JP2010104123A - Vehicular power supply unit - Google Patents

Vehicular power supply unit Download PDF

Info

Publication number
JP2010104123A
JP2010104123A JP2008272277A JP2008272277A JP2010104123A JP 2010104123 A JP2010104123 A JP 2010104123A JP 2008272277 A JP2008272277 A JP 2008272277A JP 2008272277 A JP2008272277 A JP 2008272277A JP 2010104123 A JP2010104123 A JP 2010104123A
Authority
JP
Japan
Prior art keywords
voltage
power
current
power generation
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008272277A
Other languages
Japanese (ja)
Other versions
JP4950162B2 (en
Inventor
Atsushi Yuyama
篤 湯山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008272277A priority Critical patent/JP4950162B2/en
Priority to DE102009017502.4A priority patent/DE102009017502B4/en
Publication of JP2010104123A publication Critical patent/JP2010104123A/en
Application granted granted Critical
Publication of JP4950162B2 publication Critical patent/JP4950162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/16Regulation of the charging current or voltage by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/48Arrangements for obtaining a constant output value at varying speed of the generator, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/07DC-DC step-up or step-down converter inserted between the power supply and the inverter supplying the motor, e.g. to control voltage source fluctuations, to vary the motor speed

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a vehicular power supply unit which stabilizes the output electric power of a generator by increasing the output of a generator and by supplying a stable field current to a field regulation circuit. <P>SOLUTION: The vehicular power supply unit includes: an AC power generating device 210, which is driven by a drive source of a vehicle; a rectifier 220, which rectifies an AC voltage generated by the AC power generating device to a direct current to output a DC voltage V1; a field regulation device 230, which regulates a field current to the AC power generating device and makes variable a generated voltage value of the AC power generating device; a voltage conversion device 400, which converts the DC voltage from the rectifier into a DC voltage V2 different in a voltage value; and a storage battery 700, into which the DC voltage outputted by the rectifier is charged and which supplies a current to an electric load via the voltage conversion device. In this power supply unit, a voltage control means 300 is provided which controls the generated voltage of the AC power generating device so as to reach a target voltage determined based on the rotational speed of at least the AC power generating device 210. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、車両用電源装置に関するものである。   The present invention relates to a vehicle power supply device.

車両に搭載される発電機は、固定子の電機子鉄心に三相の電機子巻線が設けられ、回転子の磁極鉄心に界磁巻線が設けられており、車両の内燃機関の回転により駆動されて発電する三相交流発電機と、これによって発電された三相交流電圧を整流して直流電圧に変換する整流器と、この整流器の出力電圧を検出して所定値になるように界磁巻線に流す界磁電流を調整する界磁調整回路とから構成されており、このような発電機を利用した車両用電源装置には、例えば特願2008−185450号(特開平21― 号公報)に示される通り、車両の内燃機関の回転により駆動されて直流電圧を出力する発電機と、この発電機からの直流電圧を電圧値の異なる直流電圧に変換する電圧変換装置とを備え、電圧変換装置に接続された車両の電気負荷への要求負荷電力に応じて発電機の発電電圧を変化させて、発電機を高出力化するものがある。   A generator mounted on a vehicle is provided with a three-phase armature winding on a stator armature core, and a field winding on a rotor magnetic core, which is driven by rotation of the internal combustion engine of the vehicle. A three-phase AC generator that is driven to generate power, a rectifier that rectifies the three-phase AC voltage generated thereby and converts it to a DC voltage, and detects the output voltage of the rectifier to make a field value to be a predetermined value. For example, Japanese Patent Application No. 2008-185450 (Japanese Patent Application Laid-Open No. 21-185) discloses a vehicle power supply device that uses a generator to adjust a field current flowing through a winding. ), A generator that is driven by the rotation of the internal combustion engine of the vehicle and outputs a DC voltage, and a voltage converter that converts the DC voltage from the generator into a DC voltage having a different voltage value. Vehicle power connected to the converter There are some which increase the output of the generator by changing the generated voltage of the generator according to the required load power to the air load.

また、発電機の発電電圧を変化させて、発電機を高出力化する従来の車両用電源装置としては、例えば特開平9−252546号(特許第3624334号)に示される通り、鉛蓄電池にスイッチを介して並列接続された電気二重層キャパシタを備え、車両が減速していると判断した場合には鉛蓄電池を電気二重層キャパシタから切り離すとともに、車両に搭載された発電機の発電電圧を車両に搭載された電気負荷(例えば、ワイパーモータやポンプ等)の最大許容電圧値に設定して電気二重層キャパシタを充電し、減速状態が解除された場合には、電気二重層キャパシタの電圧値が電気負荷への給電によって鉛蓄電池の電圧値に低下するまで発電機による発電を停止させ、電気二重層キャパシタの電圧値が鉛蓄電池の電圧値より低下した場合には、電気二重層キャパシタと鉛蓄電池を接続するとともに、発電機に通常発電を行わせるものがある。   Further, as a conventional vehicle power supply device for changing the power generation voltage of the power generator to increase the power output of the power generator, for example, as disclosed in Japanese Patent Laid-Open No. 9-252546 (Patent No. 3624334), a switch to a lead storage battery is used. When it is judged that the vehicle is decelerating, the lead storage battery is disconnected from the electric double layer capacitor, and the generator voltage mounted on the vehicle is connected to the vehicle. When the electric double layer capacitor is charged by setting the maximum allowable voltage value of the mounted electric load (for example, wiper motor or pump) and the deceleration state is released, the voltage value of the electric double layer capacitor is If power generation by the generator is stopped until the voltage value of the lead storage battery drops due to power supply to the load, and the voltage value of the electric double layer capacitor falls below the voltage value of the lead storage battery The, as well as connect the electric double layer capacitor and lead-acid battery, there is to perform a normal power generation in the generator.

特開平9−252546号公報JP-A-9-252546

ところで、このような車両用電源装置では、発電機の発電電圧は、車両に搭載される電気負荷から要求される電力に調整されるため、必ずしも電力が最大となる発電電圧で効率よく発電機を駆動していないという問題があった。加えて、通常の発電機は、発電機の出力側から界磁電流を供給しており、発電機の発電電圧を可変にして動作させるときには、界磁調整回路にかかる電圧が変化することになるため、安定した界磁電流を供給することが制御的に難しく、結果として発電機の出力電力が不安定となる可能性があった。
また、発電機の出力側の電圧が0Vとなる状況下にある場合(例えば、電圧変換装置が絶縁型電圧変換装置であり、車両の内燃機関を始動した直後)、界磁巻線に流す界磁電流を供給できずに、結果として発電機が発電できないという問題があった。
By the way, in such a vehicle power supply device, since the power generation voltage of the generator is adjusted to the power required from the electric load mounted on the vehicle, the power generator is not necessarily efficiently used at the power generation voltage that maximizes the power. There was a problem of not driving. In addition, a normal generator supplies a field current from the output side of the generator, and the voltage applied to the field adjustment circuit changes when the generator is operated with the generated voltage variable. For this reason, it is difficult to control the supply of a stable field current, and as a result, the output power of the generator may become unstable.
In addition, when the voltage on the output side of the generator is 0 V (for example, the voltage converter is an insulated voltage converter and immediately after the internal combustion engine of the vehicle is started), the field flowing through the field winding There was a problem that a magnetic current could not be supplied and as a result the generator could not generate electricity.

