JP2010104130A - System for cooling driving system of hybrid construction equipment - Google Patents

System for cooling driving system of hybrid construction equipment Download PDF

Info

Publication number
JP2010104130A
JP2010104130A JP2008272467A JP2008272467A JP2010104130A JP 2010104130 A JP2010104130 A JP 2010104130A JP 2008272467 A JP2008272467 A JP 2008272467A JP 2008272467 A JP2008272467 A JP 2008272467A JP 2010104130 A JP2010104130 A JP 2010104130A
Authority
JP
Japan
Prior art keywords
cooling
flow path
annular
hybrid construction
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008272467A
Other languages
Japanese (ja)
Inventor
Yasumitsu Fujino
泰充 藤野
Masahito Ikegami
雅人 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2008272467A priority Critical patent/JP2010104130A/en
Priority to PCT/JP2009/062821 priority patent/WO2010047160A1/en
Priority to CN200980135545.0A priority patent/CN102150346B/en
Publication of JP2010104130A publication Critical patent/JP2010104130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/08Superstructures; Supports for superstructures
    • E02F9/0858Arrangement of component parts installed on superstructures not otherwise provided for, e.g. electric components, fenders, air-conditioning units
    • E02F9/0866Engine compartment, e.g. heat exchangers, exhaust filters, cooling devices, silencers, mufflers, position of hydraulic pumps in the engine compartment
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a cooling system which rationally cools an electric motor and a driver controller in hybrid construction equipment. <P>SOLUTION: The system for cooling a driving system of hybrid construction equipment includes a battery which is charged with electric power generated by a generator, and an electric motor which is driven by the driver controller with the electric power of the battery. A cooling channel that cools a generator/motor 36 in a cooling liquid circulating channel is configured with a first annular channel 70D formed on the side where the cooling liquid flows in, a second annular channel 70E formed on the side where the cooling liquid flows out, a plurality of connecting channels 70F which are provided between the first and second annular channels 70D, 70E along the axial direction to make the cooling liquid flow from the first annular channel 70D side to the second annular channel 70E side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、いわゆるハイブリッド建設機械の駆動装置の冷却システムに関する。   The present invention relates to a cooling system for a drive device of a so-called hybrid construction machine.

特許文献1では、エンジン、発電機、バッテリ、ドライバ制御器、ブーム用発電電動機、旋回用発電電動機、走行用発電電動機等の電動機を備え、エンジンを常に効率の良い状態で作動することが可能であり、省エネルギー、低騒音、排ガス低減を図ったハイブリッド建設機械の駆動装置が提案されている。   Patent Document 1 includes an electric motor such as an engine, a generator, a battery, a driver controller, a boom generator motor, a turning generator motor, and a traveling generator motor, and can always operate the engine in an efficient state. In addition, a drive device for a hybrid construction machine has been proposed that saves energy, reduces noise, and reduces exhaust gas.

特開2002−242234号公報JP 2002-242234 A

ハイブリッド建設機械の駆動装置にあっては、専用のラジエータ等の付設されているエンジンのほか、電動機(発電電動機を含む)や、該電動機を駆動するためのインバータや変換器等のドライバ制御器等が「要冷却」の対象となる。ただ、比較するならば、冷却の要求度としては、電動機よりはむしろドライバ制御器の方が高い。   In the drive device of the hybrid construction machine, in addition to an engine attached to a dedicated radiator or the like, a motor (including a generator motor), a driver controller such as an inverter or a converter for driving the motor, etc. Are subject to “cooling”. However, if compared, the driver controller rather than the electric motor has a higher cooling requirement.

ここで、電動機を冷却するための冷却構造等は、従来多くのものが提案されているが、これらの冷却構造は、いずれも当該電動機単体をより十分に(効果的に)冷却することを主眼としたものであったため、圧力損失が大きい。そのため、このような電動機冷却用の冷却構造にて建設機械の各電動機の冷却を行おうとすると、結果として、より冷却の要求度の高いドライバ制御器の冷却に悪影響が及ぶ恐れがある。これはたとえ、ドライバ制御器を電動機よりも冷却循環路の上流側に配置した場合でも言えることである。   Here, many cooling structures for cooling the electric motor have been proposed. However, these cooling structures are intended to sufficiently (effectively) cool the electric motor alone. Therefore, the pressure loss is large. Therefore, if each motor of the construction machine is cooled by such a cooling structure for cooling the motor, as a result, there is a risk of adversely affecting the cooling of the driver controller that requires a higher degree of cooling. This is true even if the driver controller is arranged upstream of the cooling circuit from the electric motor.

この不具合を回避するために充分大きなポンプを用意し、処理熱容量の大きな冷却液循環路を形成するのはコストの増大及び重量の増大を招き、ハイブリット建設機械の基本理念である省エネルギー化が大きく損なわれる。   Providing a sufficiently large pump to avoid this problem and forming a coolant circulation path with a large processing heat capacity leads to an increase in cost and weight, and greatly reduces the energy saving that is the basic principle of hybrid construction machinery. It is.

本発明は、このような従来の問題を解消するためになされたものであって、特にハイブリッド方式の建設機械において、電動機及びドライバ制御器の冷却をより合理的に行うことのできる駆動装置の冷却システムを提供することをその課題としている。   The present invention has been made to solve such a conventional problem, and in particular, in a hybrid construction machine, the cooling of the drive device that can more efficiently cool the electric motor and the driver controller. The challenge is to provide a system.

本発明は、発電機により発電された電力をバッテリに充電しドライバ制御器によって該バッテリの電力を使用して駆動される電動機を備えたハイブリット建設機械の駆動装置の冷却システムであって、冷却液をポンプから送り出し前記ドライバ制御器及び前記電動機を冷却した後、ラジエータにて熱交換し前記ポンプに循環させる冷却液循環路を備え、前記冷却液循環路における前記電動機を冷却する冷却流路が、冷却液が流入する側に形成された第1の環状流路と、冷却液が流出する側に形成された第2の環状流路と、前記第1、第2の環状流路間に前記電動機の軸方向に沿って複数設けられ、前記第1の環状流路の側から前記第2の環状流路の側に冷却液を流す連結流路とで構成されていることにより、上記課題を解決したものである。   The present invention relates to a cooling system for a drive device of a hybrid construction machine provided with an electric motor charged with electric power generated by a generator and driven by a driver controller using the electric power of the battery. After cooling the driver controller and the electric motor from the pump, a cooling fluid circulation path is provided for exchanging heat with a radiator and circulating to the pump, and a cooling flow path for cooling the electric motor in the cooling fluid circulation path, The electric motor between a first annular flow path formed on the cooling liquid inflow side, a second annular flow path formed on the cooling liquid outflow side, and the first and second annular flow paths. The above-mentioned problem is solved by comprising a plurality of connecting passages along the axial direction of the first and second connecting passages through which the coolant flows from the first annular passage side to the second annular passage side. It is what.

本発明では、ハイブリッド建設機械において、特に電動機を、「冷却液が流入する側に形成された第1の環状流路と、冷却液が流出する側に形成された第2の環状流路と、前記第1、第2の環状流路間に軸方向に沿って複数設けられ、前記第1の環状流路の側から前記第2の環状流路の側に冷却液を流す連結流路とで構成された冷却構造」にて冷却する。これにより、電動機における圧力損失を極力低減し、結果として、ドライバ制御器を良好に冷却することができ、ハイブリッド建設機械の駆動装置全体を、コストや重量の増大を招くことなく合理的に冷却することができる。   In the present invention, in the hybrid construction machine, in particular, the electric motor includes: “a first annular flow path formed on the cooling liquid inflow side; a second annular flow path formed on the cooling liquid outflow side; A plurality of connecting passages that are provided between the first and second annular passages along the axial direction and that flow cooling liquid from the first annular passage side to the second annular passage side; Cooling is performed with a “configured cooling structure”. As a result, the pressure loss in the electric motor can be reduced as much as possible, and as a result, the driver controller can be cooled well, and the entire drive device of the hybrid construction machine can be reasonably cooled without increasing cost and weight. be able to.

ハイブリッド方式の建設機械において、特にドライバ制御器の冷却を良好に行うことを可能とし、結果として駆動装置全体を合理的に冷却することのできる冷却システムを構築できる。   In the hybrid construction machine, particularly the driver controller can be cooled well, and as a result, a cooling system capable of rationally cooling the entire drive device can be constructed.

以下図面に基づいて本発明の実施形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

図4に本発明の実施形態の一例が適用されるハイブリッド方式の油圧ショベル(建設機械)の駆動装置の全体概略構成を示す。   FIG. 4 shows an overall schematic configuration of a drive device of a hybrid hydraulic excavator (construction machine) to which an example of the embodiment of the present invention is applied.

この油圧ショベル(図示略)の駆動装置10では、エンジン31に油圧ポンプ32と発電電動機30が並列に結合されている。油圧ポンプ32には公知の作動油タンク43及び油圧制御器33が接続され、アーム駆動用の油圧シリンダ34とバケット駆動用の油圧シリンダ35が駆動可能な開回路が構成されている。一方、発電電動機30は発電機として動作しているときに発電した電力(交流)をドライバ制御器24に給電する。   In the drive device 10 of this hydraulic excavator (not shown), a hydraulic pump 32 and a generator motor 30 are coupled to an engine 31 in parallel. A known hydraulic oil tank 43 and a hydraulic controller 33 are connected to the hydraulic pump 32 to form an open circuit capable of driving the hydraulic cylinder 34 for driving the arm and the hydraulic cylinder 35 for driving the bucket. On the other hand, the generator motor 30 supplies power (AC) generated when operating as a generator to the driver controller 24.

ドライバ制御器24は、交流−直流変換器50、複数のインバータ52〜56、DC−DCコンバータを有する変換器51、57及び制御部22からなる。ドライバ制御器24は、統括制御器23の制御の下で、直流−交流変換制御、直流−直流変換制御、及び交流−直流変換制御を行なう。ドライバ制御器24の制御部22は、統括制御器23からの制御指令に基づいて、交流−直流変換器50及び各インバータ52〜56を制御し、ブーム発電電動機36、旋回発電電動機37、走行発電電動機38、39への供給電力を制御すると共に、各発電電動機36〜39の回生電力を制御する。   The driver controller 24 includes an AC-DC converter 50, a plurality of inverters 52 to 56, converters 51 and 57 having a DC-DC converter, and a control unit 22. The driver controller 24 performs DC-AC conversion control, DC-DC conversion control, and AC-DC conversion control under the control of the overall controller 23. The controller 22 of the driver controller 24 controls the AC-DC converter 50 and the inverters 52 to 56 based on a control command from the overall controller 23, and generates a boom generator motor 36, a swing generator motor 37, a traveling power generator. While controlling the electric power supplied to the electric motors 38 and 39, the regenerative electric power of each generator motor 36-39 is controlled.

統括制御器23は、ブームレバー16、アームレバー17、バケットレバー18、旋回レバー19及び走行レバー20の操作出力及び各種センサ(図示略)の出力を受け、ドライバ制御器24と動力制御器40に制御信号を送る。動力制御器40は、油圧ポンプ32と発電電動機30の駆動態様を制御する。   The overall controller 23 receives operation outputs from the boom lever 16, arm lever 17, bucket lever 18, turning lever 19, and travel lever 20 and outputs from various sensors (not shown), and sends them to the driver controller 24 and the power controller 40. Send a control signal. The power controller 40 controls the driving mode of the hydraulic pump 32 and the generator motor 30.

なお、ブーム発電電動機36は、固定容量油圧ポンプモータ27、28に連結されており、ブームシリンダ29を介して図示せぬブームの駆動を行なう。これに対し、旋回発電電動機37、走行発電電動機38、39は、図示せぬ旋回機構及び走行機構を直接駆動する構成とされている。なお、図の符号41はバッテリ、42はコンデンサである。バッテリ41は、各発電電動機30、36〜39から回生される電力を蓄積し、これらの発電電動機30、36〜39がモータとして駆動されるときに必要な電力を供給する。   The boom generator motor 36 is connected to fixed displacement hydraulic pump motors 27, 28 and drives a boom (not shown) via a boom cylinder 29. On the other hand, the swing generator motor 37 and the travel generator motors 38 and 39 are configured to directly drive a swing mechanism and a travel mechanism (not shown). In the figure, reference numeral 41 denotes a battery, and 42 denotes a capacitor. The battery 41 accumulates electric power regenerated from each of the generator motors 30 and 36 to 39, and supplies necessary electric power when the generator motors 30 and 36 to 39 are driven as motors.

この実施形態に係る冷却システムでは、冷却液循環路70上にポンプ72及びラジエータ74を備える。冷却液循環路70は、冷却流路70Aを介してドライバ制御器24に向かい、ドライバ制御器24を冷却後、冷却流路70B1を介して先ず発電電動機30を冷却し(70B1→※1)、次いで冷却流路70B2を介して発電電動機36、37へと向かい(※1→70B2)、更に走行発電電動機38、39を経由し、冷却流路70Cを介してラジエータ74に至り、ポンプ72に戻るように配設されている。冷却液は、ラジエータ74での熱交換によって再び冷やされた状態でポンプ72に環流する。なお、この冷却システムは、エンジンの冷却システム(図示略)とは別系統の冷却システムとして構成されている。但し、必要に応じ両システムを合体させても良い。   In the cooling system according to this embodiment, a pump 72 and a radiator 74 are provided on the coolant circulation path 70. The coolant circulation path 70 is directed to the driver controller 24 via the cooling flow path 70A, and after cooling the driver controller 24, the generator motor 30 is first cooled via the cooling flow path 70B1 (70B1 → * 1). Next, it goes to the generator motors 36 and 37 via the cooling flow path 70B2 (* 1 → 70B2), further passes through the traveling generator motors 38 and 39, reaches the radiator 74 via the cooling flow path 70C, and returns to the pump 72. It is arranged like this. The coolant is circulated to the pump 72 in a state where it is cooled again by heat exchange in the radiator 74. This cooling system is configured as a cooling system of a different system from the engine cooling system (not shown). However, both systems may be combined if necessary.

冷却液循環路70中の冷却液は、ドライバ制御器24を冷却した後、4つもの発電電動機36〜39を冷却する必要があるため、1つ1つの発電電動機36〜39にて過度の圧損(圧力損失)が生じないように、発電電動機36〜39に対しては、図1〜図3に示されるような冷却構造が採用されている。代表としてブーム発電電動機36を例にとり、その冷却構造に焦点を当てて説明する。他の発電電動機30、37〜39についても、冷却構造自体は基本的にほぼ同様の構成が採られている。   Since the coolant in the coolant circulation path 70 needs to cool as many as four generator motors 36 to 39 after the driver controller 24 is cooled, excessive pressure loss occurs in each of the generator motors 36 to 39. A cooling structure as shown in FIGS. 1 to 3 is employed for the generator motors 36 to 39 so that (pressure loss) does not occur. The boom generator motor 36 will be taken as an example, and the cooling structure will be described as a representative. For the other generator motors 30 and 37 to 39, the cooling structure itself basically has the same configuration.

ブーム発電電動機36(及び発電電動機30、37〜39)の冷却は、冷却液循環路70の一部である第1、第2環状流路70D、70E、及び連結流路70Fとで行われる。即ち、ブーム発電電動機36の冷却流路は、冷却液が流入する側に形成された第1環状流路70Dと、冷却液が流出する側に形成された第2環状流路70Eと、該第1、第2環状流路70D、70Eの間に軸方向に沿って複数設けられ、第1環状流路70Dの側から第2環状流路70Eの側に冷却液を流す連結流路70Fとで主に構成されている。   The boom generator motor 36 (and the generator motors 30, 37 to 39) is cooled by the first and second annular flow paths 70D and 70E and the connection flow path 70F, which are part of the coolant circulation path 70. That is, the cooling flow path of the boom generator motor 36 includes a first annular flow path 70D formed on the cooling liquid inflow side, a second annular flow path 70E formed on the cooling liquid outflow side, 1 and a connection channel 70F that is provided in plural along the axial direction between the second annular channels 70D and 70E and allows the coolant to flow from the first annular channel 70D side to the second annular channel 70E side. It is mainly composed.

冷却液の流れ込む第1環状流路70Dは、このブーム発電電動機36の冷却流路の中では最上流側に位置しているため、当該ブーム発電電動機36の中でより高い冷却性能が要求される側に配置するのが好ましい。この実施形態では、第1環状流路70Dは、レゾルバ(あるいはエンコーダ)86等のセンサが備えられている側に配置されている。第1環状流路70Dは、モータケーシング88の端部88Aの近傍の内部を一周してリング状に形成されている。図2、図3に示されるように、第1環状流路70Dには、直角エルボで構成される流入口90が接続されており、該第1環状流路70Dのほぼ接線方向から冷却液が流入されるように構成されている。   Since the first annular flow path 70D into which the coolant flows is located on the most upstream side in the cooling flow path of the boom generator motor 36, higher cooling performance is required in the boom generator motor 36. It is preferable to arrange on the side. In this embodiment, the first annular channel 70 </ b> D is disposed on the side where a sensor such as a resolver (or encoder) 86 is provided. The first annular flow path 70 </ b> D is formed in a ring shape around the inside of the vicinity of the end 88 </ b> A of the motor casing 88. As shown in FIGS. 2 and 3, the first annular flow path 70D is connected to an inflow port 90 formed of a right angle elbow, and the coolant is supplied from a substantially tangential direction of the first annular flow path 70D. It is configured to flow in.

第2環状流路70Eは、第1環状流路70Dの軸方向反対側の端部88Bの近傍において、モータケーシング88の内部を一周してリング状に形成される。図2、図3に示されるように、第2環状流路70Eには直角エルボで構成される流出口92が接続されており、該第2環状流路70Eのほぼ接線方向から冷却液が流出されるように構成されている。   The second annular channel 70E is formed in a ring shape around the inside of the motor casing 88 in the vicinity of the axially opposite end 88B of the first annular channel 70D. As shown in FIGS. 2 and 3, the second annular flow path 70E is connected to an outlet 92 formed by a right angle elbow, and the coolant flows out from a substantially tangential direction of the second annular flow path 70E. It is configured to be.

連結流路70Fは、第1、第2環状流路70D、70Eの間に軸方向に沿って複数(この実施形態では12本)配置されている。この実施形態では、製造の容易性及び圧損を極力低減する目的で、その断面が円形のパイプによって形成されているが、より冷却効率を高めたい場合には、楕円、あるいはより扁平形状の断面を有するパイプで形成するようにしてもよい。   A plurality (twelve in this embodiment) of connecting flow paths 70F are arranged along the axial direction between the first and second annular flow paths 70D and 70E. In this embodiment, the cross section is formed by a circular pipe for the purpose of reducing manufacturing ease and pressure loss as much as possible. However, in order to increase cooling efficiency, an elliptical or flattened cross section is used. You may make it form with the pipe which has.

図1及び図3に示されるように、連結流路70Fの間には、当該ブーム発電電動機36を駆動するための配線を通す貫通孔93〜96が計4個(U相用貫通孔93、V相用貫通孔94、W相用貫通孔95、及びサーミスタ用貫通孔96の計4個)形成されている。   As shown in FIGS. 1 and 3, a total of four through holes 93 to 96 through which wiring for driving the boom generator motor 36 passes (a U-phase through hole 93, between the connection flow paths 70 </ b> F). A total of four V-phase through-holes 94, W-phase through-holes 95, and thermistor through-holes 96 are formed.

次にこの冷却システムの作用を説明する。   Next, the operation of this cooling system will be described.

油圧ショベルを運転すると、発電電動機30、ブーム発電電動機36、旋回発電電動機37、あるいは走行発電電動機38、39は相応の熱を発生する。又、これらの発電電動機30、36〜39を制御するためのドライバ制御器24も熱を発生する。これらの機器の冷却は、以下のようにして行なわれる。   When the hydraulic excavator is operated, the generator motor 30, the boom generator motor 36, the swing generator motor 37, or the traveling generator motors 38 and 39 generate corresponding heat. The driver controller 24 for controlling the generator motors 30 and 36 to 39 also generates heat. These devices are cooled as follows.

ポンプ72が回転すると、冷却液循環路70中の冷却液が冷却流路70Aを介してドライバ制御器24に至り、まずドライバ制御器24を冷却する。その後、冷却液は冷却流路70B1を介して発電電動機30の第1環状流路70Dの流入口90に至り、該第1環状流路70Dのほぼ接線方向から第1環状流路70D内に流入する。従って、流入時の圧損が小さく、冷却液は容易に第1環状流路70Dの全体(全周)に行き渡ることができる。この結果、冷却液は、12本の連結流路70Fからほぼ均等に第2環状流路70Eに向けて流れる。第2環状流路70Eでは、流出口92が該第2環状流路70Eの接線方向に配設されているため、第2環状流路70Eに到達した冷却液を円滑に流出させることができ、流出時の圧損も小さい。   When the pump 72 rotates, the coolant in the coolant circulation path 70 reaches the driver controller 24 via the cooling path 70A, and the driver controller 24 is first cooled. Thereafter, the cooling liquid reaches the inlet 90 of the first annular channel 70D of the generator motor 30 through the cooling channel 70B1, and flows into the first annular channel 70D from a substantially tangential direction of the first annular channel 70D. To do. Therefore, the pressure loss at the time of inflow is small, and the coolant can easily spread over the entire first annular channel 70D (the entire circumference). As a result, the coolant flows from the twelve connecting flow paths 70F almost uniformly toward the second annular flow path 70E. In the second annular channel 70E, since the outlet 92 is disposed in the tangential direction of the second annular channel 70E, the coolant that has reached the second annular channel 70E can flow out smoothly, The pressure loss at the outflow is also small.

第1環状流路70Dの流入、連結流路70Fを介した冷却液の進行、第2環状流路70Eからの流出は、いずれも蛇行、堰止め、行き止まり等の冷却液の流れを妨げる構造(冷却液を長く被冷却機材の付近に滞留させようとする構造)がほとんど存在しないため、流入から流出までの圧損が極めて小さい。しかも、第1、第2環状流路70D、70Eがブーム発電電動機36の端部近傍を一周していることと相まって、連結流路70Fがブーム発電電動機36の全周を均等に取り囲むように配置されているため、冷却効率が高い。   Structure in which the inflow of the first annular channel 70D, the progress of the coolant through the connection channel 70F, and the outflow from the second annular channel 70E obstruct the coolant flow such as meandering, damming, dead end, etc. Since there is almost no structure that keeps the coolant in the vicinity of the equipment to be cooled for a long time, the pressure loss from inflow to outflow is extremely small. Moreover, the first and second annular flow paths 70D and 70E are arranged so as to surround the entire periphery of the boom generator motor 36 evenly, coupled with the fact that the first and second annular channels 70D and 70E make a round around the end portion of the boom generator motor 36. Therefore, the cooling efficiency is high.

発電電動機30の第2環状流路70Eから流出した冷却液は、冷却流路70B2を介してブーム発電電動機36に送られ、同様の作用にて(少ない圧損で)ブーム発電電動機36の冷却を行ない、更に旋回発電電動機37、2つの走行発電電動機38、39に送られてここでも同様の作用にて(少ない圧損で)それぞれの冷却を行なう。そのため、冷却液循環路70の最下流に位置する走行発電電動機39をも良好に冷却することができ、又、冷却液循環路70全体の圧損が減少することで、結果としてドライバ制御器24の冷却を十分良好に行うことができる。   The coolant that has flowed out of the second annular channel 70E of the generator motor 30 is sent to the boom generator motor 36 via the cooling channel 70B2, and the boom generator motor 36 is cooled by the same action (with a small pressure loss). Further, it is sent to the swivel generator motor 37 and the two traveling generator motors 38 and 39, and here, cooling is performed by the same action (with a small pressure loss). Therefore, the traveling generator motor 39 located on the most downstream side of the coolant circulation path 70 can be cooled well, and the pressure loss of the coolant circulation path 70 as a whole is reduced. As a result, the driver controller 24 Cooling can be performed sufficiently satisfactorily.

発電電動機39から流出してきた冷却液は、冷却流路70Cを介してラジエータ74に送られ、ここで熱交換が行なわれて温度が低下され、ポンプ72によって再び所定の圧力にてドライバ制御器24へと送り出される。   The coolant that has flowed out of the generator motor 39 is sent to the radiator 74 via the cooling flow path 70C, where heat is exchanged to lower the temperature, and the driver controller 24 again at a predetermined pressure by the pump 72. To be sent to.

ここで、一般に、電動機を冷却するための冷却流路がケーシングに形成されていると、該ケーシングの内外を貫通させる必要のある配線スペースの確保が極めて困難になる例が多々見受けられるが、この実施形態に係る連結流路70Fは、直線状で且つ1本1本の間に隙間が存在するため、この隙間を利用してブーム発電電動機36を駆動するための配線を通す貫通孔(配線スペース)92〜96を確保できている。そのため、配線スペースを確保するためだけに軸方向スペースを拡張したりする必要が無く、ブーム発電電動機36(同様に各発電電動機37〜39)の軸方向長さの短縮に寄与できている。   Here, in general, when a cooling flow path for cooling an electric motor is formed in a casing, there are many examples in which it is extremely difficult to secure a wiring space that needs to penetrate the inside and outside of the casing. Since the connecting flow path 70F according to the embodiment is linear and there is a gap between each one, a through hole (wiring space) through which wiring for driving the boom generator motor 36 is made using this gap. ) 92 to 96 can be secured. Therefore, it is not necessary to expand the axial space only to secure the wiring space, which contributes to shortening the axial length of the boom generator motor 36 (similarly, the generator motors 37 to 39).

なお、上記実施形態においては、断面が円形の連結流路70Fを12本形成した例が示されていたが、本発明においては、連結流路の形状や本数は特に限定されない。断面が円形の連結流路は非円形の連結流路に比べてより圧損が少ない。非円形の連結流路は、(同じ本数ならば)電動機に対する表面積が大きくなることから、より効率の高い冷却を行なうことができる。連結流路の本数は、(1本1本の連結流路の断面積がある程度確保されるならば)多い程圧損が少なく、且つ冷却効率が高まる傾向となる。なお、連結流路は必ずしも周方向に等間隔で配置する必要はない。   In the above embodiment, an example in which twelve connection channels 70F having a circular cross section are formed is shown. However, in the present invention, the shape and number of the connection channels are not particularly limited. A connecting channel having a circular cross section has less pressure loss than a non-circular connecting channel. Since the noncircular connecting flow path has a large surface area with respect to the motor (if it is the same number), more efficient cooling can be performed. As the number of connection channels increases (if the cross-sectional area of each connection channel is secured to some extent), the pressure loss decreases and the cooling efficiency tends to increase. Note that the connecting flow paths are not necessarily arranged at equal intervals in the circumferential direction.

また、上記実施形態においては、ドライバ制御機器の全ての構成要素及び全ての電動機を冷却していたが、ドライバ制御器の構成要素の一部、あるいは電動機の一部のみを冷却対象としてもよい。   Moreover, in the said embodiment, although all the components and all the electric motors of the driver control apparatus were cooled, you may make only a part of the components of a driver controller, or a part of an electric motor into the object of cooling.

また、上記実施形態においては、1本の冷却液循環路のみで全ての冷却対象を冷却するようにしていたが、複数の冷却液循環路を設け、それぞれの冷却液循環路でドライバの一部及び複数の電動機のうちの一部の電動機のみを冷却するようにしてもよい。冷却の順番も、例えば、電動機→ドライバ制御器の順であってもよい。   In the above embodiment, all the cooling objects are cooled by only one coolant circulation path. However, a plurality of coolant circulation paths are provided, and a part of the driver is provided in each coolant circulation path. In addition, only a part of the plurality of electric motors may be cooled. The order of cooling may also be, for example, the order of electric motor → driver controller.

また、上記実施形態においては、流入口及び流出口の双方について冷却液が環状流路の接線方向から該環状流路に流入または流出するようにしていたが、配管上の便宜を優先する場合には、流入口を及び流出口の一方または双方が、環状流路の接線方向以外の方向から流入又が流出するように構成してもよい。   Further, in the above embodiment, the cooling liquid flows into or out of the annular channel from the tangential direction of the annular channel for both the inlet and the outlet. The inflow port and / or the outflow port may be configured to flow in or out from a direction other than the tangential direction of the annular flow path.

特に、電動機のほかにドライバ制御器のような重要な冷却機材を有するハイブリッド建設機械の駆動装置の冷却システムにおいて極めて良好な効果が得られる。   In particular, a very good effect can be obtained in a cooling system for a drive device of a hybrid construction machine having important cooling equipment such as a driver controller in addition to an electric motor.

本発明の実施形態の一例に係るハイブリッド建設機械の駆動装置の冷却システムにおけるブーム発電電動機の冷却液循環路を示す正面図The front view which shows the coolant circulation path of the boom generator motor in the cooling system of the drive device of the hybrid construction machine which concerns on an example of embodiment of this invention. 該ブーム発電電動機の上部破断の正面図Front view of the upper part of the boom generator motor 図1の矢示III−III線に沿う断面図Sectional view along arrow III-III in FIG. 上記ハイブリッド建設機械の駆動装置の冷却システムの全体概略構成図Overall schematic configuration diagram of cooling system for driving device of hybrid construction machine

符号の説明Explanation of symbols

16〜20…操作レバー
22…制御部
23…統括制御器
24…ドライバ制御器
30…発電電動機
32…油圧ポンプ
36…ブーム発電電動機
37…旋回発電電動機
38、39…走行発電電動機
50、51、57…変換器
52〜56…インバータ
70…冷却液循環路
70A〜70C…冷却流路
70D…第1環状流路
70E…第2環状流路
70F…連結流路
72…ポンプ
74…ラジエータ
86…レゾルバ
88…モータケーシング
90…流入口
92…流出口
93〜96…貫通孔
DESCRIPTION OF SYMBOLS 16-20 ... Operation lever 22 ... Control part 23 ... General controller 24 ... Driver controller 30 ... Generator motor 32 ... Hydraulic pump 36 ... Boom generator motor 37 ... Swing generator motor 38, 39 ... Traveling generator motor 50, 51, 57 ... Converters 52 to 56 ... Inverter 70 ... Coolant circulation path 70A to 70C ... Cooling flow path 70D ... First annular flow path 70E ... Second annular flow path 70F ... Connection flow path 72 ... Pump 74 ... Radiator 86 ... Resolver 88 ... Motor casing 90 ... Inlet 92 ... Outlet 93-96 ... Through hole

Claims (3)

発電機により発電された電力をバッテリに充電しドライバ制御器によって該バッテリの電力を使用して駆動される電動機を備えたハイブリット建設機械の駆動装置の冷却システムであって、
冷却液をポンプから送り出し前記ドライバ制御器及び前記電動機を冷却した後、ラジエータにて熱交換し前記ポンプに循環させる冷却液循環路を備え、
前記冷却液循環路における前記電動機を冷却する冷却流路が、冷却液が流入する側に形成された第1の環状流路と、冷却液が流出する側に形成された第2の環状流路と、前記第1、第2の環状流路間に前記電動機の軸方向に沿って複数設けられ、前記第1の環状流路の側から前記第2の環状流路の側に冷却液を流す連結流路とで構成されている
ことを特徴とするハイブリッド建設機械の駆動装置の冷却システム。
A cooling system for a drive device of a hybrid construction machine comprising an electric motor charged with electric power generated by a generator and driven by a driver controller using the electric power of the battery,
After cooling the driver controller and the electric motor by sending out the cooling liquid from the pump, it is provided with a cooling liquid circulation path for exchanging heat with a radiator and circulating to the pump,
The cooling flow path for cooling the electric motor in the cooling liquid circulation path includes a first annular flow path formed on the side into which the cooling liquid flows and a second annular flow path formed on the side from which the cooling liquid flows out. And a plurality of the first and second annular flow paths are provided along the axial direction of the electric motor, and a coolant is allowed to flow from the first annular flow path side to the second annular flow path side. A cooling system for a drive device of a hybrid construction machine, characterized by comprising a connecting flow path.
請求項1において、
前記第1の環状流路に流入する冷却液、及び第2の環状流路から流出する冷却液の少なくとも一方が、前記第1の環状流路又は前記第2の環状流路のほぼ接線方向からそれぞれの環状流路に流入又は流出される
ことを特徴とするハイブリッド建設機械の駆動装置の冷却システム。
In claim 1,
At least one of the coolant flowing into the first annular channel and the coolant flowing out from the second annular channel is substantially tangential to the first annular channel or the second annular channel. A cooling system for a drive device of a hybrid construction machine, wherein the cooling system is flowed into or out of each annular flow path.
請求項1又は2において、
前記連結流路の間に当該電動機を駆動するための配線を通す貫通孔が形成されている
ことを特徴とするハイブリッド建設機械の駆動装置の冷却システム。
In claim 1 or 2,
A cooling system for a drive device of a hybrid construction machine, wherein a through-hole through which wiring for driving the electric motor is passed is formed between the connection flow paths.
JP2008272467A 2008-10-22 2008-10-22 System for cooling driving system of hybrid construction equipment Pending JP2010104130A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008272467A JP2010104130A (en) 2008-10-22 2008-10-22 System for cooling driving system of hybrid construction equipment
PCT/JP2009/062821 WO2010047160A1 (en) 2008-10-22 2009-07-15 Cooling system of driving device of hybrid construction machine
CN200980135545.0A CN102150346B (en) 2008-10-22 2009-07-15 Cooling system of driving device of hybrid construction machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272467A JP2010104130A (en) 2008-10-22 2008-10-22 System for cooling driving system of hybrid construction equipment

Publications (1)

Publication Number Publication Date
JP2010104130A true JP2010104130A (en) 2010-05-06

Family

ID=42119209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272467A Pending JP2010104130A (en) 2008-10-22 2008-10-22 System for cooling driving system of hybrid construction equipment

Country Status (3)

Country Link
JP (1) JP2010104130A (en)
CN (1) CN102150346B (en)
WO (1) WO2010047160A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812259A (en) * 2014-02-26 2014-05-21 安徽安凯汽车股份有限公司 Liquid cooling enclosure of driving motor of electric motor coach
KR20160129005A (en) 2014-03-03 2016-11-08 코벨코 겐키 가부시키가이샤 Electric motor
CN112615445A (en) * 2020-11-25 2021-04-06 华为技术有限公司 Motor, power assembly and equipment
FR3139677A1 (en) * 2022-09-13 2024-03-15 Valeo Equipements Electriques Moteur Rotating electric machine with improved cooling

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102926417A (en) * 2012-11-16 2013-02-13 山推工程机械股份有限公司 Electric drive bulldozer and cooling device of electric drive bulldozer
JP5750503B2 (en) * 2013-12-27 2015-07-22 東芝三菱電機産業システム株式会社 Rotating electric machine
DE102017218828A1 (en) * 2017-10-23 2019-04-25 Audi Ag Electric machine
CN110932477B (en) * 2019-12-25 2021-05-04 南京师范大学 Motor secondary cooling system with axial multi-branch cooling plate with different structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525959U (en) * 1991-09-13 1993-04-02 株式会社前川製作所 Water-cooled sealed motor
JPH07322567A (en) * 1994-05-20 1995-12-08 Meidensha Corp Liquid-cooled electric rotating machine
JP2004357472A (en) * 2003-05-30 2004-12-16 Suzuki Motor Corp Cooling structure of motor
JP2005110451A (en) * 2003-10-01 2005-04-21 Fuji Heavy Ind Ltd Hybrid vehicle driving gear
JP2008169613A (en) * 2007-01-11 2008-07-24 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Cooling device of construction equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885683A (en) * 2005-06-21 2006-12-27 比亚迪股份有限公司 Cooling system structure of motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525959U (en) * 1991-09-13 1993-04-02 株式会社前川製作所 Water-cooled sealed motor
JPH07322567A (en) * 1994-05-20 1995-12-08 Meidensha Corp Liquid-cooled electric rotating machine
JP2004357472A (en) * 2003-05-30 2004-12-16 Suzuki Motor Corp Cooling structure of motor
JP2005110451A (en) * 2003-10-01 2005-04-21 Fuji Heavy Ind Ltd Hybrid vehicle driving gear
JP2008169613A (en) * 2007-01-11 2008-07-24 Sumitomo (Shi) Construction Machinery Manufacturing Co Ltd Cooling device of construction equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812259A (en) * 2014-02-26 2014-05-21 安徽安凯汽车股份有限公司 Liquid cooling enclosure of driving motor of electric motor coach
KR20160129005A (en) 2014-03-03 2016-11-08 코벨코 겐키 가부시키가이샤 Electric motor
US10284053B2 (en) 2014-03-03 2019-05-07 Kobelco Construction Machinery Co., Ltd. Electric motor
CN112615445A (en) * 2020-11-25 2021-04-06 华为技术有限公司 Motor, power assembly and equipment
FR3139677A1 (en) * 2022-09-13 2024-03-15 Valeo Equipements Electriques Moteur Rotating electric machine with improved cooling

Also Published As

Publication number Publication date
WO2010047160A1 (en) 2010-04-29
CN102150346A (en) 2011-08-10
CN102150346B (en) 2014-01-29

Similar Documents

Publication Publication Date Title
WO2010047160A1 (en) Cooling system of driving device of hybrid construction machine
JP5103362B2 (en) Liquid cooling motor
KR101194463B1 (en) Electric Motor Integrated Hydraulic Motor
WO2010012149A1 (en) Water-cooled motor for vehicle
US20200280246A1 (en) Electric drive system
JP5797284B2 (en) Ship
JP2014073802A (en) Cooling system for electric automobile
US7193342B2 (en) Apparatus for cooling of electrical devices
JP2004297846A (en) Power convertor
JP4969669B2 (en) Liquid cooling system for electrical equipment
JP5583917B2 (en) Hybrid construction machine
JP2005117819A (en) Power conversion device for electric vehicle
JP2009029187A (en) Cooling device for electric power converter of hybrid vehicle
JP2006115686A (en) Fluid pressure device for offering auxiliary power for vehicle device
JP5924106B2 (en) Power converter
JP2013081272A (en) Electric hydraulic hybrid motor and construction machine equipped with the same
JP2013201832A (en) Electric power conversion device and work machine
JP5236433B2 (en) Hybrid construction machine
ITBO20080668A1 (en) ELECTRIC MACHINE FOR AUTOMOTIVE
JP6470676B2 (en) Liquid cooling motor
JP2015048774A (en) Cooling device of construction machine
JP4621440B2 (en) Drive device provided with travel drive unit and working fluid pressure unit
JP5189039B2 (en) Construction machinery
JP2005333747A (en) Cooling system and inverter-integrated rotating electric machine
KR101510333B1 (en) Cooling system of electric components for fuel cell vehicle and control method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001