された収束光線束を撮像装置側に反射するミラーもしくはプリズム等で構成された反射手段である。5は前記収束光線束を波長によって選択的に透過と反射に分離するダイクロイックミラーである。ここでは、ダイクロイックミラー5によって設定された特定の波長より長波長の光は透過して第1の収束光線束01を形成し、短波長の光は反射して第2の収束光線束02を形成する。61および62は、各々第1の収束光線01および第2の収束光線束02の中で各々の観察に供する波長帯のみを選択的に透過する特性を持った第1のフィルタおよび第2のフィルタである。7はダイクロイックミラー5を透過した第1の収束光線束01を反射する全反射プリズムで構成された第1の全反射手段であり、8はダイクロイックミラー5を反射した第2の収束光線束02を撮像装置9側に全反射する全反射ミラーで構成された第2の全反射手段である。10は第1の全反射手段7を反射した第1の収束光線束01を撮像装置9側に全反射すると共に、第2の全反射手段8を反射した第2の収束光線束02がその脇を通過する位置に配置された第3の全反射手段である。これら第1の全反射手段7、第2の全反射手段8、および第3の全反射手段10は、第1の収束光線束01および第2の収束光線束02の投影像を、撮像装置9の画角内の異なる位置で形成するように配置構成されている。13は、撮像装置9の画角内での第1の収束光線束01の投影像と第2の収束光線束02の投影像の重なりを防ぐための絞りである。11は、第1の収束光線束01中の第1の全反射手段7と第3の全反射手段の中間に設けられた光路長変換手段である。光路長変換手段11は、固定くさびプリズム11aと移動くさびプリズム11bから構成され、固定くさびプリズム11aと移動くさびプリズム11bは同一のくさび角度を有し、互いに対向する面同士が平行で且つその反対側の面は各々第1の収束光線束01の光軸と垂直になるように配置されている。また、移動くさびプリズム11bは、固定くさびプリズム11aに対向する面と平行な方向に移動可能に設けられている。なお、第1の全反射手段7に用いられる全反射プリズムと光路長変換手段11に用いられるくさびプリズム11aおよび11bの硝路長の合計は、第1の収束光線束01および第2の収束光線束02の焦点位置が撮像装置9において概ね合致するように設定されている。   In FIG. 1, 1 is a sample, 2 is an objective lens that guides the light from the sample 1 to the observation optical path 0 to the image plane, and 3 is a parallel beam bundle emitted from the objective lens 2 and converted into a convergent beam bundle. An image forming lens 4 is a reflecting means 4 constituted by a mirror or a prism for reflecting the convergent light beam emitted from the image forming lens to the image pickup apparatus side. Reference numeral 5 denotes a dichroic mirror that selectively separates the convergent light beam into transmission and reflection according to wavelength. Here, light having a wavelength longer than a specific wavelength set by the dichroic mirror 5 is transmitted to form a first convergent light bundle 01, and light having a short wavelength is reflected to form a second convergent light bundle 02. To do. Reference numerals 61 and 62 denote a first filter and a second filter having a characteristic of selectively transmitting only the wavelength band used for each observation in the first convergent light beam 01 and the second convergent light beam 02, respectively. It is. Reference numeral 7 denotes a first total reflection means composed of a total reflection prism that reflects the first convergent beam bundle 01 transmitted through the dichroic mirror 5, and 8 denotes a second convergent beam bundle 02 reflected from the dichroic mirror 5. This is a second total reflection means composed of a total reflection mirror that totally reflects to the imaging device 9 side. 10 totally reflects the first convergent beam bundle 01 reflected by the first total reflection means 7 toward the image pickup device 9, and the second convergent beam bundle 02 reflected by the second total reflection means 8 is on its side. It is the 3rd total reflection means arrange | positioned in the position which passes through. The first total reflection unit 7, the second total reflection unit 8, and the third total reflection unit 10 convert the projection images of the first convergent ray bundle 01 and the second convergent ray bundle 02 into the imaging device 9. Are arranged at different positions within the angle of view. Reference numeral 13 denotes a stop for preventing the projection image of the first convergent beam bundle 01 and the projection image of the second convergent beam bundle 02 from overlapping within the angle of view of the imaging device 9. Reference numeral 11 denotes an optical path length conversion means provided between the first total reflection means 7 and the third total reflection means in the first convergent light beam 01. The optical path length conversion means 11 is composed of a fixed wedge prism 11a and a moving wedge prism 11b, and the fixed wedge prism 11a and the moving wedge prism 11b have the same wedge angle, and the surfaces facing each other are parallel and opposite to each other. Are arranged so as to be perpendicular to the optical axis of the first convergent light beam 01. The moving wedge prism 11b is provided so as to be movable in a direction parallel to the surface facing the fixed wedge prism 11a. Incidentally, the total of the glass path lengths of the total reflection prism used in the first total reflection means 7 and the wedge prisms 11a and 11b used in the optical path length conversion means 11 is the first convergent light beam 01 and the second convergent light beam. The focal position of the bundle 02 is set so as to substantially match in the imaging device 9.

