JP2010103565A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2010103565A
JP2010103565A JP2010023730A JP2010023730A JP2010103565A JP 2010103565 A JP2010103565 A JP 2010103565A JP 2010023730 A JP2010023730 A JP 2010023730A JP 2010023730 A JP2010023730 A JP 2010023730A JP 2010103565 A JP2010103565 A JP 2010103565A
Authority
JP
Japan
Prior art keywords
region
trench gate
gate electrode
trench
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010023730A
Other languages
Japanese (ja)
Inventor
Koji Hotta
幸司 堀田
Sachiko Kawaji
佐智子 河路
Masanori Usui
正則 臼井
Takahide Sugiyama
隆英 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2010023730A priority Critical patent/JP2010103565A/en
Publication of JP2010103565A publication Critical patent/JP2010103565A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To store minority carriers in a body region to increase minority carrier concentration in the body region, and to further lower an on-voltage of a semiconductor device. <P>SOLUTION: The semiconductor device includes: n+ type emitter regions 34 connected to an emitter electrode E; p- type body regions 28 surrounding the emitter regions 34 and connected to the emitter electrode E; an n- type drift region 26 contacting the body regions 28 and isolated from the emitter regions 34 by the body regions 28; and trench gate electrodes 32 each facing, through an gate insulating film 33, the body region 28 isolating the emitter region 34 and the drift region 26 from each other. In the semiconductor device, a part of the trench gate electrode 32 different in trench width is formed in the longitudinal direction of the trench gate electrode 32. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、トレンチタイプのゲート電極によって1対の主電極間を流れる電流のオン・オフを制御する半導体装置に関し、なかでもオン電圧あるいはオン抵抗を低下させる技術に関する。   The present invention relates to a semiconductor device that controls on / off of a current flowing between a pair of main electrodes by a trench-type gate electrode, and more particularly to a technique for reducing on-voltage or on-resistance.

バイポーラトランジスタの表面部にMOS構造を形成したIGBT(Insulated Gate Bipolar Transistor)が知られている。図7に、コレクタ電極Cとエミッタ電極Eの間を流れる電流をトレンチゲート電極132でオン・オフ制御するIGBT6の一例を示す。
IGBT6の表面部には、エミッタ電極Eに接続されているp型のボディコンタクト領域136と、そのエミッタ電極Eに接続されているn型のエミッタ領域134と、そのボディコンタクト領域136とエミッタ領域134を囲繞するp型のボディ領域128が形成されている。p型のボディコンタクト領域136とp型のボディ領域128は同電位に維持されるために、一括してボディ領域と総称することもできる。
型のボディ領域128の下方にn型のドリフト領域126が形成されており、その下方にn型のバッファ領域124が形成されており、その下方にp型のコレクタ領域122が形成されている。コレクタ領域122はコレクタ電極Dに接続されている。
エミッタ領域134とドリフト領域126を隔てているボディ領域128にトレンチが形成されおり、エミッタ領域134とドリフト領域126を隔てているボディ領域128にゲート絶縁膜133を介して対向するトレンチゲート電極132が形成されている。
There is known an IGBT (Insulated Gate Bipolar Transistor) in which a MOS structure is formed on the surface of a bipolar transistor. FIG. 7 shows an example of the IGBT 6 in which the current flowing between the collector electrode C and the emitter electrode E is on / off controlled by the trench gate electrode 132.
On the surface portion of the IGBT 6, a p + type body contact region 136 connected to the emitter electrode E, an n + type emitter region 134 connected to the emitter electrode E, the body contact region 136 and the emitter A p type body region 128 surrounding the region 134 is formed. Since the p + -type body contact region 136 and the p -type body region 128 are maintained at the same potential, they may be collectively referred to as a body region.
An n type drift region 126 is formed below the p type body region 128, an n + type buffer region 124 is formed below the p type body region 128, and a p + type collector region 122 is formed therebelow. Is formed. The collector region 122 is connected to the collector electrode D.
A trench is formed in the body region 128 that separates the emitter region 134 and the drift region 126, and a trench gate electrode 132 that faces the body region 128 that separates the emitter region 134 and the drift region 126 via the gate insulating film 133. Is formed.

このIGBT6のオン状態の動作を説明する。エミッタ電極Eを接地し、コレクタ電極Cに正電圧を加え、トレンチゲート電極132に正電圧を印加すると、ボディ領域128のうちゲート絶縁膜133を介してトレンチゲート電極132と対向する箇所がn型に反転する。すると電子キャリアが、エミッタ領域134からn型に反転したチャネルを経由してドリフト領域126へ注入され、バッファ領域124内に蓄積する。電子キャリアがバッファ領域124に蓄積すると、バッファ領域124とコレクタ領域122の接触電位差が低下し、コレクタ領域122からバッファ領域124へ正孔キャリアが注入され、さらにはドリフト領域126へ注入される。これによりバッファ領域124とドリフト領域126に伝導度変調現象が起こり、低いオン電圧を実現する。
コレクタ領域122から注入された正孔キャリアは、電子キャリアと再結合して消滅するか、ボディ領域128とボディコンタクト領域136を経由してエミッタ電極Eへ排出される。
The operation of the IGBT 6 in the on state will be described. When the emitter electrode E is grounded, a positive voltage is applied to the collector electrode C, and a positive voltage is applied to the trench gate electrode 132, a portion of the body region 128 facing the trench gate electrode 132 through the gate insulating film 133 is n-type. Invert. Then, electron carriers are injected from the emitter region 134 into the drift region 126 via the channel inverted to the n-type and accumulated in the buffer region 124. When the electron carriers are accumulated in the buffer region 124, the contact potential difference between the buffer region 124 and the collector region 122 is decreased, hole carriers are injected from the collector region 122 into the buffer region 124, and further injected into the drift region 126. As a result, a conductivity modulation phenomenon occurs in the buffer region 124 and the drift region 126, and a low on-voltage is realized.
The hole carriers injected from the collector region 122 recombine with the electron carriers and disappear, or are discharged to the emitter electrode E through the body region 128 and the body contact region 136.

この種の半導体装置のオン電圧を低下させるために、コレクタ・エミッタ電極間の正孔キャリア濃度の増加を図った半導体装置が提案されている。
特許文献1には、ドリフト領域とボディ領域のpn接合界面に、ドリフト領域よりも不純物濃度が高い高濃度半導体領域を形成した半導体装置が記載されている。この半導体装置によれば、エミッタ電極へ排出される正孔キャリアが、高濃度半導体領域とドリフト領域の界面に形成されるポテンシャル障壁によって、ドリフト領域内に溜まり易くなり、正孔キャリアの濃度を高くすることができる。正孔キャリアの濃度の増加に伴い、電子キャリアの注入量も増加するので半導体装置のオン電圧が低下する。
In order to reduce the on-voltage of this type of semiconductor device, a semiconductor device has been proposed in which the hole carrier concentration between the collector and emitter electrodes is increased.
Patent Document 1 describes a semiconductor device in which a high-concentration semiconductor region having an impurity concentration higher than that of the drift region is formed at the pn junction interface between the drift region and the body region. According to this semiconductor device, the hole carriers discharged to the emitter electrode are likely to accumulate in the drift region due to the potential barrier formed at the interface between the high concentration semiconductor region and the drift region, and the hole carrier concentration is increased. can do. As the hole carrier concentration increases, the amount of injected electron carriers also increases, so the on-voltage of the semiconductor device decreases.

