JP2010105103A - Polishing grinding wheel being fibrous and porous - Google Patents

Polishing grinding wheel being fibrous and porous Download PDF

Info

Publication number
JP2010105103A
JP2010105103A JP2008278194A JP2008278194A JP2010105103A JP 2010105103 A JP2010105103 A JP 2010105103A JP 2008278194 A JP2008278194 A JP 2008278194A JP 2008278194 A JP2008278194 A JP 2008278194A JP 2010105103 A JP2010105103 A JP 2010105103A
Authority
JP
Japan
Prior art keywords
grindstone
polishing
void
fibrous
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008278194A
Other languages
Japanese (ja)
Other versions
JP5318526B2 (en
Inventor
Hiroshi Mizoguchi
浩志 溝口
Takeshi Yoshimiya
猛 吉見谷
Toshihiro Otsuka
敏広 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Kasei Industry Co Ltd
Original Assignee
Daiwa Kasei Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa Kasei Industry Co Ltd filed Critical Daiwa Kasei Industry Co Ltd
Priority to JP2008278194A priority Critical patent/JP5318526B2/en
Publication of JP2010105103A publication Critical patent/JP2010105103A/en
Application granted granted Critical
Publication of JP5318526B2 publication Critical patent/JP5318526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing grinding wheel capable of radiating heat of the grinding tool and a workpiece generated during working, and preventing the occurrence of clogging to enable continuous working and being applicable to very great number of uses. <P>SOLUTION: In this polishing grinding wheel being fibrous and porous, a basic material including a binding material containing a thermosetting resin or a thermoplastic resin and abrasive grains has a first cavity having volume ratio of 0.1-3.0 and is molded into fibers having diameter of 0.5-10 mm to form the fibrous basic material, which is molded while keeping a fibrous state to form a second cavity in this basic material. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は研磨砥石に関し、更に詳しくは、チタン等の難削材に対しても有用な研磨砥石に関する。   The present invention relates to a polishing wheel, and more particularly to a polishing wheel useful for difficult-to-cut materials such as titanium.

従来の弾性・非弾性砥石は、研磨特性、対スクラッチ性、安全性、耐摩耗性、耐水性及びコスト面等をバランス良くこれらを満たす物が少なく、用途も限られる場合が多かった(特許文献1参照)。
特開平05−154752号公報
Conventional elastic and inelastic grinding stones have a good balance of polishing properties, scratch resistance, safety, wear resistance, water resistance, cost, etc., and their applications are often limited (Patent Documents) 1).
Japanese Patent Laid-Open No. 05-154752

従来の弾性・非弾性砥石、特に弾性ゴム砥石の場合、比重が重く大型の砥石にした場合、安全上の問題から使用回転数を制限するなどの対応が必要であった。   In the case of a conventional elastic / inelastic grindstone, particularly an elastic rubber grindstone, when a large grindstone having a high specific gravity is used, it is necessary to take measures such as limiting the number of rotations for safety reasons.

上記の課題を解消するには、非弾性砥石のように硬い硬質の砥石を使用する事で安全面は解消し得る。しかしながら、このような砥石を使用すると、加工物の研磨面が粗くスクラッチも見られ、形状も崩れてしまい、砥石表面部分に目詰まりの症状が見られるという問題が発生する。   In order to solve the above problems, the safety aspect can be eliminated by using a hard and hard grindstone such as an inelastic grindstone. However, when such a grindstone is used, there is a problem that the polished surface of the workpiece is rough and scratches are observed, the shape is broken, and the surface of the grindstone is clogged.

形状が崩れる原因の1つとして、摩擦熱によって加工物が変化することが考えられる。また、その摩擦熱が砥石自体にも蓄熱され、場合によっては砥石の破損の原因につながる可能性もある。   One possible cause of the shape collapse is that the workpiece changes due to frictional heat. In addition, the frictional heat is also stored in the grindstone itself, and in some cases, the grindstone may be damaged.

一般的に目詰まりが発生した場合、その都度ドレッシングを行い新しい砥石面を再生して使用する為、砥石の消耗量が増えるという問題がある。また、砥石の消耗量が増えると、交換頻度が多くなり、コストの上昇を招いてしまう。   In general, when clogging occurs, dressing is performed each time and a new grindstone surface is regenerated and used, resulting in an increase in the consumption of the grindstone. Further, when the consumption amount of the grindstone increases, the replacement frequency increases, resulting in an increase in cost.

上記の問題点から安定した研磨が困難となる場合が多く、自動化した場合、研磨機械装置も複雑になる傾向が強かった。   In many cases, stable polishing is difficult due to the above problems, and when automated, the polishing machine apparatus tends to be complicated.

本発明者らは上記課題を達成すべく鋭意検討した結果、以下に示す研磨砥石によって、上記課題を克服することが可能であることを見出し、本発明を完成するに至った。即ち、本発明によれば、以下に示す研磨砥石が提供される。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the above-mentioned problems can be overcome by the following grinding stone, and have completed the present invention. That is, according to the present invention, the following polishing grindstone is provided.

[1] 熱硬化性樹脂又は熱可塑性樹脂を含む結合材と砥粒とを含む基材が、体積比で0.1〜3.0の第一の空隙を有しており、かつ、直径0.5〜10mmの繊維状に成形されて繊維状基材となされ、前記繊維状基材が繊維状態を保持しつつ成形されることにより第二の空隙を有する研磨砥石。 [1] A base material including a binder containing a thermosetting resin or a thermoplastic resin and abrasive grains has a first void of 0.1 to 3.0 in volume ratio, and has a diameter of 0. A polishing grindstone having a second gap formed by forming into a fibrous base material of 5 to 10 mm, and forming the fibrous base material while maintaining the fiber state.

[2] 前記第一の空隙が無機バルーンまたは有機バルーンにより形成されている前記[1]に記載の研磨砥石。 [2] The polishing grindstone according to [1], wherein the first gap is formed of an inorganic balloon or an organic balloon.

[3] 前記第一の空隙と前記第二の空隙とを合わせた最終空隙率が体積比率で0.1〜5.0である上記[1]または[2]に記載の研磨砥石。 [3] The polishing grindstone according to the above [1] or [2], wherein the final void ratio of the first void and the second void is 0.1 to 5.0 in volume ratio.

[4] 結合材に対する砥粒の質量比が0.01〜3.0である上記[1]〜[3]のいずれかに記載の研磨砥石。 [4] The polishing grindstone according to any one of [1] to [3], wherein the mass ratio of the abrasive grains to the binder is 0.01 to 3.0.

[5] 比重が0.3〜1.5g/cmであり、ゴム硬度がJIS A20〜JIS D99である上記[1]〜[5]のいずれかに記載の研磨砥石。 [5] The polishing stone according to any one of [1] to [5], wherein the specific gravity is 0.3 to 1.5 g / cm 3 and the rubber hardness is JIS A20 to JIS D99.

[6] 前記熱硬化性樹脂がエポキシ樹脂である上記[1]〜[6]のいずれかに記載の研磨砥石。 [6] The polishing grindstone according to any one of [1] to [6], wherein the thermosetting resin is an epoxy resin.

本発明の研磨砥石は、多空隙の特異な構造により自己放熱が可能である。これにより、砥石への蓄熱と被加工物の発熱の両面を同時に軽減することができる。さらに、多くの空隙を持たせた事で軽量化、安全性及び低コストを実現することができる。   The polishing grindstone of the present invention is capable of self-dissipating heat due to the unique structure of multiple voids. Thereby, both the heat storage to a grindstone and the heat_generation | fever of a to-be-processed object can be reduced simultaneously. Furthermore, weight reduction, safety, and low cost can be realized by providing many voids.

本発明の砥石は基材内及び繊維状した基材を絡ませることにより出来た、何層もの空隙を持たせた砥石であり、その空隙が研磨時に発生する砥石内の熱を放熱する上、更に加工物に対しても加工時に起こる摩擦熱の軽減にも有効である。   The grindstone of the present invention is a grindstone having a number of layers of voids made by entanglement of the substrate and the fibrous substrate, and the voids dissipate heat in the grindstone generated during polishing. Furthermore, it is effective for reducing the frictional heat generated during processing on the workpiece.

本発明の砥石は特に組成を多孔質に設定した事で、目詰発生が僅少になり、その組成具合により切れ味と安定性の調整は、比較的容易で有るため、非常に高範囲な用途に適用が可能である。   The whetstone of the present invention is particularly porous so that clogging is minimal, and the sharpness and stability can be adjusted relatively easily depending on the composition, so it can be used in a very high range of applications. Applicable.

本発明において特筆すべき点は極めて研磨能力が高く、しかも持続性が高い点である。また使用研磨材料も少量で済む為、軽量であり極めて低コストな弾性砥石と言える。   What should be noted in the present invention is that the polishing ability is extremely high and the sustainability is also high. Further, since a small amount of abrasive material is used, it can be said to be an elastic grindstone that is lightweight and extremely low in cost.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.

本発明の研磨砥石は、熱硬化性樹脂又は熱可塑性樹脂を含む結合材と砥粒とを含む基材が、体積比で0.1〜3.0の第一の空隙を有しており、かつ、直径0.5〜10mmの繊維状に成形されて繊維状基材となされ、前記繊維状基材が繊維状態を保持しつつ成形されることにより第二の空隙を有する。すなわち、本発明の砥石は基材を0.5〜10.0mm径の大きさの繊維状に成形後、繊維状態を保持しつつ絡ませるように所定の形状に成型することで空隙を持たせたことを特徴とする。   In the grinding wheel of the present invention, the base material containing the binder and the abrasive grains containing the thermosetting resin or thermoplastic resin has a first void of 0.1 to 3.0 by volume ratio, And it is shape | molded by the fiber shape of diameter 0.5-10mm, and it is set as a fibrous base material, and it has a 2nd space | gap by shape | molding the said fibrous base material, hold | maintaining a fiber state. That is, the grindstone of the present invention gives a void by forming the base material into a fiber shape having a diameter of 0.5 to 10.0 mm and then forming it into a predetermined shape so as to be entangled while maintaining the fiber state. It is characterized by that.

本発明の研磨砥石は、繊維状基材の直径が0.5〜10mmである。繊維状基材の直径が0.5mm未満の場合には、一本の繊維状態を維持できずその形状を崩してしまう傾向があり、10mmを超える場合には、成形後の第二の空隙の間隔が大きくなり、研磨作業、特に手加工時の場合、加工がしづらくなる傾向がある。   In the polishing grindstone of the present invention, the diameter of the fibrous base material is 0.5 to 10 mm. If the diameter of the fibrous base material is less than 0.5 mm, one fiber state cannot be maintained and the shape tends to be lost. If the diameter exceeds 10 mm, the second void after molding In the case of a polishing operation, particularly during manual processing, the interval tends to be difficult to process.

本発明においては、基材が体積比で0.1〜3.0の第一の空隙を有する。この空隙は、無機または有機バルーンによって形成されるかまたは、結合材を発泡させること等により形成される。基材に対する第一の空隙の体積比が0.1未満の場合には、目詰まりが発生する傾向があり、3.0を超えた場合、脆弱性が増し砥石のライフが低下する傾向がある。   In this invention, a base material has the 1st space | gap of 0.1-3.0 by volume ratio. The void is formed by an inorganic or organic balloon, or formed by foaming a binder. When the volume ratio of the first void to the substrate is less than 0.1, clogging tends to occur, and when it exceeds 3.0, the brittleness increases and the life of the grindstone tends to decrease. .

本明細書中において、第一の空隙の体積比とは、計算により算出される体積比率をいう。具体的には、まず、基材単位質量中における、配合される各成分の質量および比重から体積を算出する。算出された各成分の体積を加えたものを基材単位質量中の基礎体積とする。   In the present specification, the volume ratio of the first gap refers to a volume ratio calculated by calculation. Specifically, first, the volume is calculated from the mass and specific gravity of each component to be blended in the base unit mass. A volume obtained by adding the calculated volume of each component is defined as a basic volume in the base unit mass.

一方、第二の空隙を有しない成形品を作成し、成形品の質量および外形から算出される体積とから求めた比重の逆数を上記単位質量にかける。得られた体積が単位質量における第二の空隙を有しない成形品の計算体積である。計算体積と基礎体積との差が空隙部分の体積となる。この空隙体積と基礎体積との比率を第一の空隙の体積比という。   On the other hand, a molded product having no second void is prepared, and the reciprocal of the specific gravity obtained from the mass of the molded product and the volume calculated from the outer shape is applied to the unit mass. The obtained volume is the calculated volume of the molded product having no second void in unit mass. The difference between the calculated volume and the basic volume is the void volume. The ratio between the void volume and the basic volume is referred to as the volume ratio of the first void.

本発明の研磨砥石は、繊維状基材が繊維状態を保持しつつ成形されて第二の空隙を形成している。繊維状態を保持しつつとは、繊維状態が視認し得る状態にあることをいい、本発明においては、一部にでも繊維状態が視認できる状態が保持され、隣り合う繊維の間に一部でも空隙(第二の空隙)が形成されていれば良い。   In the polishing grindstone of the present invention, the fibrous base material is molded while maintaining the fiber state to form the second gap. Holding the fiber state means that the fiber state can be visually recognized.In the present invention, the state in which the fiber state can be visually recognized is maintained even in a part, and even between some adjacent fibers. A void (second void) may be formed.

本発明の研磨砥石は、第一の空隙と第二の空隙とを合わせた最終空隙率が体積比率で0.1〜5.0である。最終空隙率が0.1未満の場合には、目詰まりし、研磨レートが低下する傾向があり、5.0を超える場合には脆くなる傾向がある。   In the polishing grindstone of the present invention, the final void ratio of the first void and the second void is 0.1 to 5.0 in volume ratio. When the final porosity is less than 0.1, clogging tends to occur and the polishing rate tends to decrease, and when it exceeds 5.0, the coating tends to become brittle.

本明細書中において、最終空隙率とは、計算により算出される体積比率をいう。具体的には、まず、基材単位質量中における、配合される各成分の質量および比重から体積を算出する。算出された各成分の体積を加えたものを基材単位質量中の基礎体積とする。   In this specification, the final porosity means a volume ratio calculated by calculation. Specifically, first, the volume is calculated from the mass and specific gravity of each component to be blended in the base unit mass. A volume obtained by adding the calculated volume of each component is defined as a basic volume in the base unit mass.

一方、成形品の質量および外形から算出される体積とから求めた比重の逆数を上記単位質量にかける。得られた体積が単位質量における成形品の計算体積である。計算体積と基礎体積との差が空隙部分の体積となる。この空隙体積と基礎体積との比率を最終空隙率という。   On the other hand, the unit mass is multiplied by the reciprocal of the specific gravity obtained from the mass of the molded product and the volume calculated from the outer shape. The obtained volume is the calculated volume of the molded product in unit mass. The difference between the calculated volume and the basic volume is the void volume. The ratio between the void volume and the basic volume is called the final void ratio.

本発明の研磨砥石は、結合材に対する砥粒の質量比が0.01〜3.0である。結合材に対する砥粒の質量比が0.01未満の場合には、研削力が低下する傾向があり、3.0を超える場合には、スクラッチ発生確率が高くなる傾向がある。   In the polishing wheel of the present invention, the mass ratio of the abrasive grains to the binder is 0.01 to 3.0. When the mass ratio of the abrasive grains to the binder is less than 0.01, the grinding force tends to decrease, and when it exceeds 3.0, the probability of occurrence of scratches tends to increase.

本発明の研磨砥石は、比重が0.3〜1.5g/cmである。比重が0.3g/cm未満の場合には、研削力が低下する傾向があり、1.5g/cmを超える場合には動的バランスが崩れる傾向がある。 The polishing wheel of the present invention has a specific gravity of 0.3 to 1.5 g / cm 3 . When the specific gravity is less than 0.3 g / cm 3 , the grinding force tends to decrease, and when it exceeds 1.5 g / cm 3 , the dynamic balance tends to be lost.

本発明の研磨砥石は、ゴム硬度がJIS A20〜JIS D99である。ゴム硬度がJIS A20未満の場合には、研削力が低下する傾向があり、ゴム硬度がJIS D99を超える場合には、被価鉱物に対してなじみが悪化する傾向がある。
[結合材]
The polishing grindstone of the present invention has a rubber hardness of JIS A20 to JIS D99. When the rubber hardness is less than JIS A20, the grinding force tends to decrease, and when the rubber hardness exceeds JIS D99, the familiarity with the value mineral tends to deteriorate.
[Binder]

本発明の研磨砥石の結合材は、熱硬化性樹脂または熱可塑性樹脂である。中でも、熱硬化性樹脂が好ましい。具体的には、合成ゴム、フェノール樹脂、エポキシ樹脂、メラミン樹脂及びウレタン樹脂等を例示することができる。合成ゴム、ウレタン樹脂およびエポキシ樹脂が好ましく、中でもエポキシ樹脂が特に好ましい。   The binding material of the grinding wheel of the present invention is a thermosetting resin or a thermoplastic resin. Among these, a thermosetting resin is preferable. Specifically, synthetic rubber, phenol resin, epoxy resin, melamine resin, urethane resin and the like can be exemplified. Synthetic rubber, urethane resin and epoxy resin are preferable, and epoxy resin is particularly preferable.

本発明で使用するエポキシ樹脂としては、1分子中に少なくとも2個のエポキシ基を有するもので、室温で固形または液体のものが好ましい。例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、フェノールノボラック型、クレゾールノボラック型、ビフェニル型、ナフタレン型、芳香族アミン型などが例示されるが、特にこれらに限定されるものではない。なお、これらは単独または複数を組み合わせて使用することができる。   The epoxy resin used in the present invention has at least two epoxy groups in one molecule, and is preferably solid or liquid at room temperature. For example, bisphenol A type, bisphenol F type, bisphenol S type, phenol novolac type, cresol novolac type, biphenyl type, naphthalene type, aromatic amine type and the like are exemplified, but not limited thereto. In addition, these can be used individually or in combination.

[砥粒]
本発明で使用する砥粒としては、例えば、ダイヤモンド砥粒、CBN砥粒、アルミナ系砥粒、ゾルゲル焼結によるアルミナ質砥粒、炭化ケイ素系砥粒、ジルコニア砥粒、アルミナ−ジルコニア砥粒、シリカ、酸化クロム、酸化セリウムなどが挙げられ、これらを単独で、又は2種以上を混合して使用することができる。使用する砥粒の種類やその組合せは、研削等の条件及び被研磨材の材質に応じて適宜選択される。
[Abrasive grain]
As abrasive grains used in the present invention, for example, diamond abrasive grains, CBN abrasive grains, alumina-based abrasive grains, alumina-based abrasive grains by sol-gel sintering, silicon carbide-based abrasive grains, zirconia abrasive grains, alumina-zirconia abrasive grains, Examples thereof include silica, chromium oxide, cerium oxide, and the like. These can be used alone or in admixture of two or more. The type and combination of abrasive grains to be used are appropriately selected according to conditions such as grinding and the material of the material to be polished.

砥粒粒度は、1μm未満のサブミクロン砥粒から平均粒径1mm以上まで使用することができる。これらは研削等の条件及び被研磨材の材質に応じて適宜選択される。   Abrasive grain size can be used from submicron abrasive grains of less than 1 μm to an average grain size of 1 mm or more. These are appropriately selected according to conditions such as grinding and the material of the material to be polished.

本発明においては、結合材に対する砥粒の質量比が0.01〜3であるのが好ましい。0.01未満の場合には、研削力が低下し砥石本来の能力が失われる傾向があり、3を超える場合にはスクラッチの発生確率が高くなる傾向がある。   In this invention, it is preferable that the mass ratio of the abrasive grain with respect to a binder is 0.01-3. If it is less than 0.01, the grinding force tends to decrease and the original ability of the grindstone tends to be lost, and if it exceeds 3, the probability of occurrence of scratches tends to increase.

[無機または有機バルーン]
本発明で使用する無機バルーンとしては、例えば、ガラスバルーン、シリカバルーン、アルミナバルーン、シラスバルーンを挙げることができる。また、本発明で使用する有機バルーンとしては、例えば、フェノールバルーン等を例示することができ、以下商品名でマツモトマイクロスフェアーFシリーズ、エクスパンセルDEシリーズおよびエクスパンセルWEシリーズを挙げることができる。
[Inorganic or organic balloon]
Examples of the inorganic balloon used in the present invention include a glass balloon, a silica balloon, an alumina balloon, and a shirasu balloon. Moreover, as an organic balloon used by this invention, a phenol balloon etc. can be illustrated, for example, The Matsumoto microsphere F series, an expand cell DE series, and an expand cell WE series are mentioned by the following brand names. it can.

本発明で使用する無機または有機バルーンは、粒径が0.01〜2mmであるのが好ましい。無機または有機バルーンの粒径が0.01mm未満の場合には目詰まりが発生する傾向があり、2mmを超えた場合、樹脂部分の割合が少なくなり、全体の保持力が低下し脆くなる傾向がある。なお、本発明で使用する無機または有機バルーンは、粒径が上記の程度であれば、形状等は特に問わず、樹脂、ゴムなどどの様な物でも利用可能で、要求される砥石の特性より適宜に選択されていれば良い。   The inorganic or organic balloon used in the present invention preferably has a particle size of 0.01 to 2 mm. When the particle size of the inorganic or organic balloon is less than 0.01 mm, clogging tends to occur, and when it exceeds 2 mm, the proportion of the resin portion decreases, and the overall holding power tends to decrease and become brittle. is there. The inorganic or organic balloon used in the present invention is not particularly limited in shape and the like as long as the particle size is in the above range, and any material such as resin or rubber can be used. It may be selected appropriately.

なお、無機または有機バルーンを使用せずに第一の空隙を形成させるには、基材を発泡させる方法も採用し得る。この場合、従来公知の発泡材を基材に適宜配合すれば良い。   In addition, in order to form the 1st space | gap without using an inorganic or organic balloon, the method of foaming a base material can also be employ | adopted. In this case, a conventionally known foam material may be appropriately blended with the base material.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

[本発明の砥石の製造方法]
(実施例1)
[研磨砥石の製造]
図1を参照しつつ本発明の研磨砥石の製造方法を説明する。
[Method for Manufacturing Grinding Wheel of the Present Invention]
Example 1
[Manufacture of grinding wheels]
With reference to FIG. 1, a method for producing a polishing wheel of the present invention will be described.

(A)ミキシング:
図1Aに示すように、関東混合機工業社製のミキサー(型番:HBI90)1を使用して、表1に示す配合物を混合して均一に分散させ、その後、硬化剤を入れ撹拌して、基材3を得た(所要時間約10分)。
(A) Mixing:
As shown in FIG. 1A, using a mixer (model number: HBI90) 1 manufactured by Kanto Blender Kogyo Co., Ltd., the mixture shown in Table 1 is mixed and dispersed uniformly, and then a curing agent is added and stirred. The substrate 3 was obtained (required time: about 10 minutes).

(B)予備成型:
図1Bに示すように、均一に分散された混合基材3をボニー社製ミキサー(型番:No.5)5を使用して繊維状に押し出して繊維状基材7(繊維直径約2mm)としてゴム金型9へ詰め込んだ(所要時間約10分)。
(B) Pre-molding:
As shown in FIG. 1B, the uniformly dispersed mixed base material 3 is extruded into a fibrous shape using a Bonny mixer (model number: No. 5) 5 to form a fibrous base material 7 (fiber diameter of about 2 mm). The rubber mold 9 was packed (time required: about 10 minutes).

(C)プレス成形:
詰め込み終了後、図1Cに示すように、金型9を油圧プレス11に入れて成形した(所要時間約120分)。
(C) Press molding:
After completion of packing, as shown in FIG. 1C, the mold 9 was placed in the hydraulic press 11 and molded (required time: about 120 minutes).

(D)取り出し:
その後、金型9からホイール形繊維状多孔研磨砥石13を取り出した。得られたホイール形繊維状多孔研磨砥石13の形状は、図2の通りであった。
(D) Removal:
Thereafter, the wheel-shaped fibrous porous polishing grindstone 13 was taken out from the mold 9. The shape of the obtained wheel-shaped fibrous porous polishing grindstone 13 was as shown in FIG.

[被加工物]
研磨試験の被加工物は、純チタン材50×20×10の直方体ブロックを使用した。
[Workpiece]
As a workpiece for the polishing test, a rectangular parallelepiped block of pure titanium material 50 × 20 × 10 was used.

[研磨方法]
上記で得られたホイール形繊維状多孔研磨砥石13を図3に示すように日立社製両頭グラインダー(型番:GT15)31に装着して表2に示す条件で研磨試験行った。結果を表2に示す。
[Polishing method]
The wheel-shaped fibrous porous grinding wheel 13 obtained above was mounted on a double-headed grinder (model number: GT15) 31 manufactured by Hitachi as shown in FIG. The results are shown in Table 2.

Figure 2010105103
Figure 2010105103

Figure 2010105103
Figure 2010105103

(比較例1)
表3に示す配合の研磨砥石を常法にしたがって製造した。得られた砥石は第一および第二の空隙を有しない。この砥石を用いて実施例1と同様の条件で研磨試験を行った。結果を表2に示す。
(Comparative Example 1)
A polishing grindstone having the composition shown in Table 3 was produced according to a conventional method. The obtained grindstone has no first and second voids. Using this grindstone, a polishing test was conducted under the same conditions as in Example 1. The results are shown in Table 2.

Figure 2010105103
Figure 2010105103

実施例1の砥石の場合には、全く目詰まりする傾向が見られず、同じ研磨時間(60秒)で行った場合では、実施例1の砥石と比較例1の砥石とでは、3倍の面粗さの差が出てしまった。さらに加工時の摩擦熱による被加工物及び砥石の発熱も、実施例1の砥石と比較して比較例1の砥石は1.5倍の熱が発生した。この事から比較例1砥石の様な砥石内部に空隙持たない構造の場合、被加工物及び砥石に対して蓄熱しやすい事が分かる。またこの摩擦熱によって被加工物が焼けてしまい商品価値が無くなるおそれもあり、実施例1の砥石のように多くの空隙をもたせ自己放熱させることで、被加工物及び砥石に対しての蓄熱が軽減される。加えて、比重も1/4以下で極めて軽く成型する事が可能である。   In the case of the grindstone of Example 1, there was no tendency to clog at all. When the grindstone of Example 1 and the grindstone of Comparative Example 1 were used at the same polishing time (60 seconds), the whetstone of Example 1 was three times as large. The difference in surface roughness has come out. Further, the heat generated by the workpiece and the grindstone due to frictional heat during processing was also generated 1.5 times as much as that of the grindstone of Comparative Example 1 compared to the grindstone of Example 1. From this fact, it can be seen that heat is easily stored in the workpiece and the grindstone in the case of a structure having no gap inside the grindstone, such as the comparative example 1 grindstone. In addition, there is a possibility that the workpiece is burned by this frictional heat and the commercial value is lost, and by providing a lot of voids as in the grindstone of Example 1 and self-dissipating heat, the heat accumulation on the workpiece and the grindstone is increased. It is reduced. In addition, it can be molded very lightly with a specific gravity of 1/4 or less.

(比較例2)
表4に示す配合の研磨砥石を実施例1に準じて製造した。ただし、比較例2の配合には、有機バルーンを使用しておらず、第一の空隙が存在しない。この研磨砥石を使用して、実施例1と同様の条件で研磨試験を行った。結果を表2に示す。
(Comparative Example 2)
A grinding wheel having the composition shown in Table 4 was produced according to Example 1. However, the formulation of Comparative Example 2 does not use an organic balloon, and there is no first void. Using this polishing wheel, a polishing test was conducted under the same conditions as in Example 1. The results are shown in Table 2.

Figure 2010105103
Figure 2010105103

(比較例3)
表5に示す配合の研磨砥石を実施例1に準じて製造した。ただし、比較例3では、繊維状に押し出す工程を省略して、そのままゴム金型9へ詰め込んだため、第二の空隙が存在しない。この研磨砥石を使用して、実施例1と同様の条件で研磨試験を行った。結果を表2に示す。
(Comparative Example 3)
A grinding wheel having the composition shown in Table 5 was produced according to Example 1. However, in Comparative Example 3, the step of extruding into a fiber shape was omitted and the rubber mold 9 was packed as it was, so there was no second gap. Using this polishing wheel, a polishing test was conducted under the same conditions as in Example 1. The results are shown in Table 2.

Figure 2010105103
Figure 2010105103

比較例2の砥石を使用した場合、表2に示すように砥石内の蓄熱及び被加工物へ発熱は実施例1の砥石と同等の数値が出たが、面粗さに関しては実施例1の砥石よりも低い数値が出た。比較例3の砥石を使用した場合は、表2に示すように面粗さは本発明品より高い数値が出たが、被加工物に対しての発熱に関しては、比較例1の砥石ほどではないが高い摩擦熱が出てしまった。よって、多く空隙を持たせることで、加工時に起こる砥石内及び被加工物の両面の、蓄熱と発熱を効果的に押さえる事が出来ることがわかる。   When the grindstone of Comparative Example 2 was used, as shown in Table 2, the heat storage in the grindstone and the heat generation to the workpiece showed numerical values equivalent to those of the grindstone of Example 1, but the surface roughness was that of Example 1. A numerical value lower than that of the whetstone came out. When the grindstone of Comparative Example 3 was used, the surface roughness was higher than that of the product of the present invention as shown in Table 2, but regarding the heat generation on the workpiece, the grindstone of Comparative Example 1 was not as good. There was no high frictional heat. Therefore, it can be seen that by providing a large number of gaps, it is possible to effectively suppress heat storage and heat generation in the grindstone and on both surfaces of the workpiece that occur during processing.

(参考)
以下のとおり、実施例1の砥石の第一の空隙の体積比および最終空隙率を算出した。基材100g中の各成分の質量、比重、体積は表6のとおりである。
(reference)
The volume ratio and the final porosity of the first void of the grindstone of Example 1 were calculated as follows. Table 6 shows the mass, specific gravity, and volume of each component in 100 g of the substrate.

Figure 2010105103
Figure 2010105103

(第一の空隙の体積比)
表6から基材の基礎体積は次のとおりとなる。
31.2(cm)+18.8(cm)+15.625(cm)=65.525(cm)…(1)
(Volume ratio of the first void)
From Table 6, the basic volume of the substrate is as follows.
31.2 (cm 3 ) +18.8 (cm 3 ) +15.625 (cm 3 ) = 65.525 (cm 3 ) (1)

基材100gの体積を表2の比較例3の比重を使用して算出すると次のとおりとなる。
100(g)÷0.78(g/cm)=128.21(cm)…(2)
The volume of the substrate 100 g is calculated using the specific gravity of Comparative Example 3 in Table 2 as follows.
100 (g) ÷ 0.78 (g / cm 3 ) = 128.21 (cm 3 ) (2)

第一の空隙の体積は(2)−(1)で求められる。
128.21(cm)−65.525(cm)=62.585(cm)…(3)
The volume of the first void is obtained by (2)-(1).
128.21 (cm 3 ) −65.525 (cm 3 ) = 62.585 (cm 3 ) (3)

以上より第一の空隙の体積比((3)/(1))は次のとおりである。
62.585(cm)÷65.525(cm)=0.955
From the above, the volume ratio of the first gap ((3) / (1)) is as follows.
62.585 (cm 3 ) ÷ 65.525 (cm 3 ) = 0.955

(最終空隙率)
表2より、実施例1の比重は0.54g/cmであるから、基材100gの体積は次のとおりとなる。
100(g)÷0.54(g/cm)=185.19(cm)…(4)
(Final porosity)
From Table 2, since the specific gravity of Example 1 is 0.54 g / cm 3 , the volume of the base material 100 g is as follows.
100 (g) ÷ 0.54 (g / cm 3 ) = 185.19 (cm 3 ) (4)

第一の空隙と第二の空隙とを合わせた体積は(4)−(1)で求められる。
185.19(cm)−65.525(cm)=119.57(cm)…(5)
The total volume of the first gap and the second gap is obtained by (4)-(1).
185.19 (cm 3 ) −65.525 (cm 3 ) = 119.57 (cm 3 ) (5)

以上より最終空隙率((5)/(1))は次のとおりである。
119.57(cm)÷65.525(cm)=1.825
From the above, the final porosity ((5) / (1)) is as follows.
119.57 (cm 3 ) ÷ 65.525 (cm 3 ) = 1.825

本発明の研磨砥石は、各種研磨工程に使用することができる。   The polishing wheel of the present invention can be used for various polishing processes.

本発明の一実施形態に係るホイール型繊維状多孔研磨砥石の製造方法を示す模式図である。It is a schematic diagram which shows the manufacturing method of the wheel type fibrous porous polishing grindstone which concerns on one Embodiment of this invention. 本発明の一実施形態に係るホイール型繊維状多孔研磨砥石の斜視図および一部拡大図である。1 is a perspective view and a partially enlarged view of a wheel-type fibrous porous polishing grindstone according to an embodiment of the present invention. 本発明の一実施形態に係るホイール型繊維状多孔研磨砥石の使用状態を示す模式的斜視図である。It is a typical perspective view which shows the use condition of the wheel type fibrous porous polishing grindstone which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1:ミキサー、3:基材、5:ミキサー、7:繊維状基材、9:金型、11:プレス、13:ホイール型繊維状多孔研磨砥石、23:第一の空隙、25:第二の空隙、27:砥粒、29:結合材、31:グラインダー。 1: Mixer, 3: Base material, 5: Mixer, 7: Fibrous base material, 9: Mold, 11: Press, 13: Wheel-type fibrous porous polishing grindstone, 23: First gap, 25: Second , 27: abrasive grains, 29: binder, 31: grinder.

Claims (6)

熱硬化性樹脂又は熱可塑性樹脂を含む結合材と砥粒とを含む基材が、
体積比で0.1〜3.0の第一の空隙を有しており、かつ、直径0.5〜10mmの繊維状に成形されて繊維状基材となされ、前記繊維状基材が繊維状態を保持しつつ成形されることにより第二の空隙を有する研磨砥石。
A base material comprising a binder containing a thermosetting resin or a thermoplastic resin and abrasive grains,
A first void having a volume ratio of 0.1 to 3.0 is formed into a fibrous substrate having a diameter of 0.5 to 10 mm, and the fibrous substrate is a fiber. A polishing grindstone having a second gap by being molded while maintaining the state.
前記第一の空隙が無機バルーンまたは有機バルーンにより形成されている請求項1に記載の研磨砥石。   The grinding wheel according to claim 1, wherein the first gap is formed of an inorganic balloon or an organic balloon. 前記第一の空隙と前記第二の空隙とを合わせた最終空隙率が体積比率で0.1〜5.0である請求項1または2に記載の研磨砥石。   The polishing grindstone according to claim 1 or 2, wherein the final void ratio of the first void and the second void is 0.1 to 5.0 in volume ratio. 結合材に対する砥粒の質量比が0.01〜3.0である請求項1〜3のいずれか一項に記載の研磨砥石。   The polishing grindstone according to any one of claims 1 to 3, wherein a mass ratio of the abrasive grains to the binder is 0.01 to 3.0. 比重が0.3〜1.5g/cmであり、ゴム硬度がJIS A20〜JIS D99である請求項1〜5のいずれか一項に記載の研磨砥石。 The specific gravity is 0.3 to 1.5 g / cm 3 and the rubber hardness is JIS A20 to JIS D99. The polishing grindstone according to any one of claims 1 to 5. 前記熱硬化性樹脂がエポキシ樹脂である請求項1〜6のいずれか一項に記載の研磨砥石。   The grinding wheel according to any one of claims 1 to 6, wherein the thermosetting resin is an epoxy resin.
JP2008278194A 2008-10-29 2008-10-29 Fibrous porous grinding wheel Active JP5318526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278194A JP5318526B2 (en) 2008-10-29 2008-10-29 Fibrous porous grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278194A JP5318526B2 (en) 2008-10-29 2008-10-29 Fibrous porous grinding wheel

Publications (2)

Publication Number Publication Date
JP2010105103A true JP2010105103A (en) 2010-05-13
JP5318526B2 JP5318526B2 (en) 2013-10-16

Family

ID=42295048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278194A Active JP5318526B2 (en) 2008-10-29 2008-10-29 Fibrous porous grinding wheel

Country Status (1)

Country Link
JP (1) JP5318526B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149631A1 (en) 2016-02-29 2017-09-08 株式会社ジーベックテクノロジー Porous polishing tool and polishing tool including same
CN107891378A (en) * 2016-10-03 2018-04-10 东和株式会社 The manufacture method of discoideus rotating sword, topping machanism and discoideus rotating sword

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239443A (en) * 1992-03-02 1993-09-17 Teijin Ltd Aramid-based abrasive material and its production
JPH08318470A (en) * 1995-05-23 1996-12-03 Olympus Optical Co Ltd Grinding tool and its manufacture
JPH10245720A (en) * 1997-03-03 1998-09-14 Chisso Corp Splittable conjugate fiber and cloth produced by using the same
JP2000096038A (en) * 1998-09-22 2000-04-04 Akebono Brake Ind Co Ltd Friction material
JP2001169986A (en) * 1999-12-15 2001-06-26 Lion Corp Polishing sheet
JP2004527388A (en) * 2001-05-22 2004-09-09 スリーエム イノベイティブ プロパティズ カンパニー Porous abrasive articles
JP2007007844A (en) * 2005-05-31 2007-01-18 Mineo Kobayashi Soft resin grounding stone, cylindrical grounding roll formed therefrom, and manufacturing method of grinding roll

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239443A (en) * 1992-03-02 1993-09-17 Teijin Ltd Aramid-based abrasive material and its production
JPH08318470A (en) * 1995-05-23 1996-12-03 Olympus Optical Co Ltd Grinding tool and its manufacture
JPH10245720A (en) * 1997-03-03 1998-09-14 Chisso Corp Splittable conjugate fiber and cloth produced by using the same
JP2000096038A (en) * 1998-09-22 2000-04-04 Akebono Brake Ind Co Ltd Friction material
JP2001169986A (en) * 1999-12-15 2001-06-26 Lion Corp Polishing sheet
JP2004527388A (en) * 2001-05-22 2004-09-09 スリーエム イノベイティブ プロパティズ カンパニー Porous abrasive articles
JP2007007844A (en) * 2005-05-31 2007-01-18 Mineo Kobayashi Soft resin grounding stone, cylindrical grounding roll formed therefrom, and manufacturing method of grinding roll

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149631A1 (en) 2016-02-29 2017-09-08 株式会社ジーベックテクノロジー Porous polishing tool and polishing tool including same
CN107891378A (en) * 2016-10-03 2018-04-10 东和株式会社 The manufacture method of discoideus rotating sword, topping machanism and discoideus rotating sword

Also Published As

Publication number Publication date
JP5318526B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
EP2384261B1 (en) Bonded abrasive tool and method of forming
EP1183134B1 (en) Abrasive tools for grinding electronic components
US8734205B2 (en) Rigid or flexible, macro-porous abrasive article
JP2523971B2 (en) Abrasive article
EP1338385B1 (en) Polishing tool and a composition for producing said tool
US8696409B2 (en) Self-bonded foamed abrasive articles and machining with such articles
JP5318526B2 (en) Fibrous porous grinding wheel
JP2006320992A (en) Method of manufacturing mirror polishing resinoid grinding wheel containing solid lubricant
JP2003062754A (en) Polishing tool and manufacturing method of polishing tool
JP5323447B2 (en) Grinding wheel
JP6952063B2 (en) Non-woven fabric polishing article containing polishing particles
JP2008030157A (en) Porous abrasive wheel and manufacturing method thereof
JP2019171520A (en) Resinoid grinding wheel
JP2003191169A (en) Grinding wheel having resin core part
JP2008221430A (en) Cylindrical resin grinding wheel and its manufacturing method
JPH05247449A (en) Grinding wheel
JP2010029961A (en) Polishing roll and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5318526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250