JP2010106329A - Extremely-low-temperature heat transfer material - Google Patents

Extremely-low-temperature heat transfer material Download PDF

Info

Publication number
JP2010106329A
JP2010106329A JP2008280886A JP2008280886A JP2010106329A JP 2010106329 A JP2010106329 A JP 2010106329A JP 2008280886 A JP2008280886 A JP 2008280886A JP 2008280886 A JP2008280886 A JP 2008280886A JP 2010106329 A JP2010106329 A JP 2010106329A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer material
content
ultra
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008280886A
Other languages
Japanese (ja)
Other versions
JP5274981B2 (en
Inventor
Hitoshi Yasuda
均 安田
Hiroshi Tabuchi
宏 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2008280886A priority Critical patent/JP5274981B2/en
Publication of JP2010106329A publication Critical patent/JP2010106329A/en
Application granted granted Critical
Publication of JP5274981B2 publication Critical patent/JP5274981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an extremely-low-temperature heat transfer material which can exhibit an excellent heat conductivity at an extremely-low-temperature. <P>SOLUTION: The extremely-low-temperature heat transfer material is made of ultrahigh purity aluminum having a purity of ≥99.9999 mass%, and in which the content of Fe is ≤0.1 massppm. In the ultrahigh purity aluminum, preferably, the contents of the respective elements of Ti, V, Cr and Zr are ≤0.1 massppm, respectively. The extremely-low-temperature heat transfer material has a heat conductivity of ≥3×10<SP>4</SP>W/m/K at an absolute temperature of 4 to 12 K. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば50K以下の極低温において優れた熱伝導率を発現しうる極低温熱伝達材に関する。   The present invention relates to a cryogenic heat transfer material that can exhibit excellent thermal conductivity at a cryogenic temperature of, for example, 50K or less.

例えば、医療用のMRI(磁気共鳴画像診断装置)や分析用のNMR(核磁気共鳴分析装置)等に用いられる超電導マグネットには、液体ヘリウムを用いてその沸点4.2K(ケルビン)に冷却された低温超電導コイルや、冷凍機で20K程度に冷却された高温超電導コイルが使われている。これら超電導コイルを効率的かつ均一に冷却するためには、液体窒素の沸点77Kより低い極低温の雰囲気において熱伝導率の高い熱伝達材が要求される。
これまで、低温において高い熱伝導率を発現する熱伝達材としては、アルミニウムからなるものが知られている(特許文献1)。
For example, superconducting magnets used in medical MRI (magnetic resonance imaging apparatus), analytical NMR (nuclear magnetic resonance analyzer), etc. are cooled to a boiling point of 4.2 K (Kelvin) using liquid helium. Low temperature superconducting coils and high temperature superconducting coils cooled to about 20K with a refrigerator are used. In order to cool these superconducting coils efficiently and uniformly, a heat transfer material having a high thermal conductivity is required in a cryogenic atmosphere lower than the boiling point 77K of liquid nitrogen.
Until now, what consists of aluminum is known as a heat transfer material which expresses high heat conductivity at low temperature (patent document 1).

特開2007−063671号公報JP 2007-066361 A

しかしながら、従来のアルミニウム熱伝達材では、極低温における熱伝導率が充分に満足しうるレベルに達しない場合があり、さらなる改善が求められているのが現状であった。   However, in the conventional aluminum heat transfer material, the thermal conductivity at extremely low temperatures may not reach a sufficiently satisfactory level, and further improvement has been demanded.

そこで、本発明は、極低温において優れた熱伝導率を発現しうる極低温熱伝達材を提供することを目的とする。   Accordingly, an object of the present invention is to provide a cryogenic heat transfer material that can exhibit excellent thermal conductivity at cryogenic temperatures.

本発明者らは、上記課題を解決すべく鋭意検討を行なった結果、アルミニウムからなる熱伝達材の極低温における熱伝導率を向上させるには、アルミニウムの純度が高いほど(換言すれば、各種不純物の含有量が少ないほど)良く、とりわけ各種不純物のうちFeの含有量が極低温での熱伝導に大きな影響を及ぼすことを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the higher the purity of aluminum (in other words, the higher the purity of aluminum) The smaller the impurity content, the better. In particular, the inventors have found that the content of Fe among various impurities has a great influence on heat conduction at extremely low temperatures, and has completed the present invention.

すなわち、本発明は以下の構成を有する。
(1)純度99.9999質量%以上であり、かつFeの含有量が0.1質量ppm以下である超高純度アルミニウムからなることを特徴とする極低温熱伝達材。
(2)前記超高純度アルミニウムは、Ti、V、CrおよびZrの各元素の含有量がそれぞれ0.1質量ppm以下である前記(1)記載の極低温熱伝達材。
(3)400〜600℃で1時間以上保持する焼鈍処理が施されてなる前記(1)または(2)記載の極低温熱伝達材。
(4)絶対温度4〜12Kにおいて3×104W/m/K以上の熱伝導率を有する前記(1)〜(3)のいずれかに記載の極低温熱伝達材。
That is, the present invention has the following configuration.
(1) A cryogenic heat transfer material characterized by being made of ultra-high purity aluminum having a purity of 99.9999% by mass or more and an Fe content of 0.1 mass ppm or less.
(2) The ultra-high purity aluminum is the cryogenic heat transfer material according to (1), wherein the content of each element of Ti, V, Cr and Zr is 0.1 mass ppm or less.
(3) The cryogenic heat transfer material according to the above (1) or (2), which is subjected to an annealing treatment for holding at 400 to 600 ° C. for 1 hour or more.
(4) The cryogenic heat transfer material according to any one of (1) to (3), which has a thermal conductivity of 3 × 10 4 W / m / K or more at an absolute temperature of 4 to 12K.

本発明によれば、極低温において優れた熱伝導率を発現させることが可能になる。これにより、例えば超電導マグネットに使用される超電導コイル等を効率的かつ均一に冷却できる、という効果がある。   According to the present invention, it is possible to exhibit excellent thermal conductivity at extremely low temperatures. Thereby, for example, there is an effect that a superconducting coil used for a superconducting magnet can be efficiently and uniformly cooled.

本発明の極低温熱伝達材は、純度99.9999質量%以上である超高純度アルミニウムからなる。この超高純度アルミニウムの純度の上限は、特に制限されないが、通常、99.99999質量%未満である。このような超高純度アルミニウムの純度は、Alの含有量の測定により求めてもよいが、Fe、Ti、V、Cr、Zr、Si、CuおよびMg(以下、これらを纏めて「8元素」と称することもある)について各元素の含有量を求め、それらの合計量を100%から差し引くことにより求めることもできる。つまり、一般に、超高純度アルミニウムに不純物として含まれうる元素としては、Si、Cu、Mg、Fe、Ti、V、Cr、Zr、Li、Be、B、Na、K、Ca、Mn、Ni、Co、Zn、Ga、As、Mo、Ag、Cd、In、Sn、Sb、Ba、La、Ce、Pt、Hg、Pb、Bi、ThおよびU(以下、これらを纏めて「35元素」と称することもある)などが挙げられ、さらに、これら35元素以外の不可避不純物を含有することもあるが、これらの中で、上記8元素以外の元素は、通常、含有されていたとしても極めて微量であり、前述のように上記8元素以外の元素の含有量をゼロと仮定して算出した純度であっても殆ど誤差は生じない。   The cryogenic heat transfer material of the present invention is made of ultra-high purity aluminum having a purity of 99.9999% by mass or more. The upper limit of the purity of the ultra-high purity aluminum is not particularly limited, but is usually less than 99.99999 mass%. The purity of such ultra-high purity aluminum may be obtained by measuring the Al content, but Fe, Ti, V, Cr, Zr, Si, Cu and Mg (hereinafter collectively referred to as “8 elements”). It is also possible to obtain the content of each element by subtracting the total amount from 100%. That is, generally, elements that can be contained as impurities in ultra-high purity aluminum include Si, Cu, Mg, Fe, Ti, V, Cr, Zr, Li, Be, B, Na, K, Ca, Mn, Ni, Co, Zn, Ga, As, Mo, Ag, Cd, In, Sn, Sb, Ba, La, Ce, Pt, Hg, Pb, Bi, Th, and U (hereinafter collectively referred to as “35 elements”) In addition, these elements may contain unavoidable impurities other than these 35 elements, but among these, elements other than the above 8 elements are usually contained in a very small amount even if contained. There is almost no error even if the purity is calculated assuming that the content of elements other than the above eight elements is zero as described above.

本発明において、前記超高純度アルミニウムは、Feの含有量が0.1質量ppm以下であることが重要である。アルミニウムに不純物として含まれる種々の元素の中で、特にFeは、低減することが難しく、極低温での熱伝導率に大きな影響を与える元素であるので、Feの含有量が0.1質量ppmを超えると、他の元素の含有量に拘わらず、極低温での熱伝導率が不充分となるおそれがある。   In the present invention, it is important that the ultra-high purity aluminum has an Fe content of 0.1 mass ppm or less. Among various elements contained as impurities in aluminum, especially Fe is an element that is difficult to reduce and has a great influence on the thermal conductivity at extremely low temperatures, so the Fe content is 0.1 mass ppm. If it exceeds, the thermal conductivity at extremely low temperatures may be insufficient regardless of the content of other elements.

加えて、前記超高純度アルミニウムは、Ti、V、CrおよびZrの各元素の含有量についても、それぞれ0.1質量ppm以下であることが好ましい。これにより、極低温での熱伝導率をより確実に向上させることができる。
さらに、前記超高純度アルミニウムは、同様の理由から、前記35元素の合計含有量が1質量ppm以下であることが好ましい。また、その場合には、前記35元素のうち、特にSi、CuおよびMgの各元素の含有量は、それぞれ0.5質量ppm以下であればよい。
In addition, the ultra-high purity aluminum preferably has a content of each element of Ti, V, Cr and Zr of 0.1 mass ppm or less. Thereby, the thermal conductivity at cryogenic temperature can be improved more reliably.
Furthermore, for the same reason, the ultra-high purity aluminum preferably has a total content of the 35 elements of 1 mass ppm or less. In this case, the content of each element of Si, Cu and Mg among the 35 elements may be 0.5 mass ppm or less.

このような超高純度アルミニウムは、比較的純度の低い普通アルミニウム(例えば、純度99.9質量%であるJIS−H2102の特1種程度のグレード)を精製することによって得ることができる。精製方法としては、特に制限されないが、好ましくは、前記超高純度アルミニウムは、三層電解法による精製と、一方向凝固法による精製との両方を施して得られたものであるのがよい。このように三層電解法と一方向凝固法を組合せることにより、三層電解法によって、アルミニウム中に含まれる各種不純物元素全般を取り除いて純度を向上させるとともに、一方向凝固法によって、Feの含有量とTi、V、CrおよびZrの各含有量とを選択的に低減することができる。ここで、一方向凝固法とは、例えば炉体移動式管状炉を用い、炉心管内でアルミニウムを溶解させた後、炉体を炉心管から引き抜くことにより、端部から一方向に凝固させる方法であり、凝固開始端側ではTi、V、CrおよびZrの各元素の含有量が選択的に多くなることが知られており、かつ、凝固終了端側(凝固開始端の反対側)ではFeの含有量が選択的に多くなる。よって、得られた鋳塊の凝固開始端側と凝固終了端側とを切り取ることにより、FeとTi、V、CrおよびZrの各元素との含有量を確実に低減することが可能になる。具体的に、一方向凝固法で得られた鋳塊のどの部分を切り取るかについては、例えば、凝固方向に沿って適当な間隔で元素含有量を分析するなどして、Feの含有量とTi、V、CrおよびZrの合計含有量とが充分に低減された部分のみを残すように決定すればよい。
三層電解法による精製と一方向凝固法による精製の実施順序は、特に制限されないが、通常は、まず三層電解法で精製し、その後、一方向凝固法で精製される。また、三層電解法による精製と一方向凝固法による精製は、例えば、交互に繰り返し行ってもよいし、いずれか一方もしくは両方を各々繰り返し行ってもよいが、特に、一方向凝固法による精製は、繰り返し行うことが好ましい。
Such ultra-high purity aluminum can be obtained by refining ordinary aluminum having a relatively low purity (for example, a special grade of JIS-H2102 having a purity of 99.9% by mass). The purification method is not particularly limited, but preferably, the ultra-high purity aluminum is obtained by performing both purification by a three-layer electrolytic method and purification by a unidirectional solidification method. Thus, by combining the three-layer electrolysis method and the unidirectional solidification method, the three-layer electrolysis method removes all the impurity elements contained in the aluminum, thereby improving the purity. The content and each content of Ti, V, Cr and Zr can be selectively reduced. Here, the unidirectional solidification method is a method of solidifying in one direction from the end by, for example, using a furnace body moving tubular furnace, melting aluminum in the core tube, and then pulling out the furnace body from the core tube. Yes, it is known that the content of each element of Ti, V, Cr and Zr is selectively increased on the solidification start end side, and on the solidification end end side (opposite side of the solidification start end) The content is selectively increased. Therefore, by cutting off the solidification start end side and the solidification end end side of the obtained ingot, it is possible to reliably reduce the contents of Fe and each element of Ti, V, Cr, and Zr. Specifically, as to which part of the ingot obtained by the unidirectional solidification method is to be cut, for example, by analyzing the element content at appropriate intervals along the solidification direction, the Fe content and Ti The total content of V, Cr, and Zr may be determined so as to leave only a part that is sufficiently reduced.
The order of performing the purification by the three-layer electrolysis method and the purification by the unidirectional solidification method is not particularly limited, but usually the purification is first performed by the three-layer electrolysis method and then purified by the unidirectional solidification method. Further, the purification by the three-layer electrolysis method and the purification by the unidirectional solidification method may be repeated alternately, for example, or either one or both may be repeated. Is preferably repeated.

本発明の極低温熱伝達材は、例えば、以上のような超高純度アルミニウムの鋳塊に圧延加工を施すことによって得られる。圧延加工は、例えば、鋳塊を一対のロールの間に挟み込むことにより圧力を加えながら、これらロール間に鋳塊を通過させる方法など、通常の方法を採用して行えばよい。圧延加工を行う際の具体的な手法や条件(処理温度、処理時間、加工率など)は、特に制限されるものではなく、本発明の効果を損なわない範囲で適宜設定すればよい。
なお、前記超高純度アルミニウムを圧延するに際しては、あらかじめ所望の形状に鋳造し、切削するなどの処理を施すこともできる。鋳造を行うには、例えば、超高純度アルミニウムを加熱溶融して溶湯とし、得られた超高純度アルミニウム溶湯を鋳型内で冷却固化させるといった通常の方法を採用すればよいが、これに限定されるものではない。鋳造の際の条件等も特に制限されないが、加熱温度は通常700〜800℃であり、加熱溶融は通常、真空中あるいは不活性ガス(窒素ガス、アルゴンガス等)雰囲気下で、黒鉛製等のルツボ内で行なわれる。
The cryogenic heat transfer material of the present invention can be obtained, for example, by rolling the ultra high purity aluminum ingot as described above. The rolling process may be performed by adopting a normal method such as a method of passing the ingot between these rolls while applying pressure by sandwiching the ingot between a pair of rolls. Specific methods and conditions (processing temperature, processing time, processing rate, etc.) when performing the rolling process are not particularly limited, and may be appropriately set within a range not impairing the effects of the present invention.
In addition, when rolling the ultra-high purity aluminum, it is possible to perform a process such as casting into a desired shape and cutting in advance. For casting, for example, an ordinary method of heating and melting ultra high purity aluminum to form a molten metal and cooling and solidifying the obtained ultra high purity aluminum molten metal in a mold may be adopted, but the present invention is not limited thereto. It is not something. The conditions during casting are not particularly limited, but the heating temperature is usually 700 to 800 ° C., and the heating and melting is usually performed in a vacuum or under an inert gas (nitrogen gas, argon gas, etc.) atmosphere made of graphite or the like. Performed in a crucible.

さらに、上記圧延加工により得られた本発明の極低温熱伝達材には、必要に応じて焼鈍処理を施すこともできる。焼鈍処理を施すことにより、通常、鋳塊から被圧延材を切り出す際や圧延加工の際に生じることがある歪みを除去することができる。焼鈍処理の条件は、特に制限されないが、400〜600℃で1時間以上保持する方法が好ましい。   Furthermore, the cryogenic heat transfer material of the present invention obtained by the above rolling process can be annealed as necessary. By performing the annealing treatment, it is usually possible to remove distortion that may occur when the material to be rolled is cut out from the ingot or during the rolling process. The conditions for the annealing treatment are not particularly limited, but a method of holding at 400 to 600 ° C. for 1 hour or more is preferable.

以上のような本発明の極低温熱伝達材は、極低温において優れた熱伝導率を発現しうるものであり、具体的には、通常、絶対温度4〜12Kにおいて3×104W/m/K以上、好ましくは3.1×104W/m/K以上の熱伝導率を有する。かかる極低温熱伝達材は、超電導マグネット、冷凍機、クライオポンプ等の用途において好適に用いられる。 The cryogenic heat transfer material of the present invention as described above can exhibit excellent thermal conductivity at cryogenic temperatures. Specifically, it is usually 3 × 10 4 W / m at an absolute temperature of 4 to 12K. / K or higher, preferably 3.1 × 10 4 W / m / K or higher. Such a cryogenic heat transfer material is suitably used in applications such as a superconducting magnet, a refrigerator, and a cryopump.

以下、実施例により本発明をより詳細に説明するが、本発明は、かかる実施例により限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.

(実施例1)
純度99.92質量%の普通アルミニウムを三層電解法により精製して、純度99.999質量%の高純度アルミニウムを得た。詳しくは、Al−Cu合金層に99.92質量%の普通アルミニウムを投入し、電解浴の組成を41%AlF3−35%BaF2−14%CaF2−10%NaFとして、760℃で電気を流し、陰極側に析出した高純度アルミニウムを採取した。
この高純度アルミニウム中の各元素含有量について、グロー放電質量分析法(サーモエレクトロン社製「VG9000」を使用)にて分析したところ、表1に示す通りであった。
Example 1
Regular aluminum having a purity of 99.92% by mass was purified by a three-layer electrolytic method to obtain high-purity aluminum having a purity of 99.999% by mass. For details, Al-Cu alloy layer was charged 99.92 wt% of the common aluminum, the composition of the electrolytic bath as 41% AlF 3 -35% BaF 2 -14% CaF 2 -10% NaF, electricity 760 ° C. The high-purity aluminum deposited on the cathode side was collected.
Each element content in the high-purity aluminum was analyzed by glow discharge mass spectrometry (using “VG9000” manufactured by Thermo Electron).

次いで、上記で得られた高純度アルミニウムを一方向凝固法により精製して、純度99.9999質量%の超高純度アルミニウムを得た。詳しくは、ルツボ(内寸法:幅65mm×長さ400mm×高さ35mm)の中に2kgの高純度アルミニウムを入れ、これを、炉体移動式管状炉の炉心管(石英製、内径100mm×長さ1000mm)の内部に収容し、1×10-2Paの真空雰囲気にて炉体(ルツボ)を700℃に温度制御して、高純度アルミニウムを溶解させた後、炉体を30mm/時の速度で炉心管から引き抜くことにより端部から一方向に凝固させた。そして、長さ方向において凝固開始端より50mmの位置から凝固開始端より150mmの位置までを切り出し、幅65mm×長さ100mm×厚さ30mmの塊状の超高純度アルミニウムを得た。
この超高純度アルミニウム中の各元素含有量について、上記と同様、グロー放電質量分析法にて分析したところ、表1に示す通りであった。
Subsequently, the high-purity aluminum obtained above was purified by a unidirectional solidification method to obtain ultra-high-purity aluminum having a purity of 99.9999% by mass. Specifically, 2 kg of high-purity aluminum is put into a crucible (inner dimensions: width 65 mm × length 400 mm × height 35 mm), and this is placed into a furnace core tube (made of quartz, inner diameter 100 mm × length The furnace body (crucible) is controlled at 700 ° C. in a vacuum atmosphere of 1 × 10 −2 Pa to dissolve high-purity aluminum, and then the furnace body is 30 mm / hour. It was solidified in one direction from the end by pulling out from the core tube at a speed. And in the length direction, it cut out from the position of 50 mm from the coagulation start end to the position of 150 mm from the coagulation start end to obtain a massive ultra high purity aluminum of 65 mm width × 100 mm length × 30 mm thickness.
The content of each element in this ultra-high purity aluminum was analyzed by glow discharge mass spectrometry as described above, and as shown in Table 1.

Figure 2010106329
Figure 2010106329

次いで、上記で得られた超高純度アルミニウム塊を、黒鉛ルツボにて780℃で溶解させ、黒鉛鋳型で鋳造して幅55mm×長さ160mm×厚さ22mmの鋳塊とした。この鋳塊を、幅50mm×長さ50mm×厚さ20mmの大きさに切削加工し、これを室温下、幅約50mm×長さ約2000mm×厚さ0.5mmの大きさに圧延して、板状の熱伝達材とした。なお、圧延に際しては、厚さ20mmから厚さ8mmまでは1パス2mmとし、厚さ8mmから厚さ3mmまでは1パス1mmとし、厚さ3mmから厚さ0.5mmまでは1パス0.5mmとした。   Next, the ultra-high purity aluminum ingot obtained above was melted at 780 ° C. with a graphite crucible and cast with a graphite mold to obtain an ingot of 55 mm width × 160 mm length × 22 mm thickness. This ingot is cut into a size of width 50 mm × length 50 mm × thickness 20 mm, and this is rolled at room temperature to a size of about 50 mm wide × about 2000 mm long × 0.5 mm thick, A plate-shaped heat transfer material was used. In rolling, one pass is 2 mm from 20 mm to 8 mm thick, one pass is 1 mm from 8 mm to 3 mm, and one pass is 0.5 mm from 3 mm to 0.5 mm. It was.

得られた熱伝達材を、幅3mm×長さ150mm×厚さ0.5mmの大きさに切り出し、窒素雰囲気中、430℃で6時間保持した後、室温下で放冷することにより焼鈍したものを試料として、極低温における熱伝導率を下記(i)および(ii)の方法で求めた。結果を表2に示す。なお、下記(i)および(ii)の方法は、いずれも「低温工学」39巻1号(2004)P25−32(以下、これを「参考文献1」と称する)に記載の方法に基づくものである。   The obtained heat transfer material was cut into a size of width 3 mm × length 150 mm × thickness 0.5 mm, held in a nitrogen atmosphere at 430 ° C. for 6 hours, and then annealed by allowing to cool at room temperature. Was used as a sample, and the thermal conductivity at an extremely low temperature was determined by the following methods (i) and (ii). The results are shown in Table 2. The following methods (i) and (ii) are both based on the method described in “Cryogenic Engineering” Vol. 39, No. 1 (2004) P25-32 (hereinafter referred to as “Reference Document 1”). It is.

(i)残留抵抗値(RRR)の測定値を用いた計算法
300Kにおける比抵抗値(ρ300K)(Ω・m)と4.2Kにおける比抵抗値(ρ4.2K)(Ω・m)とを四端子法により測定し、下記式(1)から残留抵抗値(RRR)を求め、次いで、下記式(2)から各温度(T)(℃)における熱伝導率(W/m/K)を算出した。
(I) Calculation Method Using Measured Value of Residual Resistance Value (RRR) The specific resistance value at 300K (ρ300K) (Ω · m) and the specific resistance value at 4.2K (ρ4.2K) (Ω · m) Measured by the four-terminal method, the residual resistance value (RRR) is calculated from the following formula (1), and then the thermal conductivity (W / m / K) at each temperature (T) (° C.) is calculated from the following formula (2). Calculated.

Figure 2010106329
Figure 2010106329
Figure 2010106329
Figure 2010106329

(ii)直接測定法
Longitudinal heat flow methodにより各温度における熱伝導率(W/m/K)を測定した(測定方法の詳細は、参考文献1の「4.熱伝導率の直接測定」の中の「4.1測定方法」の項を参照)。
(Ii) Direct measurement method
The thermal conductivity (W / m / K) at each temperature was measured by the Longitudinal heat flow method (for details of the measurement method, refer to “4.1 Measurements” in “4. Direct Measurement of Thermal Conductivity” in Reference Document 1. See the Method section).

Figure 2010106329
Figure 2010106329

(比較例1)
実施例1と同様にして、純度99.92質量%の普通アルミニウムを三層電解法により精製し、次いで、得られた高純度アルミニウムを一方向凝固法による精製に供するに際し、凝固した鋳塊から幅65mm×長さ100mm×厚さ30mmの塊状の超高純度アルミニウムを切り出すにあたり、長さ方向において凝固開始端より200mmの位置から凝固開始端より300mmの位置までを切り出したこと以外は、実施例1と同様にして、比較用の超高純度アルミニウムを得た。
この高純度アルミニウム中の各元素含有量について、上記と同様、グロー放電質量分析法にて分析したところ、表1に示す通りであった。
(Comparative Example 1)
In the same manner as in Example 1, ordinary aluminum having a purity of 99.92% by mass was purified by a three-layer electrolytic method, and then the obtained high-purity aluminum was subjected to purification by a unidirectional solidification method. Example of cutting out massive ultra-high purity aluminum having a width of 65 mm, a length of 100 mm, and a thickness of 30 mm, except that the length direction was cut from a position 200 mm from the solidification start end to a position 300 mm from the solidification start end. In the same manner as in No. 1, comparative ultra-high purity aluminum was obtained.
The content of each element in the high-purity aluminum was analyzed by glow discharge mass spectrometry as described above, and as shown in Table 1.

次いで、上記で得られた超高純度アルミニウム塊を、実施例1と同様に、溶解、鋳造、切削加工した後、圧延して、板状の熱伝達材とした。
得られた熱伝達材についての極低温における熱伝導率を、実施例1の(i)の方法と同様にして求めた。結果を表2に示す。
Subsequently, the ultra-high purity aluminum lump obtained above was melted, cast, and cut in the same manner as in Example 1 and then rolled to obtain a plate-shaped heat transfer material.
The thermal conductivity at a very low temperature of the obtained heat transfer material was determined in the same manner as in the method (i) of Example 1. The results are shown in Table 2.

Claims (4)

純度99.9999質量%以上であり、かつFeの含有量が0.1質量ppm以下である超高純度アルミニウムからなることを特徴とする極低温熱伝達材。   A cryogenic heat transfer material characterized by comprising ultra-high purity aluminum having a purity of 99.9999% by mass or more and an Fe content of 0.1 mass ppm or less. 前記超高純度アルミニウムは、Ti、V、CrおよびZrの各元素の含有量がそれぞれ0.1質量ppm以下である請求項1記載の極低温熱伝達材。   2. The cryogenic heat transfer material according to claim 1, wherein the ultra-high purity aluminum has a content of each element of Ti, V, Cr, and Zr of 0.1 mass ppm or less. 400〜600℃で1時間以上保持する焼鈍処理が施されてなる請求項1または2記載の極低温熱伝達材。   The cryogenic heat transfer material according to claim 1 or 2, wherein an annealing treatment is performed at 400 to 600 ° C for 1 hour or more. 絶対温度4〜12Kにおいて3×104W/m/K以上の熱伝導率を有する請求項1〜3のいずれかに記載の極低温熱伝達材。 The cryogenic heat transfer material according to any one of claims 1 to 3, which has a thermal conductivity of 3 x 10 4 W / m / K or more at an absolute temperature of 4 to 12K.
JP2008280886A 2008-10-31 2008-10-31 Cryogenic heat transfer material Active JP5274981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280886A JP5274981B2 (en) 2008-10-31 2008-10-31 Cryogenic heat transfer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008280886A JP5274981B2 (en) 2008-10-31 2008-10-31 Cryogenic heat transfer material

Publications (2)

Publication Number Publication Date
JP2010106329A true JP2010106329A (en) 2010-05-13
JP5274981B2 JP5274981B2 (en) 2013-08-28

Family

ID=42296066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280886A Active JP5274981B2 (en) 2008-10-31 2008-10-31 Cryogenic heat transfer material

Country Status (1)

Country Link
JP (1) JP5274981B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2490424A (en) * 2011-04-28 2012-10-31 Kek High Energy Accelerator Magnetic shield made from aluminium alloy with a purity of a least 99.999 %
CN102760507A (en) * 2011-04-28 2012-10-31 大学共同利用机关法人高能加速器研究机构 Wiring material for superconducting magnet
GB2490423A (en) * 2011-04-28 2012-10-31 Kek High Energy Accelerator Thermal conductor for superconductor made from high purity aluminium alloy
JP2016196695A (en) * 2015-04-06 2016-11-24 住友化学株式会社 High purity aluminum grain material and manufacturing method therefor
CN111235458A (en) * 2020-02-28 2020-06-05 江苏大学 Boron-containing rare earth-containing high-entropy alloy and magnetic field treatment method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335408A (en) * 1995-06-08 1996-12-17 Fujikura Ltd Fatigue-resistant conductive wire
JP2000176606A (en) * 1998-12-17 2000-06-27 Sumitomo Chem Co Ltd Production of high purity aluminum and alloy continuously cast material and cast material thereof and aluminum alloy single crystal target using it
JP2003073816A (en) * 2001-08-29 2003-03-12 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Al OR Al ALLOY SPUTTERING TARGET WITH FINE CRYSTAL GRAIN
JP2007070733A (en) * 2006-10-06 2007-03-22 Sumitomo Chemical Co Ltd Cold worked material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335408A (en) * 1995-06-08 1996-12-17 Fujikura Ltd Fatigue-resistant conductive wire
JP2000176606A (en) * 1998-12-17 2000-06-27 Sumitomo Chem Co Ltd Production of high purity aluminum and alloy continuously cast material and cast material thereof and aluminum alloy single crystal target using it
JP2003073816A (en) * 2001-08-29 2003-03-12 Mitsubishi Materials Corp METHOD FOR MANUFACTURING Al OR Al ALLOY SPUTTERING TARGET WITH FINE CRYSTAL GRAIN
JP2007070733A (en) * 2006-10-06 2007-03-22 Sumitomo Chemical Co Ltd Cold worked material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011003276; 株式会社シーエムシー発行: 高純度金属の製造と応用 普及版, 20001208, p.49-51, 株式会社シーエムシー発行 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2490424A (en) * 2011-04-28 2012-10-31 Kek High Energy Accelerator Magnetic shield made from aluminium alloy with a purity of a least 99.999 %
CN102760507A (en) * 2011-04-28 2012-10-31 大学共同利用机关法人高能加速器研究机构 Wiring material for superconducting magnet
DE102012008620A1 (en) 2011-04-28 2012-10-31 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Material for magnetic shielding of a superconducting magnet
GB2490423A (en) * 2011-04-28 2012-10-31 Kek High Energy Accelerator Thermal conductor for superconductor made from high purity aluminium alloy
DE102012008619A1 (en) 2011-04-28 2012-10-31 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Cryogenic heat conductor
CN102758106A (en) * 2011-04-28 2012-10-31 大学共同利用机关法人高能加速器研究机构 Low temperature thermal conductor
US20120275948A1 (en) * 2011-04-28 2012-11-01 Sumitomo Chemical Company, Limited Wiring material for superconducting magnet
FR2974703A1 (en) * 2011-04-28 2012-11-02 Kek High Energy Accelerator MAGNETIC SHIELDING MATERIAL FOR SUPERCONDUCTING MAGNET
GB2490585A (en) * 2011-04-28 2012-11-07 Kek High Energy Accelerator High purity aluminium material wire for strong magnetic field operation
JP2012234939A (en) * 2011-04-28 2012-11-29 High Energy Accelerator Research Organization Magnetic shielding material for superconducting magnet
JP2012234938A (en) * 2011-04-28 2012-11-29 High Energy Accelerator Research Organization Low-temperature heat transfer material
DE102012008605A1 (en) 2011-04-28 2012-12-06 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Cabling material for superconducting magnets
US9103005B2 (en) 2011-04-28 2015-08-11 Inter-University Research Institute Corporation High Energy Accelerator Research Organization Magnetic shielding material for superconducting magnet
JP2016196695A (en) * 2015-04-06 2016-11-24 住友化学株式会社 High purity aluminum grain material and manufacturing method therefor
CN111235458A (en) * 2020-02-28 2020-06-05 江苏大学 Boron-containing rare earth-containing high-entropy alloy and magnetic field treatment method thereof
CN111235458B (en) * 2020-02-28 2021-06-22 江苏大学 Boron-containing rare earth-containing high-entropy alloy and magnetic field treatment method thereof

Also Published As

Publication number Publication date
JP5274981B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5086598B2 (en) Cold work material
JP5086592B2 (en) Cold work material
JP5274981B2 (en) Cryogenic heat transfer material
EP3045557A1 (en) Zirconium-based amorphous alloy and preparation method therefor
EP3318648B1 (en) Copper alloy and method for producing same
US9103005B2 (en) Magnetic shielding material for superconducting magnet
JP2013064181A (en) Aluminum material and method for producing the same
Wei et al. Phase selection in solidification of undercooled Co–B alloys
NL1039566B1 (en) Low temperature thermal conductor.
JP5478899B2 (en) High purity aluminum material
JP5098751B2 (en) Manufacturing method of ultra-high purity aluminum high rolled material
D'Souza et al. Effects of solute trapping on solidification path in Ta-rich Ta-Al-Fe ternary alloys under rapid freezing
JP6176908B2 (en) Ultra-high purity aluminum material and method for producing the same
JP2009242867A (en) Method for producing ultrahigh-purity aluminum high pressure-rolled material
JP2013064182A (en) Method for producing aluminum material
JP2009215649A (en) Ni-BASED INTERMETALLIC COMPOUND ALLOY HAVING HIGH HARDNESS
JP5098750B2 (en) Method for producing high-purity aluminum rolled material
Rios et al. Directional solidification, microstructure and properties of the Al3Nb–Nb2Al eutectic
JP5749558B2 (en) Wiring material for superconducting magnets
JP2019157261A (en) ANTICORROSIVE CuCo ALLOY
JP2016153521A (en) Iron plate and manufacturing method therefor
CN111279002A (en) Superconducting stabilizing material, superconducting wire, and superconducting coil
JPS63179032A (en) Alloy for superconducting material and its production
Báez et al. Magnetic properties of bulk composite FeBSiM (M= Cr, Zr) alloys with high microhardness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5274981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350