JP2010106363A - Age precipitation type copper alloy, copper alloy material, copper alloy component and method for producing copper alloy material - Google Patents

Age precipitation type copper alloy, copper alloy material, copper alloy component and method for producing copper alloy material Download PDF

Info

Publication number
JP2010106363A
JP2010106363A JP2009230431A JP2009230431A JP2010106363A JP 2010106363 A JP2010106363 A JP 2010106363A JP 2009230431 A JP2009230431 A JP 2009230431A JP 2009230431 A JP2009230431 A JP 2009230431A JP 2010106363 A JP2010106363 A JP 2010106363A
Authority
JP
Japan
Prior art keywords
copper alloy
compound
machinability
alloy material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009230431A
Other languages
Japanese (ja)
Other versions
JP5546196B2 (en
Inventor
Isao Takahashi
高橋  功
Masanobu Hirai
雅信 平井
Chizuna Kamata
千綱 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2009230431A priority Critical patent/JP5546196B2/en
Publication of JP2010106363A publication Critical patent/JP2010106363A/en
Application granted granted Critical
Publication of JP5546196B2 publication Critical patent/JP5546196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper alloy which has excellent machinability and is particularly suitable for use requiring high strength or high conductivity. <P>SOLUTION: The age precipitation type copper alloy comprises, by mass, 1.5 to 7.0% Ni and 0.3 to 1.8% Si, wherein compounds having the average size of ≥1 μm and contributing its machinability are present by ≥1,000 pieces/mm<SP>2</SP>. Alternately, the copper alloy further contains at least one selected from the group consisting of Co, Zr, Ti, Fe, Mn, Cr, Sn, Al, Mg, V, P and Zn, by 0.05 to 2% in total, and the balance Cu with inevitable impurities, wherein metallic element-containing compounds having the average size of ≥1 μm are present by ≥1,000 pieces/mm<SP>2</SP>. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電子機器、精密機械、自動車等に使用される金属部品、特に切削加工によ
り製造される銅合金部品に関し、さらにこの銅合金部品に適する時効析出型銅合金、この
銅合金が切削加工に適した形状に成形された銅合金材料およびその製造方法に関するもの
である。
The present invention relates to metal parts used in electronic equipment, precision machinery, automobiles, etc., particularly copper alloy parts manufactured by cutting, and further, an aging precipitation type copper alloy suitable for this copper alloy part, and this copper alloy is processed by cutting. The present invention relates to a copper alloy material formed into a shape suitable for the above and a manufacturing method thereof.

金属部品を製造する方法として旋削、穿孔などの切削加工がある。切削加工は、特に複
雑な形状を持つ部品や高い寸法精度を要する部品の製造には有効な加工方法である。切削
加工を行う場合、切削性がしばし問題となる。切削性には切削屑処理、工具寿命、切削抵
抗、切削面粗さなどの項目があり、これらが向上するように材料に改良が施されている。
Cutting methods such as turning and drilling are methods for producing metal parts. Cutting is an effective processing method particularly for manufacturing parts having complicated shapes and parts requiring high dimensional accuracy. When performing a cutting process, the machinability often becomes a problem. The machinability includes items such as scrap disposal, tool life, cutting resistance, and cutting surface roughness, and the material has been improved to improve these.

銅合金は、強度が高い、導電性・熱伝導性に優れる、耐食性に優れる、色調に優れるな
どの理由から多くの金属部品に使用されている。切削による加工も多く実施されており、
例えば水道の蛇口、バルブ、歯車、装飾品などの用途があり、黄銅(Cu−Zn系)、青
銅(Cu−Sn系)、アルミ青銅(Cu−Al系)、洋白(Cu−Zn−Ni系)に切削
性を向上させるために鉛を添加した合金が使用されている(特許文献1〜4参照)。なお
、これらはいずれも高強度または高導電性を必要としない用途である。
Copper alloys are used in many metal parts for reasons such as high strength, excellent electrical conductivity and thermal conductivity, excellent corrosion resistance, and excellent color tone. A lot of processing by cutting is carried out,
For example, there are uses such as water faucets, valves, gears, ornaments, brass (Cu-Zn series), bronze (Cu-Sn series), aluminum bronze (Cu-Al series), white (Cu-Zn-Ni) In order to improve machinability, alloys containing lead are used (see Patent Documents 1 to 4). These are all applications that do not require high strength or high conductivity.

高強度または高導電性を必要とする用途、例えば同軸コネクタのピン材等の用途には、
りん青銅やベリリウム銅に鉛を添加した快削りん青銅(特許文献5参照)、快削ベリリウ
ム銅(特許文献6参照)が使用されている。これらはNC旋盤等の精密な工作機械で切削
加工され、電子機器用途等の信頼性の高い部品に使用されている。
For applications requiring high strength or high conductivity, such as pin materials for coaxial connectors,
Free-cutting phosphor bronze (see Patent Document 5) obtained by adding lead to phosphor bronze or beryllium copper and free-cut beryllium copper (see Patent Document 6) are used. These are cut by a precision machine tool such as an NC lathe and used for highly reliable parts such as electronic devices.

このように銅合金の切削性を向上させるために、一般的には鉛が添加されている。これ
は、鉛が銅合金に固溶しないため材料内に微細に分散し、切削加工時に切削屑がその部分
で分断されやすくなることによる。しかし、鉛は人体や環境に悪影響を及ぼすとされてい
ることから使用が制限されつつあり、鉛を含有せずに切削性を向上させた銅合金の要求が
高まっている。鉛を添加せずに切削性を向上させる方法として、黄銅や青銅にはビスマス
を添加する方法(特許文献7〜8参照)が知られている。また黄銅では、亜鉛濃度を高く
して銅−亜鉛系化合物であるβ相やγ相を形成させ(特許文献9)、あるいはケイ素を添
加して銅−ケイ素系化合物であるκ相を形成させ(特許文献10)、これらの化合物を切
削屑分断の起点として作用させることで切削性を向上させる方法が知られている。
Thus, in order to improve the machinability of a copper alloy, lead is generally added. This is because lead does not dissolve in the copper alloy, so it is finely dispersed in the material, and the cutting waste is easily divided at that portion during cutting. However, the use of lead is being restricted because it is considered to have an adverse effect on the human body and the environment, and there is an increasing demand for copper alloys that do not contain lead and have improved machinability. As a method for improving machinability without adding lead, a method of adding bismuth to brass or bronze (see Patent Documents 7 to 8) is known. In brass, the zinc concentration is increased to form a β-phase or γ-phase that is a copper-zinc compound (Patent Document 9), or silicon is added to form a κ-phase that is a copper-silicon compound ( Patent Document 10), a method for improving the machinability by causing these compounds to act as starting points for cutting waste cutting is known.

特開昭60−056036号公報JP 60-056036 A 特開昭58−113336号公報JP 58-113336 A 特開昭51−101716号公報JP 51-101716 A 特開平01−177327号公報Japanese Patent Laid-Open No. 01-177327 特開昭50−066423号公報Japanese Patent Laid-Open No. 50-066423 特開昭52−117244号公報JP 52-117244 A 特開2001−059123号公報JP 2001-059123 A 特開2000−336442号公報JP 2000-336442 A 特開2000−319737号公報JP 2000-319737 A 特開2004−183056号公報JP 2004-183056 A

しかし、各特許文献に記載された技術は、以下の課題を有する。特許文献1〜6の各技
術では、切削性を向上させるための添加元素として鉛を用いており、環境への負荷が心配
される。特に特許文献6に記載の技術では、快削ベリリウム銅の切削性を向上させるため
の添加元素として鉛に代替するものはなく、またベリリウムそのものも環境に影響を与え
る元素の一つとして挙げられており、鉛を添加した銅合金の代替材のみならずベリリウム
銅の代替材を望む声も高まっている。また、特許文献7〜8の技術では、ビスマスを添加
すると切削性は改善されるが、加工中に割れ易くなり、特に熱間加工が困難となる。すな
わち、熱間加工性の改善を図ることが改めて必要となる。特許文献9〜10は、形成され
る化合物は黄銅系特有のものである。
However, the technique described in each patent document has the following problems. In each technique of patent documents 1-6, lead is used as an additive element for improving machinability, and there is a concern about the load to the environment. In particular, in the technique described in Patent Document 6, there is no substitute for lead as an additive element for improving the machinability of free-cutting beryllium copper, and beryllium itself is listed as one of the elements that affect the environment. In addition, there is a growing demand for a beryllium copper substitute material as well as a lead-added copper alloy substitute material. Further, in the techniques of Patent Documents 7 to 8, when bismuth is added, the machinability is improved, but cracking is likely to occur during processing, and particularly hot processing becomes difficult. That is, it is necessary to improve the hot workability. In Patent Documents 9 to 10, the formed compound is unique to the brass system.

また、高強度または高導電性を必要とする用途では、銅にニッケルとケイ素を添加する
合金系(Cu−Ni−Si系:いわゆるコルソン合金)などを用いることも考えられるが
、この合金系において切削性を高める検討は十分になされておらず、切削性に優れた材料
とするためにはさらなる検討が必要とされている。
In applications that require high strength or high conductivity, it is possible to use an alloy system (Cu-Ni-Si system: so-called Corson alloy) in which nickel and silicon are added to copper. There has not been sufficient study to improve machinability, and further studies are required to obtain a material with excellent machinability.

このような問題に鑑み本発明はなされたもので、特に高強度または高導電性を必要とす
る用途に最適な切削性に優れた銅合金を、環境負荷物質を利用することなく提供すること
を目的とするものである。
The present invention has been made in view of such problems, and provides a copper alloy having excellent machinability that is particularly suitable for applications requiring high strength or high conductivity without using environmentally hazardous substances. It is the purpose.

本発明者らは鋭意検討した結果、特定の組成の時効析出型銅合金を用い、大きさ(平均
径)が1μm以上の金属元素含有化合物が1000個/mm以上存在することによって
、切削性に優れ、さらに強度および導電性に優れる銅合金が得られることを見出した。ま
た、金属元素含有化合物が1000個/mm以上存在する銅合金を得るには、鋳造時の
冷却速度の制御、核として作用する化合物の形成が好ましく、また溶解時に溶湯を酸化さ
せないことも好ましいことを見出した。
As a result of intensive studies, the present inventors have used an aging precipitation type copper alloy having a specific composition, and the presence of 1000 elements / mm 2 or more of metal element-containing compounds having a size (average diameter) of 1 μm or more makes it possible to cut. It was found that a copper alloy having excellent strength and conductivity can be obtained. In order to obtain a copper alloy-metal-element-containing compound is present 1000 / mm 2 or more, it is also preferable not to oxidize the molten metal at the time of formation are preferred, also dissolution of compounds that act as cooling control speed, nuclei during casting I found out.

すなわち、本発明は、以下の解決手段を提供するものである。
(1)Niを1.5〜7.0mass%、Siを0.3〜1.8mass%を含有する銅
合金であって、平均径が1μm以上の大きさの切削性向上に寄与する化合物が1000個
/mm以上存在することを特徴とする時効析出型銅合金。
(2)Niを1.5〜7.0mass%、Siを0.3〜1.8mass%を含有し、さ
らに、Co、Zr、Ti、Fe、Mn、Cr、Sn、Al、Mg、V、P、Znの群から
選ばれる少なくとも1種を総量で0.05〜2mass%含有し、残部がCuおよび不可
避的不純物からなる銅合金であって、平均径が1μm以上の大きさの切削性向上に寄与す
る化合物が1000個/mm以上存在することを特徴とする時効析出型銅合金。
(3)Niを1.5〜7.0mass%、Siを0.3〜1.8mass%を含有し、さ
らに、Co、Zr、Ti、Fe、Mn、Cr、Sn、Al、Mg、V、P、Znの群から
選ばれる少なくとも1種を総量で0.05〜2mass%含有し、残部がCuおよび不可
避的不純物からなる銅合金であって、Co、Zr、Ti、Fe、Mn、Cr、Sn、Al
、Mg、V、P、Znのいずれかを含有する平均径が1μm以上の大きさの切削性向上に
寄与する化合物が1000個/mm以上存在することを特徴とする時効析出型銅合金。
(4)前記切削性向上に寄与する化合物は、金属元素含有化合物であることを特徴とする
、(1)〜(3)のいずれか1項に記載の時効析出型銅合金。
(5)前記金属元素含有化合物の内部には、核として作用する化合物が存在し、前記核と
して作用する化合物は、前記金属元素含有化合物より融点が高いことを特徴とする、(4
)に記載の時効析出型銅合金。
(6)前記切削性向上に寄与する化合物の平均径は、30μm以下であることを特徴とす
る、(1)〜(5)のいずれか1項に記載の時効析出型銅合金。
(7)前記切削性向上に寄与する化合物の密度は、30000個/mm以下であること
を特徴とする、(1)〜(5)のいずれか1項に記載の時効析出型銅合金。
(8)(1)〜(7)のいずれか1項に記載の時効析出型銅合金が所定形状に成形された
銅合金材料であって、成形後の引張強さが500MPa以上、導電率が25%IACS以
上であることを特徴とする銅合金材料。
(9)(8)に記載の銅合金材料が切削加工されて形成される銅合金部品。
(10)(8)に記載の銅合金材料を製造する方法であって、前記金属元素含有化合物の
融点が、前記銅合金材料の原料を溶解し、鋳造した後の工程における前記銅合金材料の最
高温度より高温であることを特徴とする銅合金材料の製造方法。
(11)前記最高温度は、熱間加工温度、焼鈍温度、時効熱処理温度または溶体化温度の
いずれかであることを特徴とする、(10)記載の銅合金材料の製造方法。
(12)鋳造時の冷却速度を0.5℃/秒以上100℃/秒以下とすることを特徴とする
、(10)または(11)に記載の銅合金材料の製造方法。
(13)非酸化雰囲気で溶解鋳造を行うことを特徴とする、(10)または(11)に記
載の銅合金材料の製造方法。
(14)(5)に記載の時効析出型銅合金を所定形状に成形して(8)に記載の銅合金材
料を製造する方法であって、前記金属元素含有化合物を構成する元素より酸化されやすい
元素を添加する工程を有することを特徴とする、(10)〜(13)のいずれか1項に記
載の銅合金材料の製造方法。
That is, the present invention provides the following solutions.
(1) A copper alloy containing 1.5 to 7.0 mass% of Ni and 0.3 to 1.8 mass% of Si, and having an average diameter of 1 μm or more and a compound that contributes to improved machinability An age-precipitation copper alloy characterized by being 1000 / mm 2 or more.
(2) Ni is contained in 1.5 to 7.0 mass%, Si is contained in 0.3 to 1.8 mass%, and Co, Zr, Ti, Fe, Mn, Cr, Sn, Al, Mg, V, A copper alloy containing 0.05 to 2 mass% of a total amount of at least one selected from the group of P and Zn, with the balance being Cu and inevitable impurities, with an average diameter of 1 μm or more for improved machinability An age-precipitation copper alloy characterized in that there are 1000 / mm 2 or more of compounds that contribute to
(3) Ni is contained in 1.5 to 7.0 mass%, Si is contained in 0.3 to 1.8 mass%, and Co, Zr, Ti, Fe, Mn, Cr, Sn, Al, Mg, V, A copper alloy containing at least one selected from the group of P and Zn in a total amount of 0.05 to 2 mass%, the balance being Cu and unavoidable impurities, Co, Zr, Ti, Fe, Mn, Cr, Sn, Al
An aging precipitation type copper alloy characterized in that there are 1000 / mm 2 or more of compounds that contribute to improving machinability with an average diameter of 1 μm or more, containing any of Mg, V, P, and Zn.
(4) The aging precipitation type copper alloy according to any one of (1) to (3), wherein the compound contributing to the improvement of the machinability is a metal element-containing compound.
(5) A compound that acts as a nucleus exists in the metal element-containing compound, and the compound that acts as the nucleus has a higher melting point than the metal element-containing compound.
Aging precipitation type copper alloy as described in).
(6) The aging precipitation type copper alloy according to any one of (1) to (5), wherein an average diameter of the compound contributing to the improvement of the machinability is 30 μm or less.
(7) the density of the compound that contributes to the machinability improvement, 30000 / wherein the mm 2 or less, (1) to (5) or age-precipitation type copper alloy according to one of.
(8) A copper alloy material obtained by molding the aging precipitation type copper alloy according to any one of (1) to (7) into a predetermined shape, wherein the tensile strength after molding is 500 MPa or more, and the electrical conductivity is A copper alloy material characterized by being 25% IACS or more.
(9) A copper alloy part formed by cutting the copper alloy material according to (8).
(10) The method for producing a copper alloy material according to (8), wherein the melting point of the metal element-containing compound is obtained by melting the raw material of the copper alloy material and casting the copper alloy material in the step after casting. A method for producing a copper alloy material, wherein the temperature is higher than a maximum temperature.
(11) The method for producing a copper alloy material according to (10), wherein the maximum temperature is any one of a hot working temperature, an annealing temperature, an aging heat treatment temperature, or a solution temperature.
(12) The method for producing a copper alloy material according to (10) or (11), wherein a cooling rate during casting is 0.5 ° C./second or more and 100 ° C./second or less.
(13) The method for producing a copper alloy material according to (10) or (11), wherein melt casting is performed in a non-oxidizing atmosphere.
(14) A method for producing the copper alloy material according to (8) by forming the aging precipitation type copper alloy according to (5) into a predetermined shape, which is oxidized from an element constituting the metal element-containing compound. The method for producing a copper alloy material according to any one of (10) to (13), comprising a step of adding an easy element.

本発明の時効析出型銅合金は、強度および導電性に優れ、さらに鉛やベリリウムなどの
環境負荷物質を利用することなく切削性に優れたものとなる。また、本発明の銅合金は、
切削加工により製造される電子機器等の部品用材料として好適である。
The aging precipitation type copper alloy of the present invention is excellent in strength and conductivity, and is excellent in machinability without using environmentally hazardous substances such as lead and beryllium. The copper alloy of the present invention is
It is suitable as a material for parts such as electronic equipment manufactured by cutting.

本発明の時効析出型銅合金の好ましい実施の態様における切削性向上に寄与する化合物のSEM像を示す写真である。It is a photograph which shows the SEM image of the compound which contributes to the machinability improvement in the preferable embodiment of the aging precipitation type copper alloy of this invention.

本発明の時効析出型銅合金および銅合金材料の好ましい実施の態様について、詳細に説
明する。まず、各合金元素の作用効果とその含有量の範囲について説明する。
なお、本明細書において、「銅合金」とは形状の概念を含まないものをいい、「銅合金
材料」とは形状の概念を含むものをいう。また、本明細書において、「金属元素含有化合
物」を定義し、さらにこの「金属元素含有化合物」を、主に「晶出物」、「析出物」の2
種類に分類する。「晶出物」は銅合金の鋳造の際に溶融金属が凝固する過程で生じ、「析
出物」は固体金属の状態で熱処理により生じる。よって、「晶出物」と「析出物」とは明
確に区別される。
Preferred embodiments of the aging precipitation type copper alloy and copper alloy material of the present invention will be described in detail. First, the effect of each alloy element and the range of its content will be described.
In this specification, “copper alloy” refers to a material that does not include the concept of shape, and “copper alloy material” refers to a material that includes the concept of shape. Further, in the present specification, a “metal element-containing compound” is defined, and this “metal element-containing compound” is mainly classified into 2 of “crystallized product” and “precipitate”.
Classify into types. The “crystallized product” is generated in the process of solidification of the molten metal during the casting of the copper alloy, and the “precipitate” is generated by heat treatment in the state of a solid metal. Therefore, “crystallized product” and “precipitate” are clearly distinguished.

本発明の銅合金および銅合金材料の好ましい実施の態様におけるニッケル(Ni)とケ
イ素(Si)は、NiとSiの含有比を制御することにより金属生地(マトリクス)中に
Ni−Si析出物(NiSi)を形成させて析出強化を行い、銅合金の強度および導電
性を向上させるために添加する。このNi−Si析出物(NiSi:析出強化のための
析出物)は、形式的には金属元素含有化合物であるが、切削性の向上にはあまり寄与しな
い。
Nickel (Ni) and silicon (Si) in a preferred embodiment of the copper alloy and copper alloy material of the present invention are formed by depositing Ni-Si precipitates in the metal matrix (matrix) by controlling the content ratio of Ni and Si. Ni 2 Si) is formed for precipitation strengthening and added to improve the strength and conductivity of the copper alloy. Although this Ni-Si precipitate (Ni 2 Si: precipitate for strengthening precipitation) is formally a metal element-containing compound, it does not contribute much to the improvement of machinability.

本発明の銅合金および銅合金材料の好ましい実施の態様においては、前述の析出強化の
ための析出物よりも粗大な、切削性向上に寄与する化合物を形成する。この化合物は金属
元素含有化合物であり、例えば、ニッケルまたはシリコンの少なくとも一方を含む晶出物
、あるいはニッケルまたはシリコンの少なくとも一方と後述する他の添加元素とを含む晶
出物などである。これらの金属元素含有化合物が、切削加工を行った時の切削屑分断の起
点として作用することで切削屑が細かく分断され易くなり、切削性が向上する。
In a preferred embodiment of the copper alloy and copper alloy material of the present invention, a compound that contributes to improving the machinability is formed, which is coarser than the precipitate for precipitation strengthening described above. This compound is a metal element-containing compound, such as a crystallized product containing at least one of nickel and silicon, or a crystallized product containing at least one of nickel and silicon and other additive elements described later. These metal element-containing compounds act as starting points for cutting waste when the cutting is performed, so that the cutting waste is easily finely divided and the machinability is improved.

Niの含有量は1.5〜7.0mass%(質量%)であり、1.7〜6.5mass
%であることが好ましい。Ni量が1.5mass%より少ないと、Ni−Si析出物に
よる析出硬化量が小さく強度が不足する、また粗大な晶出物の形成量が少なく、切削性向
上の効果が見られない。Ni量が7.0mass%より多いと、熱処理時に粒界反応型析
出が生じ、さらに粗大な晶出物の量が多くなり過ぎ、強度が低下することがあるため好ま
しいとはいえない。
The content of Ni is 1.5 to 7.0 mass% (mass%), and 1.7 to 6.5 mass.
% Is preferred. If the amount of Ni is less than 1.5 mass%, the amount of precipitation hardening due to Ni—Si precipitates is small and the strength is insufficient, and the amount of coarse crystals formed is small, and the effect of improving machinability is not observed. If the amount of Ni is more than 7.0 mass%, grain boundary reaction type precipitation occurs during the heat treatment, and the amount of coarse crystallized material increases excessively, which may reduce the strength.

Siの含有量は、Ni−Si析出物(NiSi)の形成においては、質量%で計算す
るとNi含有量の約1/4の量が必要となる。また、前記の金属元素含有化合物にSiを
含有する時にはその分のSi量を追加し、Niを含有するときにはその分のSi量を減ら
すことが好ましい。これらのことから、本発明において、Siの含有量は0.3〜1.8
質量%であり、0.35〜1.7質量%であることが好ましい。
When the Ni content is calculated by mass% in the formation of Ni-Si precipitates (Ni 2 Si), an amount of about 1/4 of the Ni content is required. Further, when Si is contained in the metal element-containing compound, it is preferable to add a corresponding amount of Si, and when containing Ni, it is preferable to reduce the amount of Si. From these things, in this invention, content of Si is 0.3-1.8.
It is mass%, and it is preferable that it is 0.35-1.7 mass%.

また、本発明の銅合金および銅合金材料の好ましい実施の態様においては、平均径が1
μm以上の大きさの金属元素含有化合物が1000個/mm以上存在する必要がある。
そのためには、コバルト(Co)、ジルコニウム(Zr)、チタン(Ti)、鉄(Fe)
、マンガン(Mn)、クロム(Cr)、錫(Sn)、アルミニウム(Al)、マグネシウ
ム(Mg)、バナジウム(V)、りん(P)、亜鉛(Zn)の1種または2種以上を含有
することが好ましい。これらの元素は、CuやNiやSiと、あるいは相互に金属元素含
有化合物を形成し、切削性を向上させる。この場合の金属元素含有化合物は、ほぼ晶出物
である。含有させる場合には、Co、Zr、Ti、Fe、Mn、Cr、Sn、Al、Mg
、V、P、Znの中から選ばれる1種または2種以上を総量で0.05〜2mass%含
有させることが好ましい。0.05mass%より少ない場合は、形成される晶出物の個
数が少なく、切削性が改善されない。また、2mass%より多い場合は、切削性向上の
効果が飽和するだけでなく、導電率が低下するため得策ではない。
In a preferred embodiment of the copper alloy and copper alloy material of the present invention, the average diameter is 1
The metal element-containing compound having a size of μm or more needs to be 1000 / mm 2 or more.
For that purpose, cobalt (Co), zirconium (Zr), titanium (Ti), iron (Fe)
, Manganese (Mn), Chromium (Cr), Tin (Sn), Aluminum (Al), Magnesium (Mg), Vanadium (V), Phosphorus (P), Zinc (Zn) It is preferable. These elements form a metal element-containing compound with Cu, Ni, Si, or with each other, and improve machinability. In this case, the metal element-containing compound is almost a crystallized product. When contained, Co, Zr, Ti, Fe, Mn, Cr, Sn, Al, Mg
It is preferable to contain 0.05 to 2 mass% of one or more selected from V, P and Zn in a total amount. When it is less than 0.05 mass%, the number of crystallized substances formed is small, and the machinability is not improved. On the other hand, if it is more than 2 mass%, not only is the effect of improving the machinability saturated, but also the conductivity is lowered, which is not a good idea.

次に、切削性向上に寄与する化合物である金属元素含有化合物の大きさと数の規定、並
びに形成方法や特徴について述べる。金属元素含有化合物は、切削加工時に発生する切削
屑を細かく分断する作用があり、それにより切削性が向上する。ただし、大きさ(平均径
)が1μmより小さいと、大きな効果は得られない。また1μm以上の金属元素含有化合
物があったとしても、存在する個数が少ないと切削屑は細かく分断されない。具体的には
、1μm以上の大きさの金属元素含有化合物(例えば晶出物)が1000個/mm以上
の密度で分布していないと、切削屑が十分には分断されない。
Next, the definition of the size and number of the metal element-containing compound, which is a compound that contributes to improved machinability, and the formation method and characteristics will be described. The metal element-containing compound has an action of finely cutting the cutting waste generated during cutting, thereby improving the machinability. However, if the size (average diameter) is smaller than 1 μm, a great effect cannot be obtained. Moreover, even if there is a metal element-containing compound of 1 μm or more, the cutting waste is not finely divided if the number of the existing elements is small. Specifically, if the metal element-containing compound having a size of 1 μm or more (for example, a crystallized product) is not distributed at a density of 1000 pieces / mm 2 or more, the cutting waste is not sufficiently divided.

なお、金属元素含有化合物の大きさの上限は、特に規定しないが30μm程度であるこ
とが好ましい。30μmを超えると、切削面の粗さが低下するだけでなく、冷間加工中に
割れが生じやすくなってユーザーの要求する寸法に加工することが困難となることがある
。また、金属元素含有化合物の密度の上限は、特に規定しないが30000個/mm
度であることが望ましい。30000個/mmを超えると金属元素含有化合物の占める
割合が高くなり、材料の強度が低下することがある。
The upper limit of the size of the metal element-containing compound is not particularly specified, but is preferably about 30 μm. When it exceeds 30 μm, not only the roughness of the cutting surface is lowered, but also cracking is likely to occur during cold working, and it may be difficult to process to the dimensions required by the user. The upper limit of the density of the metal element-containing compound is not particularly specified, but is desirably about 30000 pieces / mm 2 . Ratio is increased occupied by 30000 / mm 2 by weight, the metal-element-containing compound, the strength of the material may be reduced.

前述のとおり、晶出物は、製造工程における鋳造において、溶融金属が凝固する過程で
生じる金属元素含有化合物である。一般に晶出物は母相との結合力が弱いため、切削加工
時に屑を分断する起点として作用する。一方、析出物は、固体金属の状態で熱処理により
生じる金属元素含有化合物であり、合金系にもよるが、一般に晶出物よりサイズが小さく
、母相との結合力が強いため、切削屑分断の起点としては作用しにくい。ただし、結晶粒
界に形成する析出物の場合、サイズが大きくなったものが切削屑分断の起点として作用す
る場合がある。また、金属元素含有化合物として、溶解時に溶け残った化合物がそのまま
持ち来されたもの(未溶解化合物)があるが、これは母相との結合力が弱く切削屑分断の
起点として作用するため、晶出物と同様、切削性向上の手段として用いることができる。
すなわち、晶出物、析出物、未溶解化合物は、切削屑を細かく分断する作用を有するため
には、それぞれ大きさ(平均径)が1μm以上、かつ時効析出型銅合金中の金属元素含有
化合物の分布密度として1000個/mm以上であることが求められる。
As described above, the crystallized product is a metal element-containing compound generated in the process of solidification of the molten metal in casting in the production process. In general, a crystallized substance has a weak binding force with a parent phase, and therefore acts as a starting point for breaking up debris during cutting. On the other hand, precipitates are metal element-containing compounds that are generated by heat treatment in the state of solid metal. Depending on the alloy system, the precipitates are generally smaller in size than the crystallized material and have a strong bonding force with the parent phase. It is difficult to act as a starting point. However, in the case of precipitates formed at the crystal grain boundaries, an increase in size may act as a starting point for cutting waste separation. In addition, as a metal element-containing compound, there is a compound that remains undissolved at the time of dissolution (undissolved compound), but this has a weak binding force with the parent phase and acts as a starting point for cutting waste fragmentation. Similar to the crystallized product, it can be used as a means for improving machinability.
That is, the crystallized product, the precipitate, and the undissolved compound each have a size (average diameter) of 1 μm or more and a metal element-containing compound in the aging precipitation type copper alloy in order to have a function of finely cutting the cutting waste. The distribution density is required to be 1000 / mm 2 or more.

さらに、金属元素含有化合物の融点は、銅合金材料の原料を溶解し、鋳造した後の工程
における銅合金材料の最高温度より高いことが好ましい。この最高温度とは、一般にはそ
の材料を熱間加工する場合の熱間加工温度、焼鈍温度、時効熱処理温度または時効析出前
の溶体化温度のいずれかである。これは、それぞれの加熱工程で切削性向上に寄与する化
合物である金属元素含有化合物の溶融、消滅を生じさせないためである。
Furthermore, the melting point of the metal element-containing compound is preferably higher than the maximum temperature of the copper alloy material in the step after melting and casting the raw material of the copper alloy material. This maximum temperature is generally one of a hot working temperature, an annealing temperature, an aging heat treatment temperature, or a solution temperature before aging precipitation when the material is hot worked. This is because the metal element-containing compound, which is a compound that contributes to improved machinability in each heating step, does not cause melting or disappearance.

また、切削性向上に寄与する化合物である金属元素含有化合物のうち、晶出物は、鋳造
時の冷却速度により大きさ、分布が変わる。冷却速度が遅いと晶出物は粗大となり、十分
な切削屑分断性が得られない場合があるため、好ましくは0.5℃/秒以上、より好まし
くは1℃/秒以上で冷却することで本発明の銅合金が得られる。また、冷却速度が速すぎ
ると晶出物が微細になりすぎて切削屑の分断性が劣ってくるため、100℃/秒以下であ
ることが好ましい。冷却速度を速くする鋳造方法としては、例えば双ロール鋳造法がある
。これは溶湯を回転する二対のロールの間に注ぐことで材料を急冷凝固させる方法である
In addition, among the metal element-containing compounds that are compounds that contribute to improvement in machinability, the size and distribution of crystallized substances vary depending on the cooling rate during casting. When the cooling rate is slow, the crystallized material becomes coarse and sufficient cutting chip separation may not be obtained. Therefore, cooling is preferably performed at 0.5 ° C./second or more, more preferably 1 ° C./second or more. The copper alloy of the present invention is obtained. Further, if the cooling rate is too fast, the crystallized product becomes too fine and the cutting waste is inferior, and therefore it is preferably 100 ° C./second or less. As a casting method for increasing the cooling rate, for example, there is a twin roll casting method. In this method, the material is rapidly solidified by pouring between two pairs of rotating rolls.

晶出物を、切削性向上に寄与する化合物である金属元素含有化合物として微細に形成す
る別の方法として、前述の晶出物とは異なる組成の化合物の周りに晶出物を形成させる方
法がある。これは、目的とする晶出物が形成される前に、溶湯内に晶出物とは異なる組成
の化合物またはその原料を投入あるいは形成させ、その化合物を核として晶出物を形成さ
せる方法である。
As another method for finely forming a crystallized product as a metal element-containing compound that is a compound that contributes to improved machinability, there is a method of forming a crystallized product around a compound having a composition different from that of the crystallized product. is there. This is a method in which a compound having a composition different from that of the crystallized substance or a raw material thereof is charged or formed in the molten metal before the target crystallized substance is formed, and the crystallized substance is formed using the compound as a nucleus. is there.

晶出物とは異なる組成の、晶出物形成の核として作用する化合物(以下、単に「核とし
て作用する化合物」とする)は、目的とする晶出物より高融点である必要があり、具体的
には炭化物、硫化物、硼化物、酸化物、窒化物などの非金属元素含有化合物が有効である
。これらは、非金属元素含有化合物を粉末などで溶湯内に直接投入する、あるいはNi、
Siなどの合金成分や新たに添加した金属元素と溶湯内で結合することで核として作用す
る化合物として溶湯内に形成される。核として作用する化合物を形成させる場合の炭素、
硫黄、硼素などの非金属元素を銅合金中に添加する方法としては、そのまま添加する方法
(例えば炭素の棒を浸漬する)、あるいは他の元素との化合物の状態で添加する方法(例
えば銅−硼素の母合金を原料に用いる)などがある。なお、核として作用する化合物の大
きさ(平均径)は、通常1μmより小さく、核として作用する化合物自体が直接切削性向
上に寄与することはほとんどない。
A compound having a composition different from that of the crystallized substance and acting as a nucleus for crystallized substance formation (hereinafter, simply referred to as “compound acting as a nucleus”) needs to have a higher melting point than the target crystallized substance. Specifically, non-metal element-containing compounds such as carbides, sulfides, borides, oxides, and nitrides are effective. These are the ones in which the nonmetallic element-containing compound is directly put into the molten metal as a powder, or Ni,
It is formed in the melt as a compound that acts as a nucleus by bonding with an alloy component such as Si or a newly added metal element in the melt. Carbon in forming compounds that act as nuclei,
As a method of adding a nonmetallic element such as sulfur or boron into a copper alloy, a method of adding it as it is (for example, immersing a carbon rod) or a method of adding it in the state of a compound with another element (for example, copper- Boron master alloy is used as a raw material). Note that the size (average diameter) of the compound acting as a nucleus is usually smaller than 1 μm, and the compound acting as a nucleus itself hardly contributes directly to the improvement of machinability.

これらの核として作用する化合物が溶湯内に多く形成されると、この核の周囲に晶出物
は形成し、核の数が多ければ晶出物の数が増加し、切削屑を細かく分断する作用を有する
大きさおよび密度になる。本方法は特に冷却速度が遅い時に有効であり、冷却速度が速い
時は核として作用する化合物が無くても晶出物は切削屑を細かく分断する作用を有する大
きさおよび密度になることから、核として作用する化合物を形成する必要はなくなる。
When many compounds that act as nuclei are formed in the molten metal, crystallized substances are formed around the nuclei, and if the number of nuclei is large, the number of crystallized substances is increased, and the function of finely dividing the cutting waste is achieved. It has the size and density it has. This method is particularly effective when the cooling rate is low, and when the cooling rate is high, even if there is no compound that acts as a nucleus, the crystallized product has a size and density that has the effect of finely cutting the cutting waste. There is no need to form a compound that acts as a nucleus.

本発明の銅合金および銅合金材料の好ましい実施の態様における、切削性向上に寄与す
る化合物(金属元素含有化合物)を形成するための添加元素には、酸化されやすい元素、
例えば、Si、Zr、Ti、Al、Mgなどが含まれる。これらの酸化されやすい元素を
用いる場合には、溶解鋳造時に溶解炉、溶湯経路、鋳型などを覆い、アルゴン、窒素など
の不活性ガス雰囲気にすることで酸化を防止することが好ましい。この方法により添加元
素のロスは減り、切削屑を細かく分断する作用を有する大きさおよび密度の晶出物が得ら
れる。
In a preferred embodiment of the copper alloy and copper alloy material of the present invention, the additive element for forming a compound (metal element-containing compound) that contributes to improvement of machinability includes an element that is easily oxidized,
For example, Si, Zr, Ti, Al, Mg, etc. are included. When these oxidizable elements are used, it is preferable to prevent oxidation by covering a melting furnace, a molten metal path, a mold and the like at the time of melting and casting, and making an inert gas atmosphere such as argon and nitrogen. By this method, the loss of the additive element is reduced, and a crystallized product having a size and density having an action of finely cutting the cutting waste can be obtained.

切削性向上に寄与する化合物(金属元素含有化合物)を形成するための添加元素の酸化
防止の別の方法として、切削性向上に寄与する化合物(金属元素含有化合物)を形成する
ための添加元素より酸化されやすい元素を添加する方法がある。例えば、Cu−Ni−S
i系をベースに、切削性向上に寄与する化合物(金属元素含有化合物)を形成するための
添加元素であるZr、Fe、TiおよびSnをそれぞれ含有する場合について述べる。こ
れらの元素(Zr、Fe、TiおよびSn)の溶解時に、これらの元素より酸化されやす
い元素であるAl、Mg、Caなどを添加すると、Al、Mg、Caが酸化するために、
切削性向上に寄与する化合物(金属元素含有化合物)を形成するための添加元素はほとん
ど酸化せず、目的とする化合物(金属元素含有化合物)が得やすくなる。なお、元素の酸
化されやすさは酸化物の標準生成自由エネルギーの大小で求められ、このエネルギーが小
さい方が、酸化物が安定(すなわち酸化されやすい)と言える。酸化物の標準生成エネル
ギーは、例えば「改訂4版 金属データブック 日本金属学会 編 発行元:丸善(株)
2004年2月発行」などに記載されている。
As another method for preventing oxidation of the additive element for forming a compound (metal element-containing compound) that contributes to improved machinability, the additive element for forming a compound (metal element-containing compound) that contributes to improved machinability There is a method of adding an element that is easily oxidized. For example, Cu-Ni-S
The case where Zr, Fe, Ti, and Sn, which are additive elements for forming a compound (metal element-containing compound) that contributes to the improvement of machinability, based on the i system, will be described. When these elements (Zr, Fe, Ti, and Sn) are dissolved, if Al, Mg, Ca, etc., which are more easily oxidized than these elements, are added, Al, Mg, Ca are oxidized.
The additive element for forming the compound (metal element-containing compound) that contributes to improved machinability is hardly oxidized, and the target compound (metal element-containing compound) is easily obtained. Note that the ease with which an element is oxidized is determined by the standard free energy of formation of the oxide, and it can be said that the smaller the energy, the more stable the oxide (that is, the more easily oxidized). The standard generation energy of oxide is, for example, “Revised 4th edition Metal Data Book edited by the Japan Institute of Metals”
"Issued in February 2004".

次いで、本発明の好ましい実施の態様における銅合金材料の機械的特性について述べる

本発明の好ましい実施の態様における銅合金は、鉛を含有するりん青銅やベリリウム銅
の代替、すなわち環境負荷物質を含有する銅合金の代替を目指すものであり、これらの合
金と同等の強度を要する。そのため、実用上問題とならない強度および導電性として、引
張強さ500MPa以上、導電率25%IACS以上が必要である。本発明の銅合金は時
効析出型であり、前述のようにNiSiを形成させることで強度、導電性を向上させて
おり、そのために、Niを1.5〜7.0mass%、Siを0.3〜1.8mass%
含有することが必要となる。また、製造工程における溶体化熱処理温度は800〜950
℃の範囲が好ましく、時効熱処理温度は350〜600℃の範囲が好ましい。
Next, the mechanical properties of the copper alloy material in a preferred embodiment of the present invention will be described.
The copper alloy in a preferred embodiment of the present invention aims to replace lead-containing phosphor bronze or beryllium copper, that is, a copper alloy containing environmentally hazardous substances, and requires the same strength as these alloys. . Therefore, the strength and conductivity that do not cause a problem in practice are required to have a tensile strength of 500 MPa or more and a conductivity of 25% IACS or more. The copper alloy of the present invention is an aging precipitation type, and the strength and conductivity are improved by forming Ni 2 Si as described above. For that purpose, Ni is 1.5 to 7.0 mass%, Si is added. 0.3 to 1.8 mass%
It is necessary to contain. Moreover, the solution heat treatment temperature in a manufacturing process is 800-950.
The range of ° C is preferred, and the aging heat treatment temperature is preferably in the range of 350 to 600 ° C.

本発明において、銅合金材料の製造方法に特に制約はない。本発明の好ましい実施の態
様における銅合金は、時効析出型銅合金であるため、少なくとも銅合金原料の溶解鋳造工
程の後に時効熱処理工程は必須となるが、熱間加工工程、焼鈍工程、溶体化熱処理工程は
必要に応じて行うこととなる。例えば、熱間加工工程に関しては、ビレットの熱間押出、
鋳塊の熱間鍛造、あるいは連続鋳造などの製造方法のいずれでも本発明の銅合金材料を製
造することが可能である。また、製品の形状は特に制約はなく、後工程である切削工程に
より最終形態である銅合金部品を得やすい形状としておくことが好ましい。すなわち、銅
合金部品の用途により線、棒、条、板、管などの所定の形状の銅合金材料として製造し、
使い分ければ良い。例えば、最終形態の銅合金部品がねじである場合は、銅合金材料の形
状は丸棒状であることが好ましい。
In this invention, there is no restriction | limiting in particular in the manufacturing method of copper alloy material. Since the copper alloy in the preferred embodiment of the present invention is an aging precipitation type copper alloy, an aging heat treatment step is essential at least after the melt casting step of the copper alloy raw material, but a hot working step, an annealing step, a solution treatment The heat treatment step is performed as necessary. For example, for hot working processes, billet hot extrusion,
The copper alloy material of the present invention can be produced by any of the production methods such as hot forging of an ingot or continuous casting. Moreover, there is no restriction | limiting in particular in the shape of a product, It is preferable to set it as the shape which is easy to obtain the copper alloy component which is a last form by the cutting process which is a post process. That is, as a copper alloy material of a predetermined shape such as wire, bar, strip, plate, pipe depending on the use of copper alloy parts,
Use it properly. For example, when the copper alloy part in the final form is a screw, the shape of the copper alloy material is preferably a round bar.

以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はそれらに限定さ
れるものではない。
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(試験例1)
表1の合金成分で示される組成の銅合金を高周波溶解炉にて溶解し、冷却速度5〜10
℃/秒で各ビレットを鋳造した。なお、溶解炉、溶湯を鋳型まで流す樋および鋳型の溶湯
が大気に接触する部分には、酸化防止のために蓋などの覆いを被せ、窒素ガスを流入した
。前記ビレットを900℃で熱間押出して、直ちに水中焼入れを行い、丸棒を得た。次い
で前記丸棒を冷間にて引抜きを行い、直径10mmの丸棒を製造し、さらに450℃で2
時間時効熱処理を行った。
(Test Example 1)
A copper alloy having the composition shown in Table 1 is melted in a high-frequency melting furnace, and the cooling rate is 5 to 10
Each billet was cast at ° C / second. In addition, a cover such as a lid was covered to prevent oxidation, and nitrogen gas was allowed to flow into the melting furnace, the flow of molten metal to the mold, and the portion where the molten metal of the mold was in contact with the atmosphere. The billet was hot extruded at 900 ° C. and immediately quenched in water to obtain a round bar. Next, the round bar is drawn out in a cold state to produce a round bar having a diameter of 10 mm.
Time aging heat treatment was performed.

このようにして得られた各々の丸棒について、[1]引張強度、[2]導電率、[3]
切削性を下記方法により調べた。各評価項目の測定方法は以下の通りである。
[1]引張強度
JIS Z 2241に準じて3本測定しその平均値(MPa)を示した。
[2]導電率
四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試料について2本ず
つ測定し、その平均値(%IACS)を示した。
[3]切削性
汎用旋盤を用いて切削実験を行い、切削屑の形態を観察した。切削屑が10mm以下に
分断されるものは良、切削屑が分断されるがその長さが10mm以上のものは可、切削屑
が螺旋状につながっているものは不良とした。実用上問題が生じないのは良および可であ
る。なお切削条件は、切削速度30m/min、送り速度0.1mm/rev、切り込み
代0.2mm、とした。バイトは超硬製のものを用い、切削油は不使用とした。
For each round bar thus obtained, [1] tensile strength, [2] conductivity, [3]
The machinability was examined by the following method. The measurement method for each evaluation item is as follows.
[1] Tensile strength Three were measured according to JIS Z 2241 and the average value (MPa) was shown.
[2] Conductivity Using a four-terminal method, two samples were measured for each sample in a thermostatic chamber controlled at 20 ° C. (± 1 ° C.), and the average value (% IACS) was shown.
[3] Cutting performance A cutting experiment was performed using a general-purpose lathe, and the form of the cutting waste was observed. The cutting waste was divided into 10 mm or less, and the cutting waste was divided, but the length of 10 mm or more was acceptable, and the cutting scrap connected in a spiral shape was defective. It is good and good that there is no practical problem. The cutting conditions were a cutting speed of 30 m / min, a feed speed of 0.1 mm / rev, and a cutting allowance of 0.2 mm. The tool was made of cemented carbide and no cutting oil was used.

また、切削性向上に寄与する金属元素含有化合物(表では単に「化合物」とする)の大
きさと数は、ビレットの横断面の任意の3か所について、走査型電子顕微鏡(SEM)を
用いてそれぞれ3視野について組織観察を行うことにより求めた。大きさ(平均径)は、
1視野当たり10個の化合物の大きさを測定し、その平均をとった。数は、1視野に見ら
れる化合物の数をカウントしてその平均をとり、1mmあたりの数に換算して10の位
を四捨五入した。金属元素含有化合物の成分は、SEMに付随するエネルギー分散型蛍光
X線分析装置(EDX)を用いて調査した。
In addition, the size and number of the metal element-containing compound (simply referred to as “compound” in the table) that contributes to improved machinability can be measured using a scanning electron microscope (SEM) at any three locations on the cross section of the billet. Each was obtained by observing the structure for three visual fields. The size (average diameter) is
The size of 10 compounds per field of view was measured and averaged. For the number, the number of compounds found in one visual field was counted and the average was taken. The number was converted to the number per 1 mm 2 and rounded to the nearest tenth. Components of the metal element-containing compound were investigated using an energy dispersive X-ray fluorescence analyzer (EDX) attached to the SEM.

結果を表2に示す。合金No.1〜22は本発明例、合金No.23〜28は、成分が
本発明の範囲外である比較例、合金No.29、30は、従来例である快削りん青銅、快
削ベリリウム銅である。
The results are shown in Table 2. Alloy No. 1 to 22 are examples of the present invention, alloy no. Nos. 23 to 28 are comparative examples in which the components are out of the scope of the present invention, alloy nos. 29 and 30 are conventional free-cutting phosphor bronze and free-cutting beryllium copper.

Figure 2010106363
Figure 2010106363

Figure 2010106363
Figure 2010106363

合金No.1〜22の本発明例は、いずれも引張強さ500MPa以上、導電率25%
IACS以上を満足している。また、切削屑の分断性はいずれも良または可が得られてい
る。
Alloy No. The inventive examples 1 to 22 all have a tensile strength of 500 MPa or more and an electrical conductivity of 25%.
I am more than IACS. Moreover, good or good is obtained in all of the cutting property of the cutting waste.

一方、比較例の合金No.23および24は、主成分のNiおよびSiが本発明の範囲
外であることから、引張強さまたは導電率が満足できていない。合金No.25および2
6は、Ni、Si以外の添加元素の含有量が本発明の範囲より少ないことから、金属元素
含有化合物の密度が本発明の1000個/mmを下回り、切削性が劣っている。また、
合金No.27およびNo.28はNi、Si以外の添加元素の含有量が本発明の範囲よ
り多いことから、導電性が劣っている。
On the other hand, the alloy no. In Nos. 23 and 24, the main components Ni and Si are outside the scope of the present invention, so that the tensile strength or the electrical conductivity is not satisfactory. Alloy No. 25 and 2
In No. 6, since the content of additive elements other than Ni and Si is less than the range of the present invention, the density of the metal element-containing compound is less than 1000 / mm 2 of the present invention, and the machinability is inferior. Also,
Alloy No. 27 and no. No. 28 is inferior in conductivity because the content of additive elements other than Ni and Si is larger than the range of the present invention.

(試験例2)
表1の合金No.5およびNo.17について、実験用の小型の鋳型(25mm×25
mm×300mm)を用いて鋳造時の冷却速度を変化させ、種々の金属元素含有化合物の
大きさを持つ小型鋳塊を作成した。なお、試験例1と同様に溶解炉、樋などの溶湯が大気
に接触する部分には、酸化防止のため蓋を被せて窒素ガスを流入した。得られた鋳塊を9
00℃で熱間鍛造し、直に水中焼入れを行い、丸棒を得た。次いで前記丸棒を冷間にて引
抜きを行い直径10mmの丸棒を製造し、さらに450℃で2時間時効熱処理を行った。
このようにして得られた各々の丸棒について、[1]引張強度、[2]導電率、[3]切
削性を前記の方法により調べ、金属元素含有化合物の大きさと数を前記の方法により求め
た。結果を表3に示す。
(Test Example 2)
Alloy No. 1 in Table 1 5 and no. 17 is a small experimental mold (25 mm × 25
mm × 300 mm) was used to change the cooling rate during casting to produce small ingots having various metal element-containing compound sizes. As in Test Example 1, nitrogen gas was introduced into a portion where the molten metal such as a melting furnace and a slag contacted the atmosphere with a lid for preventing oxidation. The resulting ingot is 9
Hot forging was performed at 00 ° C., and directly quenched in water to obtain a round bar. Next, the round bar was drawn out cold to produce a round bar having a diameter of 10 mm, and further subjected to aging heat treatment at 450 ° C. for 2 hours.
For each of the round bars thus obtained, [1] tensile strength, [2] conductivity, [3] machinability are examined by the above method, and the size and number of the metal element-containing compound are determined by the above method. Asked. The results are shown in Table 3.

Figure 2010106363
Figure 2010106363

表3に示されるように、サンプルNo.B、C、F、Gは金属元素含有化合物の大きさ
および分布密度が本発明の範囲内であり、製造された丸棒の切削性が優れていた。サンプ
ルNo.A、Eは冷却速度が速く金属元素含有化合物の大きさが1μm以下となり、製造
された丸棒の切削性が劣っていた。また、サンプルNo.D、Hは冷却速度が遅く金属元
素含有化合物の密度が小さくなり、製造された丸棒の切削性が劣っていた。
As shown in Table 3, sample no. In B, C, F, and G, the size and distribution density of the metal element-containing compound were within the scope of the present invention, and the machinability of the manufactured round bar was excellent. Sample No. In A and E, the cooling rate was high, and the size of the metal element-containing compound was 1 μm or less, and the machinability of the manufactured round bar was inferior. Sample No. In D and H, the cooling rate was slow, the density of the metal element-containing compound was small, and the machinability of the manufactured round bar was inferior.

(試験例3)
試験例2にて、鋳造時の冷却速度が遅いために金属元素含有化合物の分布密度が小さく
なった結果、製造された丸棒の切削性が劣った合金No.5およびNo.17のサンプル
DおよびHについて、切削性に寄与する化合物(金属元素含有化合物)の核として作用す
る化合物(非金属元素含有化合物)を形成させるために、(a)溶解時にるつぼ内に炭素
棒を30分間浸漬、(b)原料に銅−硼素母合金を使用、(c)アルミニウムを0.1%
添加、の追加工程をそれぞれ行い、合金No.5は冷却速度0.2℃/秒で、合金No.
17は冷却速度0.1℃/秒でそれぞれ冷却を行って小型鋳塊を作製した。また、合金N
o.17について、追加工程(a)を行い、冷却速度を変化させて鋳造を行った。得られ
た鋳塊を900℃で熱間鍛造し、直に水中焼入れを行い、丸棒を得た。次いで前記丸棒を
冷間にて引抜きを行い直径10mmの丸棒を製造し、さらに450℃で2時間時効熱処理
を行った。このようにして得られた各々の丸棒について、[1]引張強度、[2]導電率
、[3]切削性を前記試験例1の方法により調べ、金属元素含有化合物の大きさと数を前
記の方法により求めた。またSEM観察時に、金属元素含有化合物の内部に見られた非金
属元素含有化合物について、EDXにより成分調査を行った。結果を表4に示す
(Test Example 3)
In Test Example 2, because the cooling rate during casting was slow and the distribution density of the metal element-containing compound was reduced, Alloy No. 5 and no. For 17 samples D and H, in order to form a compound (non-metal element-containing compound) that acts as a nucleus of a compound (metal element-containing compound) that contributes to machinability, (a) a carbon rod is placed in the crucible when dissolved. Immersion for 30 minutes, (b) Use copper-boron mother alloy as raw material, (c) 0.1% aluminum
The additional steps of addition and addition were performed, respectively. No. 5 has a cooling rate of 0.2 ° C./second.
No. 17 was cooled at a cooling rate of 0.1 ° C./second to produce a small ingot. Alloy N
o. About 17, the additional process (a) was performed and casting was performed by changing the cooling rate. The obtained ingot was hot forged at 900 ° C. and directly quenched in water to obtain a round bar. Next, the round bar was drawn out cold to produce a round bar having a diameter of 10 mm, and further subjected to aging heat treatment at 450 ° C. for 2 hours. For each round bar thus obtained, [1] tensile strength, [2] conductivity, [3] machinability were examined by the method of Test Example 1, and the size and number of metal element-containing compounds were determined. Obtained by the method of Moreover, the component investigation was conducted by EDX about the nonmetallic element containing compound seen inside the metallic element containing compound at the time of SEM observation. The results are shown in Table 4.

Figure 2010106363
Figure 2010106363

表4のサンプルD1〜D3と表3のサンプルDとの比較、および表4のサンプルH1〜
H6と表3のサンプルHとの比較から、追加工程(a)、(b)、(c)を行うことによ
り、鋳造時の冷却速度が遅い場合でも金属元素含有化合物の大きさおよび密度は本発明の
範囲内となり、製造された丸棒の切削性が向上していることが分かる。追加工程(a)を
行い冷却速度を変化させた場合は、冷却速度を速くすると、化合物は切削屑を細かく分断
する作用を有する大きさおよび密度になるが、表3のサンプルE、F、Gとの比較より、
冷却速度が速い場合は工程(a)の効果はあまり見られなくなっている。追加工程(a)
、(b)、(c)を行ったものの化合物の内部には、核として作用する炭化物、硼化物な
どの非金属元素含有化合物が観測される。
Comparison of Samples D1 to D3 in Table 4 with Sample D in Table 3 and Samples H1 to H1 in Table 4
From the comparison between H6 and Sample H in Table 3, the size and density of the metal element-containing compound can be obtained by performing additional steps (a), (b), and (c) even when the cooling rate during casting is slow. It is within the scope of the invention, and it can be seen that the machinability of the manufactured round bar is improved. When the cooling rate is changed by performing the additional step (a), when the cooling rate is increased, the compound has a size and density having an action of finely dividing the cutting waste, but samples E, F, and G in Table 3 are used. From comparison with
When the cooling rate is high, the effect of the step (a) is hardly observed. Additional step (a)
, (B), (c), non-metal element-containing compounds such as carbides and borides acting as nuclei are observed inside the compounds.

図1に、合金No.17のサンプルHに工程(a)を追加して得られたサンプルH1の
鋳塊の切削性向上に寄与する化合物のSEM像を示す。図1において、1は金属元素含有
化合物(切削性向上に寄与する化合物)、2は非金属元素含有化合物(核として作用する
化合物)であり、図1の金属元素含有化合物1の中心付近に見られる粒状物は、金属元素
含有化合物1の核として作用する非金属元素含有化合物2であり、具体的にはTiの炭化
物(TiC)である。その化合物の大きさ(平均径)は、約0.6μmであった。
In FIG. The SEM image of the compound which contributes to the machinability improvement of the ingot of the sample H1 obtained by adding a process (a) to the sample H of 17 is shown. In FIG. 1, 1 is a metal element-containing compound (compound that contributes to improved machinability), 2 is a non-metal element-containing compound (a compound that acts as a nucleus), and is seen near the center of the metal element-containing compound 1 in FIG. The resulting granular material is a non-metallic element-containing compound 2 that acts as a nucleus of the metallic element-containing compound 1, and is specifically Ti carbide (TiC). The size (average diameter) of the compound was about 0.6 μm.

(試験例4)
試験例1の合金No.5およびNo.17について、酸化防止のための窒素ガスの流入
を行わずに溶解鋳造を行ってビレットを作製し、試験例1と同じ工程で直径10mmの丸
棒を製造し、評価を行った。結果を表5に示す。
(Test Example 4)
Alloy No. 1 in Test Example 1 5 and no. For No. 17, a billet was produced by melting and casting without inflow of nitrogen gas for preventing oxidation, and a round bar having a diameter of 10 mm was produced and evaluated in the same process as in Test Example 1. The results are shown in Table 5.

Figure 2010106363
Figure 2010106363

表5に示すように、溶解鋳造時に窒素ガスを流入しなかったことにより、添加元素のZ
r、Tiが酸化し、Zr、Tiを含有する切削性向上に寄与する化合物の密度は著しく低
下した。その結果、製造された丸棒の切削性は悪化している。
As shown in Table 5, Z was added as an additive element because no nitrogen gas was introduced during melting and casting.
r and Ti were oxidized, and the density of the compound containing Zr and Ti that contributed to the improvement of machinability was significantly reduced. As a result, the machinability of the manufactured round bar has deteriorated.

(試験例5)
試験例1の合金No.5およびNo.17について、酸化防止の窒素ガスの流入を行わ
ず、酸化されやすい元素としてMgを0.005mass%添加したビレットとMgを無
添加のビレットを作製し、試験例1と同じ工程で直径10mmの丸棒を製造し、評価を行
った。結果を表6に示す。
(Test Example 5)
Alloy No. 1 in Test Example 1 5 and no. For No. 17, a billet added with 0.005 mass% Mg and a billet containing no Mg as an easily oxidizable element without inflow of oxidation-preventing nitrogen gas were prepared. Bars were manufactured and evaluated. The results are shown in Table 6.

Figure 2010106363
Figure 2010106363

表6に示すように、Mgを添加したビレットは化合物の密度が適切な値となり、このビ
レットから製造された丸棒は切削性が良好であり、Mgを添加しなかったビレットから製
造された丸棒と比較して切削性の改善がみられた。これは、切削性向上に寄与する化合物
(金属元素含有化合物)を形成するための添加元素であるSi、Zr、Fe、Tiの溶解
時に、これらの元素より酸化されやすい元素であるMgを添加することにより、Mgが優
先的に酸化した結果、切削性向上に寄与する化合物(金属元素含有化合物)を形成するた
めの添加元素はほとんど酸化しなかったためであると考えられる。
As shown in Table 6, the billet to which Mg was added had an appropriate compound density, and the round bar produced from this billet had good machinability, and the round produced from the billet to which no Mg was added. Improved machinability compared to the bar. This is because Mg, which is an element that is more easily oxidized than these elements, is added at the time of dissolution of Si, Zr, Fe, and Ti, which are additive elements for forming a compound (metal element-containing compound) that contributes to improved machinability. As a result, Mg is preferentially oxidized. As a result, it is considered that the additive element for forming the compound (metal element-containing compound) contributing to the improvement of machinability was hardly oxidized.

1 金属元素含有化合物(切削性向上に寄与する化合物)
2 非金属元素含有化合物(核として作用する化合物)
1 Metal element-containing compounds (compounds that contribute to improved machinability)
2 Nonmetallic element-containing compounds (compounds that act as nuclei)

Claims (14)

Niを1.5〜7.0mass%、Siを0.3〜1.8mass%を含有する銅合金
であって、平均径が1μm以上の大きさの切削性向上に寄与する化合物が1000個/m
以上存在することを特徴とする時効析出型銅合金。
It is a copper alloy containing 1.5 to 7.0 mass% of Ni and 0.3 to 1.8 mass% of Si, and has 1000 compounds / contributing to improving machinability with an average diameter of 1 μm or more. m
An aging precipitation type copper alloy characterized by existing in m 2 or more.
Niを1.5〜7.0mass%、Siを0.3〜1.8mass%を含有し、さらに
、Co、Zr、Ti、Fe、Mn、Cr、Sn、Al、Mg、V、P、Znの群から選ば
れる少なくとも1種を総量で0.05〜2mass%含有し、残部がCuおよび不可避的
不純物からなる銅合金であって、平均径が1μm以上の大きさの切削性向上に寄与する化
合物が1000個/mm以上存在することを特徴とする時効析出型銅合金。
Containing 1.5 to 7.0 mass% of Ni, 0.3 to 1.8 mass% of Si, and Co, Zr, Ti, Fe, Mn, Cr, Sn, Al, Mg, V, P, Zn This is a copper alloy containing 0.05 to 2 mass% in total of at least one selected from the group consisting of Cu and the balance consisting of Cu and inevitable impurities, and contributes to improved machinability with an average diameter of 1 μm or more. An aging precipitation type copper alloy characterized by the presence of 1000 compounds / mm 2 or more.
Niを1.5〜7.0mass%、Siを0.3〜1.8mass%を含有し、さらに
、Co、Zr、Ti、Fe、Mn、Cr、Sn、Al、Mg、V、P、Znの群から選ば
れる少なくとも1種を総量で0.05〜2mass%含有し、残部がCuおよび不可避的
不純物からなる銅合金であって、Co、Zr、Ti、Fe、Mn、Cr、Sn、Al、M
g、V、P、Znのいずれかを含有する平均径が1μm以上の大きさの切削性向上に寄与
する化合物が1000個/mm以上存在することを特徴とする時効析出型銅合金。
Containing 1.5 to 7.0 mass% of Ni, 0.3 to 1.8 mass% of Si, and Co, Zr, Ti, Fe, Mn, Cr, Sn, Al, Mg, V, P, Zn A copper alloy containing 0.05 to 2 mass% in total of at least one selected from the group consisting of Cu and the remainder consisting of Cu and inevitable impurities, Co, Zr, Ti, Fe, Mn, Cr, Sn, Al , M
An aging precipitation type copper alloy characterized in that there are 1000 / mm 2 or more of compounds that contribute to improving machinability with an average diameter of 1 μm or more, containing any of g, V, P, and Zn.
前記切削性向上に寄与する化合物は、金属元素含有化合物であることを特徴とする、請
求項1〜請求項3のいずれか1項に記載の時効析出型銅合金。
The aging precipitation type copper alloy according to any one of claims 1 to 3, wherein the compound contributing to the improvement of the machinability is a metal element-containing compound.
前記金属元素含有化合物の内部には、核として作用する化合物が存在し、前記核として
作用する化合物は、前記金属元素含有化合物より融点が高いことを特徴とする、請求項4
に記載の時効析出型銅合金。
The compound acting as a nucleus exists inside the metal element-containing compound, and the compound acting as the nucleus has a higher melting point than the metal element-containing compound.
Aging precipitation type copper alloy as described in 1.
前記切削性向上に寄与する化合物の平均径は、30μm以下であることを特徴とする、
請求項1〜請求項5のいずれか1項に記載の時効析出型銅合金。
The average diameter of the compound that contributes to the improvement of machinability is 30 μm or less,
The aging precipitation type copper alloy of any one of Claims 1-5.
前記切削性向上に寄与する化合物の密度は、30000個/mm以下であることを特
徴とする、請求項1〜請求項5のいずれか1項に記載の時効析出型銅合金。
The aging precipitation type copper alloy according to any one of claims 1 to 5, wherein the density of the compound contributing to the improvement of the machinability is 30000 pieces / mm 2 or less.
請求項1〜請求項7のいずれか1項に記載の時効析出型銅合金が所定形状に成形された
銅合金材料であって、成形後の引張強さが500MPa以上、導電率が25%IACS以
上であることを特徴とする銅合金材料。
A copper alloy material in which the aging precipitation type copper alloy according to any one of claims 1 to 7 is molded into a predetermined shape, wherein the tensile strength after molding is 500 MPa or more, and the conductivity is 25% IACS. A copper alloy material characterized by the above.
請求項8に記載の銅合金材料が切削加工されて形成される銅合金部品。   A copper alloy part formed by cutting the copper alloy material according to claim 8. 請求項8に記載の銅合金材料を製造する方法であって、前記金属元素含有化合物の融点
が、前記銅合金材料の原料を溶解し、鋳造した後の工程における前記銅合金材料の最高温
度より高温であることを特徴とする銅合金材料の製造方法。
It is a method of manufacturing the copper alloy material according to claim 8, wherein the melting point of the metal element-containing compound is higher than the maximum temperature of the copper alloy material in the step after melting and casting the raw material of the copper alloy material. A method for producing a copper alloy material, characterized by being at a high temperature.
前記最高温度は、熱間加工温度、焼鈍温度、時効熱処理温度または溶体化温度のいずれ
かであることを特徴とする、請求項10記載の銅合金材料の製造方法。
The method for producing a copper alloy material according to claim 10, wherein the maximum temperature is any one of a hot working temperature, an annealing temperature, an aging heat treatment temperature, or a solution temperature.
鋳造時の冷却速度を0.5℃/秒以上100℃/秒以下とすることを特徴とする、請求
項10または請求項11に記載の銅合金材料の製造方法。
The method for producing a copper alloy material according to claim 10 or 11, wherein a cooling rate during casting is 0.5 ° C / second or more and 100 ° C / second or less.
非酸化雰囲気で溶解鋳造を行うことを特徴とする、請求項10または請求項11に記載
の銅合金材料の製造方法。
The method for producing a copper alloy material according to claim 10 or 11, wherein melt casting is performed in a non-oxidizing atmosphere.
請求項5に記載の時効析出型銅合金を所定形状に成形して、請求項8に記載の銅合金材
料を製造する方法であって、前記金属元素含有化合物を構成する元素より酸化されやすい
元素を添加する工程を有することを特徴とする、請求項10〜請求項13のいずれか1項
に記載の銅合金材料の製造方法。
The method for producing a copper alloy material according to claim 8, wherein the aging precipitation type copper alloy according to claim 5 is formed into a predetermined shape, wherein the element is more easily oxidized than an element constituting the metal element-containing compound. The method for producing a copper alloy material according to any one of claims 10 to 13, further comprising a step of adding.
JP2009230431A 2008-10-03 2009-10-02 Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material Active JP5546196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230431A JP5546196B2 (en) 2008-10-03 2009-10-02 Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008258467 2008-10-03
JP2008258467 2008-10-03
JP2009230431A JP5546196B2 (en) 2008-10-03 2009-10-02 Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material

Publications (2)

Publication Number Publication Date
JP2010106363A true JP2010106363A (en) 2010-05-13
JP5546196B2 JP5546196B2 (en) 2014-07-09

Family

ID=42296090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230431A Active JP5546196B2 (en) 2008-10-03 2009-10-02 Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material

Country Status (1)

Country Link
JP (1) JP5546196B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4824124B1 (en) * 2010-09-17 2011-11-30 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
JP2012055947A (en) * 2010-09-10 2012-03-22 Furukawa Electric Co Ltd:The Copper alloy material and copper alloy component
WO2012111674A1 (en) 2011-02-16 2012-08-23 株式会社日本製鋼所 High-strength copper alloy forging
JP2014019888A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The High strength copper alloy material, and method of manufacturing the same
JP2014019889A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The Copper alloy material having excellent strength and plating property and production method thereof
JP2014074202A (en) * 2012-10-04 2014-04-24 Japan Steel Works Ltd:The High strength and high toughness copper alloy forged article
JP2015227481A (en) * 2014-05-30 2015-12-17 古河電気工業株式会社 Steel alloy material and manufacturing method therefor
CN114981459A (en) * 2020-12-23 2022-08-30 韩国材料研究院 Copper-nickel-silicon-manganese alloy containing G phase and preparation method thereof
EP4095274A1 (en) * 2021-05-26 2022-11-30 National Tsing Hua University High strength and wear resistant multi-element copper alloy and article comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265731A (en) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The Copper alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265731A (en) * 2005-02-28 2006-10-05 Furukawa Electric Co Ltd:The Copper alloy

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055947A (en) * 2010-09-10 2012-03-22 Furukawa Electric Co Ltd:The Copper alloy material and copper alloy component
JP4824124B1 (en) * 2010-09-17 2011-11-30 古河電気工業株式会社 Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
WO2012111674A1 (en) 2011-02-16 2012-08-23 株式会社日本製鋼所 High-strength copper alloy forging
JP2012167347A (en) * 2011-02-16 2012-09-06 Japan Steel Works Ltd:The High-rigidity copper alloy forged material
JP2014019888A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The High strength copper alloy material, and method of manufacturing the same
JP2014019889A (en) * 2012-07-13 2014-02-03 Furukawa Electric Co Ltd:The Copper alloy material having excellent strength and plating property and production method thereof
JP2014074202A (en) * 2012-10-04 2014-04-24 Japan Steel Works Ltd:The High strength and high toughness copper alloy forged article
JP2015227481A (en) * 2014-05-30 2015-12-17 古河電気工業株式会社 Steel alloy material and manufacturing method therefor
CN114981459A (en) * 2020-12-23 2022-08-30 韩国材料研究院 Copper-nickel-silicon-manganese alloy containing G phase and preparation method thereof
JP2023513664A (en) * 2020-12-23 2023-04-03 コリア インスティテュート オブ マテリアルズ サイエンス Copper-nickel-silicon-manganese (Cu-Ni-Si-Mn) alloy containing G phase and method for producing the same
EP4095274A1 (en) * 2021-05-26 2022-11-30 National Tsing Hua University High strength and wear resistant multi-element copper alloy and article comprising the same
US11767578B2 (en) 2021-05-26 2023-09-26 National Tsing Hua University High strength and wear resistant multi-element copper alloy and article comprising the same

Also Published As

Publication number Publication date
JP5546196B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5546196B2 (en) Aging precipitation type copper alloy, copper alloy material, copper alloy part, and method for producing copper alloy material
JP5326114B2 (en) High strength copper alloy
JP5868510B2 (en) Free-cutting lead-free copper alloy and manufacturing method thereof
JP5376604B2 (en) Lead-free brass alloy powder, lead-free brass alloy extruded material, and manufacturing method thereof
KR102623143B1 (en) Free-cutting copper alloy castings, and method for manufacturing free-cutting copper alloy castings
JP6177441B2 (en) Antibacterial white copper alloy
CN111655878B (en) Easy-cutting lead-free copper alloy without containing lead and bismuth
CN113785081B (en) Free-cutting copper alloy and method for producing free-cutting copper alloy
CN102859016B (en) Wrought copper alloy, copper alloy part, and process for producing wrought copper alloy
WO2015074317A1 (en) High-plasticity free-cutting zinc alloy
JP2009167450A (en) Copper alloy and producing method therefor
JP4630387B1 (en) Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
CN111212923B (en) Casting die material and copper alloy material
WO2011145194A1 (en) Heat-resistant cast iron type metallic short fiber, and process for production thereof
KR100631041B1 (en) free cutting brass alloy having an improved of machinability and workability
JP5607460B2 (en) Copper alloy ingot and copper alloy material excellent in machinability, and copper alloy parts using the same
CN106435250A (en) Machinable copper base alloy and production method thereof
JP6796355B1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
KR100519556B1 (en) Brass alloys which maintain a golden color and manufacturing method thereof
KR100501619B1 (en) High Strength and Wear-Resistant Copper Alloys for Synchronizer Ring and Manufacturing Method thereof
JP4824124B1 (en) Copper alloy wrought material, copper alloy parts, and method for producing copper alloy wrought material
JP5638887B2 (en) Method for producing copper alloy material and copper alloy part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R151 Written notification of patent or utility model registration

Ref document number: 5546196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350