JP2010107277A - Method for measuring film thickness of organic thin film - Google Patents

Method for measuring film thickness of organic thin film Download PDF

Info

Publication number
JP2010107277A
JP2010107277A JP2008277786A JP2008277786A JP2010107277A JP 2010107277 A JP2010107277 A JP 2010107277A JP 2008277786 A JP2008277786 A JP 2008277786A JP 2008277786 A JP2008277786 A JP 2008277786A JP 2010107277 A JP2010107277 A JP 2010107277A
Authority
JP
Japan
Prior art keywords
thin film
organic thin
inorganic element
characteristic
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008277786A
Other languages
Japanese (ja)
Other versions
JP5399038B2 (en
Inventor
Nobuyuki Hamazaki
宣行 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Pak Co Ltd
Original Assignee
Nippon Paper Pak Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Pak Co Ltd filed Critical Nippon Paper Pak Co Ltd
Priority to JP2008277786A priority Critical patent/JP5399038B2/en
Publication of JP2010107277A publication Critical patent/JP2010107277A/en
Application granted granted Critical
Publication of JP5399038B2 publication Critical patent/JP5399038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring the film thickness of an organic thin film which can measure the film thickness that contains inorganic elements with high accuracy. <P>SOLUTION: On the basis of the concentration C<SB>A</SB>of the inorganic element within the organic thin film 40, which is formed on the surface of a base, the organic element is included; and has a density of 2 g/cm<SP>3</SP>or less and the characteristic X-rays intensity K<SB>S</SB>of the organic element in a standard sample, characteristic X-rays intensity K<SB>1</SB>, when the organic thin film is irradiated with an electron beam is detected; and the film thickness &Delta;Z of the organic thin film is measured through Equation 1, where &rho; is the dry density (g/cm<SP>3</SP>) of the organic thin film, E<SB>0</SB>the energy of one incident electron, E<SB>j</SB>(A) is the excitation energy of the K shell of the inorganic element, R<SB>A</SB>the atomic number correction constant of the inorganic element, S'<SB>A</SB>is the stopping power of the standard sample, U<SB>0</SB>=E<SB>0</SB>/E<SB>j</SB>(A), and K<SB>A</SB>=(K<SB>1</SB>/R<SB>0</SB>)/(K<SB>S</SB>/f(x)), with R<SB>0</SB>being the generating function for the characteristic X-rays of the thin-film surface, and f(x) the absorption correction factor of the standard sample. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、シリコーン樹脂等を含む有機薄膜の膜厚測定方法に関する。   The present invention relates to a method for measuring a film thickness of an organic thin film containing a silicone resin or the like.

従来、牛乳カートン等の飲料用の紙容器として、四角の筒状胴部をヒートシールで密封した、いわゆる切妻屋根型の紙容器(ゲーブルトップ型)が広く使用されている(特許文献1参照)。これらの紙容器において、消費者はヒートシール部を剥して容器を開口し、内容物の注ぎ口として使用する。
ところで、ヒートシールで貼り合わせて密封された紙片同士を剥す際、ヒートシールの接着力が強すぎると、開口が容易ではなく、また開口部がきれいに剥がれず破損したり、ささくれ、更に注ぎ口がきれいに形成されずに内容物がこぼれて不衛生になる等の問題がある。
Conventionally, as a paper container for beverages such as a milk carton, a so-called gable roof type paper container (gable top type) in which a rectangular cylindrical body is sealed with a heat seal is widely used (see Patent Document 1). . In these paper containers, the consumer peels off the heat seal part and opens the container to use as a spout for the contents.
By the way, when peeling the pieces of paper sealed together by heat sealing, if the adhesive force of the heat seal is too strong, the opening is not easy, and the opening is not peeled off cleanly and damaged, and the spout There is a problem that the contents are spilled without being formed neatly and become unsanitary.

そこで、ヒートシール部となる紙片の貼り合わせ面に、抗接着剤(アブヒーシブ剤)を塗布する技術が開発されている(特許文献2参照)。例えば、このような抗接着剤は、シリコーン樹脂、ポリエチレンワックス、大豆レシチン、高級脂肪酸アマイド等の離型剤と;エチルセルロース、環化ゴム等の基ポリマーと;酢酸エチルやアルコール類等の溶剤と;を組み合わせて調製される。
又、抗接着剤の抗接着度(接着強度)の調整は、離型剤の種類や抗接着剤の塗工量により行われている。
Therefore, a technique for applying an anti-adhesive (abhesive agent) to a bonding surface of a piece of paper that becomes a heat seal portion has been developed (see Patent Document 2). For example, such anti-adhesives include mold release agents such as silicone resin, polyethylene wax, soybean lecithin and higher fatty acid amide; base polymers such as ethyl cellulose and cyclized rubber; and solvents such as ethyl acetate and alcohols; Are prepared in combination.
The anti-adhesion degree (adhesion strength) of the anti-adhesive is adjusted by the type of the release agent and the coating amount of the anti-adhesive.

特開平5−162748号公報JP-A-5-162748 特開平3−217480号公報JP-A-3-217480

しかしながら、一般に抗接着剤は無色透明であるため目視で塗工量を判定することは難しい。従って、通常はヨウ素液を抗接着剤の塗布部に塗布し、発色の度合で塗工量を判定しているが、発色状態から抗接着剤の塗工量や膜厚を定量化するのは困難であった。
塗工層の膜厚を測定する一般的な方法として、断面を光学顕微鏡や電子顕微鏡で観察する方法があるが、抗接着剤の塗工層は厚みが非常に薄く、さらに抗接着剤は有機薄膜であるために顕微鏡で鮮明に映し出されず、膜厚を測定することは難しい。
従って、本発明は、無機元素を含む膜厚を精度よく測定できる有機薄膜の膜厚測定方法を提供することを目的とする。
However, since the anti-adhesive is generally colorless and transparent, it is difficult to visually determine the coating amount. Therefore, the iodine amount is usually applied to the application part of the anti-adhesive, and the coating amount is determined by the degree of color development, but the amount of anti-adhesive coating and film thickness are quantified from the color development state. It was difficult.
As a general method for measuring the thickness of the coating layer, there is a method of observing the cross section with an optical microscope or an electron microscope. However, the coating layer of the anti-adhesive is very thin, and the anti-adhesive is organic. Since it is a thin film, it is not projected clearly with a microscope, and it is difficult to measure the film thickness.
Accordingly, an object of the present invention is to provide a method for measuring a film thickness of an organic thin film that can accurately measure a film thickness containing an inorganic element.