次に、本実施例の作用、効果について説明する。図2(a)および2(b)は、光路長変換手段11において、移動くさびプリズム11bを移動させた状態を示したものである。図2において、移動くさびプリズム11bを図2(a)の状態から図2(b)の状態へと移動させると、固定くさびプリズム11aと移動くさびプリズム11bを通る第1の収束光線束01の硝路長が変化する。また、移動くさびプリズム11bを図2(b)の状態から図2(a)の状態へと移動させた場合も同様である。ここで、固定くさびプリズム11aと移動くさびプリズム11bの間隔は常に一定であり、また第1の収束光線束01の光軸が固定くさびプリズム11aに入射する角度および移動くさびプリズム11bから出射する角度は常に垂直であるから、第1の収束光線束01の光軸は変化しない。光路長変換手段11における硝路長が増大すると、光路長の空気換算値が減小するため、第1の収束光線束01の焦点位置は撮像装置9を通り過ぎた先方に移動する。逆に、光路長変換手段11における硝路長が減小すると、光路長の空気換算値が増大するため、第1の収束光線束01の焦点位置は撮像装置9の手前に移動する。   Next, the operation and effect of the present embodiment will be described. 2 (a) and 2 (b) show a state in which the moving wedge prism 11b is moved in the optical path length conversion means 11. FIG. In FIG. 2, when the moving wedge prism 11b is moved from the state of FIG. 2 (a) to the state of FIG. 2 (b), the glass of the first convergent beam bundle 01 passing through the fixed wedge prism 11a and the moving wedge prism 11b. The road length changes. The same applies to the case where the moving wedge prism 11b is moved from the state shown in FIG. 2B to the state shown in FIG. Here, the distance between the fixed wedge prism 11a and the movable wedge prism 11b is always constant, and the angle at which the optical axis of the first convergent beam bundle 01 is incident on the fixed wedge prism 11a and the angle at which it is emitted from the movable wedge prism 11b is Since it is always vertical, the optical axis of the first convergent light beam 01 does not change. When the glass path length in the optical path length conversion means 11 increases, the air-converted value of the optical path length decreases, so that the focal position of the first convergent light beam 01 moves further past the imaging device 9. Conversely, when the glass path length in the optical path length conversion means 11 decreases, the air-converted value of the optical path length increases, so that the focal position of the first convergent beam bundle 01 moves to the front of the imaging device 9.

次に、移動くさびプリズム11bを意図的にずらした場合について図3により説明する。図3において対物レンズ2の焦点位置にある標本1上の面1aの投影像は、収束光線束02によって撮像装置9上に投影される。一方、移動くさびプリズム11bを意図的にずらして収束光線束01の光路長の空気換算値を変えた場合、収束光線束01の焦点位置は移動する。一方で、例えば収束光線束01の焦点位置を撮像装置9より距離Xだけ手前に移動し、この位置に標本面1aの像が投影されるようにした場合、この状態で撮像装置9上にある像点を対物レンズ2側に逆投影すると、その光線束は点線03で示されるような光路を経て対物レンズ2の焦点面である標本面1aより距離X/M2(Mは対物レンズ2の倍率)だけ対物レンズに近づいた1b上に投影される。言い換えれば、ダイクロイックミラー5を透過して光路長変換手段11を通る観察光路では、対物レンズ2の焦点位置より距離X/M2だけ近づいた位置にある標本面1bの像が撮像装置9上に投影される。 Next, a case where the moving wedge prism 11b is intentionally shifted will be described with reference to FIG. In FIG. 3, the projected image of the surface 1 a on the specimen 1 at the focal position of the objective lens 2 is projected onto the imaging device 9 by the convergent light bundle 02. On the other hand, when the air wedge value of the optical path length of the convergent beam bundle 01 is changed by intentionally shifting the moving wedge prism 11b, the focal position of the convergent beam bundle 01 moves. On the other hand, for example, when the focal position of the convergent beam bundle 01 is moved forward by a distance X from the imaging device 9, and the image of the sample surface 1a is projected at this position, it is on the imaging device 9 in this state. When the image point is back-projected on the objective lens 2 side, the ray bundle passes through an optical path as indicated by a dotted line 03, and the distance X / M 2 (M is the distance of the objective lens 2) from the specimen surface 1a which is the focal plane of the objective lens 2. (Magnification) is projected onto 1b close to the objective lens. In other words, in the observation optical path passing through the dichroic mirror 5 and passing through the optical path length conversion means 11, an image of the sample surface 1 b at a position closer to the focal position of the objective lens 2 by the distance X / M 2 is on the imaging device 9. Projected.