特開平8−316479号公報JP-A-8-316479

しかしながら、この種の半導体装置のオン電圧をさらに低下させるためには、ボディ領域内における少数キャリアの濃度を増大させる必要がある。特許文献1の半導体装置は、フローティング半導体領域近傍のドリフト領域内における少数キャリアの濃度を増大させることはできるものの、ボディ領域内に少数キャリアを蓄積して少数キャリアの濃度を増大させることはできない。
本発明は、ボディ領域内に少数キャリアを蓄積し、ボディ領域内の少数キャリア濃度を増大させ、半導体装置のオン電圧をさらに低下させることを目的とする。
However, in order to further reduce the on-voltage of this type of semiconductor device, it is necessary to increase the minority carrier concentration in the body region. Although the semiconductor device of Patent Document 1 can increase the minority carrier concentration in the drift region near the floating semiconductor region, it cannot accumulate minority carriers in the body region and increase the minority carrier concentration.
An object of the present invention is to accumulate minority carriers in the body region, increase the minority carrier concentration in the body region, and further reduce the on-voltage of the semiconductor device.

本発明の半導体装置は、一対の主電極と、一方の主電極に接続されている第2導電型半導体領域と、その第2導電型半導体領域を囲繞するとともに、前記一方の主電極に接続されている第1導電型のボディ領域と、ボディ領域に接するとともに、ボディ領域によって第2導電型半導体領域から隔てられている第2導電型のドリフト領域と、第2導電型半導体領域とドリフト領域を隔てているボディ領域にゲート絶縁膜を介して対向しているトレンチゲート電極を備えている。本発明の半導体装置のトレンチゲート電極は、トレンチ幅の異なる部分がトレンチゲート電極の長手方向に形成されている。
本発明の半導体装置は、MOSFET、IGBT、サイリスタ等であり、MOSFETであれば一対の主電極がドレイン・ソース電極であり、第2導電型半導体領域がソース領域と称される。IGBTやサイリスタであれば一対の主電極がエミッタ・コレクタ電極であり、第2導電型半導体領域がエミッタ領域と称される。
第2半導体領域はボディ領域の上部であってトレンチゲート電極に沿った位置の少なくとも一部に形成されていればよく、その形状などは適宜調整すればよい。またボディ領域は、不純物濃度が高いボディコンタクト領域と不純物濃度が低い狭義のボディ領域から構成されていてもよい。不純物濃度が高いボディコンタクト領域を設けると、電極との間でオーミック接続しやすいので有利である。
A semiconductor device of the present invention surrounds a pair of main electrodes, a second conductivity type semiconductor region connected to one main electrode, and the second conductivity type semiconductor region, and is connected to the one main electrode. A first conductivity type body region, a second conductivity type drift region in contact with the body region and separated from the second conductivity type semiconductor region by the body region, and the second conductivity type semiconductor region and the drift region. A trench gate electrode is provided opposite to the separated body region via a gate insulating film. In the trench gate electrode of the semiconductor device of the present invention, portions having different trench widths are formed in the longitudinal direction of the trench gate electrode.
The semiconductor device of the present invention is a MOSFET, IGBT, thyristor or the like. In the case of a MOSFET, a pair of main electrodes is a drain / source electrode, and a second conductivity type semiconductor region is called a source region. In the case of an IGBT or thyristor, a pair of main electrodes is an emitter / collector electrode, and the second conductivity type semiconductor region is called an emitter region.
The second semiconductor region only needs to be formed at least part of the position along the trench gate electrode above the body region, and the shape and the like may be adjusted as appropriate. The body region may be composed of a body contact region having a high impurity concentration and a narrow body region having a low impurity concentration. Providing a body contact region with a high impurity concentration is advantageous because it is easy to make ohmic contact with the electrode.

上記の半導体装置のトレンチゲート電極は、トレンチ幅の異なる部分が長手方向に形成されている。したがって、隣接するトレンチゲート電極との関係で言うと、隣接するトレンチゲート電極間の間隔が狭い領域と広い領域が、トレンチゲート電極の長手方向に形成されることになる。隣接するトレンチゲート電極間との間隔が狭い領域では、ボディ領域の表面積が減少することになる。ボディ領域の表面積が減少すると、ボディ領域を経由して主電極へ排出される少数キャリアの流動に対する抵抗が高くなる。このための主電極へ排出されるはずの少数キャリアがボディ領域内に溜まり易くなり、それに呼応して多数キャリアの注入量も増加するために、オン電圧が低下する。
なお、トレンチゲート電極のトレンチ幅の異なる部分が部分的に形成されていることが重要であり、例えばトレンチゲート電極のトレンチ幅が、全長に亘って幅広で形成されていると、オフ耐圧が劣化するという問題がある。即ち、トレンチゲート電極のトレンチ幅が全長に亘って幅広であると、ボディ領域とドリフト領域のpn接合界面の面積が減少してしまう。このため、半導体装置がオフしたときに、ボディ領域とドリフト領域のpn接合界面から広がる空乏層で保持し得る電界が減少する。その結果、トレンチゲート電極のゲート絶縁膜に電界が集中し易くなり、なかでもゲート絶縁膜の屈曲する箇所に電界が集中して半導体装置が破壊される現象が生じやすい。したがって、トレンチゲート電極は、トレンチ幅の異なる部分が長手方向に部分的に形成されていることが重要であり、換言すると、隣接するトレンチゲート電極間の間隔が広い領域が部分的に形成されていることが重要である。これにより、隣接するトレンチゲート電極間の間隔が狭い領域ではゲート絶縁膜に集中し易い電界を、隣接するトレンチゲート電極間の間隔が広い領域側へ分散させることができる。隣接するトレンチゲート電極間の間隔が広い領域で、半導体装置が破壊されることを抑制し、高い耐圧を維持することができる。
In the trench gate electrode of the semiconductor device, portions having different trench widths are formed in the longitudinal direction. Therefore, in terms of the relationship with the adjacent trench gate electrodes, a region where the interval between the adjacent trench gate electrodes is narrow and a region where the space is wide are formed in the longitudinal direction of the trench gate electrode. In a region where the distance between adjacent trench gate electrodes is narrow, the surface area of the body region is reduced. As the surface area of the body region decreases, the resistance to the flow of minority carriers discharged through the body region to the main electrode increases. For this reason, minority carriers that should be discharged to the main electrode are likely to accumulate in the body region, and the amount of majority carriers injected increases accordingly, and the on-voltage decreases.
In addition, it is important that portions having different trench widths of the trench gate electrode are partially formed. For example, if the trench gate electrode is formed to have a wide trench width over the entire length, the off breakdown voltage is deteriorated. There is a problem of doing. That is, if the trench width of the trench gate electrode is wide over the entire length, the area of the pn junction interface between the body region and the drift region is reduced. For this reason, when the semiconductor device is turned off, the electric field that can be held in the depletion layer extending from the pn junction interface between the body region and the drift region is reduced. As a result, the electric field tends to concentrate on the gate insulating film of the trench gate electrode, and in particular, the phenomenon that the electric field concentrates on the bent portion of the gate insulating film and the semiconductor device is easily broken. Therefore, it is important that the trench gate electrode is partially formed in the longitudinal direction with different trench widths. In other words, a region having a wide interval between adjacent trench gate electrodes is partially formed. It is important that As a result, an electric field that tends to concentrate on the gate insulating film in a region where the interval between adjacent trench gate electrodes is narrow can be dispersed to the region side where the interval between adjacent trench gate electrodes is wide. In a region where the distance between adjacent trench gate electrodes is wide, the semiconductor device can be prevented from being broken and high breakdown voltage can be maintained.

トレンチゲート電極のトレンチ幅の長手方向の位相が、隣接するトレンチゲート電極相互の間で揃っていることが好ましい。
トレンチ幅が長手方向に変化する位相が揃っていると、トレンチ幅が幅広な部分では隣接するトレンチゲート電極間の間隔が狭くなり、トレンチ幅が狭い部分では隣接するトレンチゲート電極間の間隔が広くなる。隣接するトレンチゲート電極間の間隔が狭い領域と広い領域が、交互に形成されることになる。これによりボディ領域内に少数キャリアを蓄積することができ、オン電圧を低下させることができる。また隣接するトレンチゲート電極間の間隔が広い箇所が交互に形成されているため、ゲート絶縁膜の屈曲部に電界が集中することがなくオフ耐圧が低下することもない。
It is preferable that the phase in the longitudinal direction of the trench width of the trench gate electrode is aligned between adjacent trench gate electrodes.
When the phases in which the trench widths change in the longitudinal direction are aligned, the interval between the adjacent trench gate electrodes becomes narrow in the portion where the trench width is wide, and the interval between the adjacent trench gate electrodes becomes wide in the portion where the trench width is narrow. Become. A region where the interval between adjacent trench gate electrodes is narrow and a region where the interval is wide are alternately formed. As a result, minority carriers can be accumulated in the body region, and the on-voltage can be reduced. In addition, since the portions where the interval between adjacent trench gate electrodes is wide are alternately formed, the electric field does not concentrate on the bent portion of the gate insulating film, and the off breakdown voltage does not decrease.

トレンチ幅の広い部分と狭い部分がトレンチゲート電極の長手方向に交互に形成されている場合、トレンチ幅の幅広な部分の合計長さが、トレンチゲート電極の全長の30〜80%の範囲で形成されていることが好ましい。
トレンチゲート電極のトレンチ幅が全長に亘って幅広であると、トレンチゲート電極のゲート絶縁膜の屈曲部に電界が集中し、オフ耐圧が低下する。一方、トレンチゲート電極のトレンチ幅が全長に亘って狭い場合は、従来から公知の半導体装置と同様であり、少数キャリアをボディ領域内に蓄積することができない。したがって、トレンチゲート電極のトレンチ幅が幅広な部分を、トレンチゲート電極の長手方向に沿って、部分的かつ離隔的に形成すると、オフ耐圧を低下させないで少数キャリアを蓄積できるようになる。
上記の半導体装置では、トレンチ幅の幅広な部分の合計長さが、トレンチゲート電極の全長の30〜80%の範囲で形成されていると、ゲート絶縁膜に電界が集中してオフ耐圧が低下することなく、ボディ領域に少数キャリアが蓄積してオン電圧を低下させることができる。
When wide and narrow portions of the trench are alternately formed in the longitudinal direction of the trench gate electrode, the total length of the wide portion of the trench is formed in the range of 30 to 80% of the total length of the trench gate electrode. It is preferable that
When the trench width of the trench gate electrode is wide over the entire length, the electric field concentrates on the bent portion of the gate insulating film of the trench gate electrode, and the off breakdown voltage is reduced. On the other hand, when the trench width of the trench gate electrode is narrow over the entire length, it is the same as a conventionally known semiconductor device, and minority carriers cannot be accumulated in the body region. Therefore, if the portion having a wide trench width of the trench gate electrode is formed partially and spaced apart along the longitudinal direction of the trench gate electrode, minority carriers can be accumulated without lowering the off breakdown voltage.
In the above semiconductor device, when the total length of the wide portion of the trench is in the range of 30 to 80% of the total length of the trench gate electrode, the electric field concentrates on the gate insulating film and the off breakdown voltage is reduced. Without this, minority carriers can accumulate in the body region and the on-voltage can be lowered.

トレンチゲート電極のトレンチ幅の異なる部分が、トレンチゲート電極の長手方向に沿って周期的に繰返されて形成されているのが好ましい。
この場合、隣接するトレンチゲート電極間の間隔が狭い領域と広い領域が、長手方向に沿って周期的に形成されることになる。これにより、隣接するトレンチゲート電極間の間隔の広い領域が等間隔で形成されることになる。したがって、ゲート絶縁膜に集中し易い電界が一様に分散し易くなる。
It is preferable that portions of the trench gate electrode having different trench widths are periodically repeated along the longitudinal direction of the trench gate electrode.
In this case, a narrow area and a wide area between adjacent trench gate electrodes are periodically formed along the longitudinal direction. Thereby, wide regions between adjacent trench gate electrodes are formed at equal intervals. Therefore, the electric field that tends to concentrate on the gate insulating film is easily dispersed uniformly.

本発明者らは、長手方向でトレンチ幅が変化しているトレンチゲート電極による効果を詳細に検討した結果、オン電圧を低下させるだけでなく、半導体装置をターンオンしたときのターンオン時間を短縮化できることを見出した。
特に、隣接するトレンチゲート電極間の間隔の狭い領域に存在する半導体領域が、トレンチゲート電極にゲートオン電圧が印加されていない状態で実質的に完全空乏化されていると、ターンオン時間を顕著に短縮化できることを見出した。
ゲート絶縁膜と半導体領域の接合界面からは、トレンチゲート電極にゲート電圧が印加されていなくても、空乏層が広がっている。
隣接するトレンチゲート電極間に挟まれている半導体領域が狭く、ゲート絶縁膜の膜厚が最適化されていると、それぞれのゲート絶縁膜から広がる空乏層が隣接するトレンチゲート電極で挟まれている半導体領域内で繋がり、半導体領域が完全空乏化される。
この状態でトレンチゲート電極にゲート電圧が印加されると、隣接するトレンチゲート電極に挟まれた半導体領域ではそれ以上に空乏層が広がることができないため、半導体領域にすぐに反転層が形成されることになる。
上記の半導体装置では、隣接するトレンチゲート電極間の幅の狭い部分の半導体領域に極めて短時間で反転層が形成される。ターンオン時間を短くすることができ、高速なスイッチング特性を実現する。
トレンチゲート電極間の間隔に存在する半導体領域が、トレンチゲート電極にゲートオン電圧が印加されていない状態で完全空乏化されていると、第2導電型半導体領域と第2導電型ドリフト領域の間を第1導電型ボディ層で分離しておく必要がない。トレンチゲート電極間の間隔に存在する半導体領域は、第2導電型半導体領域と第2導電型ドリフト領域が直接接続している半導体領域であってもよく、第1導電型ボディ層を介して第2導電型半導体領域と第2導電型ドリフト領域が接続している半導体領域であってもよい。
As a result of detailed examination of the effect of the trench gate electrode in which the trench width varies in the longitudinal direction, the present inventors can reduce not only the on-voltage but also the turn-on time when the semiconductor device is turned on. I found.
In particular, the turn-on time is significantly shortened when a semiconductor region existing in a narrow region between adjacent trench gate electrodes is substantially completely depleted without a gate-on voltage applied to the trench gate electrode. I found out that
A depletion layer extends from the junction interface between the gate insulating film and the semiconductor region even when no gate voltage is applied to the trench gate electrode.
When the semiconductor region sandwiched between adjacent trench gate electrodes is narrow and the gate insulating film thickness is optimized, a depletion layer extending from each gate insulating film is sandwiched between adjacent trench gate electrodes. They are connected in the semiconductor region, and the semiconductor region is completely depleted.
When a gate voltage is applied to the trench gate electrode in this state, an inversion layer is immediately formed in the semiconductor region because the depletion layer cannot spread further in the semiconductor region sandwiched between the adjacent trench gate electrodes. It will be.
In the above semiconductor device, the inversion layer is formed in an extremely short time in the semiconductor region in a narrow width portion between adjacent trench gate electrodes. Turn-on time can be shortened and high-speed switching characteristics are realized.
When the semiconductor region existing in the interval between the trench gate electrodes is completely depleted in a state where no gate-on voltage is applied to the trench gate electrode, the gap between the second conductivity type semiconductor region and the second conductivity type drift region is increased. There is no need to separate the first conductivity type body layer. The semiconductor region existing between the trench gate electrodes may be a semiconductor region in which the second conductivity type semiconductor region and the second conductivity type drift region are directly connected, and the first conductivity type body layer is interposed through the first conductivity type body layer. It may be a semiconductor region in which the two conductivity type semiconductor region and the second conductivity type drift region are connected.

本発明によると、ボディ領域内の少数キャリア濃度を高くすることができ、半導体装置のオン電圧を低下させることができる。   According to the present invention, the minority carrier concentration in the body region can be increased, and the on-voltage of the semiconductor device can be reduced.

第1実施例の半導体装置1の要部斜視図を示す。The principal part perspective view of the semiconductor device 1 of 1st Example is shown. 第1実施例の半導体装置1のトレンチゲート電極の平面パターンを示す。2 shows a planar pattern of the trench gate electrode of the semiconductor device 1 of the first embodiment. 第2実施例の半導体装置2の要部斜視図を示す。The principal part perspective view of the semiconductor device 2 of 2nd Example is shown. 第3実施例の半導体装置3のトレンチゲート電極の平面パターンを示す。The plane pattern of the trench gate electrode of the semiconductor device 3 of 3rd Example is shown. 第4実施例の半導体装置4のトレンチゲート電極の平面パターンを示す。The plane pattern of the trench gate electrode of the semiconductor device 4 of 4th Example is shown. 第5実施例の半導体装置5の要部斜視図を示す。The principal part perspective view of the semiconductor device 5 of 5th Example is shown. 従来の半導体装置の要部斜視図を示す。The principal part perspective view of the conventional semiconductor device is shown.

最初に実施例の主要な特徴を列記する。
(第1実施形態) エミッタ電極に接続されている第1導電型(例えばp型)のボディコンタクト領域と、そのエミッタ電極に接続されている第2導電型(例えばn型)のエミッタ領域と、ボディコンタクト領域とエミッタ領域を囲繞する第1導電型のボディ領域と、ボディ領域に接するとともにそのボディ領域によってボディコンタクト領域とエミッタ領域から隔てられている第2導電型のドリフト領域と、そのドリフト領域に接するとともにそのドリフト領域によってボディ領域から隔てられているバッファ領域と、そのバッファ領域に接するとともにそのバッファ領域によってドレイン領域から隔てられているコレクタ領域と、そのコレクタ領域に接続されているコレクタ電極と、エミッタ領域とドリフト領域を隔てているボディ領域にゲート絶縁膜を介して対向しているゲート電極を備えているIGBTにおいて、そのトレンチゲート電極は、トレンチ幅の異なる部分がトレンチゲート電極の長手方向に形成されている。
(第2実施形態) ソース電極に接続されている第1導電型(例えばp型)のボディコンタクト領域と、そのソース電極に接続されている第2導電型(例えばn型)のソース領域と、ボディコンタクト領域とソース領域を囲繞する第1導電型のボディ領域と、ボディ領域に接するとともにそのボディ領域によってボディコンタクト領域とソース領域から隔てられている第2導電型のドリフト領域と、そのドリフト領域に接するとともにそのドリフト領域によってボディ領域から隔てられているドレイン領域と、そのドレイン領域に接続されているドレイン電極と、ソース領域とドリフト領域を隔てているボディ領域にゲート絶縁膜を介して対向するゲート電極とを備えているMOSにおいて、そのトレンチゲート電極は、トレンチ幅の異なる部分がトレンチゲート電極の長手方向に形成されている。
(第3実施形態) トレンチゲート電極群の平面パターンの位相が、トレンチゲート電極の長手方向で揃っている。
(第4実施形態) トレンチゲート電極の幅の異なる部分が、トレンチゲート電極の長手方向に沿って一定の周期性をもって(等間隔で)形成されている。
(第5実施形態) トレンチゲート電極のトレンチ幅が幅広な部分の長手方向の長さは、隣接するトレンチゲート電極までの間隔の5倍以下で形成されている。
First, the main features of the embodiment are listed.
First Embodiment A first conductivity type (for example, p-type) body contact region connected to an emitter electrode, a second conductivity type (for example, n-type) emitter region connected to the emitter electrode, and A body region of a first conductivity type surrounding the body contact region and the emitter region; a drift region of a second conductivity type in contact with the body region and separated from the body contact region and the emitter region by the body region; and the drift region A buffer region that is in contact with the buffer region and separated from the body region by the drift region, a collector region that is in contact with the buffer region and is separated from the drain region by the buffer region, and a collector electrode that is connected to the collector region; In the body region separating the emitter region and drift region In an IGBT including gate electrodes facing each other with a gate insulating film interposed therebetween, the trench gate electrode is formed with portions having different trench widths in the longitudinal direction of the trench gate electrode.
Second Embodiment A first conductivity type (for example, p-type) body contact region connected to a source electrode, a second conductivity type (for example, n-type) source region connected to the source electrode, A body region of a first conductivity type surrounding the body contact region and the source region; a drift region of a second conductivity type in contact with the body region and separated from the body contact region and the source region by the body region; and the drift region A drain region separated from the body region by the drift region, a drain electrode connected to the drain region, and a body region separating the drift region from the source region through a gate insulating film In a MOS including a gate electrode, the trench gate electrode is a portion having a different trench width. Minutes are formed in the longitudinal direction of the trench gate electrode.
Third Embodiment The phase of the planar pattern of the trench gate electrode group is aligned in the longitudinal direction of the trench gate electrode.
(4th Embodiment) The part from which the width | variety of a trench gate electrode differs is formed with fixed periodicity (at equal intervals) along the longitudinal direction of a trench gate electrode.
Fifth Embodiment The length in the longitudinal direction of the portion of the trench gate electrode where the trench width is wide is formed to be not more than 5 times the distance to the adjacent trench gate electrode.

図面を参照して以下に各実施例を詳細に説明する。
(第1実施例) 図1には、第1実施例の半導体装置1の要部斜視図が模式的に示されている。半導体装置1はコレクタ・エミッタ電極間を流れる電流のオン・オフを制御するトレンチゲート電極32を備えた半導体装置である。
半導体装置1の構成を半導体装置の膜厚方向(図中z方向)に裏面側から説明すると、アルミニウム等からなるコレクタ電極(図示省略)と接続されるp型の不純物を含有するシリコン単結晶のコレクタ領域22が形成されている。そのコレクタ領域22上にはn型の不純物を含有するシリコン単結晶のバッファ領域24が形成されている。そのバッファ領域24上にはn型の不純物を含有するシリコン単結晶のドリフト領域26が形成されている。ドリフト領域26上にはp型の不純物を含有するシリコン単結晶のボディ領域28が形成されている。
ボディ領域28を貫通してドリフト領域26に達し、そのボディ領域28にゲート絶縁膜33を介して対向しているトレンチゲート電極32が、並列に複数個形成されている(図中y方向に並列に形成されている)。ゲート絶縁膜33は酸化シリコンで形成され、トレンチゲート電極32はポリシリコンで形成されている。トレンチゲート電極32は、トレンチゲート電極32の長手方向(図中x方向)でトレンチ幅の幅広な部分が一定の周期で繰返して形成されている。あるいは、トレンチゲート電極32のトレンチ幅の幅広な部分が等間隔で繰返されているとも言える。
トレンチゲート電極32の平面パターンを見ると、隣接するトレンチゲート電極32の平面パターンの周期の位相は揃っている。したがって隣接するトレンチゲート電極32の幅広な部分で挟まれた間隔は狭く形成され、隣接するトレンチゲート電極32の幅広でない部分で挟まれた間隔は広く形成されている。その隣接するトレンチゲート電極32に挟まれた狭い間隔と広い間隔が、トレンチゲート電極32の伸びている方向(x方向)に交互に周期的に形成されている。
Embodiments will be described in detail below with reference to the drawings.
First Embodiment FIG. 1 schematically shows a perspective view of a main part of a semiconductor device 1 according to a first embodiment. The semiconductor device 1 is a semiconductor device including a trench gate electrode 32 that controls on / off of a current flowing between a collector and an emitter electrode.
The structure of the semiconductor device 1 will be described from the back side in the film thickness direction (z direction in the drawing) of the semiconductor device. A silicon single crystal containing p + -type impurities connected to a collector electrode (not shown) made of aluminum or the like Collector region 22 is formed. A silicon single crystal buffer region 24 containing an n + type impurity is formed on the collector region 22. Its on the buffer region 24 n - drift region 26 of the silicon single crystal containing type impurities is formed. On the drift region 26, a silicon single crystal body region 28 containing ap + type impurity is formed.
A plurality of trench gate electrodes 32 penetrating through the body region 28 and reaching the drift region 26 and facing the body region 28 via a gate insulating film 33 are formed in parallel (parallel to the y direction in the figure). Formed). The gate insulating film 33 is made of silicon oxide, and the trench gate electrode 32 is made of polysilicon. The trench gate electrode 32 is formed by repeating a portion having a wide trench width in the longitudinal direction (x direction in the drawing) of the trench gate electrode 32 at a constant cycle. Or it can be said that the wide part of the trench width of the trench gate electrode 32 is repeated at equal intervals.
When the planar pattern of the trench gate electrode 32 is viewed, the phases of the periods of the planar patterns of the adjacent trench gate electrodes 32 are aligned. Accordingly, the interval between the wide portions of the adjacent trench gate electrodes 32 is formed narrow, and the interval between the non-wide portions of the adjacent trench gate electrodes 32 is formed wide. Narrow and wide intervals between the adjacent trench gate electrodes 32 are alternately and periodically formed in the extending direction (x direction) of the trench gate electrodes 32.

ボディ領域28上部には、選択的にn型の不純物を含有するエミッタ領域34とp型のボディコンタクト領域36が形成されている。エミッタ領域34は隣接するトレンチゲート電極32間の間隔が広い領域にトレンチゲート電極32に接して形成されている。ボディコンタクト領域36は、隣接するトレンチゲート電極32間の間隔が狭い領域を含めてボディ領域28の上部に亘って形成されている。エミッタ領域34とボディコンタクト領域36はエミッタ電極(図示省略)に接続されている。ボディコンタクト領域36は、エミッタ電極とボディ領域28を等電位に保つためのものであり、エミッタ電極とボディ領域28の間にオーミック接続が確保されていれば省略することができる。狭義のボディ領域28とボディコンタクト領域34を総称して広義のボディ領域といってもよい。
各半導体領域の不純物濃度は、コレクタ領域22が1×1018〜1×1020cm-3の範囲であり、バッファ領域24が1×1016〜1×1018cm-3の範囲であり、ドリフト領域26が1×1013〜1×1014cm-3の範囲であり、ボディ領域28が1×1016〜1×1018cm-3の範囲であり、ボディコンタクト領域34が1×1018〜1×1020cm-3の範囲であり、エミッタ領域36が1×1018〜1×1020cm-3の範囲で形成されるのが好ましい。
An emitter region 34 and an p + type body contact region 36 that selectively contain n + type impurities are formed on the body region 28. The emitter region 34 is formed in contact with the trench gate electrode 32 in a region where the interval between adjacent trench gate electrodes 32 is wide. The body contact region 36 is formed over the upper portion of the body region 28 including a region where the interval between adjacent trench gate electrodes 32 is narrow. The emitter region 34 and the body contact region 36 are connected to an emitter electrode (not shown). The body contact region 36 is used to keep the emitter electrode and the body region 28 at the same potential, and can be omitted if an ohmic connection is secured between the emitter electrode and the body region 28. The narrowly defined body region 28 and body contact region 34 may be collectively referred to as a broadly defined body region.
The impurity concentration of each semiconductor region is in the range of 1 × 10 18 to 1 × 10 20 cm −3 for the collector region 22, and in the range of 1 × 10 16 to 1 × 10 18 cm −3 for the buffer region 24, The drift region 26 is in the range of 1 × 10 13 to 1 × 10 14 cm −3 , the body region 28 is in the range of 1 × 10 16 to 1 × 10 18 cm −3 , and the body contact region 34 is 1 × 10 10. 18 in the range of ~1 × 10 20 cm -3, preferably emitter region 36 is formed in a range of 1 × 10 18 ~1 × 10 20 cm -3.

図1の平面図が図2に示されており、図2中のI−I線矢視断面図が図1の正面に対応している。なお、この平面図はコレクタ・エミッタ電極間の方向に直交する面で断面視していることになる。
複数のトレンチゲート電極32がy方向に並列に形成されており、そのトレンチゲート電極32の長手方向(図中x方向)にトレンチ幅が幅広な部分(図中L4)が周期的に形成されている。したがって、このトレンチ幅の幅広な部分(図中L4)は、トレンチ幅が幅広ではない部分を含めた周期(図中L3)に対してある割合で形成されていることになる。換言すれば、トレンチゲート電極32の全長の長さに対してある割合で形成されているとも言える。この割合は、30〜80%の範囲で形成されているのが好ましい。
また、トレンチゲート電極32のトレンチ幅が幅広な部分(図中L4)は、隣接するトレンチゲート電極32との間隔が狭い領域(図中L1)を形成する。同様にトレンチゲート電極32のトレンチ幅が幅広でない部分は、隣接するトレンチゲート電極32間の間隔が広い領域(図中L2)を形成する。この隣接するトレンチゲート電極32間の間隔が狭い領域(図中L1)と広い領域(図中L2)が、トレンチゲート電極32の平面パターンの周期に沿って、トレンチゲート電極32の伸びる方向(図中x方向)に周期的に形成されている。
ボディコンタクト領域36の表面積は、隣接するトレンチゲート電極32間の間隔が狭い領域(図中L1)が形成されることで、その表面積は小さくなっている。
A plan view of FIG. 1 is shown in FIG. 2, and a cross-sectional view taken along line II in FIG. 2 corresponds to the front of FIG. This plan view is a cross-sectional view taken along a plane orthogonal to the direction between the collector and emitter electrodes.
A plurality of trench gate electrodes 32 are formed in parallel in the y direction, and a portion having a wide trench width (L4 in the figure) is periodically formed in the longitudinal direction of the trench gate electrode 32 (x direction in the figure). Yes. Therefore, the wide part of the trench width (L4 in the figure) is formed at a certain ratio with respect to the period (L3 in the figure) including the part where the trench width is not wide. In other words, it can be said that the trench gate electrode 32 is formed at a certain ratio with respect to the total length of the trench gate electrode 32. This ratio is preferably formed in a range of 30 to 80%.
Further, a portion (L4 in the drawing) where the trench width of the trench gate electrode 32 is wide forms a region (L1 in the drawing) where the distance from the adjacent trench gate electrode 32 is narrow. Similarly, in the portion where the trench width of the trench gate electrode 32 is not wide, a region (L2 in the drawing) where the interval between the adjacent trench gate electrodes 32 is wide is formed. The direction in which the trench gate electrode 32 extends along the period of the planar pattern of the trench gate electrode 32 (L1 in the drawing) and the wide region (L2 in the drawing) between the adjacent trench gate electrodes 32 are narrow (L1 in the drawing) and wide regions (L2 in the drawing). In the middle x direction).
The surface area of the body contact region 36 is reduced by forming a region (L1 in the figure) where the interval between adjacent trench gate electrodes 32 is narrow.

半導体装置1がオン状態のときの動作を説明する。
エミッタ電極を接地し、コレクタ電極に正電圧を印加し、トレンチゲート電極32に正電圧を印加すると、ボディ領域28のうちトレンチゲート電極32と対向する箇所がn型に反転される。そのために、電子キャリアがエミッタ領域34からそのn型に反転した箇所をトレンチゲート電極32に沿って通過し、ドリフト領域26へ注入される。ドリフト領域26に注入された電子キャリアは、そのドリフト領域26内をコレクタ電極側へ向かって流れ、電子キャリアはバッファ領域24内に蓄積する。電子キャリアがバッファ領域24に蓄積すると、バッファ領域24とコレクタ領域22の接触電位差が低下し、コレクタ領域22からバッファ領域24へ正孔キャリアが導入され、さらにはドリフト領域26へ正孔キャリアが注入される。これによりバッファ領域24及びドリフト領域26に伝導度変調現象が起こり、低いオン電圧を実現する。
An operation when the semiconductor device 1 is in the on state will be described.
When the emitter electrode is grounded, a positive voltage is applied to the collector electrode, and a positive voltage is applied to the trench gate electrode 32, the portion of the body region 28 facing the trench gate electrode 32 is inverted to n-type. For this purpose, electron carriers pass from the emitter region 34 to the n-type inverted portion along the trench gate electrode 32 and are injected into the drift region 26. The electron carriers injected into the drift region 26 flow in the drift region 26 toward the collector electrode, and the electron carriers accumulate in the buffer region 24. When electron carriers accumulate in the buffer region 24, the contact potential difference between the buffer region 24 and the collector region 22 decreases, hole carriers are introduced from the collector region 22 into the buffer region 24, and further hole carriers are injected into the drift region 26. Is done. As a result, a conductivity modulation phenomenon occurs in the buffer region 24 and the drift region 26, and a low on-voltage is realized.

コレクタ領域22からドリフト領域26に注入された正孔キャリアは、電子キャリアと再結合して消滅するか、あるいはボディ領域28とボディコンタクト領域36を経由してエミッタ電極へ排出される。
このとき、トレンチゲート電極32のトレンチ幅が幅広な部分に挟まれた領域(図2中のL1に対応する領域)にはボディコンタクト領域36が形成されているため、このボディコンタクト領域36に向かって、このボディコンタクト領域36の下方のボディ領域28内に、ドリフト領域26から正孔キャリアが流入してくる。しかしながら、トレンチ幅が幅広なトレンチゲート電極32で挟まれたこのボディ領域28は、その幅が狭くなっているため正孔キャリアに対する拡散抵抗が大きくなっている。さらに、ボディコンタクト領域36の面積が小さくなっているため、その正孔キャリアに対するコンタクト抵抗も大きい。したがって、このトレンチ幅が幅広な部分に対応するボディ領域28とボディコンタクト領域36を経由してエミッタ電極へ排出される正孔キャリアに対する抵抗値が大きく、そのためボディ領域28内の正孔キャリア濃度が高くなる。これに伴って、エミッタ領域34から注入される電子キャリアが増加するのでオン電圧が低下する。
The hole carriers injected from the collector region 22 into the drift region 26 are recombined with the electron carriers and disappear, or are discharged to the emitter electrode via the body region 28 and the body contact region 36.
At this time, since the body contact region 36 is formed in a region (region corresponding to L1 in FIG. 2) sandwiched between portions where the trench width of the trench gate electrode 32 is wide, it faces the body contact region 36. Thus, hole carriers flow from the drift region 26 into the body region 28 below the body contact region 36. However, since the body region 28 sandwiched between the trench gate electrodes 32 having a wide trench width is narrow, the diffusion resistance against hole carriers is large. Furthermore, since the area of the body contact region 36 is small, the contact resistance with respect to the hole carriers is also large. Therefore, the resistance value with respect to the hole carriers discharged to the emitter electrode via the body region 28 and the body contact region 36 corresponding to the wide trench width portion is large, so that the hole carrier concentration in the body region 28 is high. Get higher. Along with this, since the electron carriers injected from the emitter region 34 increase, the on-voltage decreases.

ところで、トレンチゲート電極32のトレンチ幅が幅広な部分(図2中のL4)に挟まれた領域(図2中のL1)に対応するボディ領域28とドリフト領域26との間のpn接合界面の面積は、隣接するトレンチゲート電極32の間隔が広い領域(図2中のL2)に比して小さくなっている。したがってトレンチゲート電極32のトレンチ幅が幅広な部分のゲート酸化膜33には電界が集中し易くなっている。しかしながら、第1実施例の半導体装置1では、隣接するトレンチゲート電極32の間隔が狭い領域(図2中のL1)と広い領域(図2中のL2)が、トレンチゲート電極32の平面パターンの周期に沿って、トレンチゲート電極32の長手方向(図2中のx方向)に周期的に形成されている。そのため、隣接するトレンチゲート電極32の間隔が狭い領域(図2中のL1)に集中し易い電界を隣接するトレンチゲート電極32の間隔が広い領域(図2中のL2)側に分散することができる。したがってゲート絶縁膜33が破壊されるのを抑制できる。なお、上述のように集中する電界を分散させる効果を奏するには、トレンチゲート電極32のトレンチ幅の幅広な部分のトレンチゲート電極32の長手方向の長さ(図2中のL4で示される長さ)は、そのトレンチゲート電極32のトレンチ幅の幅広な部分が隣接するトレンチゲート電極32間の間隔の長さ(図2中のL1で示される長さ)の5倍以下の範囲で構成されるのが好ましい。トレンチゲート電極32のトレンチ幅の幅広な部分がこの範囲を超えて形成されていると、そのトレンチゲート電極32のゲート絶縁膜33の屈曲部に電界が集中し破壊される場合がある。   By the way, the pn junction interface between the body region 28 and the drift region 26 corresponding to the region (L1 in FIG. 2) sandwiched by the portion (L4 in FIG. 2) where the trench width of the trench gate electrode 32 is wide. The area is smaller than the region (L2 in FIG. 2) where the interval between adjacent trench gate electrodes 32 is wide. Therefore, the electric field tends to concentrate on the gate oxide film 33 in the portion where the trench width of the trench gate electrode 32 is wide. However, in the semiconductor device 1 of the first embodiment, a region (L1 in FIG. 2) and a region (L2 in FIG. 2) in which the interval between adjacent trench gate electrodes 32 is narrow are the planar pattern of the trench gate electrode 32. Along the cycle, the trench gate electrode 32 is periodically formed in the longitudinal direction (x direction in FIG. 2). Therefore, an electric field that tends to concentrate in a region where the distance between adjacent trench gate electrodes 32 is narrow (L1 in FIG. 2) may be distributed to the region where the distance between adjacent trench gate electrodes 32 is large (L2 in FIG. 2). it can. Therefore, the gate insulating film 33 can be prevented from being destroyed. In order to achieve the effect of dispersing the concentrated electric field as described above, the longitudinal length of the trench gate electrode 32 (the length indicated by L4 in FIG. 2) of the trench gate electrode 32 having a wide trench width. The width of the trench gate electrode 32 is formed in a range of 5 times or less the length of the interval between adjacent trench gate electrodes 32 (the length indicated by L1 in FIG. 2). It is preferable. If the wide portion of the trench gate electrode 32 having a wide trench width is formed beyond this range, the electric field may concentrate on the bent portion of the gate insulating film 33 of the trench gate electrode 32 and may be destroyed.

第1実施例の変形例を図面を参照して以下に説明する。なお、第1実施例と略同一の構成には同一符号を付して説明を省略する。
(第2実施例) 図3に半導体装置2の要部斜視図が模式的に示されている。半導体装置2は、第1実施例の半導体装置1の構成と比較すると、エミッタ領域34を形成する位置が異なっている。トレンチゲート電極32のトレンチ幅の幅広の部分に挟まれたボディ領域28上部にもエミッタ領域34が形成されている。
この場合、トレンチゲート電極32のトレンチ幅が幅広な部分に対向するボディ領域28内に形成された反転層を、エミッタ領域34から注入された電子キャリアがチャネルとして効果的に利用できる。したがって、チャネル幅が広くなりオン電圧を低下させることができる。
A modification of the first embodiment will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the substantially same structure as 1st Example, and description is abbreviate | omitted.
Second Embodiment FIG. 3 schematically shows a perspective view of a main part of the semiconductor device 2. The semiconductor device 2 differs from the configuration of the semiconductor device 1 of the first embodiment in the position where the emitter region 34 is formed. An emitter region 34 is also formed on the body region 28 sandwiched between the wide portions of the trench gate electrode 32 having a large trench width.
In this case, the inversion layer formed in the body region 28 facing the wide trench width portion of the trench gate electrode 32 can effectively use the electron carriers injected from the emitter region 34 as a channel. Therefore, the channel width is widened and the on-voltage can be reduced.

(第3実施例) 図4に半導体装置3のトレンチゲート電極32の要部平面パターンが模式的に示されている。
トレンチゲート電極32のトレンチ幅の幅広な部分は、第1実施例の半導体装置1のように矩形である必要はなく、多角形で構成されていてもよい。第3実施例の場合は略六角形の形状となっている。この場合でも、第1実施例の半導体装置1と同様の作用効果によってトレンチゲート電極32のトレンチ幅が幅広な部分に挟まれた領域の正孔キャリアに対する拡散抵抗やコンタクト抵抗が高くなり、オン電圧が低下する。
Third Example FIG. 4 schematically shows a main part plane pattern of a trench gate electrode 32 of a semiconductor device 3.
The wide part of the trench width of the trench gate electrode 32 does not need to be rectangular like the semiconductor device 1 of the first embodiment, and may be formed in a polygon. In the case of the third embodiment, it has a substantially hexagonal shape. Even in this case, the diffusion resistance and the contact resistance with respect to the hole carriers in the region sandwiched between the wide portions of the trench gate electrode 32 are increased by the same effect as the semiconductor device 1 of the first embodiment, and the on-voltage is increased. Decreases.

(第4実施例) 図5の半導体装置4は隣接するトレンチゲート電極32の平面パターンが線対称ではない場合が模式的に示されている。
この場合でも、トレンチゲート電極32のトレンチ幅が幅広な部分が、隣接するトレンチゲート電極32間の狭くし、その狭い間隔において正孔キャリアに対する拡散抵抗やコンタクト抵抗が高くなり、オン電圧が低下する。
(4th Example) The semiconductor device 4 of FIG. 5 has shown typically the case where the planar pattern of the adjacent trench gate electrode 32 is not line symmetrical.
Even in this case, the portion where the trench width of the trench gate electrode 32 is wide is narrowed between the adjacent trench gate electrodes 32, and the diffusion resistance and contact resistance with respect to hole carriers are increased at the narrow interval, and the on-voltage is lowered. .

(第5実施例) 図6に半導体装置5の要部斜視図が模式的に示されている。
第5実施例の半導体装置5は、トレンチゲート電極32のトレンチ幅の幅広な部分に挟まれた領域の上部にエミッタ領域34が形成されている。また、本実施例では、トレンチゲート電極32のトレンチ幅の幅広な部分に挟まれた領域の幅(図中L1)が極めて狭く形成されている。極めて狭く形成されていると、トレンチゲート電極32にゲート電圧が印加されていない状態ではエミッタ領域34の下方に形成されているボディ領域28が実質完全空乏化される。つまり、ゲート絶縁膜32とボディ領域28の接合界面から広がる空乏層が、このトレンチで挟まれた箇所が極めて狭くなると、対向するトレンチゲート電極32から広がる空乏層が繋がるために、トレンチゲート電極32にゲート電圧が印加されていない状態でボディ領域28内が実質完全空乏化されるのである。これにより、トレンチゲート電極32にゲート電圧が印加されると、空乏層がそれ以上広がることができないために、すぐに反転層が形成される。つまり、半導体装置のターンオン時間が短くなる。
なお、第5実施例の半導体装置5においても、ボディコンタクト領域36の面積が減少しているために、正孔キャリアに対するコンタクト抵抗が増加している。したがってボディ領域28内の正孔キャリア濃度は高くなっており、オン電圧の低下も実現している。
トレンチゲート電極32のトレンチ幅の幅広な部分に挟まれた領域を実質完全空乏化するには、その領域の幅(図中L1)とトレンチゲート電極32のゲート絶縁膜33の膜厚を適宜調整すればよい。また、この領域が実質完全空乏化される場合は、その領域の導電型は特に問題とならないため、エミッタ領域34の下方にボディ領域28が形成されていなくてもよく、エミッタ領域34がドリフト領域26に直接接していてもよい。
Fifth Embodiment FIG. 6 schematically shows a perspective view of the main part of the semiconductor device 5.
In the semiconductor device 5 of the fifth embodiment, an emitter region 34 is formed in an upper portion of a region sandwiched between the wide portions of the trench gate electrode 32 having a trench width. Further, in this embodiment, the width (L1 in the drawing) of the region sandwiched between the wide portions of the trench gate electrode 32 having the wide trench width is formed to be extremely narrow. If formed extremely narrow, the body region 28 formed below the emitter region 34 is substantially completely depleted when no gate voltage is applied to the trench gate electrode 32. That is, if the depletion layer extending from the junction interface between the gate insulating film 32 and the body region 28 becomes extremely narrow, the depletion layer extending from the opposing trench gate electrode 32 is connected to the trench gate electrode 32. Thus, the body region 28 is substantially completely depleted in a state where no gate voltage is applied. As a result, when a gate voltage is applied to the trench gate electrode 32, the depletion layer cannot be expanded any more, so an inversion layer is formed immediately. That is, the turn-on time of the semiconductor device is shortened.
Also in the semiconductor device 5 of the fifth embodiment, since the area of the body contact region 36 is reduced, the contact resistance with respect to hole carriers is increased. Therefore, the hole carrier concentration in the body region 28 is high, and the ON voltage is also reduced.
In order to substantially completely deplete the region sandwiched between the wide portions of the trench gate electrode 32, the width of the region (L1 in the figure) and the thickness of the gate insulating film 33 of the trench gate electrode 32 are appropriately adjusted. do it. When this region is substantially completely depleted, the conductivity type of the region is not particularly problematic. Therefore, the body region 28 does not have to be formed below the emitter region 34, and the emitter region 34 is formed in the drift region. 26 may be in direct contact.

以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

22:コレクタ領域
24:バッファ領域
26:ドリフト領域
28:ボディ領域
32:トレンチゲート電極
33:ゲート酸化膜
34:エミッタ領域(第2導電型半導体領域)
36:ボディコンタクト領域
22: collector region 24: buffer region 26: drift region 28: body region 32: trench gate electrode 33: gate oxide film 34: emitter region (second conductivity type semiconductor region)
36: Body contact area

Claims (5)

一対の主電極と、
一方の主電極に接続されている第2導電型半導体領域と、
前記第2導電型半導体領域を囲繞するとともに、前記一方の主電極に接続されている第1導電型のボディ領域と、
前記ボディ領域に接するとともに、前記ボディ領域によって前記第2導電型半導体領域から隔てられている第2導電型のドリフト領域と、
前記第2導電型半導体領域と前記ドリフト領域を隔てている前記ボディ領域にゲート絶縁膜を介して対向しているトレンチゲート電極を備えている半導体装置において、
前記トレンチゲート電極は、トレンチ幅の異なる部分がトレンチゲート電極の長手方向に形成されていることを特徴とする半導体装置。
A pair of main electrodes;
A second conductivity type semiconductor region connected to one main electrode;
A first conductivity type body region surrounding the second conductivity type semiconductor region and connected to the one main electrode;
A drift region of a second conductivity type in contact with the body region and separated from the second conductivity type semiconductor region by the body region;
In the semiconductor device comprising a trench gate electrode facing the body region separating the second conductivity type semiconductor region and the drift region via a gate insulating film,
A portion of the trench gate electrode having a different trench width is formed in the longitudinal direction of the trench gate electrode.
トレンチゲート電極のトレンチ幅の長手方向の位相が、隣接するトレンチゲート電極において揃っていることを特徴とする請求項1の半導体装置。   2. The semiconductor device according to claim 1, wherein phases of the trench gate electrodes in the longitudinal direction of the trench width are aligned in adjacent trench gate electrodes. トレンチ幅の広い部分と狭い部分がトレンチゲート電極の長手方向に交互に形成されており、
トレンチ幅の幅広な部分の合計長さが、トレンチゲート電極の全長の30〜80%の範囲で形成されていることを特徴とする請求項1又は2の半導体装置。
The wide part and the narrow part of the trench width are alternately formed in the longitudinal direction of the trench gate electrode,
3. The semiconductor device according to claim 1, wherein the total length of the wide portion of the trench width is formed in a range of 30 to 80% of the entire length of the trench gate electrode.
トレンチゲート電極のトレンチ幅の異なる部分が、トレンチゲート電極の長手方向に沿って周期的に繰返されて形成されていることを特徴とする請求項1〜3のいずれかの半導体装置。   4. The semiconductor device according to claim 1, wherein portions of the trench gate electrode having different trench widths are periodically repeated along the longitudinal direction of the trench gate electrode. 隣接するトレンチゲート電極間の間隔の狭い領域に存在する半導体領域が、トレンチゲート電極にゲートオン電圧が印加されていない状態で実質的に完全空乏化されていることを特徴とする請求項1〜4のいずれかの半導体装置。   5. The semiconductor region existing in a narrow region between adjacent trench gate electrodes is substantially completely depleted in a state where no gate-on voltage is applied to the trench gate electrode. Any of the semiconductor devices.
JP2010023730A 2010-02-05 2010-02-05 Semiconductor device Pending JP2010103565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010023730A JP2010103565A (en) 2010-02-05 2010-02-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010023730A JP2010103565A (en) 2010-02-05 2010-02-05 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003382834A Division JP4623956B2 (en) 2003-11-12 2003-11-12 IGBT

Publications (1)

Publication Number Publication Date
JP2010103565A true JP2010103565A (en) 2010-05-06

Family

ID=42293840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010023730A Pending JP2010103565A (en) 2010-02-05 2010-02-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2010103565A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541515A (en) * 1990-09-17 1993-02-19 Toshiba Corp Insulated-gate thyristor
JPH11103057A (en) * 1997-03-17 1999-04-13 Toshiba Corp Semiconductor device
JP2003533889A (en) * 2000-05-13 2003-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Trench gate semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541515A (en) * 1990-09-17 1993-02-19 Toshiba Corp Insulated-gate thyristor
JPH11103057A (en) * 1997-03-17 1999-04-13 Toshiba Corp Semiconductor device
JP2003533889A (en) * 2000-05-13 2003-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Trench gate semiconductor device

Similar Documents

Publication Publication Date Title
JP4623956B2 (en) IGBT
JP4723816B2 (en) Semiconductor device
JP6197995B2 (en) Wide band gap insulated gate semiconductor device
JP5198030B2 (en) Semiconductor element
JP5900698B2 (en) Semiconductor device
JP2001135819A (en) Super-junction semiconductor element
JP2002134748A (en) Superjunction semiconductor device
US10276654B2 (en) Semiconductor device with parallel PN structures
JP6356803B2 (en) Insulated gate bipolar transistor
JP2007281034A (en) Power semiconductor element
JP5297706B2 (en) Semiconductor device
JP2004134597A (en) Semiconductor element
JP4698767B2 (en) Semiconductor device
JP2018060984A (en) Semiconductor device
JP4483001B2 (en) Semiconductor element
EP2860761A1 (en) Semiconductor device
TW201803125A (en) Vertical SiC MOSFET
JP7147510B2 (en) switching element
WO2015145913A1 (en) Semiconductor device
JP2005150348A (en) Semiconductor device
JP2009111237A (en) Semiconductor device
JP7326991B2 (en) switching element
JP2010103565A (en) Semiconductor device
JP2008270492A (en) Insulated gate semiconductor device
JP2018046254A (en) Switching element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Effective date: 20130108

Free format text: JAPANESE INTERMEDIATE CODE: A02