本発明の有機薄膜の膜厚測定方法は、特定の無機元素を含まない基材の表面に形成され、前記無機元素を含み、密度が2g/cm以下の有機薄膜の膜厚ΔZを測定する方法であって、
質量割合で表した前記有機薄膜中の前記無機元素の濃度Cと、前記無機元素の単体からなる標準試料による前記無機元素の特性X線強度Kとに基づき、前記有機薄膜に電子線を照射したときの特性X線強度Kを検出し、式1

Figure 2010107277
(ρは前記有機薄膜の乾燥密度(g/cm);Eは入射電子1個のエネルギー;E(A)は前記無機元素のK殻の励起エネルギー;Rは前記無機元素の原子番号補正定数;S’は前記標準試料の阻止能;eは電荷量;Nはアボガドロ数;U=E/E(A) ;K=(K/R)/(K/f(x))、但し、Rは薄膜表面の特性X線の発生関数、f(x)は前記標準試料の吸収補正係数)によって前記膜厚ΔZを測定する。 The method for measuring the film thickness of an organic thin film of the present invention measures the film thickness ΔZ of an organic thin film that is formed on the surface of a substrate that does not contain a specific inorganic element and that contains the inorganic element and has a density of 2 g / cm 3 or less. A method,
And concentration C A of the inorganic element of the organic thin film in terms of mass ratio, based on the characteristic X-ray intensity K S of the inorganic element according to a standard sample consisting of a single said inorganic element, the electron beam to the organic thin film The characteristic X-ray intensity K 1 when irradiated is detected and the equation 1
Figure 2010107277
(Ρ is the dry density of the organic thin film (g / cm 3 ); E 0 is the energy of one incident electron; E j (A) is the excitation energy of the K shell of the inorganic element; R A is the atom of the inorganic element Number correction constant; S ′ A is the stopping power of the standard sample; e is the charge amount; N 0 is the Avogadro number; U 0 = E 0 / E j (A); K A = (K 1 / R 0 ) / ( K S / f (x)), where R 0 is the generation function of characteristic X-rays on the surface of the thin film, and f (x) is the absorption correction coefficient of the standard sample).

前記無機元素はケイ素であり、前記無機元素は前記有機薄膜中に有機ケイ素化合物として含まれていてもよい。   The inorganic element may be silicon, and the inorganic element may be contained as an organic silicon compound in the organic thin film.

本発明によれば、無機元素を含む有機薄膜の膜厚を精度よく測定できる。   According to the present invention, the film thickness of an organic thin film containing an inorganic element can be accurately measured.

以下本発明の実施形態について説明する。本発明の有機薄膜の膜厚測定方法は、基材の表面に形成された有機薄膜の膜厚を測定するるものである。まず、本発明を好適に適用できる対象の一例として、牛乳カートン等の飲料用の紙容器について説明する。
図1は、紙容器50を示す斜視図であり、図2は、紙容器50の組立て加工前のカートンブランク(基材)を示す展開図である。紙容器50は、公知の切妻屋根型(ゲーブルトップ型)の紙容器であり、表裏面に熱可塑性樹脂を積層した板紙素材を折り畳んでなっている。
Embodiments of the present invention will be described below. The organic thin film thickness measuring method of the present invention measures the thickness of an organic thin film formed on the surface of a substrate. First, as an example of an object to which the present invention can be preferably applied, a paper container for beverages such as a milk carton will be described.
FIG. 1 is a perspective view showing a paper container 50, and FIG. 2 is a development view showing a carton blank (base material) before assembly of the paper container 50. The paper container 50 is a known gable roof type (gable top type) paper container, and is formed by folding a paperboard material in which a thermoplastic resin is laminated on the front and back surfaces.

紙容器50は、4つの胴部パネル4,5,6,7からなる概略四角の有底角筒状をなし、基材をそれぞれ胴部縦折線1,2,3で折り返すことで、各胴部パネル4,5,6,7の角部が形成される。又、胴部パネル7の一辺に縦罫線8を介して縦方向シールパネル9が形成され、縦方向シールパネル9を胴部パネル4の縁に重ね合わせてシールすることで、胴部パネル7と胴部パネル4とを連接して筒状とし、全体として四角の筒状胴部10が形成されている。   The paper container 50 has a substantially square bottomed rectangular tube shape composed of four body panels 4, 5, 6 and 7, and the base material is folded back along the body vertical folding lines 1, 2 and 3, respectively. The corners of the part panels 4, 5, 6, and 7 are formed. In addition, a vertical seal panel 9 is formed on one side of the body panel 7 via vertical ruled lines 8, and the vertical seal panel 9 is overlapped with the edge of the body panel 4 and sealed, The body panel 4 is connected to form a cylinder, and a square cylinder body 10 is formed as a whole.

胴部10のうち、対向する胴部パネル4,6の上端には、頂部横折線11,12を介して互いに対向する一対の切妻屋根形成パネル13,14が連接されている。この一対の切妻屋根形成パネル13,14の上部には、シール横折線15,16を介して外側トップシールパネル17,18が連設されている。また、筒状胴部10の他の対向する胴部パネル5,7の上端には、頂部横罫線19,20を介して互いに対向して一方が注出口になり開封される一対の妻壁形成パネル21,22が連接される。この一対の妻壁形成パネル21,22の上部には、シール横折線23,24を介して内側トップシールパネル25,26が連接されている。
そして、一対の妻壁形成パネル21,22には、胴部パネル5,7との境界となる頂部横折線19,20の両端から、内側トップシールパネル25,26との境界となるシール横折線23,24の中央に繋がるそれぞれ2本の折込線27,28が設けられている。そして、妻壁形成パネル21が2本の折込線27で折られて切妻屋根形成パネル13,14の間に折り込まれる。同様に、妻壁形成パネル22が2本の折込線28で折られて切妻屋根形成パネル13,14の間に折り込まれる。このようにして、紙容器50の胴部10の上部には、切妻屋根型の頂部29が形成されている。
A pair of gable roof forming panels 13, 14 facing each other are connected to the upper ends of the body panels 4, 6 facing each other through the top horizontal folding lines 11, 12. Outer top seal panels 17 and 18 are connected to upper portions of the pair of gable roof forming panels 13 and 14 via seal horizontal folding lines 15 and 16. In addition, a pair of wife walls are formed at the upper ends of the other opposite body panel 5 and 7 of the cylindrical body 10 so as to face each other through the top horizontal ruled lines 19 and 20 and one is opened as a spout. Panels 21 and 22 are connected. Inner top seal panels 25, 26 are connected to the upper portions of the pair of end wall forming panels 21, 22 via seal horizontal folding lines 23, 24.
The pair of end wall forming panels 21 and 22 have seal horizontal fold lines that serve as boundaries with the inner top seal panels 25 and 26 from both ends of the top horizontal fold lines 19 and 20 that serve as boundaries with the body panels 5 and 7. Two folding lines 27 and 28 connected to the centers of 23 and 24 are provided. The end wall forming panel 21 is folded at two folding lines 27 and is folded between the gable roof forming panels 13 and 14. Similarly, the end wall forming panel 22 is folded at two folding lines 28 and folded between the gable roof forming panels 13 and 14. In this manner, a gable roof-type top portion 29 is formed on the upper portion of the body portion 10 of the paper container 50.