以上のように、本実施例の構成によれば、撮像装置9の画角内の異なる位置に、標本1上の異なる高さの面の投影像を投影し、同時に観察することが可能となる。例えば、40倍の対物レンズを用い、カバーガラスに接着した細胞の内側1μmの位置に対物レンズ2の焦点を合わせた場合、像側の光路長を0.001×402=1.6mm長くすることで、カバーガラスの細胞接着面を投影することができる。本実施例の構成によれば、光路長変換手段11における硝路長を4.8mm(使用するガラスの屈折率を1.5とした場合)減らすことにより実現できる。 As described above, according to the configuration of the present embodiment, it is possible to project projected images of different heights on the specimen 1 at different positions within the angle of view of the imaging device 9 and simultaneously observe them. . For example, if a 40x objective lens is used and the objective lens 2 is focused at a position 1 μm inside the cell adhered to the cover glass, the optical path length on the image side is increased by 0.001 × 40 2 = 1.6 mm. Thus, the cell adhesion surface of the cover glass can be projected. According to the configuration of the present embodiment, this can be realized by reducing the glass path length in the optical path length conversion means 11 by 4.8 mm (when the refractive index of the glass used is 1.5).

以上、本発明の第1の実施例について述べたが、この変形例として上記の光路長変換手段11のような連続的な補正手段の代わりに数種類の厚さの平行平面ガラス板を選択的に収束光線束中に挿入することによっても同様の成果を得られる。また、光分割手段はダイクロイックミラーに限定されず、ハーフミラーや偏光ビームスプリッタを使用してもよい。   As described above, the first embodiment of the present invention has been described. As a modified example, instead of continuous correction means such as the optical path length conversion means 11, several parallel plane glass plates with different thicknesses are selectively used. A similar result can be obtained by inserting into the convergent beam. The light splitting means is not limited to the dichroic mirror, and a half mirror or a polarization beam splitter may be used.

図4は本発明の第2の実施例の全体構成の概念図であり、図1における構成要素と同じものには同一の符号を付している。これらについては、その説明を省略する。   FIG. 4 is a conceptual diagram of the overall configuration of the second embodiment of the present invention. Components identical to those in FIG. Description of these will be omitted.

図4において、12は、第1の全反射手段7で反射された第1の結像光線束01を2回全反射して第3の全反射手段10に導くように構成した第4の全反射手段である。ここで、第4の全反射手段12は、第1の収束光線束01の光軸が入射側と出射側で平行になるように構成され、且つ第4の全反射手段12自体が第1の収束光線束の入射側および出射側の光軸と平行な方向に移動可能なように設けられている。14は、第1の結像光線束01の光路長の空気換算値を、第2の結像光線束と合わせるための透過プリズムである。   In FIG. 4, reference numeral 12 denotes a fourth total reflection beam configured to totally reflect the first imaging light beam 01 reflected by the first total reflection unit 7 twice and guide it to the third total reflection unit 10. It is a reflection means. Here, the fourth total reflection means 12 is configured such that the optical axis of the first convergent beam bundle 01 is parallel on the incident side and the emission side, and the fourth total reflection means 12 itself is the first total reflection means 12. It is provided so as to be movable in a direction parallel to the optical axis on the incident side and the exit side of the convergent light beam. Reference numeral 14 denotes a transmission prism for matching the air-converted value of the optical path length of the first imaging beam bundle 01 with the second imaging beam bundle.