この発明は、上記のような課題を解消するためになされたもので、出力電力が最大となる発電電圧で発電機を駆動することができ、これによって発電機を高出力化することができ、また、界磁調整回路に対して安定した界磁電流を供給し、発電機の出力電力を安定化することができる車両用電源装置を提供することを目的とする。   This invention has been made to solve the above problems, and can drive a generator with a power generation voltage at which output power is maximized, whereby the output of the generator can be increased, It is another object of the present invention to provide a vehicular power supply apparatus that can supply a stable field current to the field adjustment circuit and stabilize the output power of the generator.

この発明に係る車両用電源装置は、車両の内燃機関若しくはその他の駆動源によって駆
動される交流発電装置と、前記交流発電装置で発生した交流電圧を直流に整流して直流電圧V1を出力する整流装置と、前記交流発電装置への界磁電流を調整し、前記交流発電装置の発電電圧を可変させる界磁調整装置と、前記整流装置からの直流電圧V1を電圧値の異なる直流電圧V2に変換する電圧変換装置と、前記整流装置が出力する直流電圧を充電し、前記電圧変換装置を介して車両に搭載される電気負荷へ電流供給を行う蓄電池と、少なくとも前記交流発電装置の回転速度に基づき決定された目標の発電電圧となるように前記交流発電装置の発電電圧を制御する電圧制御手段とを備えたものである。
The vehicle power supply device according to the present invention includes an AC power generator driven by an internal combustion engine of a vehicle or other drive source, and a rectifier that outputs a DC voltage V1 by rectifying an AC voltage generated by the AC power generator into a direct current. A field adjustment device that adjusts a field current to the AC power generation device and varies a power generation voltage of the AC power generation device, and converts a DC voltage V1 from the rectifier to a DC voltage V2 having a different voltage value Based on a voltage converter that performs charging, a storage battery that charges a DC voltage output from the rectifier and supplies current to an electric load mounted on a vehicle via the voltage converter, and at least a rotational speed of the AC generator Voltage control means for controlling the power generation voltage of the AC power generator so that the determined target power generation voltage is obtained.

また、前記の車両用電源装置において、界磁調整装置への電流供給を、電圧変換装置の出力側の直流電圧V2から行うように構成したものである。   In the vehicle power supply device described above, the current supply to the field adjustment device is performed from the DC voltage V2 on the output side of the voltage conversion device.

あるいは、前記の車両用電源装置において、電力変換装置を絶縁型電圧変換装置とすると共に、界磁調整装置への電流供給を、電圧変換装置の入力側の直流電圧V1若しくは出力側の直流電圧V2から行うことを切り替える電流供給切替手段を備え、交流発電装置における発電電圧が所定値以下の場合は、前記出力側の直流電圧V2により界磁調整装置への電流供給を行い、前記発電電圧が所定値より大きい場合には、前記入力側の直流電圧V1により界磁調整装置への電流供給を行うように構成したものである。   Alternatively, in the above-described vehicle power supply device, the power conversion device is an insulated voltage conversion device, and the current supply to the field adjustment device is performed by using the DC voltage V1 on the input side of the voltage conversion device or the DC voltage V2 on the output side. Current supply switching means for switching between the first and second operations, and when the generated voltage in the AC generator is below a predetermined value, the output voltage is supplied to the field regulator by the DC voltage V2 on the output side, and the generated voltage is When the value is larger than the value, current is supplied to the field adjustment device by the DC voltage V1 on the input side.

さらに、この発明に係る車両用電源装置は、車両の内燃機関若しくはその他の駆動源によって駆動される交流発電装置と、前記交流発電装置で発生した交流電圧を直流に整流して直流電圧V1を出力する整流装置と、前記交流発電装置への界磁電流を調整し、前記交流発電装置の発電電圧を可変させる界磁調整装置と、前記整流装置からの直流電圧V1を電圧値の異なる直流電圧V2に変換する電圧変換装置と、少なくとも要求された電気負荷電力と前記交流発電装置の回転速度に基づき決定された目標の発電電圧となるように、前記交流発電装置の発電電圧を制御する電圧制御手段とを備え、前記界磁調整装置への電流供給を、前記電圧変換装置の出力側の直流電圧V2から行うように構成したものである。   Furthermore, the vehicle power supply device according to the present invention outputs an AC power generator driven by an internal combustion engine of a vehicle or other drive source, and a DC voltage V1 by rectifying the AC voltage generated by the AC power generator into a direct current. A rectifying device that adjusts a field current to the AC power generation device and varies a power generation voltage of the AC power generation device, and a DC voltage V2 having a different voltage value from the DC voltage V1 from the rectification device. And a voltage control means for controlling the power generation voltage of the AC power generator so as to be a target power generation voltage determined based on at least the required electric load power and the rotational speed of the AC power generator. The current supply to the field adjustment device is performed from the DC voltage V2 on the output side of the voltage conversion device.

この発明の車両用電源装置によれば、オルタネータの出力電力を蓄電池に充電することができるため、車両に搭載される電気負荷の要求負荷電力に関わらず、交流発電装置の回転速度に基づいて出力電力が最大となる発電電圧でオルタネータを発電することができるので、オルタネータを高出力化できる。
加えて、蓄電池の放電により車両に接続される電気負荷へ電力供給している期間はオルタネータの発電を停止できるため、車両の内燃機関若しくはその他の駆動源によるエネルギー消費を軽減することができる。
According to the vehicle power supply device of the present invention, since the output power of the alternator can be charged to the storage battery, the output is based on the rotational speed of the AC power generator regardless of the required load power of the electrical load mounted on the vehicle. Since the alternator can be generated with the power generation voltage that maximizes the electric power, the output of the alternator can be increased.
In addition, since the power generation of the alternator can be stopped during the period in which power is supplied to the electric load connected to the vehicle by discharging the storage battery, energy consumption by the internal combustion engine of the vehicle or other drive source can be reduced.

また、電圧変換装置の出力側から界磁調整装置に流す界磁電流を供給するため、界磁調整装置に安定した界磁電流を供給することができ、オルタネータの出力電力を安定にすることができる。   In addition, since the field current flowing from the output side of the voltage converter to the field adjustment device is supplied, a stable field current can be supplied to the field adjustment device, and the output power of the alternator can be stabilized. it can.

上述した、またその他の、この発明の目的、特徴、効果は、以下の実施の形態における詳細な説明および図面の記載からより明らかとなるであろう。   The above-described and other objects, features, and effects of the present invention will become more apparent from the detailed description and the drawings in the following embodiments.

以下この発明の実施の形態について、図面を参照して詳述する。なお、各図中、同一符号は、同一または相当部分を示すものとする。
実施の形態1.
図1はこの発明の実施の形態1の車両用電源装置の構成図を示すものである。
図1において、オルタネータ200は、交流発電装置210、整流装置220及び界磁調整装置230から構成されている。交流発電装置210は、固定子の電機子鉄心に三相の
電機子巻線が備えられ、回転子の磁極鉄心には界磁巻線が設けられており、内燃機関100の回転部にベルト等を介して機械的に接続されている(いずれも図示省略)。
整流装置220は、三相交流電圧を整流し直流電圧を供給する整流器である。界磁調整装置230は、交流発電装置210の界磁巻線に流す電流を調整する装置である。
電圧制御手段300は、オルタネータ200の目標とする発電電圧を算出し、目標の電圧値となるようにオルタネータ200の発電電圧を制御する。
蓄電池700は、例えば電気二重層キャパシタであり、オルタネータ200が出力する直流電圧V1によって充電され、電圧変換装置400を介して車両に搭載される電気負荷600へ電流供給を行う。電圧変換装置400は、整流装置220から出力された直流電圧V1を電圧値の異なる直流電圧V2に変換して出力する。500は鉛蓄電池、600は車両に搭載される電気負荷であり、ともに電圧変換装置400の出力側に接続されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, in each figure, the same code | symbol shall show the same or an equivalent part.
Embodiment 1 FIG.
1 is a configuration diagram of a vehicle power supply device according to Embodiment 1 of the present invention.
In FIG. 1, the alternator 200 includes an AC power generator 210, a rectifier 220, and a field adjustment device 230. The AC power generator 210 is provided with a three-phase armature winding on the armature core of the stator, and a field winding is provided on the magnetic pole core of the rotor. Are connected mechanically (both not shown).
The rectifier 220 is a rectifier that rectifies a three-phase AC voltage and supplies a DC voltage. The field adjusting device 230 is a device that adjusts the current flowing through the field winding of the AC power generator 210.
The voltage control means 300 calculates a target power generation voltage of the alternator 200 and controls the power generation voltage of the alternator 200 so that the target voltage value is obtained.
The storage battery 700 is, for example, an electric double layer capacitor, is charged by the DC voltage V1 output from the alternator 200, and supplies current to the electric load 600 mounted on the vehicle via the voltage conversion device 400. The voltage converter 400 converts the DC voltage V1 output from the rectifier 220 into a DC voltage V2 having a different voltage value and outputs the converted voltage. Reference numeral 500 denotes a lead storage battery, and 600 denotes an electric load mounted on the vehicle, both of which are connected to the output side of the voltage converter 400.

次に、オルタネータ200の動作について説明する。
電圧制御手段300は、検出された電圧V1が目標の電圧値になるように、交流発電装置210の界磁巻線に流す電流を調整する。検出された電圧V1が目標の電圧値よりも大きい場合は、交流発電装置210の界磁巻線に流す電流が小さくなるように調整され、検出された電圧V1が目標の電圧値より小さい場合は、交流発電装置210の界磁巻線に流す電流が大きくなるように調整する。界磁巻線に流れる電流が制御されると、界磁巻線を備えた回転子が発生する磁束量が制御されることになる。回転子の発生磁束量に応じて三相の電機子巻線に誘起される交流電圧が変化する。誘起された交流電圧は整流装置220によって直流電圧に変換され、直流電圧V1として出力される。
このように、電圧制御手段300は界磁巻線に流す電流を調整し、オルタネータ200が出力する電圧がV1となるように制御するため、オルタネータ200の出力は常に所定の出力電圧V1となる。
Next, the operation of the alternator 200 will be described.
The voltage control means 300 adjusts the current flowing through the field winding of the AC power generator 210 so that the detected voltage V1 becomes a target voltage value. When the detected voltage V1 is larger than the target voltage value, the current flowing through the field winding of the AC power generator 210 is adjusted to be small, and when the detected voltage V1 is smaller than the target voltage value The current flowing through the field winding of the AC power generator 210 is adjusted so as to increase. When the current flowing through the field winding is controlled, the amount of magnetic flux generated by the rotor having the field winding is controlled. The AC voltage induced in the three-phase armature winding changes according to the amount of magnetic flux generated by the rotor. The induced AC voltage is converted into a DC voltage by the rectifier 220 and output as a DC voltage V1.
In this way, the voltage control means 300 adjusts the current flowing through the field winding and controls the voltage output from the alternator 200 to be V1, so that the output of the alternator 200 is always the predetermined output voltage V1.

次にオルタネータ200の出力特性について説明する。
オルタネータ200は、界磁巻線に流す電流が一定のとき、交流発電装置210の回転速度が速くなるとともに出力電力が増加する。これに伴い、三相の電機子巻線の電流も増加し、オルタネータ200は発熱する。安全性や信頼性を確保するためには、この発熱を所定値以下に維持する必要がある。オルタネータ200では、界磁巻線に流す電流を界磁調整装置230によって調整することで、出力電力及び発熱量を調整しているが、ここで、発熱量は電流に依存することから、大きな出力電力を得るためには、電流はそのままで、発電電圧を大きくすればよい。
Next, output characteristics of the alternator 200 will be described.
In the alternator 200, when the current passed through the field winding is constant, the rotational speed of the AC power generator 210 increases and the output power increases. Along with this, the current of the three-phase armature winding also increases, and the alternator 200 generates heat. In order to ensure safety and reliability, it is necessary to maintain this heat generation below a predetermined value. In the alternator 200, the output current and the heat generation amount are adjusted by adjusting the current flowing through the field winding by the field adjustment device 230. However, since the heat generation amount depends on the current, the large output In order to obtain electric power, the generated voltage may be increased while keeping the current as it is.

図2に、一例としてオルタネータ200の発電電圧を14V、28Vとした場合の、交流発電装置210の回転速度と出力電力との関係を示す。交流発電装置210の回転速度がNa以下であれば、オルタネータ200の発電電圧が14Vの設定でより大きな出力電力を得ることができ、交流発電装置210の回転速度がNaより速ければ、オルタネータ200の発電電圧が28Vの設定でより大きな出力電力を得ることができる。   FIG. 2 shows a relationship between the rotational speed of the AC power generator 210 and the output power when the power generation voltage of the alternator 200 is 14 V and 28 V, for example. If the rotational speed of the AC power generator 210 is Na or less, a larger output power can be obtained when the power generation voltage of the alternator 200 is set to 14 V. If the rotational speed of the AC power generator 210 is faster than Na, the alternator 200 Larger output power can be obtained by setting the generated voltage to 28V.

次に実施の形態1の車両用電源装置における処理フローを、図3のフローチャートにて説明する。図3において、ステップS1では、内燃機関100の回転速度、要求される電気負荷電力、電圧V1、V2等の車両情報を取得する。
内燃機関100の回転速度は、例えばクランク角センサ(図示なし)を用いることによって検出が可能である。
要求される電気負荷電力は、例えば車両に搭載される電気負荷600のオン/オフ信号(図示なし)を検出することによって算出できる。
電圧V1、V2は、例えば電圧センサ(図示なし)を用いることによって検出が可能である。
Next, a processing flow in the vehicle power supply device of the first embodiment will be described with reference to the flowchart of FIG. In FIG. 3, in step S1, vehicle information such as the rotation speed of the internal combustion engine 100, required electric load power, and voltages V1 and V2 is acquired.
The rotational speed of the internal combustion engine 100 can be detected by using, for example, a crank angle sensor (not shown).
The required electric load power can be calculated, for example, by detecting an on / off signal (not shown) of the electric load 600 mounted on the vehicle.
The voltages V1 and V2 can be detected by using, for example, a voltage sensor (not shown).

続いてステップS2にてオルタネータ200の駆動判定を行う。
オルタネータ200の駆動判定条件として、例えば蓄電池700のSOC(State of Charge)を用いる。蓄電池700のSOCは、電圧V2等から検出することができる。
蓄電池700のSOCが所定値以下の場合、オルタネータ200を駆動すると判定し、ステップS3へ進む。蓄電池700のSOCが所定値より大きい場合、蓄電池700は十分に充電できており、車両に接続される電気負荷600への電流供給は蓄電池700で行うことができるので、オルタネータ200による発電は必要ない(オルタネータは駆動しない)と判定し、ステップS6へ進む。
Subsequently, drive determination of the alternator 200 is performed in step S2.
As a drive determination condition of the alternator 200, for example, an SOC (State of Charge) of the storage battery 700 is used. The SOC of the storage battery 700 can be detected from the voltage V2 or the like.
When the SOC of the storage battery 700 is equal to or less than the predetermined value, it is determined that the alternator 200 is driven, and the process proceeds to step S3. When the SOC of the storage battery 700 is larger than a predetermined value, the storage battery 700 is sufficiently charged, and the current supply to the electric load 600 connected to the vehicle can be performed by the storage battery 700, so that power generation by the alternator 200 is not necessary. It is determined that the alternator is not driven, and the process proceeds to step S6.

ステップS3では、オルタネータ200の目標の電圧値Vtを算出する。
ここで、交流発電装置210の所定の回転速度における、オルタネータ200の発電電圧及び出力電力には図4のような関係がある。すなわち、交流発電装置210の所定の回転速度において、所定のオルタネータ200の発電電圧(Vo1〜Vo5)にすることで、オルタネータ200の出力電力(P1〜P5)が最大となる点が存在することが分かる。この関係から、図5に示すように、オルタネータ200の目標の電圧値Vtを、交流発電装置210の回転速度(N1〜N5)に応じて決定する。図5は、図4に基づき、交流発電装置210の回転速度(N1〜N5)と、オルタネータ200の出力電力が最大となるオルタネータ200の目標の電圧値をプロットした図である。
In step S3, the target voltage value Vt of the alternator 200 is calculated.
Here, the power generation voltage and output power of the alternator 200 at a predetermined rotational speed of the AC power generator 210 have a relationship as shown in FIG. That is, there is a point where the output power (P1 to P5) of the alternator 200 becomes maximum when the power generation voltage (Vo1 to Vo5) of the predetermined alternator 200 is set at a predetermined rotational speed of the AC power generator 210. I understand. From this relationship, the target voltage value Vt of the alternator 200 is determined according to the rotational speed (N1 to N5) of the AC power generator 210, as shown in FIG. FIG. 5 is a diagram in which the rotation speed (N1 to N5) of the AC power generator 210 and the target voltage value of the alternator 200 that maximizes the output power of the alternator 200 are plotted based on FIG.

ステップS4では、オルタネータ200の電圧制御を行う。
ステップS3にて算出したオルタネータ200の目標の電圧値Vtとなるように、オルタネータ200の発電電圧を制御する。具体的には図6に示す処理フローを行う。
図6において、V1はオルタネータ200が出力する直流電圧である。ステップS41では、V1と目標の電圧値Vtとを比較し、V1が目標の電圧値Vtより大きい場合は、ステップS42で、交流発電装置210の界磁巻線に流す電流を小さくすることでオルタネータの発電電圧を低くする。V1が目標の電圧値Vt以下の場合は、ステップS43で、交流発電装置210の界磁巻線に流す電流を大きくすることでオルタネータの発電電圧を高くする。これにより、オルタネータ200から出力される直流電圧はVtとなるように制御される。
In step S4, voltage control of the alternator 200 is performed.
The power generation voltage of the alternator 200 is controlled so as to be the target voltage value Vt of the alternator 200 calculated in step S3. Specifically, the processing flow shown in FIG. 6 is performed.
In FIG. 6, V1 is a DC voltage output from the alternator 200. In step S41, V1 is compared with the target voltage value Vt. If V1 is larger than the target voltage value Vt, the alternator is reduced by reducing the current flowing through the field winding of AC generator 210 in step S42. Reduce the generated voltage. When V1 is equal to or lower than the target voltage value Vt, the generated voltage of the alternator is increased by increasing the current flowing through the field winding of the AC power generator 210 in step S43. Thereby, the DC voltage output from the alternator 200 is controlled to be Vt.

ステップS5では、蓄電池700の充電制御を行う。
前述したように、オルタネータ200の出力電力が最大となるようにオルタネータ200の目標の電圧値を設定しているため、オルタネータ200の出力電力が、車両に搭載される電気負荷600が要求する電気負荷電力よりも大きくなる可能性が高い。電気負荷電力以上に発電した電力については蓄電池700に充電し、ステップS8へ進む。
In step S5, charging control of the storage battery 700 is performed.
As described above, since the target voltage value of the alternator 200 is set so that the output power of the alternator 200 is maximized, the output power of the alternator 200 is required by the electric load 600 mounted on the vehicle. It is likely to be larger than electric power. The electric power generated above the electric load electric power is charged in the storage battery 700, and the process proceeds to step S8.

一方、ステップS2でオルタネータ200を駆動しないと判断した場合はステップS6に進み、ステップS6では、オルタネータ200の発電停止制御を行う。具体的には、交流発電装置210の界磁巻線に流す電流を0とすることで、オルタネータ200の発電を停止する。   On the other hand, if it is determined in step S2 that the alternator 200 is not driven, the process proceeds to step S6. In step S6, power generation stop control of the alternator 200 is performed. Specifically, the power generation of the alternator 200 is stopped by setting the current flowing through the field winding of the AC power generator 210 to zero.

ステップS7では、蓄電池700の放電制御を行う。
ステップS6において、オルタネータ200の発電を停止しているため、車両に接続される電気負荷600への電流供給は蓄電池700から放電することによって行い、ステップS8へ進む。
In step S7, discharge control of the storage battery 700 is performed.
In step S6, since the power generation of the alternator 200 is stopped, current supply to the electric load 600 connected to the vehicle is performed by discharging from the storage battery 700, and the process proceeds to step S8.

ステップS8では、電圧変換装置400の制御を行い、図3の処理フローは終了する。すなわち、電圧変換装置400では、オルタネータ200若しくは蓄電池700が出力する直流電圧V1を直流電圧V2に変換し、若しくは直流電圧V1をバイパスして出力し、車両に接続される電気負荷600に給電する。具体的には図7に示す処理フローを行う。
図7において、ステップS81では、電圧V1と電圧V2との電圧偏差と所定値とが比較され、電圧V1と電圧V2との電圧偏差が所定値より大きい場合、ステップS82で、直流電圧V1を直流電圧V2に降圧して出力する。電圧V1と電圧V2との電圧偏差が所定値以下の場合は、ステップS83で、直流電圧V1をバイパスして出力する。
In step S8, the voltage converter 400 is controlled, and the processing flow of FIG. That is, in the voltage converter 400, the DC voltage V1 output from the alternator 200 or the storage battery 700 is converted into the DC voltage V2, or the DC voltage V1 is bypassed and output, and is supplied to the electric load 600 connected to the vehicle. Specifically, the processing flow shown in FIG. 7 is performed.
In FIG. 7, in step S81, the voltage deviation between the voltage V1 and the voltage V2 is compared with a predetermined value. If the voltage deviation between the voltage V1 and the voltage V2 is larger than the predetermined value, the DC voltage V1 is converted into a direct current in step S82. Step down to voltage V2 and output. If the voltage deviation between the voltage V1 and the voltage V2 is equal to or less than the predetermined value, the DC voltage V1 is bypassed and output in step S83.

以上のようにこの発明の実施の形態1の車両用電源装置によれば、オルタネータ200の出力電力を蓄電池700に充電することができるため、車両に搭載される電気負荷600の要求負荷電力に関わらず、交流発電装置210の回転速度に基づいて出力電力が最大となる発電電圧でオルタネータ200を発電することができ、オルタネータ200を高出力化できる。
加えて、蓄電池700の放電により車両に接続される電気負荷へ電力供給している期間は、オルタネータ200の発電を停止できるため、車両の内燃機関100若しくはその他の駆動源(図示しない)によるエネルギー消費を軽減することができる。
As described above, according to the vehicle power supply device of the first embodiment of the present invention, the output power of the alternator 200 can be charged to the storage battery 700, so that the required load power of the electric load 600 mounted on the vehicle is concerned. Instead, the alternator 200 can be generated with the generated voltage that maximizes the output power based on the rotational speed of the AC power generator 210, and the alternator 200 can be increased in output.
In addition, since the power generation of the alternator 200 can be stopped during the period in which power is supplied to the electric load connected to the vehicle by discharging the storage battery 700, the energy consumption by the internal combustion engine 100 of the vehicle or other drive source (not shown). Can be reduced.

また、整流装置220が出力する直流電圧V1と電圧変換装置400の出力側の電圧V2との電圧偏差が所定値以下の場合には、電圧変換装置400による降圧動作を停止するので、電圧変換装置の降圧動作時の電圧変換装置内のスイッチング素子におけるスイッチング損失が発生せず、オルタネータ200の出力電力を効率よく車両に接続される電気負荷600へ供給することができる。   Further, when the voltage deviation between the DC voltage V1 output from the rectifier 220 and the voltage V2 on the output side of the voltage converter 400 is equal to or less than a predetermined value, the step-down operation by the voltage converter 400 is stopped, so the voltage converter No switching loss occurs in the switching element in the voltage converter during the step-down operation, and the output power of the alternator 200 can be efficiently supplied to the electric load 600 connected to the vehicle.

また、図2から明らかなように、オルタネータ200の発電電圧を大きくすると、交流発電装置210の回転速度が速い領域(>Na)では、出力電力が大きくなる。
通常、車両の走行で使用する回転速度の領域を加味し、オルタネータ200の出力電力が大きくなるようにオルタネータ200の発電電圧を一定値(>V2)としても差し支えなく、これによりオルタネータ200は高出力化される。
As is clear from FIG. 2, when the generated voltage of the alternator 200 is increased, the output power is increased in the region where the rotational speed of the AC power generator 210 is high (> Na).
In general, the generated voltage of the alternator 200 may be set to a constant value (> V2) so that the output power of the alternator 200 is increased in consideration of the rotational speed region used for traveling of the vehicle, so that the alternator 200 has a high output. It becomes.

実施の形態2.
図8はこの発明の実施の形態2の車両用電源装置の構成図を示すものである。
この実施の形態2の車両用電源装置は、図8において、電圧変換装置401の出力側の直流電圧V2(例えば14V)から、界磁調整装置230に流す界磁電流を供給していること以外は、実施の形態1の構成と同等であり、図1で示した構成と同一または相当する部分には同一の符号を用いている。
また、実施の形態2における処理フローは、実施の形態1と全く同等であるため説明は省略する。
ここで、電圧変換装置401は安全上、オルタネータ200の目標の発電値の範囲によって構成を変える必要がある。オルタネータ200の目標の発電値の最大値が60Vより大きく設定される場合、電圧変換装置401の入力側と出力側を絶縁する絶縁型の電圧変換装置を用いる。オルタネータ200の目標の発電値の最大値が60V以下に設定される場合、非絶縁型の電圧変換装置を用いる。
Embodiment 2. FIG.
FIG. 8 shows a configuration diagram of the vehicle power supply device according to the second embodiment of the present invention.
The vehicle power supply device according to the second embodiment is different from FIG. 8 in that it supplies a field current that is supplied to the field adjustment device 230 from the DC voltage V2 (for example, 14V) on the output side of the voltage conversion device 401. These are equivalent to the configuration of the first embodiment, and the same reference numerals are used for the same or corresponding parts as the configuration shown in FIG.
In addition, the processing flow in the second embodiment is completely the same as that in the first embodiment, and a description thereof will be omitted.
Here, for safety, it is necessary to change the configuration of the voltage conversion device 401 depending on the target power generation value range of the alternator 200. When the maximum target power generation value of the alternator 200 is set to be larger than 60 V, an insulation type voltage converter that insulates the input side and the output side of the voltage converter 401 is used. When the maximum target power generation value of the alternator 200 is set to 60 V or less, a non-insulated voltage converter is used.

上記から分かるように、交流発電装置210の回転速度によって、オルタネータ200の目標の電圧値は大きく変動する。オルタネータ200の発電電圧は、前述したように、交流発電装置210の界磁巻線に流す電流によって制御していることから、この界磁巻線に流す電流を供給するため電圧は一定であることが望ましい。これは、界磁調整装置230に界磁電流を流すための供給電圧を一定にすることに等しく、この実施の形態2では、図8に示すように、電圧変換装置401の出力側の直流電力V2(例えば14V)から、界磁調整装置230に流す界磁電流を供給している。このため、安定した界磁電流を供給することが可能となる。
また、電圧変換装置401が絶縁型の電圧変換装置であれば、車両の内燃機関を始動時、電圧変換装置401の入力側の電圧は0Vであるため界磁巻線に流す界磁電流を供給でき
ないが、電圧変換装置401の出力側の電圧であれば、交流発電装置210の界磁巻線に流す電流の供給が可能となる。
As can be seen from the above, the target voltage value of the alternator 200 varies greatly depending on the rotational speed of the AC power generator 210. Since the power generation voltage of the alternator 200 is controlled by the current flowing through the field winding of the AC power generator 210 as described above, the voltage is constant to supply the current flowing through the field winding. Is desirable. This is equivalent to making the supply voltage for supplying the field current to the field adjustment device 230 constant. In the second embodiment, as shown in FIG. 8, the DC power on the output side of the voltage conversion device 401 is set. A field current to be supplied to the field adjusting device 230 is supplied from V2 (for example, 14V). For this reason, it becomes possible to supply a stable field current.
If the voltage conversion device 401 is an insulation type voltage conversion device, when the internal combustion engine of the vehicle is started, the voltage on the input side of the voltage conversion device 401 is 0 V, so that a field current flowing through the field winding is supplied. However, if it is a voltage on the output side of the voltage conversion device 401, it is possible to supply a current to flow through the field winding of the AC power generator 210.

なお、図9は実施の形態2の変形例を示すもので、図9に示すように、オルタネータ200と電圧変換装置401の間に蓄電池700が接続されていない場合においても、電圧変換装置401の出力側から界磁調整装置230に流す界磁電流を供給することによって、界磁調整装置230にかかる電圧は固定値V2(例えば14V)となり、安定した界磁電流を供給することができる。
ただし、この構成の場合、オルタネータ200の目標の発電値は、交流発電装置210の回転速度だけでなく、車両に接続される電気負荷600から要求された電気負荷電力にも依存するため、図8の構成と比較すると、オルタネータ200の発電効率は低くなる。
FIG. 9 shows a modification of the second embodiment. As shown in FIG. 9, even when the storage battery 700 is not connected between the alternator 200 and the voltage converter 401, the voltage converter 401 By supplying a field current flowing from the output side to the field adjustment device 230, the voltage applied to the field adjustment device 230 becomes a fixed value V2 (for example, 14V), and a stable field current can be supplied.
However, in this configuration, the target power generation value of the alternator 200 depends not only on the rotational speed of the AC power generator 210 but also on the electric load power requested from the electric load 600 connected to the vehicle. Compared with this configuration, the power generation efficiency of the alternator 200 is low.

以上のように、この発明の実施の形態2によれば、実施の形態1の効果に加え、電圧変換装置401の出力側から界磁調整装置230に流す界磁電流を供給することによって、界磁調整装置230に供給される電圧は固定値V2(例えば14V)となり、安定した界磁電流を供給することができる。   As described above, according to the second embodiment of the present invention, in addition to the effects of the first embodiment, by supplying the field current flowing from the output side of the voltage conversion device 401 to the field adjustment device 230, the field The voltage supplied to the magnetic adjustment device 230 becomes a fixed value V2 (for example, 14V), and a stable field current can be supplied.

実施の形態3.
図10はこの発明の実施の形態3の車両用電源装置の構成図を示すものである。
この実施の形態3の車両用電源装置は、図10において、電圧変換装置402が絶縁型の電圧変換装置であり、電圧変換装置402の入力側若しくは出力側から界磁調整装置230に流す界磁電流を供給することを切り替えるスイッチ800を備えていること以外は、実施の形態1の構成と同等であり、図1で示した構成と同一または相当する部分には同一の符号を用いている。
また、スイッチ800の切替動作を除いては実施の形態1の動作と同等となるため、スイッチ800の切替動作以外の説明は省略する。
Embodiment 3 FIG.
FIG. 10 shows a configuration diagram of a vehicle power supply device according to Embodiment 3 of the present invention.
In the vehicle power supply device according to the third embodiment, in FIG. 10, the voltage conversion device 402 is an insulation type voltage conversion device, and the field magnet flowing from the input side or the output side of the voltage conversion device 402 to the field adjustment device 230. Except that the switch 800 for switching supply of current is provided, the configuration is the same as that of the first embodiment, and the same reference numerals are used for the same or corresponding parts as the configuration shown in FIG.
Further, since the operation is the same as that of the first embodiment except for the switching operation of the switch 800, the description other than the switching operation of the switch 800 is omitted.

前述した通り、オルタネータ200の目標の電圧値の最大値が60V以上に設定されている場合、安全上の点から絶縁型の電圧変換装置402が用いられる。しかしながら、絶縁型の電圧変換装置であるため、オルタネータ200が発電していない期間、電圧変換装置402の入力側の直流電圧V1は0Vとなる。このため、オルタネータ200が発電していない期間(例えば、車両の内燃機関100を始動した直後)は、電圧変換装置402の入力側から、界磁調整装置230に界磁電流を供給することができないので、界磁調整装置230に流す界磁電流を電圧変換装置402の出力側から供給できるようにスイッチ800を操作する。そして、オルタネータ200の発電電圧が所定値以上となった場合、界磁調整装置230に流す界磁電流を電圧変換装置402の入力側から供給できるようにスイッチ800を操作する。
また、蓄電池700等、装置を構成する部品が故障して電圧変換装置402の入力側の直流電圧V1が0Vとなることも有り得る。このような場合にも、界磁調整装置230に流す界磁電流を電圧変換装置402の出力側から供給できるようにスイッチ800を操作することで、オルタネータ200による発電を継続することが可能となる。
As described above, when the maximum value of the target voltage value of the alternator 200 is set to 60 V or more, the insulated voltage converter 402 is used from the viewpoint of safety. However, since it is an insulated voltage converter, the DC voltage V1 on the input side of the voltage converter 402 is 0 V during the period when the alternator 200 is not generating power. For this reason, during the period when the alternator 200 is not generating power (for example, immediately after starting the internal combustion engine 100 of the vehicle), the field current cannot be supplied to the field adjustment device 230 from the input side of the voltage conversion device 402. Therefore, the switch 800 is operated so that the field current flowing through the field adjustment device 230 can be supplied from the output side of the voltage conversion device 402. When the generated voltage of the alternator 200 becomes equal to or higher than a predetermined value, the switch 800 is operated so that the field current flowing through the field adjustment device 230 can be supplied from the input side of the voltage conversion device 402.
In addition, it is possible that a component constituting the device such as the storage battery 700 fails and the DC voltage V1 on the input side of the voltage conversion device 402 becomes 0V. Even in such a case, the power generation by the alternator 200 can be continued by operating the switch 800 so that the field current flowing through the field adjustment device 230 can be supplied from the output side of the voltage conversion device 402. .

なお、図11は実施の形態3の変形例を示すもので、図11に示すように、オルタネータ200と電圧変換装置402の間に蓄電池700が接続されていない場合においても、界磁調整装置230への電流供給を、絶縁型の電圧変換装置402の入力側若しくは出力側から行うことを切り替えるスイッチ800を備え、オルタネータ200の発電電圧の大きさに応じてスイッチ800を切り替えることにより、界磁調整装置230に安定した界磁電流を供給することが可能となり、オルタネータ200の出力電力が安定する。
ただし、この構成の場合、オルタネータ200の目標の発電値は、交流発電装置210の回転速度だけでなく、車両に接続される電気負荷600から要求された電気負荷電力にも
依存するため、図10の構成と比較すると、オルタネータ200の発電効率は低くなる。
FIG. 11 shows a modification of the third embodiment. As shown in FIG. 11, the field adjustment device 230 even when the storage battery 700 is not connected between the alternator 200 and the voltage conversion device 402. Field switch is provided by switching the switch 800 according to the magnitude of the generated voltage of the alternator 200. The switch 800 switches whether to supply current to the input from the input side or output side of the insulated voltage converter 402. A stable field current can be supplied to the device 230, and the output power of the alternator 200 is stabilized.
However, in this configuration, the target power generation value of the alternator 200 depends not only on the rotational speed of the AC power generator 210 but also on the electric load power requested from the electric load 600 connected to the vehicle. Compared with this configuration, the power generation efficiency of the alternator 200 is low.

以上のように、この発明の実施の形態3によれば、界磁調整装置230への電流供給を、絶縁型の電圧変換装置402の入力側若しくは出力側から行うことを切り替えるスイッチ800を備え、オルタネータ200の発電電圧の大きさに応じてスイッチ800を切り替えることにより、界磁調整装置230に安定した界磁電流を供給することが可能となり、オルタネータ200の出力電力を安定させることができる。   As described above, according to the third embodiment of the present invention, the switch 800 for switching the current supply to the field adjustment device 230 from the input side or the output side of the insulated voltage conversion device 402 is provided, By switching the switch 800 according to the magnitude of the generated voltage of the alternator 200, it is possible to supply a stable field current to the field adjustment device 230, and the output power of the alternator 200 can be stabilized.

この発明の実施の形態1の車両用電源装置の構成を示す図である。It is a figure which shows the structure of the vehicle power supply device of Embodiment 1 of this invention. この発明の実施の形態1における、オルタネータの発電電圧に対する交流発電装置の回転速度とオルタネータの出力電力の関係を示す図である。In Embodiment 1 of this invention, it is a figure which shows the relationship between the rotational speed of the alternating current generator with respect to the power generation voltage of an alternator, and the output electric power of an alternator. この発明の実施の形態1における処理を示すフローチャートである。It is a flowchart which shows the process in Embodiment 1 of this invention. この発明の実施の形態1における、交流発電装置の回転速度に対するオルタネータの発電電圧と出力電力の関係を示す図である。It is a figure which shows the relationship between the electric power generation voltage of an alternator with respect to the rotational speed of an alternating current generator, and output electric power in Embodiment 1 of this invention. この本発明の実施の形態1における、交流発電装置の回転速度とオルタネータの目標の電圧値の関係を示す図である。It is a figure which shows the relationship between the rotational speed of an alternating current generator, and the target voltage value of an alternator in Embodiment 1 of this invention. この発明の実施の形態1における、オルタネータの電圧制御の処理を示すフローチャートである。It is a flowchart which shows the voltage control process of the alternator in Embodiment 1 of this invention. この発明の実施の形態1における、電圧変換装置の制御の処理を示すフローチャートである。It is a flowchart which shows the process of control of the voltage converter in Embodiment 1 of this invention. この発明の実施の形態2の車両用電源装置の構成を示す図である。It is a figure which shows the structure of the vehicle power supply device of Embodiment 2 of this invention. この発明の実施の形態2の車両用電源装置の構成を一部変更した変形例を示す図である。It is a figure which shows the modification which changed the structure of the power supply device for vehicles of Embodiment 2 of this invention partially. この発明の実施の形態3の車両用電源装置の構成を示す図である。It is a figure which shows the structure of the vehicle power supply device of Embodiment 3 of this invention. この発明の実施の形態3の車両用電源装置の構成を一部変更した変形例を示す図である。It is a figure which shows the modification which changed the structure of the vehicle power supply device of Embodiment 3 of this invention partially.

符号の説明Explanation of symbols

100 内燃機関、200 オルタネータ、210 交流発電装置、
220 整流装置、230 界磁調整装置、300 電圧制御手段、
400、401、402 電圧変換装置、500 鉛蓄電池、600 電気負荷、
700 蓄電池、800 スイッチ(電流供給切替手段)。
100 internal combustion engine, 200 alternator, 210 AC power generator,
220 rectifier, 230 field adjustment device, 300 voltage control means,
400, 401, 402 Voltage converter, 500 lead acid battery, 600 electric load,
700 storage battery, 800 switch (current supply switching means).

Claims (6)

車両の内燃機関若しくはその他の駆動源によって駆動される交流発電装置と、前記交流発電装置で発生した交流電圧を直流に整流して直流電圧V1を出力する整流装置と、前記交流発電装置への界磁電流を調整し、前記交流発電装置の発電電圧を可変させる界磁調整装置と、前記整流装置からの直流電圧V1を電圧値の異なる直流電圧V2に変換する電圧変換装置と、前記整流装置が出力する直流電圧を充電し、前記電圧変換装置を介して車両に搭載される電気負荷へ電流供給を行う蓄電池と、少なくとも前記交流発電装置の回転速度に基づき決定された目標の発電電圧となるように前記交流発電装置の発電電圧を制御する電圧制御手段とを備えたことを特徴とする車両用電源装置。   An AC power generator driven by an internal combustion engine of a vehicle or other drive source, a rectifier that rectifies an AC voltage generated by the AC power generator into a direct current and outputs a DC voltage V1, and a field to the AC power generator A field adjustment device that adjusts a magnetic current and varies a generated voltage of the AC generator, a voltage converter that converts a DC voltage V1 from the rectifier into a DC voltage V2 having a different voltage value, and the rectifier. A storage battery that charges a DC voltage to be output and supplies a current to an electric load mounted on the vehicle via the voltage converter, and a target generated voltage determined based on at least the rotational speed of the AC generator And a voltage control means for controlling the power generation voltage of the AC power generator. 前記界磁調整装置への電流供給を、前記電圧変換装置の出力側の直流電圧V2から行うことを特徴とする請求項1に記載の車両用電源装置。   2. The vehicle power supply device according to claim 1, wherein current supply to the field adjustment device is performed from a DC voltage V <b> 2 on the output side of the voltage conversion device. 前記電力変換装置を絶縁型電圧変換装置とすると共に、前記界磁調整装置への電流供給を、該電圧変換装置の入力側の直流電圧V1若しくは出力側の直流電圧V2から行うことを切り替える電流供給切替手段を備え、前記交流発電装置における発電電圧が所定値以下の場合は、前記出力側の直流電圧V2により前記界磁調整装置への電流供給を行い、前記発電電圧が所定値より大きい場合には、前記入力側の直流電圧V1により前記界磁調整装置への電流供給を行うことを特徴とする請求項1に記載の車両用電源装置。   The power converter is an insulated voltage converter, and the current supply for switching the current supply to the field adjustment device from the DC voltage V1 on the input side or the DC voltage V2 on the output side of the voltage converter Switching means, and when the generated voltage in the AC generator is below a predetermined value, current is supplied to the field adjustment device by the DC voltage V2 on the output side, and the generated voltage is greater than a predetermined value. The vehicle power supply device according to claim 1, wherein a current is supplied to the field adjustment device by the DC voltage V <b> 1 on the input side. 車両の内燃機関若しくはその他の駆動源によって駆動される交流発電装置と、前記交流発電装置で発生した交流電圧を直流に整流して直流電圧V1を出力する整流装置と、前記交流発電装置への界磁電流を調整し、前記交流発電装置の発電電圧を可変させる界磁調整装置と、前記整流装置からの直流電圧V1を電圧値の異なる直流電圧V2に変換する電圧変換装置と、少なくとも要求された電気負荷電力と前記交流発電装置の回転速度に基づき決定された目標の発電電圧となるように、前記交流発電装置の発電電圧を制御する電圧制御手段とを備え、前記界磁調整装置への電流供給を、前記電圧変換装置の出力側の直流電圧V2から行うことを特徴とする車両用電源装置。   An AC power generator driven by an internal combustion engine of a vehicle or other drive source, a rectifier that rectifies an AC voltage generated by the AC power generator into a direct current and outputs a DC voltage V1, and a field to the AC power generator At least required is a field adjustment device that adjusts a magnetic current and varies a power generation voltage of the AC power generation device, and a voltage conversion device that converts a DC voltage V1 from the rectification device into a DC voltage V2 having a different voltage value. Voltage control means for controlling the power generation voltage of the AC power generation device so as to obtain a target power generation voltage determined based on the electric load power and the rotational speed of the AC power generation device, and a current to the field adjustment device Supplying from the DC voltage V2 of the output side of the said voltage converter, The vehicle power supply device characterized by the above-mentioned. 車両の内燃機関若しくはその他の駆動源によって駆動される交流発電装置と、前記交流発電装置で発生した交流電圧を直流に整流して直流電圧V1を出力する整流装置と、前記交流発電装置への界磁電流を調整し、前記交流発電装置の発電電圧を可変させる界磁調整装置と、前記整流装置からの直流電圧V1を電圧値の異なる直流電圧V2に変換する絶縁型電圧変換装置と、少なくとも要求された電気負荷電力と前記交流発電装置の回転速度に基づき決定された目標の発電電圧となるように、前記交流発電装置の発電電圧を制御する電圧制御手段と、前記界磁調整装置への電流供給を、前記絶縁型電圧変換装置の入力側の直流電圧V1若しくは出力側の直流電圧V2から行うことを切り替える電流供給切替手段とを備え、前記交流発電装置における発電電圧が所定値以下の場合は、前記出力側の直流電圧V2により前記界磁調整装置への電流供給を行い、前記発電電圧が所定値より大きい場合には、前記入力側の直流電圧V1により前記界磁調整装置への電流供給を行うことを特徴とする車両用電源装置。   An AC power generator driven by an internal combustion engine of a vehicle or other drive source, a rectifier that rectifies an AC voltage generated by the AC power generator into a direct current and outputs a DC voltage V1, and a field to the AC power generator A field adjustment device that adjusts a magnetic current and varies a power generation voltage of the AC power generation device; an insulation type voltage conversion device that converts a DC voltage V1 from the rectification device into a DC voltage V2 having a different voltage value; Voltage control means for controlling the power generation voltage of the AC power generation device so as to be a target power generation voltage determined based on the electric load power thus generated and the rotational speed of the AC power generation device, and a current to the field adjustment device Current supply switching means for switching supply from the DC voltage V1 on the input side or the DC voltage V2 on the output side of the insulated voltage converter, the AC power generator When the generated voltage is less than or equal to a predetermined value, current is supplied to the field adjustment device by the output-side DC voltage V2, and when the generated voltage is greater than the predetermined value, the input-side DC voltage V1 A vehicle power supply device that supplies current to the field adjusting device by means of the above. 前記整流装置が出力する直流電圧V1と前記電圧変換装置の出力側の電圧V2との電圧偏差が所定値以下の場合には、前記電圧変換装置による降圧動作を停止し、前記整流装置が出力する直流電圧を直接出力することを特徴とする請求項1〜5のいずれか1項に記載の車両用電源装置。   When the voltage deviation between the DC voltage V1 output from the rectifier and the voltage V2 on the output side of the voltage converter is equal to or less than a predetermined value, the step-down operation by the voltage converter is stopped and the rectifier outputs 6. The vehicle power supply device according to any one of claims 1 to 5, wherein a direct-current voltage is directly output.
JP2008272277A 2008-10-22 2008-10-22 Vehicle power supply Active JP4950162B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008272277A JP4950162B2 (en) 2008-10-22 2008-10-22 Vehicle power supply
DE102009017502.4A DE102009017502B4 (en) 2008-10-22 2009-04-15 Vehicle-mounted power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272277A JP4950162B2 (en) 2008-10-22 2008-10-22 Vehicle power supply

Publications (2)

Publication Number Publication Date
JP2010104123A true JP2010104123A (en) 2010-05-06
JP4950162B2 JP4950162B2 (en) 2012-06-13

Family

ID=42055217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272277A Active JP4950162B2 (en) 2008-10-22 2008-10-22 Vehicle power supply

Country Status (2)

Country Link
JP (1) JP4950162B2 (en)
DE (1) DE102009017502B4 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137343A1 (en) * 2011-04-08 2012-10-11 三菱電機株式会社 Power supply system for vehicle
DE102011086937A1 (en) 2011-06-08 2012-12-13 Mitsubishi Electric Corporation Vehicle power supply device
JP2013240177A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Vehicular power system
JP5543018B2 (en) * 2011-04-06 2014-07-09 三菱電機株式会社 Vehicle power supply system
WO2016167324A1 (en) * 2015-04-14 2016-10-20 カルソニックカンセイ株式会社 Alternator control unit, alternator driving control method, and power supply management system for engine vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196006A (en) * 1995-01-13 1996-07-30 Toyota Motor Corp Retarder
JPH08298732A (en) * 1995-04-24 1996-11-12 Nippondenso Co Ltd Power generation apparatus for vehicle
JP2000341997A (en) * 1999-05-25 2000-12-08 Honda Motor Co Ltd Power feeding system
JP2000350379A (en) * 1999-06-01 2000-12-15 Nissan Motor Co Ltd Alternator system
JP2001103796A (en) * 1999-09-27 2001-04-13 Nissan Motor Co Ltd Power-generation control device
JP2003070299A (en) * 2001-08-23 2003-03-07 Toshiba Corp Power generation control system and refrigerated vehicle
JP2003319695A (en) * 2002-04-25 2003-11-07 Mitsubishi Electric Corp Power supply system for vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576233B2 (en) * 1989-07-13 1997-01-29 三菱電機株式会社 Control device for vehicle alternator
CA2108343A1 (en) * 1992-10-14 1994-04-15 Roy D. Schultz Electronic power regulator for an automotive alternator
JP3624334B2 (en) 1996-03-14 2005-03-02 富士重工業株式会社 Deceleration energy regeneration device for vehicles
JP4161721B2 (en) * 2003-01-27 2008-10-08 トヨタ自動車株式会社 Vehicle power supply control device
FR2892077B1 (en) * 2005-10-17 2009-05-15 Peugeot Citroen Automobiles Sa POWER SUPPLY CIRCUIT FOR ELECTRICAL POWER OF A MOTOR VEHICLE
JP4867679B2 (en) 2007-01-30 2012-02-01 株式会社Ihi Nonlinear fracture mechanics parameter calculation method and evaluation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08196006A (en) * 1995-01-13 1996-07-30 Toyota Motor Corp Retarder
JPH08298732A (en) * 1995-04-24 1996-11-12 Nippondenso Co Ltd Power generation apparatus for vehicle
JP2000341997A (en) * 1999-05-25 2000-12-08 Honda Motor Co Ltd Power feeding system
JP2000350379A (en) * 1999-06-01 2000-12-15 Nissan Motor Co Ltd Alternator system
JP2001103796A (en) * 1999-09-27 2001-04-13 Nissan Motor Co Ltd Power-generation control device
JP2003070299A (en) * 2001-08-23 2003-03-07 Toshiba Corp Power generation control system and refrigerated vehicle
JP2003319695A (en) * 2002-04-25 2003-11-07 Mitsubishi Electric Corp Power supply system for vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5543018B2 (en) * 2011-04-06 2014-07-09 三菱電機株式会社 Vehicle power supply system
WO2012137343A1 (en) * 2011-04-08 2012-10-11 三菱電機株式会社 Power supply system for vehicle
CN103444048A (en) * 2011-04-08 2013-12-11 三菱电机株式会社 Power supply system for vehicle
JP5570655B2 (en) * 2011-04-08 2014-08-13 三菱電機株式会社 Vehicle power supply system
US10343533B2 (en) 2011-04-08 2019-07-09 Mitsubishi Electric Corporation Power supply system with improved energy recovery from regenerative braking
DE102011086937A1 (en) 2011-06-08 2012-12-13 Mitsubishi Electric Corporation Vehicle power supply device
US8862365B2 (en) 2011-06-08 2014-10-14 Mitsubishi Electric Corporation Vehicular power supply device
DE102011086937B4 (en) * 2011-06-08 2016-09-29 Mitsubishi Electric Corporation Vehicle power supply device
JP2013240177A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Vehicular power system
WO2016167324A1 (en) * 2015-04-14 2016-10-20 カルソニックカンセイ株式会社 Alternator control unit, alternator driving control method, and power supply management system for engine vehicle
JPWO2016167324A1 (en) * 2015-04-14 2018-02-15 カルソニックカンセイ株式会社 Alternator control unit, alternator drive control method, and engine vehicle power management system
US10910971B2 (en) 2015-04-14 2021-02-02 Calsonic Kansei Corporation Alternator control unit, alternator driving control method, and power supply management system for engine vehicle

Also Published As

Publication number Publication date
DE102009017502A1 (en) 2010-04-29
JP4950162B2 (en) 2012-06-13
DE102009017502B4 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
US7816805B2 (en) Power supply system with multiphase motor and multiphase inverter
US8437910B2 (en) Automotive electric power supply system
KR100491699B1 (en) Control Apparatus and Method of Dynamo-Electric Machine for Vehicle
US7535203B2 (en) Alternator
WO2001021431A1 (en) Dynamotor of hybrid vehicle, and method of control thereof
RU2670559C1 (en) Vehicle and its control method
US8339074B2 (en) Power converter control apparatus
JP2011239493A (en) Output controller for hybrid engine generator
US8525491B2 (en) Vehicle generator
JP2011234458A (en) Output controller of hybrid type engine generator
JP6214711B2 (en) Control device for rotating electrical machine
US20200009980A1 (en) Charge control apparatus and system
US20060017290A1 (en) Fast torque control of a belted alternator starter
JP2012223073A (en) Control device for power converter
JP4082338B2 (en) Control device and control method for motor-driven 4WD vehicle
JP4950162B2 (en) Vehicle power supply
US8680796B2 (en) Control device and control method for power converter
JP2016007118A (en) Rotary electric machine system
JP5409660B2 (en) Vehicle power supply system
CN112334374B (en) Drive control device and railway vehicle drive device
JP2005295626A (en) Drive controller of generator
JP5638465B2 (en) Vehicle power supply system
JP2013207836A (en) On-vehicle charge system
JP5409579B2 (en) Vehicle power supply system
CN103975520A (en) Method for operating a separately excited electric machine in a motor vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4950162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250