さらに、外側トップシールパネル17,18および内側トップシールパネル25,26同士がシールされてトップシール部30が形成される。
ここで、トップシール部30のうち、妻壁形成パネル21側に位置する部分のシール部が剥されて開口され、内容物の注ぎ口となる。従って、注ぎ口としてシールが剥される、外側トップシールパネル17、18及び内側トップシールパネル25のヒートシール部の所定位置に、ヒートシールの接着強度を調整し、剥離を容易にする抗接着剤(アブヒーシブ剤)層40が塗布されている。
Furthermore, the outer top seal panels 17 and 18 and the inner top seal panels 25 and 26 are sealed to form the top seal portion 30.
Here, a part of the top seal portion 30 located on the side of the end wall forming panel 21 is peeled off and opened to serve as a spout for the contents. Therefore, the anti-adhesive agent that adjusts the adhesive strength of the heat seal to a predetermined position of the heat seal portion of the outer top seal panels 17 and 18 and the inner top seal panel 25 and peels easily as a spout and facilitates peeling. The (abhesive agent) layer 40 is applied.

本発明は、例えば上記した抗接着剤層40(有機薄膜)の膜厚の測定に用いることができる。
上記板紙素材は、表裏面に熱可塑性樹脂を積層した板紙であり、板紙としては、坪量30〜400g/m2程度の液体紙容器用耐酸性原紙を使用できる。又、熱可塑性樹脂は、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、変性ポリエステル等のヒートシール可能な樹脂を挙げることができる。
なお、詳しくは後述するが、本発明における「基材」とは、有機薄膜に1次電子線を照射して特性X線強度Kを測定する際、1次電子線が有機薄膜を突き抜けて下地に入り込んだ場合の下地をいう。従って、上記板紙素材の熱可塑性樹脂層まで1次電子線が入り込む場合、「基材」とは熱可塑性樹脂層を示すことになる。
又、基材(上記例では熱可塑性樹脂)は、後述する有機薄膜に含まれる無機元素を含まないものとする。例えば、基材として、板紙にポリエチレン(20μm厚程度)をラミネートし、1次電子線がポリエチレン層まで入り込む場合、ポリエチレン層に含まれて特性X線を出す元素はC、O、Hであり、無機元素を含まない。
The present invention can be used, for example, for measuring the film thickness of the anti-adhesive layer 40 (organic thin film) described above.
The said paperboard raw material is the paperboard which laminated | stacked the thermoplastic resin on the front and back, and can use the acid-resistant base paper for liquid paper containers with a basic weight of about 30-400 g / m < 2 > as a paperboard. Examples of the thermoplastic resin include heat-sealable resins such as low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, and modified polyester.
Although described in detail later, the term "base" in the present invention, when measuring the characteristic X-ray intensity K 1 is irradiated with the primary electron beam to the organic thin film, the primary electron beam penetrates the organic thin film This refers to the base when it enters the base. Therefore, when the primary electron beam enters the thermoplastic resin layer of the paperboard material, the “base material” indicates the thermoplastic resin layer.
Further, the base material (thermoplastic resin in the above example) does not contain an inorganic element contained in the organic thin film described later. For example, as a base material, when polyethylene (about 20 μm thickness) is laminated on paperboard and the primary electron beam enters the polyethylene layer, the elements included in the polyethylene layer to emit characteristic X-rays are C, O, and H. Does not contain inorganic elements.

基材の表面に形成される有機薄膜としては、上記した抗接着剤層が例示される。上記実施形態では、抗接着剤層は、離型剤となるシリコーン樹脂と、基ポリマーであるエチルセルロース等のセルロース系樹脂とを含み、効果を損なわない範囲で粘度調整剤や、界面活性剤等助剤等を含んでもよく、シリコーン樹脂中のSiが本発明の「無機元素」に該当する。
又、離型剤としてシリコーン樹脂以外のポリエチレンワックス、大豆レシチン、又は高級脂肪酸アマイド等を用いることができる。さらに、基ポリマーとして環化ゴムを用いることができる。
抗接着剤層は、上記した離型剤、基ポリマーの他、溶剤として例えば酢酸エチルやアルコール類等を配合した塗料を塗布後、乾燥して形成することができる。
As the organic thin film formed on the surface of the substrate, the above-mentioned anti-adhesive layer is exemplified. In the above embodiment, the anti-adhesive layer includes a silicone resin that serves as a mold release agent and a cellulose-based resin such as ethyl cellulose that is a base polymer. An agent or the like may be included, and Si in the silicone resin corresponds to the “inorganic element” of the present invention.
Moreover, polyethylene wax other than silicone resin, soybean lecithin, higher fatty acid amide, or the like can be used as a release agent. Furthermore, a cyclized rubber can be used as the base polymer.
The anti-adhesive layer can be formed by applying a paint containing, for example, ethyl acetate or alcohol as a solvent in addition to the above-described mold release agent and base polymer, and then drying.