次に、本実施例の作用、効果について説明する。図5は、第4の全反射手段12を移動させた状態(a)および(b)を示したものである。
図5(a)および(b)から分かるように、第4の全反射手段12を矢印の方向に移動させると第1の収束光線束01の硝路長が変化する。ここで、第4の全反射手段12の移動方向は、第1の収束光線束01の入射側および出射側の光軸と平行であるから、第1の収束光線束01の光軸は変化しない。図5(a)に示すように第4の全反射手段12を第1の全反射手段7に近づけると、光路長が減るため、第1の収束光線束01の焦点位置は撮像装置9を通り過ぎた先に移動する。また、図5(b)に示すように、逆に、第4の全反射手段12を第1の全反射手段7から遠ざけると、光路長が増えるため、第1の収束光線束01の焦点位置は撮像装置9の手前に移動する。
Next, the operation and effect of the present embodiment will be described. FIG. 5 shows the states (a) and (b) in which the fourth total reflection means 12 is moved.
As can be seen from FIGS. 5A and 5B, when the fourth total reflection means 12 is moved in the direction of the arrow, the glass path length of the first convergent light beam 01 changes. Here, the moving direction of the fourth total reflection means 12 is parallel to the incident-side and exit-side optical axes of the first convergent beam bundle 01, so the optical axis of the first convergent beam bundle 01 does not change. . As shown in FIG. 5A, when the fourth total reflection means 12 is brought closer to the first total reflection means 7, the optical path length is reduced, so that the focal position of the first convergent beam bundle 01 passes through the imaging device 9. Move ahead. On the other hand, as shown in FIG. 5B, when the fourth total reflection means 12 is moved away from the first total reflection means 7, the optical path length increases, so that the focal position of the first convergent light beam 01 is increased. Moves in front of the imaging device 9.

次に第4の全反射手段12を意図的にずらした場合について図6により説明する。図6において対物レンズ2の焦点位置にある標本1上の面1aの投影像は、収束光線束02によって撮像装置9上に投影される。一方、第4の全反射手段12を意図的にずらして収束光線束01の光路長を変えた場合、例えば第4の全反射手段12を距離X/2だけ第1の全反射手段7から遠ざけた場合、収束光線束01の焦点位置は撮像装置9より距離Xだけ手前に移動し、この位置に標本面1aの像が投影される。一方、この状態で撮像装置9上にある像点を対物レンズ2側に逆投影すると、その光線束は点線03で示されるような光路を経て対物レンズ2の焦点面である標本面1aより距離X/M2(Mは対物レンズ2の倍率)だけ対物レンズに近づいた1b上に投影される。言い換えれば、ダイクロイックミラー5を透過して第4の全反射手段12を通る観察光路では、対物レンズ2の焦点位置より距離X/M2だけ近づいた位置にある標本面1bの像が撮像装置9上に投影される。 Next, the case where the fourth total reflection means 12 is intentionally shifted will be described with reference to FIG. In FIG. 6, the projected image of the surface 1 a on the sample 1 at the focal position of the objective lens 2 is projected onto the imaging device 9 by the convergent light bundle 02. On the other hand, when the optical path length of the convergent light beam 01 is changed by intentionally shifting the fourth total reflection means 12, for example, the fourth total reflection means 12 is moved away from the first total reflection means 7 by a distance X / 2. In this case, the focal position of the convergent light beam 01 moves forward by a distance X from the imaging device 9, and the image of the sample surface 1a is projected at this position. On the other hand, when the image point on the imaging device 9 is back-projected to the objective lens 2 side in this state, the light beam passes through the optical path as indicated by the dotted line 03 and is a distance from the sample surface 1a that is the focal plane of the objective lens 2. It is projected onto 1b close to the objective lens by X / M 2 (M is the magnification of objective lens 2). In other words, in the observation optical path that passes through the dichroic mirror 5 and passes through the fourth total reflection means 12, an image of the sample surface 1 b at a position closer to the focal position of the objective lens 2 by a distance X / M 2 is obtained. Projected on top.

本実施例2の構成によれば、撮像装置9の画角内の異なる位置に、例えば、40倍の対物レンズを用い、カバーガラスに接着した細胞の内側1μmの位置に対物レンズ2の焦点を合わせた場合、像側の光路長を0.001×402=1.6mm長くすることで、カバーガラスの細胞接着面を投影することができる。本実施例の構成によれば、第4の全反射手段12を0.8mm移動させることにより実現できる。 According to the configuration of the second embodiment, for example, a 40 × objective lens is used at different positions within the angle of view of the imaging device 9, and the focal point of the objective lens 2 is focused at a position of 1 μm inside the cell adhered to the cover glass. When combined, the cell adhesion surface of the cover glass can be projected by increasing the optical path length on the image side by 0.001 × 40 2 = 1.6 mm. According to the configuration of the present embodiment, this can be realized by moving the fourth total reflection means 12 by 0.8 mm.

図7は本発明の第3の実施例の全体構成の概念図であり、図1乃至図6における構成要素と同じものには同一の符号を付している。これらについては、その説明を省略する。   FIG. 7 is a conceptual diagram of the overall configuration of the third embodiment of the present invention. The same components as those in FIGS. 1 to 6 are denoted by the same reference numerals. Description of these will be omitted.

図7において、21aは落射照明用の光源であり、22aは落射照明光の投影レンズである。25aは、落射照明光の特定の波長のみを透過する励起フィルタである。23aは励起フィルタ25aを透過した励起光を対物レンズ2側へ反射するダイクロイックミラーである。また、62は第2の収束光線束02中にあるフィルタであり、励起フィルタ25aを透過した波長帯の光によって励起される蛍光試薬の蛍光を選択的に透過するような特性を有するものである。21bはガラスファイバの出射端等によって構成される全反射蛍光照明用の光線出射部であり、22bは全反射照明光の投影レンズである。24は標本1を挟んで対物レンズ2と対向する位置に配置されたコンデンサレンズであり、全反射照明が可能な開口数を有する。23bは、全反射照明光をコンデンサレンズ24側へ反射するミラーである。   In FIG. 7, 21a is a light source for epi-illumination, and 22a is a projection lens for epi-illumination light. Reference numeral 25a denotes an excitation filter that transmits only a specific wavelength of epi-illumination light. Reference numeral 23a denotes a dichroic mirror that reflects the excitation light transmitted through the excitation filter 25a to the objective lens 2 side. Reference numeral 62 denotes a filter in the second convergent light bundle 02, which has a characteristic of selectively transmitting the fluorescence of the fluorescent reagent excited by light in the wavelength band that has passed through the excitation filter 25a. . Reference numeral 21b denotes a light emitting part for total reflection fluorescent illumination constituted by an emission end of a glass fiber, and 22b denotes a projection lens for total reflection illumination light. Reference numeral 24 denotes a condenser lens disposed at a position facing the objective lens 2 with the sample 1 interposed therebetween, and has a numerical aperture capable of total reflection illumination. Reference numeral 23b denotes a mirror that reflects the total reflection illumination light toward the condenser lens 24 side.

ミラー23bを反射した全反射照明光はコンデンサレンズ24の前側焦点面上の光軸からずれた位置に集光され、コンデンサレンズ24を出射した後、標本1に対して全反射角より大きい角度で入射し、全反射する。標本1側には数100nm以下の深さでエバネッセント光のみが侵入し、励起光として利用される。一方、第1の収束光線束01中に設けられるフィルタ61は、エバネッセント光の波長帯の光によって励起される蛍光試薬の蛍光を選択的に透過するような特性を有するものを用いる。   The total reflection illumination light reflected from the mirror 23b is condensed at a position shifted from the optical axis on the front focal plane of the condenser lens 24, and after exiting the condenser lens 24, the sample 1 has an angle larger than the total reflection angle. Incident and totally reflected. Only evanescent light enters the sample 1 side at a depth of several hundred nm or less and is used as excitation light. On the other hand, as the filter 61 provided in the first convergent light beam 01, a filter having a characteristic of selectively transmitting fluorescence of a fluorescent reagent excited by light in the wavelength band of evanescent light is used.

次に、本実施例の作用、効果について説明する。落射照明の励起光によって励起された蛍光のうち、対物レンズ2の焦点位置にある標本1上の面1aから発光された蛍光の投影像は、収束光線束02によって撮像装置9上に投影される。一方、第4の全反射手段12をずらして収束光線束01の光路長を減らすことで、対物レンズ2の焦点位置より遠ざかった位置、即ち、コンデンサレンズ24に近づいた位置にある標本面1bの像を撮像装置9上に投影するようにする。光路長の減少量を調節して、標本面1bをコンデンサレンズ24側のカバーガラス面近傍に持ってくると、コンデンサレンズから入ったエバネッセント光による励起光が届くため、標本面1bから発光された蛍光の投影像は、収束光線束01によって撮像装置9上に投影される。   Next, the operation and effect of the present embodiment will be described. Of the fluorescence excited by the excitation light of the epi-illumination, a projection image of the fluorescence emitted from the surface 1a on the specimen 1 at the focal position of the objective lens 2 is projected onto the imaging device 9 by the convergent light beam 02. . On the other hand, by shifting the fourth total reflection means 12 to reduce the optical path length of the convergent light beam 01, the position of the sample surface 1b at a position away from the focal position of the objective lens 2, that is, a position close to the condenser lens 24 is obtained. An image is projected on the imaging device 9. When the amount of decrease in the optical path length is adjusted and the sample surface 1b is brought near the cover glass surface on the condenser lens 24 side, excitation light from the evanescent light entering from the condenser lens arrives, so that the sample surface 1b is emitted. The projection image of the fluorescence is projected onto the image pickup device 9 by the convergent light beam 01.

以上のように、本実施例3の構成によれば、落射照明と全反射照明による2波長同時励起照明により、標本内部に対物の焦点位置を合わせて落射照明による詳細形状の観察を行いつつ、光路長変換による投影像をカバーガラス近傍に合わせて全反射照明による蛍光検出を行い、これらを一つの撮像装置で同時に撮像することができる。例えば、生細胞に観察において、細胞骨格付近におけるCa2+誘導蛋白の挙動の落射蛍光による観察と、細胞接着斑における開口放出に伴う発光の全反射蛍光による検出を同時に行う等、研究者の新たな要望に応え得る撮像装置を提供できる。 As described above, according to the configuration of the third embodiment, the two-wavelength simultaneous excitation illumination using the epi-illumination and the total reflection illumination is used to observe the detailed shape by the epi-illumination while aligning the focal position of the objective inside the sample. The projected image obtained by the optical path length conversion is matched with the vicinity of the cover glass to detect fluorescence by total reflection illumination, and these can be simultaneously imaged by one imaging device. For example, in the observation of living cells, the observation of Ca 2+ -induced protein behavior in the vicinity of the cytoskeleton by epifluorescence and the detection of luminescence associated with the opening emission in cell adhesion spots by total reflection fluorescence are performed simultaneously. It is possible to provide an imaging apparatus that can meet various needs.

以上、本発明の第3の実施例について述べたが、この変形例として図8に示すように、落射照明用光源21a、投影レンズ22aおよびミラー23bをコンデンサレンズ2の側に設け、エバネッセント光の浸みだし深さが異なる2種類の波長の全反射照明光をコンデンサレンズ24側から入射させることもできる。また、上記の全反射照明光をコンデンサレンズ24側ではなく、対物レンズ2側から入射するような構成にすることも可能である。このような構成によっても同様な効果を達成できる。   As described above, the third embodiment of the present invention has been described. As a modification, as shown in FIG. 8, the incident illumination light source 21a, the projection lens 22a, and the mirror 23b are provided on the condenser lens 2 side, and evanescent light is emitted. It is also possible to make the total reflection illumination light having two types of wavelengths having different penetration depths incident from the condenser lens 24 side. It is also possible to adopt a configuration in which the total reflection illumination light is incident not from the condenser lens 24 side but from the objective lens 2 side. A similar effect can be achieved by such a configuration.

本発明の顕微鏡の撮像光学系の第1実施例の全体構成の概念図である。It is a conceptual diagram of the whole structure of the 1st Example of the imaging optical system of the microscope of this invention. 本発明による顕微鏡の撮像光学系の第1実施例における光路長変換手段の概念図である。(a)は移動くさびプリズムを移動させた状態を示す図であり、(b)は移動くさびプリズムを他の位置に移動させた状態を示す図である。It is a conceptual diagram of the optical path length conversion means in 1st Example of the imaging optical system of the microscope by this invention. (a) is a figure which shows the state which moved the wedge prism, (b) is a figure which shows the state which moved the wedge wedge prism to another position. 本発明による顕微鏡の撮像光学系の第1実施例の構成において移動くさびプリズムをずらした状態を示す図である。It is a figure which shows the state which shifted the wedge wedge prism in the structure of 1st Example of the imaging optical system of the microscope by this invention. 本発明の顕微鏡の撮像光学系の第2の実施例にかかる全体構成の概念図である。It is a conceptual diagram of the whole structure concerning the 2nd Example of the imaging optical system of the microscope of this invention. 本発明による顕微鏡の撮像光学系の第2の実施例において全反射手段を移動させた状態(a)および他の状態(b)を示す図である。It is a figure which shows the state (a) which moved the total reflection means in the 2nd Example of the imaging optical system of the microscope by this invention, and another state (b). 本発明による顕微鏡の撮像光学系の第2の実施例において全反射手段を意図的にずらした場合の状態を示す図である。It is a figure which shows the state at the time of deliberately shifting a total reflection means in the 2nd Example of the imaging optical system of the microscope by this invention. 本発明の顕微鏡の撮像光学系およびその照明手段の第3実施例にかかる全体構成の概念図である。It is a conceptual diagram of the whole structure concerning the 3rd Example of the imaging optical system of the microscope of this invention, and its illumination means. 本発明の第3実施例にかかる変形例の構成のの概念図である。It is a conceptual diagram of a structure of the modification concerning 3rd Example of this invention. 従来の撮像光学系の概念構成図である。It is a conceptual block diagram of the conventional imaging optical system. 従来の他の撮像光学系の概念構成図である。It is a conceptual block diagram of the other conventional imaging optical system.

符号の説明Explanation of symbols

0、01、02、03 光線束
1 標本
2 対物レンズ
3 結像レンズ
4 ミラー
5 ダイクロイックミラー
7、8、10 全反射手段
9 撮像装置
11 光路長変換手段
11a 固定くさびプリズム
11b 移動くさびプリズム
13 絞り
14 透過プリズム
21a 落射照明用光源
21b 蛍光照明用光線射出部
22a、22b 投影レンズ
23a、23b ミラー
25a 励起フィルター
61、62 フィルター
X 焦点移動距離
0, 01, 02, 03 Ray bundle 1 Sample 2 Objective lens 3 Imaging lens 4 Mirror 5 Dichroic mirror 7, 8, 10 Total reflection means 9 Imaging device 11 Optical path length conversion means 11a Fixed wedge prism 11b Moving wedge prism 13 Aperture 14 Transmissive prism 21a Epi-illumination light source 21b Fluorescent illumination beam emitting portions 22a and 22b Projection lenses 23a and 23b Mirror 25a Excitation filters 61 and 62 Filter X Focus movement distance

Claims (5)

標本からの光を像面に至る観察光路に導く対物レンズと、
前記対物レンズから像側に出射された平行光線束または収束光線束を撮像面で集光する収束光線束に変換する結像レンズと、
前記結像レンズより像側に配置されていて前記結像レンズによって変換された収束光線束を波長等の光学特性によって分割する分割手段と、
前記分割手段によって分割された各々の収束光線束の投影像を前記撮像面内の異なる位置で形成するように配置構成された全反射手段群と
記分割手段によって分割された各々の収束光線束のうち少なくとも一方の光路長または光路長の空気換算値を増減して収束光線束の焦点位置を移動する光路長変換手段と、
を具備し
前記標本上の異なる高さの面を同時に観察することを特徴とする顕微鏡の撮像光学系。
An objective lens that guides the light from the specimen to the observation optical path to the image plane;
An imaging lens that converts a parallel beam bundle or a convergent beam bundle emitted from the objective lens to the image side into a convergent beam bundle that is collected on the imaging surface ;
Dividing means for dividing the converging luminous flux is converted be disposed on the image side of the imaging lens by the imaging lens by the optical characteristic of the wavelength, etc.,
A total reflection means group arranged and formed so as to form projected images of the respective convergent beam bundles divided by the dividing means at different positions in the imaging surface ;
An optical path length conversion means for moving the focal position of the converging light beam by increasing or decreasing the air conversion value of at least one of the optical path length or optical path length of converging light bundle of each divided by the previous SL dividing means,
Equipped with,
An imaging optical system of a microscope characterized by simultaneously observing surfaces having different heights on the specimen .
前記光路長変換手段は、前記全反射手段群のうち少なくとも2ケ所の全反射面を一体的に移動する移動手段によって構成されることを特徴とする請求項1に記載の顕微鏡の撮像光学系。   2. The imaging optical system of a microscope according to claim 1, wherein the optical path length conversion unit is configured by a moving unit that integrally moves at least two total reflection surfaces in the total reflection unit group. 少なくとも一つの全反射蛍光照明手段を含む複数の励起波長による同時照明が可能な励起光照明手段を具備し、全反射蛍光照明手段によって励起された蛍光は前記光路長変換手段を含む光路側または他方の光路側の何れか一方で撮像されることを特徴とする請求項1または請求項2に記載の顕微鏡の撮像光学系。 Including excitation light illumination means capable of simultaneous illumination with a plurality of excitation wavelengths including at least one total reflection fluorescence illumination means, and the fluorescence excited by the total reflection fluorescence illumination means is on the optical path side or the other side including the optical path length conversion means The imaging optical system for a microscope according to claim 1, wherein an image is picked up on any one of the optical path sides of the microscope . 前記分割手段によって分割された第一の収束光線束の投影像と第二の収束光線束の投影像との重なりを防ぐための遮光手段を具備したことを特徴とする請求項1乃至請求項3の何れかに記載の顕微鏡の撮像光学系。4. A light shielding unit for preventing an overlap between a projected image of the first convergent beam bundle and a projected image of the second convergent beam bundle divided by the dividing unit. An imaging optical system for a microscope according to any one of the above. 標本からの光を像面に至る観察光路に導く対物レンズと、An objective lens that guides the light from the specimen to the observation optical path to the image plane;
前記対物レンズから像側に出射された平行光線束または収束光線束を撮像面で集光する収束光線束に変換する結像レンズと、An imaging lens that converts a parallel beam bundle or a convergent beam bundle emitted from the objective lens to the image side into a convergent beam bundle that is collected on the imaging surface;
前記結像レンズより像側に配置されていて前記結像レンズによって変換された収束光線束を波長等の光学特性によって分割する分割手段と、A dividing unit that is arranged on the image side of the imaging lens and divides the convergent light beam converted by the imaging lens according to optical characteristics such as a wavelength;
前記分割手段によって分割された各々の収束光線束の投影像を前記撮像面内の異なる位置で形成するように配置構成された全反射手段群と、A total reflection means group arranged and formed so as to form projected images of the respective convergent beam bundles divided by the dividing means at different positions in the imaging surface;
前記分割手段によって分割された各々の収束光線束のうち少なくとも一方の光路長または光路長の空気換算値を増減して該収束光線束の焦点位置を移動する光路長変換手段と、Optical path length conversion means for moving the focal position of the convergent light bundle by increasing or decreasing the optical path length of at least one of the convergent light bundles divided by the dividing means or an air-converted value of the optical path length;
前記異なる位置で形成された各々の投影像を前記撮像面で撮像する撮像装置と、An imaging device that captures images of the projected images formed at the different positions on the imaging surface;
を具備し、Comprising
前記標本上の異なる高さの面を同時に観察することを特徴とする顕微鏡。A microscope characterized by simultaneously observing surfaces of different heights on the specimen.
JP2003273650A 2003-07-11 2003-07-11 Microscope imaging optical system and microscope using the same Expired - Fee Related JP4454980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003273650A JP4454980B2 (en) 2003-07-11 2003-07-11 Microscope imaging optical system and microscope using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003273650A JP4454980B2 (en) 2003-07-11 2003-07-11 Microscope imaging optical system and microscope using the same

Publications (2)

Publication Number Publication Date
JP2005031589A JP2005031589A (en) 2005-02-03
JP4454980B2 true JP4454980B2 (en) 2010-04-21

Family

ID=34210828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003273650A Expired - Fee Related JP4454980B2 (en) 2003-07-11 2003-07-11 Microscope imaging optical system and microscope using the same

Country Status (1)

Country Link
JP (1) JP4454980B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2081071A4 (en) * 2006-11-30 2012-01-25 Nikon Corp Imaging device and microscope
JP2009186753A (en) * 2008-02-06 2009-08-20 Olympus Corp Observation device
JP5389523B2 (en) * 2009-04-30 2014-01-15 オリンパス株式会社 Optical microscope
DE102009060793A1 (en) * 2009-12-22 2011-07-28 Carl Zeiss Microlmaging GmbH, 07745 High-resolution microscope and method for two- or three-dimensional position determination of objects
JP2014164097A (en) * 2013-02-25 2014-09-08 Olympus Corp Beam splitter device, scanning observation device, laser scanning microscope and laser scanning endoscope
JP6236811B2 (en) 2013-03-14 2017-11-29 株式会社リコー Light source unit, illumination device, and image projection device
JP6349784B2 (en) 2013-03-14 2018-07-04 株式会社リコー Light source unit, illumination device, and image projection device

Also Published As

Publication number Publication date
JP2005031589A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
US5646411A (en) Fluorescence imaging system compatible with macro and micro scanning objectives
US8873046B2 (en) Spectroscopic detection device and confocal microscope
US5847400A (en) Fluorescence imaging system having reduced background fluorescence
JP6096814B2 (en) Optical scanning microscope with spectral detection
US9606342B2 (en) Laser beam selectors
JP5286774B2 (en) Microscope device and fluorescent cube used therefor
US8785885B1 (en) Fluorescence imaging module
JP2001272606A (en) Illumination optical system and microscope provided with the same
US7170676B2 (en) Illumination switching apparatus and method
US6917468B2 (en) Confocal microscope
US11333605B2 (en) Sample measurement device and sample measurement method
JP4454980B2 (en) Microscope imaging optical system and microscope using the same
US7315413B2 (en) Illumination apparatus for microscope
JP5495740B2 (en) Confocal scanning microscope
JP4086182B2 (en) Spectroscope, confocal optical system using the same, and scanning optical microscope
JP5623654B2 (en) Confocal laser scanning microscope
JP6696597B2 (en) Light source device and distance measuring sensor including the same
US9958661B2 (en) Apparatus for structured illumination of a specimen
US11874450B2 (en) Oblique plane microscope for imaging a sample
JP2007304103A (en) Spectroscope and confocal optical system using it, and scanning optical microscope
JP5726656B2 (en) Disc scanning confocal observation device
JP2005140956A (en) Focal point detection device and fluorescent microscope
JP5307868B2 (en) Total reflection microscope
JP2008164719A (en) Scanning confocal microscope
JP4593139B2 (en) Optical scanning confocal observation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4454980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees