JPH03167417A - Method for measuring thickness of cover of hermetically covered optical fiber - Google Patents

Method for measuring thickness of cover of hermetically covered optical fiber

Info

Publication number
JPH03167417A
JPH03167417A JP30463189A JP30463189A JPH03167417A JP H03167417 A JPH03167417 A JP H03167417A JP 30463189 A JP30463189 A JP 30463189A JP 30463189 A JP30463189 A JP 30463189A JP H03167417 A JPH03167417 A JP H03167417A
Authority
JP
Japan
Prior art keywords
optical fiber
cover
thickness
rays
hermetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30463189A
Other languages
Japanese (ja)
Inventor
Makoto Furuguchi
古口 誠
Yoshikazu Matsuda
松田 美一
Kunio Ogura
邦男 小倉
Kazuto Hirabayashi
平林 和人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP30463189A priority Critical patent/JPH03167417A/en
Publication of JPH03167417A publication Critical patent/JPH03167417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure the thickness of a hermetic cover in a short time by projecting electron beams on a hermetically covered optical fiber, and detecting the intensity of characteristic X rays emitted from the hermetic cover. CONSTITUTION:Electron beams 4 are projected on a hermetically covered optical fiber 1 wherein a hermetic cover 3 is provided on the surface of quartz glass optical fiber 2. Then the cover 3 is excited, and characteristic X rays are emit ted. At this time, an electron-beam excited region is made deeper than the thickness of the cover 3 as shown by a broken line. Then the intensity of the X rays 5 is detected with a detector 6. The intensity I of the X rays is propor tional to the product of a volume V of an electron-beam projected part 3a of the cover 3 and the concentration (d) of an element emitting the X rays 5 in the part 3a. Namely, I infinity V X d is obtained. At this time, the concentration (d) and the diameter of the beam of the electron (projected area) are considered to be constant. Therefore, the intensity is proportional to the thickness (t) of the cover 3, resulting in I infinity t. Therefore, when the intensity I of the X rays is detected, the thickness (t) of the cover 3 can be measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ハーメチック被覆光ファイバのノ\ーメチッ
ク被覆の厚さを測定する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the thickness of a hermetic coating of a hermetically coated optical fiber.

〔従来技術〕[Prior art]

石英ガラス等からなる光ファイハの表面に炭素や炭化物
等の無機物からなるハーメチック被覆を設けると、外部
から光ファイバ内へH.○やH2が侵入するのを防ぐこ
とができ、これにより光ファイバの機械的および光学的
な長期信頼性が大幅に向上することが知られている。
When a hermetic coating made of an inorganic substance such as carbon or carbide is provided on the surface of an optical fiber made of quartz glass or the like, H. It is known that the intrusion of ○ and H2 can be prevented, thereby greatly improving the long-term mechanical and optical reliability of the optical fiber.

このハーメチック被覆光ファイバは通常、光ファイハ母
材から光ファイバを紡糸した直後に、炭化水素等を含む
原料ガスを用いて熟c V D法によリ光ファイバ表面
にハーメチック被覆を形威し、その上に樹脂被覆を施す
という方法で製造される。
This hermetic coated optical fiber is usually produced by forming a hermetic coating on the surface of the optical fiber by a CVD method using a raw material gas containing hydrocarbons, etc., immediately after spinning the optical fiber from an optical fiber base material. It is manufactured by applying a resin coating on top of it.

このようにして製造されたハーメチック被覆光ファイバ
のH.○やH2の侵入防止性能に大きな影響を及ぼす因
子は、ハーメチンク被覆の厚さである。したがってハー
メチック被覆光ファイバの性能を評価するためにはハー
メチック被覆の厚さを測定する必要がある。
H. of the hermetic coated optical fiber thus manufactured. A factor that has a large effect on the intrusion prevention performance of ○ and H2 is the thickness of the hermetink coating. Therefore, in order to evaluate the performance of a hermetic coated optical fiber, it is necessary to measure the thickness of the hermetic coat.

ハーメチック被覆の厚さは数百〜数千人と極めて薄いた
め、従来はハーメチック被覆光ファイバの断面を走査型
または透過型電子顕微鏡で観察するという方法でハーメ
チック被覆の厚さを測定していた。
Since the thickness of the hermetic coating is extremely thin, ranging from several hundred to several thousand, conventionally the thickness of the hermetic coating has been measured by observing the cross section of the hermetic coated optical fiber using a scanning or transmission electron microscope.

〔課題〕〔assignment〕

しかし電子顕微鏡で観察するには、観察用の試料を作製
する必要がある。この試料作製には、まず樹脂被覆を除
去した短いハーメチック被覆光ファイバを液状の樹脂中
に埋め、樹脂を硬化させた後、光ファイバの軸線に垂直
な方向に薄く切断し、さらに切断した試料を試料ホルダ
に載せて、切断面にチャージアップ防止のためのカーボ
ンを蒸着させるという工程を経る必要がある。
However, in order to observe with an electron microscope, it is necessary to prepare a sample for observation. To prepare this sample, first, a short hermetically coated optical fiber from which the resin coating has been removed is buried in liquid resin, the resin is cured, and then thinly cut in a direction perpendicular to the axis of the optical fiber. It is necessary to go through a process of placing the sample on a sample holder and depositing carbon on the cut surface to prevent charge-up.

このため従来の方法では、試料作製のために1日以上と
いうような極めて長い時間がかかり、工業的レベルでの
厚さ測定には不向きであり、簡便な測定方法の開発が望
まれていた。
For this reason, the conventional method takes an extremely long time, such as one day or more, to prepare a sample, and is unsuitable for thickness measurement on an industrial level.Therefore, there has been a desire to develop a simple measuring method.

〔課題の解決手段とその作用) 本発明は、上記のような従来技術の問題点に鑑み、試料
作製が簡単で、短時間でハーメチック被覆光ファイバの
ハーメチック被覆厚を測定できる方法を提供するもので
ある. 図−1に本発明の測定方法の原理を示す。石英ガラス光
ファイバ2の表面にハーメチック被覆3を設けてなるハ
ーメチック被覆光ファイバlに電子線4を照射すると、
ハーメチック被覆3の元素が励起されて特性X線5が放
出される。電子線励起領域を破線のようにハーメチック
被覆3の厚さより深くしておいて、特性X線5の強度を
検出器6で検出すると、特性X線の弛度Iは、次式に示
すように、ハーメチック被覆3の電子線照射部分3aの
体積Vと、同部分3a中の特性X線を放出する元素の濃
度dの積に比例する。
[Means for Solving the Problems and Their Effects] In view of the problems of the prior art as described above, the present invention provides a method for easily preparing a sample and capable of measuring the hermetic coating thickness of a hermetically coated optical fiber in a short time. It is. Figure 1 shows the principle of the measurement method of the present invention. When an electron beam 4 is irradiated onto a hermetic coated optical fiber l formed by providing a hermetic coating 3 on the surface of a quartz glass optical fiber 2,
The elements in the hermetic coating 3 are excited and characteristic X-rays 5 are emitted. When the electron beam excitation region is made deeper than the thickness of the hermetic coating 3 as shown by the broken line and the intensity of the characteristic X-rays 5 is detected by the detector 6, the sag I of the characteristic X-rays is calculated as shown in the following equation. , is proportional to the product of the volume V of the electron beam irradiated portion 3a of the hermetic coating 3 and the concentration d of the element that emits characteristic X-rays in the same portion 3a.

1oeVXd   ・ ・ ・ ・(1)dおよび電子
線のビーム径(照射面積)は一定と考えらるから、■は
次式に示すようにハーメチック被覆の厚さtに比例する
ことになる。
1oeVXd ・ ・ ・ ・ (1) Since d and the beam diameter (irradiation area) of the electron beam are considered to be constant, ■ is proportional to the thickness t of the hermetic coating as shown in the following equation.

lc+1:t    ・・・・(2) したがって特性X線の強度■を検出すれば、ハーメチン
ク被覆の厚さtを測定できることになる。
lc+1:t (2) Therefore, by detecting the characteristic X-ray intensity ■, the thickness t of the hermetink coating can be measured.

この方法は、樹脂被覆を剥いだハーメチック被覆光ファ
イバを薄くスライスせずにそのままの状態で、ハーメチ
ック被覆厚の測定が行えるため、測定試料の作製が極め
て簡単である。
In this method, the hermetic coating thickness can be measured without slicing the hermetically coated optical fiber from which the resin coating has been removed, so that the preparation of the measurement sample is extremely simple.

〔実施例〕〔Example〕

以下、本発明の実施例を説明する. アセチレンを原料に用いた熱CVD法で、力一ボンをハ
ーメチック被覆とする、ハーメチック被覆厚の異なる4
種類のハーメチック被覆光ファイバを各3km製造した
。これらをハーメチック被覆厚の薄い方から順に試料N
fLB−Eとする。また比較のためハーメチック被覆な
しの光ファイバを3km製造した。これを試料11&l
Aとする。これら5本の光ファイバの片端からそれぞれ
本発明の測定方法に使用する試料と、従来の透過型電子
顕微鏡による測定に使用する試料を採取した。
Examples of the present invention will be described below. Using a thermal CVD method using acetylene as a raw material, four different hermetic coating thicknesses are applied.
3 km of each type of hermetic coated optical fiber was manufactured. Sample N
Let it be fLB-E. For comparison, 3 km of optical fiber without hermetic coating was manufactured. Sample 11&l
Let it be A. A sample used for the measurement method of the present invention and a sample used for measurement using a conventional transmission electron microscope were collected from one end of each of these five optical fibers.

まず従来の方法でハーメチック被覆の厚さを測定した結
果は次のとおりであった。
First, the thickness of the hermetic coating was measured using a conventional method, and the results were as follows.

表−l 一方、本発明用の試料については、樹脂被覆を剥ぎ、ハ
ーメチック被覆表面をアルコールで拭いて清浄にしたの
ち、各々に対しビーム径が20μmの電子線を照射し、
深さ約lμmまでの元素を励起した。同時にカーボンの
特性X線としてκα線(K殻から出るα線〉を選び、こ
れの検出強度を測定した。その結果は次のとおりであっ
た。
Table 1 On the other hand, for the samples for the present invention, after removing the resin coating and cleaning the hermetic coating surface with alcohol, each sample was irradiated with an electron beam with a beam diameter of 20 μm.
Elements were excited to a depth of approximately 1 μm. At the same time, κα rays (α rays emitted from the K shell) were selected as the characteristic X-rays of carbon, and the detection intensity of these was measured.The results were as follows.

表−2 これらの測定結果をグラフに示すと図−2のとおりであ
る。図−2から明らかなように、カーボンからなるハー
メチック被覆の厚さと、特性X線Kα線の検出強度は比
例関係にあるから、特性X線の強度を測定することによ
り、ハーメチック被覆の厚さを測定することができる。
Table 2 The results of these measurements are shown in a graph as shown in Figure 2. As is clear from Figure 2, there is a proportional relationship between the thickness of the hermetic coating made of carbon and the detected intensity of characteristic X-rays, Kα rays, so by measuring the intensity of characteristic can be measured.

なお以上の実施例はハーメチック被覆がカーボンの場合
について説明したが、ハーメチック被覆が例えばSiC
の場合はStまたはCのどちらかの特性X線を検出する
ことによって厚さ測定が可能である。またハーメチック
被覆が絶縁体である場合には、チャージアンプ防止のた
めハーメチック被覆表面にハーメチック被覆の構成元素
とは異なる導電体例えば金などを蒸着させるとよい。
Although the above embodiments have been described with reference to the case where the hermetic coating is carbon, the hermetic coating may be SiC, for example.
In this case, the thickness can be measured by detecting either St or C characteristic X-rays. Further, when the hermetic coating is an insulator, a conductive material such as gold, which is different from the constituent elements of the hermetic coating, may be deposited on the surface of the hermetic coating to prevent charge amplification.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ハーメチック被覆
光ファイバに電子線を照射し、ハーメチック被覆から放
出される特性X線の強度を検出することによりハーメチ
ック被覆の厚さを測定できるので、測定試料の作製がき
わめて簡単であり、ハーメチック被覆厚の測定を短時間
で行うことができる。したがってこの方法はハーメチッ
ク被覆光ファイバの工業的レベルでの評価手段として極
めて有用である。
As explained above, according to the present invention, the thickness of the hermetic coating can be measured by irradiating the hermetic coating optical fiber with an electron beam and detecting the intensity of characteristic X-rays emitted from the hermetic coating. It is extremely easy to manufacture, and the hermetic coating thickness can be measured in a short time. Therefore, this method is extremely useful as a means for evaluating hermetic coated optical fibers at an industrial level.

【図面の簡単な説明】[Brief explanation of the drawing]

図−1は本発明に係るハーメチック被覆光ファイバのハ
ーメチック被覆厚測定法の原理を示す説明図、図−2は
ハーメチック被覆光ファイバのハーメチック被覆の厚さ
と特性X線の検出強度との関係を示すグラフである。 1:ハーメチンク被覆光ファイハ
Figure 1 is an explanatory diagram showing the principle of the hermetic coating thickness measurement method for a hermetic coated optical fiber according to the present invention, and Figure 2 shows the relationship between the hermetic coating thickness of the hermetically coated optical fiber and the detected intensity of characteristic X-rays. It is a graph. 1: Hermetink coated optical fiber

Claims (1)

【特許請求の範囲】[Claims] 1、ガラス製光ファイバの表面に炭素や炭化物等の無機
物からなるハーメチック被覆を設けてなるハーメチック
被覆光ファイバの、ハーメチック被覆の厚さを測定する
方法において、ハーメチック被覆光ファイバに電子線を
照射し、それによってハーメチック被覆から放出される
特性X線の強度を検出することによりハーメチック被覆
の厚さを測定することを特徴とするハーメチック被覆光
ファイバの被覆厚測定法。
1. In a method for measuring the thickness of a hermetic coating of a hermetic coating made of an inorganic material such as carbon or carbide on the surface of a glass optical fiber, the hermetic coating is irradiated with an electron beam. A method for measuring the coating thickness of a hermetic coated optical fiber, characterized in that the thickness of the hermetic coating is measured by detecting the intensity of characteristic X-rays emitted from the hermetic coating.
JP30463189A 1989-11-27 1989-11-27 Method for measuring thickness of cover of hermetically covered optical fiber Pending JPH03167417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30463189A JPH03167417A (en) 1989-11-27 1989-11-27 Method for measuring thickness of cover of hermetically covered optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30463189A JPH03167417A (en) 1989-11-27 1989-11-27 Method for measuring thickness of cover of hermetically covered optical fiber

Publications (1)

Publication Number Publication Date
JPH03167417A true JPH03167417A (en) 1991-07-19

Family

ID=17935360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30463189A Pending JPH03167417A (en) 1989-11-27 1989-11-27 Method for measuring thickness of cover of hermetically covered optical fiber

Country Status (1)

Country Link
JP (1) JPH03167417A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109246A (en) * 2007-10-26 2009-05-21 Sharp Corp Film thickness measuring method
JP2010107277A (en) * 2008-10-29 2010-05-13 Nippon Paper-Pak Co Ltd Method for measuring film thickness of organic thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109246A (en) * 2007-10-26 2009-05-21 Sharp Corp Film thickness measuring method
JP2010107277A (en) * 2008-10-29 2010-05-13 Nippon Paper-Pak Co Ltd Method for measuring film thickness of organic thin film

Similar Documents

Publication Publication Date Title
GB1540780A (en) Scale for calibrating electron beam instruments and method of fabricating the same
Freeman et al. Comparative mass measurement of biological macromolecules by scanning transmission electron microscopy
JPH01500940A (en) Scanning electron microscope and method for electron microscopic imaging of the surface of a sample
Groner et al. Measurement of deposition rate in matrix spectroscopy with a small laser
JPH03167417A (en) Method for measuring thickness of cover of hermetically covered optical fiber
Bisdom et al. Energy-dispersive X-ray analysis on thin sections and unimpregnated soil material.
Garbassi et al. Spectroscopic techniques for the analysis of polymer surfaces and interfaces
EP1462712A1 (en) Raman probe and raman spectrum measuring apparatus utilizing the same
JPS62222150A (en) Method of analyzing element composition of surface layer of sample without breaking said surface layer
US3376419A (en) Method and apparatus for determining the thickness of integuments
Butz et al. Use of electron microprobe analysis to determine layer thicknesses down to the monolayer range
JP3165376B2 (en) Oxide film thickness measurement method
JP2996210B2 (en) Sample absorption current spectroscopy
US6525820B1 (en) Rayleigh scattering optical flux monitor
JP2003090810A (en) Drip film for fluorescent x-ray analysis, and method for fluorescent x-ray analysis
DE3274759D1 (en) Method of measuring the coating thickness of clad wires or pipes
Marsden et al. XX. The retardation of α particles by metals
CN109839398B (en) Preparation method of standard sample for synchrotron radiation confocal fluorescence experiment
JP3946643B2 (en) X-ray analysis method for light particle device
Ivakin et al. Thermal diffusivity measurement of high-conducting solids by the method of transient gratings
JPH0914946A (en) Method for measuring thickness of film utilizing x-ray diffraction
Yonezawa et al. Backscattering cross section of 5.5 to 8 Me V alpha particles from carbon, oxygen and silicon
Haar On the use of the electron microprobe in analysis of cross-sections of paint samples
JPS6046042A (en) Measuring method of impurity density
JPH0545147A (en) Method for measuring film thickness of multilayer film and tool for monitoring film thickness