なお、離型剤としてシリコーン樹脂以外の成分を用いる場合、シリコーン樹脂に起因するSi(無機元素)が抗接着剤層中に存在しない。そこで、このような場合は、抗接着剤層中に無機元素を含む物質(例えば、アルミナ、シリカ)を配合し、無機元素に由来する特性X線強度を検出できるようにする。
又、有機薄膜中の無機元素は、有機薄膜全体の密度が2g/cm以下となるように含有させる。これは、本発明が有機薄膜を突き抜けて下地の基材まで1次電子を照射し、有機薄膜全体の無機元素から発生する特性X線強度を検出するためであり、有機薄膜の密度が2g/cmを超えると、特性X線が有機薄膜を透過できなくなり、膜厚の測定が精度よく行えないからである。
なお、上記した有機薄膜中の無機元素の濃度は、後述するCを百分率(%)で表したものである。
In addition, when using components other than a silicone resin as a mold release agent, Si (inorganic element) resulting from a silicone resin does not exist in an anti-adhesive agent layer. In such a case, a substance containing an inorganic element (for example, alumina or silica) is blended in the anti-adhesive layer so that the characteristic X-ray intensity derived from the inorganic element can be detected.
The inorganic element in the organic thin film is contained so that the density of the whole organic thin film is 2 g / cm 3 or less. This is because the present invention penetrates the organic thin film and irradiates the base material with primary electrons to detect the characteristic X-ray intensity generated from the inorganic elements in the entire organic thin film, and the density of the organic thin film is 2 g / If it exceeds cm 3 , the characteristic X-rays cannot pass through the organic thin film, and the film thickness cannot be measured accurately.
The concentration of the inorganic elements of the organic thin film described above is a representation of the C A to be described later as a percentage (%).

次に、測定方法の詳細について説明する。
まず、上記した有機薄膜に1次電子を照射し、発生する特性X線強度を検出する。この方法は、エネルギー分散型X線分光法といい、EPMA(電子プローブマイクロアナライザー)で測定を行うことが可能である。
ここで、本発明は、有機薄膜を突き抜けて下地の基材まで1次電子を照射し、有機薄膜全体の無機元素から発生する特性X線強度を検出する。そのため、下地の基材に1次電子が入り込むよう、1次電子の加速電圧を調整する。例えば、上記抗接着剤層の膜厚は約2〜3μm程度と考えられ、又、基材(ポリエチレン)の密度が0.9g/cmであることから、加速電圧を15kVとすれば1次電子は約10μmの深さまで侵入することになる。このようなことから、加速電圧を15kVとすることが好ましい。
Next, details of the measurement method will be described.
First, the above-described organic thin film is irradiated with primary electrons, and the generated characteristic X-ray intensity is detected. This method is called energy dispersive X-ray spectroscopy, and can be measured by EPMA (Electron Probe Microanalyzer).
Here, the present invention detects the characteristic X-ray intensity generated from the inorganic elements in the entire organic thin film by irradiating the base film with the primary electrons through the organic thin film. Therefore, the acceleration voltage of the primary electrons is adjusted so that the primary electrons enter the underlying base material. For example, the film thickness of the anti-adhesive layer is considered to be about 2 to 3 μm, and the density of the base material (polyethylene) is 0.9 g / cm 3. Electrons will penetrate to a depth of about 10 μm. For this reason, the acceleration voltage is preferably 15 kV.

又、本発明においては、予め、質量割合で表した有機薄膜中の無機元素の濃度Cを、既知値として取得しておく。本発明を、例えば有機薄膜の塗工量の工程管理に用いる場合、有機薄膜の塗料の組成等は既知であるので、濃度Cを予め知ることができる。
ここで、C=(有機薄膜中の無機元素の質量)/(有機薄膜の質量)で表される。
さらに、本発明においては、予め上記した無機元素の単体からなる標準試料をエネルギー分散型X線分光法で測定しておき、標準試料による無機元素の特性X線強度Kを得ておく。
In the present invention, in advance, a concentration C A of the inorganic elements of the organic thin film in terms of mass ratio, we obtain as a known value. The present invention, for example, when used in process control of the coating amount of the organic thin film, the composition of the coating material of the organic thin film is known, it is possible to know the concentration C A in advance.
Here, C A = (mass of inorganic element in organic thin film) / (mass of organic thin film).
Further, in the present invention, in advance by measuring the standard sample comprising a single pre above-mentioned inorganic elements in energy dispersive X-ray spectroscopy, we should give a characteristic X-ray intensity K S inorganic elements with standard samples.

そして、有機薄膜に電子線を照射したときの特性X線強度Kを検出し、式1

Figure 2010107277
によって前記膜厚ΔZを求める。
ここで、ρは有機薄膜の乾燥密度(g/cm);Eは入射電子1個のエネルギー;EK(A)は前記無機元素のK殻の励起エネルギー;Rは前記無機元素の原子番号補正定数;S’は前記標準試料の阻止能;eは電荷量;Nはアボガドロ数;U=E/E(A) ;K=(K/R)/(K/f(x))、但し、Rは有機薄膜表面の特性X線の発生関数、f(x)は前記標準試料の吸収補正係数である。
又、得られたΔZの単位はcmである。 Then, the characteristic X-ray intensity K 1 when the organic thin film is irradiated with the electron beam is detected, and the formula 1
Figure 2010107277
To obtain the film thickness ΔZ.
Here, [rho the dry density of the organic thin film (g / cm 3); E 0 is incident electrons one energy; E K (A) is the excitation energy of the K shell of the inorganic element; R A is the inorganic element Atomic number correction constant; S ′ A is the stopping power of the standard sample; e is the charge amount; N 0 is the Avogadro number; U 0 = E 0 / E j (A); K A = (K 1 / R 0 ) / (K S / f (x)), where R 0 is a generation function of characteristic X-rays on the surface of the organic thin film, and f (x) is an absorption correction coefficient of the standard sample.
The unit of ΔZ obtained is cm.

式1は、公知の式(Philbert-Tixier法)を変形して、ΔZについて記述したものである。ここで、Philbert-Tixier法は、薄膜のEPMA分析において、元素A,Bの相対濃度を求める式である。通常、Philbert-Tixier法では、元素A,Bについてそれぞれ上記式1を立て、両者の比を取ることで未知のρ及びΔZを消去し、元素A,Bの相対濃度を求めている(日本表面科学会編、「電子プローブ・マイクロアナライザー」丸善、94頁、平成10年発行)。
一方、本発明においては、上記したようにρが既知であり、又、濃度Cも既知であることを利用し、ΔZを逆に求めている。又、本発明を適用する有機薄膜は、特性X線強度を測定する無機元素を含んだ状態で、薄膜の密度が2g/cm以下であるため、1次電子線が有機薄膜を貫通し、有機薄膜全体の無機元素の量を測定できる。そのため、既知の濃度Cと、得られた無機元素の特性X線強度とから、ΔZを逆算できる。これに対し、従来EPMAで一般に測定されてきた金属材料等は、無機元素が100%含まれ、密度が2g/cmを超えるため(たとえば、無機元素がケイ素の場合は、シリコン板)、表面の特性X線強度しか得られず、膜厚を精度よく測定することはできない。
有機薄膜の密度は、有機薄膜の材料物質の重量と体積とを測定して計算することができる。また、実質的には、有機薄膜を構成する主成分である物質(例えば上述した基ポリマー)の密度を有機薄膜の密度とみなしてもよく、得られる密度の値にほとんど差は生じない。
Equation 1 describes ΔZ by modifying a known equation (Philbert-Tixier method). Here, the Philbert-Tixier method is an equation for obtaining the relative concentrations of elements A and B in EPMA analysis of a thin film. Usually, in the Philbert-Tixier method, the above formula 1 is established for each of the elements A and B, and the ratio between the two is used to eliminate the unknown ρ and ΔZ, thereby obtaining the relative concentrations of the elements A and B (Japanese surface (Science Society, “Electron Probe Microanalyzer” Maruzen, p. 94, published in 1998).
On the other hand, in the present invention are as described above ρ is known, also, by utilizing the concentration C A is also known, seeking to reverse the [Delta] Z. In addition, the organic thin film to which the present invention is applied contains an inorganic element whose characteristic X-ray intensity is measured, and the density of the thin film is 2 g / cm 3 or less, so the primary electron beam penetrates the organic thin film, The amount of inorganic elements in the entire organic thin film can be measured. Therefore, a known concentration C A, and a characteristic X-ray intensity of the resulting inorganic element, can be calculated back [Delta] Z. On the other hand, a metal material or the like generally measured by conventional EPMA contains 100% inorganic elements and has a density exceeding 2 g / cm 3 (for example, a silicon plate when the inorganic element is silicon). Only the characteristic X-ray intensity can be obtained, and the film thickness cannot be measured accurately.
The density of the organic thin film can be calculated by measuring the weight and volume of the material material of the organic thin film. Further, substantially, the density of the substance (for example, the above-described base polymer) constituting the organic thin film may be regarded as the density of the organic thin film, and there is almost no difference in the obtained density value.

又、本発明においては、予め標準試料により特性X線強度Kを測定しておくことで、式1に含まれる各種の係数を算定できるようにしている。
例えば、S’は、標準試料の阻止能を示し、式2

Figure 2010107277
で表される。ここで、Zは対象とする無機元素の原子番号;Aは対象とする無機元素の原子量;W =1.116×E(A)/(11.5×Z)である。 In the present invention, by leaving measuring the characteristic X-ray intensity K S in advance by a standard sample, and to allow calculation of the coefficients of the various included in Formula 1.
For example, S ′ A indicates the stopping power of the standard sample,
Figure 2010107277
It is represented by Here, Z A is the atomic number of the target inorganic element; A A is the atomic weight of the target inorganic element; W A j = 1.116 × E j (A) / (11.5 × Z A ) .

又、Rは有機薄膜表面の特性X線の発生関数(電子線の背面散乱効果の係数)であり、式3
=1+2.8(1−0.9/U)×η (3)
で表される(Reuterの式)。ここで、η=−0.0254+0.016Z−0.000186Z+8.3×10-7×Z3であり;Zは有機薄膜の直下の基材を構成する物質の原子番号;但し、基材が化合物の場合、η=ΣCiηiで表され、各化合物のηiをモル分率Ciで加重平均したものとなる。
例えば、上記実施形態のように、有機薄膜の基材がポリエチレンの場合、ポリエチレンはCnH2n+2で表されるから、CとHの重量組成比は約12:2となる(nが大きい場合)。従って、CとHについてηiを求め、モル分率Ciで加重平均してポリエチレンのηが得られる。
により、有機薄膜の直下の基材に含まれる物質に応じて、Kが補正される。
R 0 is a generation function of characteristic X-rays on the surface of the organic thin film (coefficient of backscattering effect of electron beam).
R 0 = 1 + 2.8 (1−0.9 / U 0 ) × η (3)
(Reuter formula) Where η = −0.0254 + 0.016Z−0.000186Z 2 + 8.3 × 10 −7 × Z 3 ; Z is the atomic number of the substance constituting the substrate directly under the organic thin film; provided that the substrate is a compound In this case, it is represented by η = ΣC i η i , and is a weighted average of η i of each compound by the molar fraction C i .
For example, as in the above embodiment, when the organic thin film substrate is polyethylene, polyethylene is represented by C n H 2n + 2 , so the weight composition ratio of C and H is about 12: 2 (n is If large). Accordingly, η i is obtained for C and H, and the weighted average of the molar fraction C i gives polyethylene η.
The R 0, depending on the material contained in the substrate directly under the organic thin film, K A is corrected.

f(χ)は、標準試料の吸収補正係数であり、Philbertの方法やφ(ρz)の方法を適用すると、式4

Figure 2010107277
で表される。ここで、h=1.2(定数)×A/{(Z};σ=4.5×105/(EO 1.65−EC 1.65);χ=μ/ρcosecφで表される。なお、μ/ρは質量吸収係数で、物質固有の値である。φはX線取り出し角度、σはレナード常数、EO は加速電圧、EC は最小励起電圧である。 f (χ) is an absorption correction coefficient of the standard sample. When the Philbert method or the φ (ρz) method is applied, Equation 4
Figure 2010107277
It is represented by Here, h = 1.2 (constant) × A A / {(Z A ) 2 }; σ = 4.5 × 10 5 / (E O 1.65− E C 1.65 ); χ = μ / ρcosecφ The Note that μ / ρ is a mass absorption coefficient and is a value unique to a substance. φ is the X-ray extraction angle, σ is the Leonard constant, E O is the acceleration voltage, and E C is the minimum excitation voltage.

以下に、実施例によって本発明を更に具体的に説明するが、本発明はこれらによって限定されるものではない。なお、「部」及び「%」は、特に明示しない限り、それぞれ「質量部」及び「質量%」を表す。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. “Part” and “%” represent “part by mass” and “% by mass”, respectively, unless otherwise specified.

<ゲーブルトップ型紙容器の製造>
容器の外側の面から見て、ポリエチレン樹脂層20μm/晒クラフト紙330g/m/ポリエチレン樹脂層60μmの構成からなる積層体を板紙素材として使用し、これを打ち抜いて、図2に示す紙容器用ブランクを複数枚作製した。次に、抗接着剤(H141 東洋インキ製造株式会社製、固形分18質量%;シリコーン樹脂とセルロース系樹脂とを含みこれらの固形分を示す)を用い、ブランクの所定の場所(図1の符号40の位置)にフレキソ印刷で塗布した。
次に、このブランクを製函機で折り曲げ罫線押し圧加工、及びサイドシール加工し、カートンブランクにした後、外側トップシールパネル17,18および内側トップシールパネル25,26同士をヒートシールし、トップシール部30を形成し、図1に示す紙容器50を製造した。
<Manufacture of gable-top paper containers>
When viewed from the outer surface of the container, a laminate composed of a polyethylene resin layer 20 μm / bleached kraft paper 330 g / m 2 / polyethylene resin layer 60 μm is used as a paperboard material, which is punched out to form a paper container shown in FIG. A plurality of blanks were prepared. Next, using an anti-adhesive (H141, manufactured by Toyo Ink Manufacturing Co., Ltd., solid content: 18% by mass; including silicone resin and cellulose resin and indicating these solid contents), a predetermined place of the blank (reference numeral in FIG. 1) 40 position) was applied by flexographic printing.
Next, this blank is bent with a box making machine, and the side seal processing is performed to form a carton blank, and then the outer top seal panels 17 and 18 and the inner top seal panels 25 and 26 are heat sealed to form a top. The seal part 30 was formed, and the paper container 50 shown in FIG. 1 was manufactured.

<開封力の測定>
上記紙容器50のトップシール部30のうち、抗接着剤層40を介してシールを行った部分(妻壁形成パネル21側)の開封力を、JIS-S-0022(「高齢者/障害者配慮設計指針−包装・容器−開封性試験方法、屋根型紙パック引きはがし試験」に準じて測定した。
<Measurement of opening force>
Of the top seal portion 30 of the paper container 50, the unsealing force of the portion sealed with the anti-adhesive layer 40 (on the side of the wife wall forming panel 21) is JIS-S-0022 (“Aged / Disabled” Measured according to “Consideration design guideline—Packaging / container—Opening test method, roof-type paper pack peeling test”.

<EPMA用測定試料の作製>
上記した紙容器用ブランクの製造の際、フレキソ印刷の印圧を変更することによって抗接着剤層40の塗布量を調整したブランク1〜3をそれぞれ作製した。これらのブランク1〜3を製函せず、ブランク1〜3につき、それぞれ抗接着剤層40を形成した部分から約5mm×5mmの大きさの測定試料を板紙素材とともに切り出し、測定試料1〜3とした。
なお、各ブランク1〜3につき、測定試料1〜3をそれぞれ6点採取した。
<Preparation of measurement sample for EPMA>
Blanks 1 to 3 in which the application amount of the anti-adhesive layer 40 was adjusted by changing the printing pressure of flexographic printing were manufactured at the time of manufacturing the above-described blank for paper containers. Without blanking these blanks 1 to 3, a measurement sample having a size of about 5 mm × 5 mm was cut out together with the paperboard material from the portion where the antiadhesive layer 40 was formed for each of the blanks 1 to 3. It was.
For each blank 1 to 3, 6 measurement samples 1 to 3 were collected.

<特性X線強度の測定>
まず、ケイ素標準物質(日本電子社製)を電子顕微鏡(走査型電子顕微鏡JSM5610LV、元素分析装置JED2200、共に日本電子株式会社製)の測定室内にセットし、ケイ素の特性X線強度を測定した。入射電圧を15kevとした。入射電圧を15kevとすれば、1次電子は約10μmの深さまで侵入することになるが、ポリエチレン樹脂層(密度0.9g/cm)の厚みが20μmであるので、1次電子はポリエチレン樹脂層まで侵入する。従って、ポリエチレンを基材とみなした。
X線強度の測定値は、バックグランドを差し引いたネット値とした。なお、ケイ素標準物質は、直径2mm、長さ1cmのパイプの先端中に標準物質(ケイ素)が埋めこまれているものを用いた。
次に、上記測定試料1〜3を上記電子顕微鏡の測定室内にセットし、同様にして、ケイ素の特性X線強度を測定した。測定試料1〜3のケイ素の特性X線強度は、6点の試料を測定した平均値とした。
<Measurement of characteristic X-ray intensity>
First, a silicon standard substance (manufactured by JEOL Ltd.) was set in a measurement chamber of an electron microscope (scanning electron microscope JSM5610LV, elemental analyzer JED2200, both manufactured by JEOL Ltd.), and the characteristic X-ray intensity of silicon was measured. The incident voltage was 15 kev. If the incident voltage is 15 kev, primary electrons will penetrate to a depth of about 10 μm, but since the polyethylene resin layer (density 0.9 g / cm 3 ) has a thickness of 20 μm, the primary electrons are polyethylene resin. Invade to the layer. Therefore, polyethylene was considered as the substrate.
The measured value of the X-ray intensity was a net value obtained by subtracting the background. The silicon standard material used was a standard material (silicon) embedded in the tip of a pipe having a diameter of 2 mm and a length of 1 cm.
Next, the measurement samples 1 to 3 were set in the measurement chamber of the electron microscope, and the characteristic X-ray intensity of silicon was measured in the same manner. The characteristic X-ray intensity of silicon of measurement samples 1 to 3 was an average value obtained by measuring six samples.

そして、式1により、各測定試料1〜3における抗接着剤層40の膜厚(ΔZ)を計算した。
なお、式1中、ρ=1.1g/cm;E=15×103×1.6022×10-19×107erg;E(A)=1.838kev=1.838×103×1.6022×10-19×107erg(ケイ素のK殻の励起エネルギー);R=0.91;S’=0.2074;e=1.6022×10-19C=4.8032×10-10esu;N=6.02×1023;U=E/E(A) =15/1.838=8.1610とした。
但し、R=は、1/U=0.123の値と、ケイ素の原子番号との関係に基づき、所定のグラフ(Values of R as a function of z and 1/U)から求めた。又、S’は、W =13.22として式2から計算した。
And the film thickness ((DELTA) Z) of the anti-adhesive agent layer 40 in each measurement sample 1-3 was calculated by Formula 1.
In Formula 1, ρ = 1.1 g / cm 3 ; E 0 = 15 × 10 3 × 1.6022 × 10 −19 × 10 7 erg; E j (A) = 1.848 kev = 1.828 × 10 3 × 1.6022 × 10 − 19 × 10 7 erg (excitation energy of silicon K-shell); R A = 0.91; S ′ A = 0.2074; e = 1.6022 × 10 −19 C = 4.8032 × 10 −10 esu; N 0 = 6.02 × 10 23 ; U 0 = E 0 / E j (A) = 15 / 1.838 = 8.1610.
However, R A = was determined from a predetermined graph (Values of R a a function of z and 1 / U) based on the relationship between the value of 1 / U 0 = 0.123 and the atomic number of silicon. Also, S ′ A was calculated from Equation 2 with W A j = 13.22.

一方、Rの計算に当り、基材をポリエチレン(CnH2n+2)とし、CとHの重量組成比を12:2とした。そして、ηC=−0.0254+0.016(6)−0.000186(6)+8.3×10-7(6)3=0.061、ηH=−0.0254+0.016(1)−0.000186(1)+8.3×10-7(1)3=−0.0096とし、ηポリエチレン=12/14ηC+2/14ηH=0.0509を得た。この値を式3に代入し、R=1+2.8(1−0.9/U)η=1+2.8(1−0.9/8.161)×0.0509=1.127とした。
又、f(χ)の計算に当り、h=1.2×28.09/{14}=0.172;σ=4.5×10-5×(E 1.65−E(A) 1.65)=5.9269×10;χ=655.8とした。式4より、f(χ)=0.8746となった。
On the other hand, in calculating R 0 , the base material was polyethylene (C n H 2n + 2 ), and the weight composition ratio of C and H was 12: 2. And η C = −0.0254 + 0.016 (6) −0.000186 (6) 2 + 8.3 × 10 −7 (6) 3 = 0.061, η H = −0.0254 + 0.016 (1) −0.000186 (1) 2 + 8.3 × 10 −7 (1) 3 = −0.0096, and η polyethylene = 12/14 η C +2/14 η H = 0.0509 was obtained. This value was substituted into Equation 3, and R 0 = 1 + 2.8 (1−0.9 / U) η = 1 + 2.8 (1−0.9 / 8.161) × 0.0509 = 1.127.
In calculating f (χ), h = 1.2 × 28.09 / {14 2 } = 0.172; σ = 4.5 × 10 −5 × (E 0 1.65 −E j (A) 1.65 ) = 5.9269 × 10 3 ; χ = 655.8. From Equation 4, f (χ) = 0.8746.

得られた結果を表1に示す。なお、Cは、シリコーン樹脂とセルロース系樹脂とを含有する上記抗接着剤(H141)の固形分を元素分析してケイ素相対濃度を測定し、その結果から抗接着剤中のケイ素の含有率を測定して求めた。
又、抗接着剤層の密度ρは、抗接着剤を乾燥固化し、その重量と体積を測定して求めた。
そして、上記したX線強度の測定値から、式1を変形してΔZ×ρ×Cを示す値(式5)

Figure 2010107277
が得られるので、式5の値と、C及びρの実測値を式1に入れ、ΔZを算出した。 The obtained results are shown in Table 1. Incidentally, C A is the solid content of the anti-adhesive (H141) containing a silicone resin and a cellulose resin and elemental analysis to measure the silicon relative concentration, the content of silicon in the anti-adhesive from the result Was measured.
The density ρ of the anti-adhesive layer was determined by drying and solidifying the anti-adhesive and measuring its weight and volume.
Then, from the measured value of the X-ray intensity, a value indicating ΔZ × ρ × C A by modifying Equation 1 (Equation 5)
Figure 2010107277
Since is obtained, it placed the value of the expression 5, the measured value of C A and ρ in Equation 1, to calculate the [Delta] Z.

Figure 2010107277
Figure 2010107277

表1から、本発明の方法によって計算したΔZが薄いほど開封力が大きく、これは実際に抗接着剤層40の塗布量が少ないほど開封し難いという事実に適合している。つまり、本発明の方法によって、基材を除去せずに抗接着剤層40の膜厚を算出できることを示している。   From Table 1, the smaller the ΔZ calculated by the method of the present invention is, the larger the opening force is. That is, it is shown that the film thickness of the anti-adhesive layer 40 can be calculated without removing the base material by the method of the present invention.

本発明を適用する対象の一例である紙容器を示す斜視図である。It is a perspective view which shows the paper container which is an example of the object to which this invention is applied. 紙容器の組立て加工前のカートンブランク(基材)を示す展開図である。It is an expanded view which shows the carton blank (base material) before the assembly process of a paper container.

符号の説明Explanation of symbols

30 トップシール部
40 抗接着剤層(有機薄膜)
50 紙容器
30 Top seal part 40 Anti-adhesive layer (organic thin film)
50 paper containers

Claims (2)

特定の無機元素を含まない基材の表面に形成され、前記無機元素を含み、密度が2g/cm以下の有機薄膜の膜厚ΔZを測定する方法であって、
質量割合で表した前記有機薄膜中の前記無機元素の濃度Cと、前記無機元素の単体からなる標準試料による前記無機元素の特性X線強度Kとに基づき、前記有機薄膜に電子線を照射したときの特性X線強度Kを検出し、式1
Figure 2010107277
(ρは前記有機薄膜の乾燥密度(g/cm);Eは入射電子1個のエネルギー;E(A)は前記無機元素のK殻の励起エネルギー;Rは前記無機元素の原子番号補正定数;S’は前記標準試料の阻止能;eは電荷量;Nはアボガドロ数;U=E/E(A) ;K=(K/R)/(K/f(x))、但し、Rは薄膜表面の特性X線の発生関数、f(x)は前記標準試料の吸収補正係数)によって前記膜厚ΔZを測定する有機薄膜の膜厚測定方法。
A method of measuring a film thickness ΔZ of an organic thin film formed on the surface of a substrate not containing a specific inorganic element, containing the inorganic element, and having a density of 2 g / cm 3 or less,
And concentration C A of the inorganic element of the organic thin film in terms of mass ratio, based on the characteristic X-ray intensity K S of the inorganic element according to a standard sample consisting of a single said inorganic element, the electron beam to the organic thin film The characteristic X-ray intensity K 1 when irradiated is detected and the equation 1
Figure 2010107277
(Ρ is the dry density of the organic thin film (g / cm 3 ); E 0 is the energy of one incident electron; E j (A) is the excitation energy of the K shell of the inorganic element; R A is the atom of the inorganic element Number correction constant; S ′ A is the stopping power of the standard sample; e is the charge amount; N 0 is the Avogadro number; U 0 = E 0 / E j (A); K A = (K 1 / R 0 ) / ( K S / f (x)), where R 0 is the function of generating characteristic X-rays on the surface of the thin film, and f (x) is the absorption correction coefficient of the standard sample). Measuring method.
前記無機元素はケイ素であり、前記無機元素は前記有機薄膜中に有機ケイ素化合物として含まれている請求項1に記載の有機薄膜の膜厚測定方法。   The method for measuring a film thickness of an organic thin film according to claim 1, wherein the inorganic element is silicon, and the inorganic element is contained as an organic silicon compound in the organic thin film.
JP2008277786A 2008-10-29 2008-10-29 Method for measuring film thickness of organic thin film Expired - Fee Related JP5399038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277786A JP5399038B2 (en) 2008-10-29 2008-10-29 Method for measuring film thickness of organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277786A JP5399038B2 (en) 2008-10-29 2008-10-29 Method for measuring film thickness of organic thin film

Publications (2)

Publication Number Publication Date
JP2010107277A true JP2010107277A (en) 2010-05-13
JP5399038B2 JP5399038B2 (en) 2014-01-29

Family

ID=42296869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277786A Expired - Fee Related JP5399038B2 (en) 2008-10-29 2008-10-29 Method for measuring film thickness of organic thin film

Country Status (1)

Country Link
JP (1) JP5399038B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190205A (en) * 1981-05-20 1982-11-22 Nisshin Steel Co Ltd Method for measuring thickness of painted film by fluorescent x ray
JPS60244844A (en) * 1984-05-18 1985-12-04 Sharp Corp Quantitative analysis of thin film or thin layer by x-ray microanalyzer
JPH03167417A (en) * 1989-11-27 1991-07-19 Furukawa Electric Co Ltd:The Method for measuring thickness of cover of hermetically covered optical fiber
JPH10104178A (en) * 1996-09-30 1998-04-24 Sumitomo Light Metal Ind Ltd Method for measuring thickness of oxidation film
JPH11271244A (en) * 1998-03-26 1999-10-05 Shimadzu Corp Quantitative analysing method by x-ray spectrum
JP2002520606A (en) * 1998-07-15 2002-07-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー Fluorescent coating thickness measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57190205A (en) * 1981-05-20 1982-11-22 Nisshin Steel Co Ltd Method for measuring thickness of painted film by fluorescent x ray
JPS60244844A (en) * 1984-05-18 1985-12-04 Sharp Corp Quantitative analysis of thin film or thin layer by x-ray microanalyzer
JPH03167417A (en) * 1989-11-27 1991-07-19 Furukawa Electric Co Ltd:The Method for measuring thickness of cover of hermetically covered optical fiber
JPH10104178A (en) * 1996-09-30 1998-04-24 Sumitomo Light Metal Ind Ltd Method for measuring thickness of oxidation film
JPH11271244A (en) * 1998-03-26 1999-10-05 Shimadzu Corp Quantitative analysing method by x-ray spectrum
JP2002520606A (en) * 1998-07-15 2002-07-09 ミネソタ マイニング アンド マニュファクチャリング カンパニー Fluorescent coating thickness measurement

Also Published As

Publication number Publication date
JP5399038B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
EP1676785B1 (en) Reclosable package
US6244746B1 (en) Laminated film, method for production thereof, bag and package using the laminated film, and method for separation thereof
RU2608284C2 (en) Resealable laminate for heat sealed packaging
EP0498760A1 (en) Packaging
BR112012012120B1 (en) process for preparing a gas barrier coatings composition and adhesive formed laminate material
US20050186369A1 (en) Laminated film, method for production thereof, bag and package using the laminated film, and method for separation thereof
RU2752152C2 (en) Improved inner lining of packaging for consumer products
BR112018075616B1 (en) PACKAGING MATERIAL, PACKAGING, AND METHOD FOR PRODUCING A PACKAGING MATERIAL
TWI814014B (en) Paper material and flexible packaging material using the same
JP5399038B2 (en) Method for measuring film thickness of organic thin film
JP7369509B2 (en) Water-repellent laminates for lids, lids and containers
Ovaska Oil and grease barrier properties of converted dispersion-coated paperboards
US20200071044A1 (en) Sheetlike composite for producing dimensionally stable food and drink product containers having a polymer layer having a ratio of aromatic groups to carbonyl groups
JP5326422B2 (en) Lid material
DE102015010406A1 (en) Electrostatically assisted printing of a packaging laminate for dimensionally stable food containers including the folded packaging laminate
AU626277B2 (en) Improved carton
Ghazali et al. Delaminated cells for nano-enabled inkjet printability
KR102638443B1 (en) Pigments, paints and printing elements
JPH09110081A (en) Corrugated-paperboard container for preserving freshness and cold
Leminen Leak-proof heat sealing of press-formed paperboard trays
EP4275890A1 (en) Sheet-like composite for dimensionally stable food or drink product containers with an inner polymer layer comprising a blend of ldpe and pp
EP4275891A1 (en) Sheet-like composite for dimensionally stable food or drink product containers with an inner polymer layer f comprising a metallocene polyethylene
EP4275880A1 (en) Sheet-like composite for dimensionally stable food or drink product containers with an inner partial sheet-like composite with a modulus of elasticity
JPH06122469A (en) Packing material for planographic printing plate
JPH10273149A (en) Liquid container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130103

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees