JP2010101453A - Guide member, motion guide device, and method of manufacturing guide member - Google Patents

Guide member, motion guide device, and method of manufacturing guide member Download PDF

Info

Publication number
JP2010101453A
JP2010101453A JP2008274778A JP2008274778A JP2010101453A JP 2010101453 A JP2010101453 A JP 2010101453A JP 2008274778 A JP2008274778 A JP 2008274778A JP 2008274778 A JP2008274778 A JP 2008274778A JP 2010101453 A JP2010101453 A JP 2010101453A
Authority
JP
Japan
Prior art keywords
hollow structural
guide
wall
structural member
guide member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008274778A
Other languages
Japanese (ja)
Other versions
JP5322578B2 (en
Inventor
Takeki Shirai
武樹 白井
Katsuya Iida
勝也 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2008274778A priority Critical patent/JP5322578B2/en
Publication of JP2010101453A publication Critical patent/JP2010101453A/en
Application granted granted Critical
Publication of JP5322578B2 publication Critical patent/JP5322578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • F16C29/06Ball or roller bearings in which the rolling bodies circulate partly without carrying load
    • F16C29/0633Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides
    • F16C29/0635Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end
    • F16C29/0638Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls
    • F16C29/0642Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls
    • F16C29/0647Ball or roller bearings in which the rolling bodies circulate partly without carrying load with a bearing body defining a U-shaped carriage, i.e. surrounding a guide rail or track on three sides whereby the return paths are provided as bores in a main body of the U-shaped carriage, e.g. the main body of the U-shaped carriage is a single part with end caps provided at each end with balls with four rows of balls with load directions in X-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/002Elastic or yielding linear bearings or bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/005Guide rails or tracks for a linear bearing, i.e. adapted for movement of a carriage or bearing body there along
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Bearings For Parts Moving Linearly (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of restricting vibration in a guide member of a motion guide device with a simple structure and a simple method of manufacturing the guide member. <P>SOLUTION: A track rail 142 of a linear motion guide device is structured of: a rail frame part 2 structuring the whole circumstance of the outer periphery with a view from the axial direction; and a vibration control part 3 tightly adhered to the inner wall of the rail frame part 2. Vibration energy caused in the rail frame part 2 is consumed by internal friction of the vibration control part 3 or contact friction between the vibration control part 3 and the rail frame part 2 to restrict vibration of the track rail 142. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、案内部材に対して、多数の転動体を介して移動体を支持し、該移動体を案内部材に沿って移動自在とした運動案内装置及びその案内部材と、該案内部材の製造方法に関し、特に、案内部材に生じる振動を抑制する技術に関する。   The present invention relates to a motion guide device that supports a moving member via a large number of rolling elements with respect to the guide member, and moves the moving member along the guide member, the guide member, and the manufacture of the guide member. In particular, the present invention relates to a technique for suppressing vibration generated in a guide member.

工作機械や組立て機械のテーブル等を精密かつ円滑に案内する手段として、近年は軌道レールに多数の転動体(例えばボール)を介してスライダを取り付けた運動案内装置が広く使用されている。この種の運動案内装置においては、スライダの運動を案内する軌道レールの振動が大きい場合には工作機械の加工精度が低下し、組立て機械における組立て位置精度が低下するなどの不都合が生じるおそれがあった。   As a means for accurately and smoothly guiding a table of a machine tool or an assembly machine, a motion guide device in which a slider is attached to a track rail via a number of rolling elements (for example, balls) has been widely used in recent years. In this type of motion guide device, when the vibration of the track rail that guides the motion of the slider is large, the machining accuracy of the machine tool is lowered, and there is a risk that inconveniences such as lowering the assembly position accuracy in the assembly machine may occur. It was.

また、スライダの停止後における軌道レールの振動の減衰が遅い場合には、例えば組立て機械においては振動の減衰を待ってから組み付け作業に移行する必要が生じ、作業時間の短縮の妨げとなる場合があった。一方、軌道レールには高い剛性が要求されるため、上記の振動を抑制できる構成とすることは困難であった。このことは、ボールスプライン軸に多数のボールを介して外筒体を移動自在としたボールスプライン装置や、外周面に螺旋状のボールねじ溝を有するねじ軸と、ボールねじ溝を内周面に有するボールナットと、ボールねじ溝どうしの間に転動自在に嵌合された多数のボールとを備えたボールねじ装置でも同様であった。   In addition, if the vibration of the track rail after the stop of the slider is slow, for example, in an assembly machine, it is necessary to wait for the vibration to be reduced before moving to the assembly work, which may hinder work time reduction. there were. On the other hand, since the track rail is required to have high rigidity, it has been difficult to make the configuration capable of suppressing the above vibration. This is because a ball spline device in which the outer cylindrical body can be freely moved on the ball spline shaft via a large number of balls, a screw shaft having a spiral ball screw groove on the outer peripheral surface, and a ball screw groove on the inner peripheral surface. The same applies to a ball screw device including a ball nut having a large number of balls and a plurality of balls that are rotatably fitted between ball screw grooves.

これに関連し、案内軸に中空部を形成すると共に、かかる中空部内に吸音材としての発泡体を充填し、かかる中空部内を伝播する発振音を上記発泡体で吸収させるようにした技術が提案されている(特許文献1参照。)。   In connection with this, a technique has been proposed in which a hollow portion is formed in the guide shaft, a foam as a sound absorbing material is filled in the hollow portion, and the oscillation sound propagating in the hollow portion is absorbed by the foam. (See Patent Document 1).

また、案内軸に中空部を形成すると共に、かかる中空部内に僅かな隙間を残して中軸を挿入し、特定の固有振動数で振動する案内軸の内周面に対してそれとは異なる固有振動数の中軸を接触させることにより、該案内軸の振動を打ち消すようにした技術が知られている。   In addition, a hollow portion is formed in the guide shaft, and a middle shaft is inserted with a slight gap left in the hollow portion, and the natural frequency different from that on the inner peripheral surface of the guide shaft that vibrates at a specific natural frequency. A technique is known in which the vibration of the guide shaft is canceled by bringing the middle shaft into contact with each other.

しかし、案内軸の中空部内に吸音材としての発泡体を充填する技術では、案内軸の振動によって発生した音を発泡体によって吸収し、騒音が外部へ伝播するのを抑制することはできるが、案内軸の振動そのものを抑制することは困難であった。すなわち、剛体である案内軸が振動しても発泡体の内部あるいは発砲体と案内軸との界面で摩擦が発生することはなく、案内軸に生じた振動エネルギーは発泡体によって消費されることはない。   However, in the technology of filling the hollow portion of the guide shaft with a foam as a sound absorbing material, the sound generated by the vibration of the guide shaft can be absorbed by the foam, and noise can be prevented from propagating to the outside. It was difficult to suppress the vibration of the guide shaft itself. That is, even if the guide shaft, which is a rigid body, vibrates, friction does not occur inside the foam or at the interface between the foam and the guide shaft, and the vibration energy generated in the guide shaft is consumed by the foam. Absent.

また、案内軸に中空部を形成すると共に、かかる中空部内に僅かな隙間を残して異なる固有振動数の中軸を挿入する技術においては、案内軸と中軸との間には隙間が形成されていることから、案内軸に生じた振動エネルギーが中軸の存在によって消費されづらく、さらに、案内軸の振動の振幅が上記隙間の大きさを越えない限り、振動の抑制効果は期待できなかった。
実開平2−59318号公報
Further, in the technique of forming a hollow portion in the guide shaft and inserting a central shaft of a different natural frequency while leaving a slight gap in the hollow portion, a clearance is formed between the guide shaft and the central shaft. Therefore, the vibration energy generated in the guide shaft is difficult to be consumed due to the presence of the middle shaft, and further, the vibration suppressing effect cannot be expected unless the amplitude of the vibration of the guide shaft exceeds the size of the gap.
Japanese Utility Model Publication 2-59318

本発明は、上記のような不都合を解決するためになされたものであり、その目的は、簡単な構成で、運動案内装置の案内部材における振動を抑制できる技術を提供することであ
る。
The present invention has been made to solve the above inconveniences, and an object of the present invention is to provide a technique capable of suppressing vibration in a guide member of a motion guide apparatus with a simple configuration.

上記課題を解決するための本発明は、運動案内装置の案内部材が、軸方向から見て外周部全周を構成する中空構造部材と、中空構造部材の内壁に密接する内部部材からなるようにし、内部部材の内部摩擦または、内部部材と中空構造部材との接触摩擦によって、中空構造部材の振動エネルギーを消費して振動を抑制することを最大の特徴とする。   In order to solve the above problems, the present invention is such that the guide member of the motion guide device is composed of a hollow structural member that forms the entire outer periphery when viewed in the axial direction, and an internal member that is in close contact with the inner wall of the hollow structural member. The greatest feature is that vibration is suppressed by consuming vibration energy of the hollow structural member by internal friction of the internal member or contact friction between the internal member and the hollow structural member.

より詳しくは、運動案内装置における移動体を、多数の転動体を介して往復移動可能に支持することにより、前記移動体の運動のための軌道を形成する運動案内装置の案内部材であって、
軸方向から見た前記案内部材の外周部全周を構成する閉断面構造の中空構造部材と、
前記中空構造部材の内側の中空部に、その外壁面の少なくとも一部が該中空構造部材の内壁に密接するように配置されるとともに前記中空構造部材の振動エネルギーを内部摩擦または該中空構造部材との接触摩擦によって消費する内部部材と、
を有することを特徴とする。
More specifically, a guide member of a motion guide device that forms a trajectory for the motion of the mobile body by supporting the mobile body in the motion guide device so as to be able to reciprocate through a number of rolling elements,
A hollow structural member having a closed cross-sectional structure constituting the entire outer periphery of the guide member as viewed from the axial direction;
The hollow structural member is disposed in the hollow portion inside so that at least a part of its outer wall surface is in close contact with the inner wall of the hollow structural member, and vibration energy of the hollow structural member is absorbed by internal friction or the hollow structural member. Internal members consumed by contact friction of
It is characterized by having.

また、本発明の内部部材は、前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置した状態で、両方の部材に冷間引き抜き加工を行うことによってともに変形させ、前記内部部材の外壁面の少なくとも一部が前記中空構造部材の内壁に密接するように形成してもよい。   Further, the internal member of the present invention is obtained by performing cold drawing on both members in a state where the member to form the internal member is disposed inside the tubular member to form the hollow structural member. It may be deformed so that at least a part of the outer wall surface of the inner member is in close contact with the inner wall of the hollow structural member.

また、本発明の案内部材は、前記内部部材の外壁面の略全面が前記中空構造部材の内壁の略全面に密接するようにしてもよい。   In the guide member of the present invention, the substantially entire outer wall surface of the inner member may be in close contact with the substantially entire inner wall of the hollow structural member.

また、本発明の案内部材は、前記内部部材がさらに閉断面構造を有するとともに、該内部部材の内側の中空部に、外壁面の少なくとも一部が該内部部材の内壁に密接して該内部部材の振動エネルギーを内部摩擦または該内部部材との接触摩擦によって消費する、さらなる内部部材が配置される積層構造を有するようにしてもよい。また、複数段の前記積層構造を有するようにしてもよい。また、前記内部部材の内壁の略全面に、該内部部材の内側の中空部に配置された前記さらなる内部部材の外壁面の略全面が密接するようにしてもよい。   In the guide member of the present invention, the internal member further has a closed cross-sectional structure, and at least a part of the outer wall surface is in close contact with the inner wall of the internal member, and the internal member It is also possible to have a laminated structure in which a further internal member is disposed that consumes the vibration energy by internal friction or contact friction with the internal member. Moreover, you may make it have the said multi-layered laminated structure. Moreover, you may make it the substantially whole surface of the outer wall surface of the said further internal member arrange | positioned in the hollow part inside this internal member closely_contact | adhere to the substantially whole surface of the inner wall of the said internal member.

また、本発明の案内部材は、前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置した状態で、両方の部材に転造加工を行うことによってともに変形させ、前記内部部材の外壁面の少なくとも一部が前記中空構造部材の内壁に密接するように形成されるようにしてもよい。   In addition, the guide member of the present invention is deformed together by performing a rolling process on both members in a state where the member to form the inner member is disposed inside the tubular member to form the hollow structural member. The outer wall surface of the inner member may be formed so as to be in close contact with the inner wall of the hollow structural member.

また、本発明の案内部材は、前記内部部材と前記中空構造部材の線膨張係数を略一致させるようにしてもよい。   Moreover, you may make it the guide member of this invention make the linear expansion coefficient of the said internal member and the said hollow structure member substantially correspond.

また、本発明は、上記のいずれか一項に記載の案内部材と、
前記案内部材に沿って移動自在に設けられる移動体と、
前記移動体と前記案内部材の間に介装される多数の転動体と、
を備えた運動案内装置であってもよい。
In addition, the present invention provides a guide member according to any one of the above,
A movable body provided movably along the guide member;
A large number of rolling elements interposed between the movable body and the guide member;
It may be a motion guidance device provided with.

また、本発明は、前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置する配置工程と、
前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置した状態で冷間引き抜き加工を行うことによってともに変形させる成形工程と、
を有し、
前記成形工程において、前記管状の部材の外形を前記中空構造部材の外形と略一致させるとともに、前記中空構造部材の内壁に前記内部部材の外壁面の少なくとも一部を密接させることを特徴とする上記の案内部材の製造方法であってもよい。
Further, the present invention provides an arrangement step of arranging a member to form the internal member inside a tubular member to form the hollow structural member;
A molding step in which the hollow structural member is deformed together by performing cold drawing in a state where the member to form the internal member is disposed inside the tubular member to be formed;
Have
In the molding step, the outer shape of the tubular member is substantially matched with the outer shape of the hollow structural member, and at least a part of the outer wall surface of the inner member is in close contact with the inner wall of the hollow structural member. The manufacturing method of this guide member may be sufficient.

また、本発明は、前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置する配置工程と、
前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置した状態で転造加工を行うことによってともに変形させる成形工程と、
を有し、 前記成形工程において、前記内部部材の外壁面の少なくとも一部を前記中空構造部材の内壁に密接させることを特徴とする上記の案内部材の製造方法であってもよい。
Further, the present invention provides an arrangement step of arranging a member to form the internal member inside a tubular member to form the hollow structural member;
A molding step of deforming together by performing a rolling process in a state where the member to form the internal member is disposed inside the tubular member to form the hollow structural member;
In the forming step, at least a part of the outer wall surface of the inner member may be brought into close contact with the inner wall of the hollow structural member.

本発明によれば、簡単な構成または製造方法によって、運動案内装置の案内部材における振動を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the vibration in the guide member of a movement guide apparatus can be suppressed with a simple structure or a manufacturing method.

(実施例1)
以下、本発明に係る案内部材、運動案内装置及び、案内部材の製造方法について、図面を参照して詳細に説明する。本発明の実施例1に係る運動案内装置は直進運動案内装置であって、図1に示すように、案内部材としての軌道レール142と、この軌道レール142に沿って移動する移動体としての移動ブロック141とを備えている。そして、軌道レール142と移動ブロック141との間には、多数のボール(転動体)Bが転動自在に設けられている。
Example 1
Hereinafter, a guide member, a motion guide device, and a guide member manufacturing method according to the present invention will be described in detail with reference to the drawings. The motion guide device according to the first embodiment of the present invention is a linear motion guide device, and as shown in FIG. 1, a track rail 142 as a guide member and a movement as a moving body that moves along the track rail 142. Block 141. A large number of balls (rolling elements) B are provided between the track rail 142 and the moving block 141 so as to freely roll.

図2に示すように、軌道レール142は、断面略矩形に形成されている。軌道レール142の左右両側面142c,142dには、長手方向に沿って上下一対のボール転動溝143,144が形成されている。移動ブロック141は連結部145とその両側から下方に向けて垂下された左右一対の袖部146,147とを有して下面側に凹部を備えている。そして移動ブロック141の両袖部146,147には、軌道レール142のボール転動溝143,144に対応する位置に長手方向に沿って、上下一対のボール転動溝148,149が形成されている。   As shown in FIG. 2, the track rail 142 has a substantially rectangular cross section. A pair of upper and lower ball rolling grooves 143 and 144 are formed in the left and right side surfaces 142c and 142d of the track rail 142 along the longitudinal direction. The moving block 141 has a connecting portion 145 and a pair of left and right sleeve portions 146 and 147 suspended downward from both sides thereof, and has a recess on the lower surface side. A pair of upper and lower ball rolling grooves 148 and 149 are formed in the sleeve portions 146 and 147 of the moving block 141 along the longitudinal direction at positions corresponding to the ball rolling grooves 143 and 144 of the track rail 142. Yes.

また移動ブロック141には、上下一対のボール転動溝148,149に隣接して、かつ、これらボール転動溝148,149に対応して上下一対の無負荷ボール穴150,151が形成されている。移動ブロック141の前後両端面は内面側にボール転動溝148,149と無負荷ボール穴150,151の各端部間を互いに連結して無限循環通路を形成するボール方向転換通路を有した蓋部材152,152が取り付けられている。そして、多数のボールBは、各無限循環通路内を循環し、軌道レール142のボール転動溝143,144と移動ブロック141のボール転動溝148,149との間で荷重を負荷しながら転送するようになっている。   The moving block 141 is formed with a pair of upper and lower unloaded ball holes 150 and 151 adjacent to and corresponding to the pair of upper and lower ball rolling grooves 148 and 149. Yes. The front and rear end faces of the moving block 141 are lids having ball direction change passages that connect the end portions of the ball rolling grooves 148 and 149 and the unloaded ball holes 150 and 151 to each other to form an infinite circulation passage on the inner surface side. Members 152 and 152 are attached. A large number of balls B circulate in each infinite circulation path and are transferred while applying a load between the ball rolling grooves 143 and 144 of the track rail 142 and the ball rolling grooves 148 and 149 of the moving block 141. It is supposed to be.

ボール転動溝143,144,148,149は、その横断面形状をボール半径よりも大きい半径の単一の円弧として曲面状に形成されたサーキュラー溝からなり、ボール転動溝143,144,148,149は、ボールBが接触転動する接触面を一面のみ有している。   The ball rolling grooves 143, 144, 148, and 149 are circular grooves whose cross-sectional shape is formed as a curved surface as a single arc having a radius larger than the ball radius, and the ball rolling grooves 143, 144, 148 are formed. , 149 has only one contact surface on which the ball B rolls.

ここで、従来の軌道レールは鋼材またはステンレス鋼材で形成されているために高い剛性と耐久性を得られる一方、制震性に欠ける場合があった。例えば図1に示した直進運動
案内装置を工作機械や組立て装置に用いた場合に、振動によって、加工精度や位置決め精度を維持することが困難になる場合があった。また、移動ブロックが停止した後の振動の減衰が遅いと、組立て装置において移動ブロックにおける振動の減衰を待ってから、部品の組み付けを行う必要が生じ、作業効率の低下を招く場合があった。これに対し、本実施例においては、複数の部材に対して一緒に冷間引き抜き加工を行うことで軌道レール142を形成し、この複数の部材の界面における摩擦あるいは内部摩擦によって軌道レール142の振動エネルギーを消費することで、軌道レール142の制震性を高めることとした。
Here, since the conventional track rail is formed of steel or stainless steel, high rigidity and durability can be obtained, but there is a case where the vibration control performance is lacking. For example, when the linear motion guide device shown in FIG. 1 is used for a machine tool or an assembly device, it may be difficult to maintain processing accuracy and positioning accuracy due to vibration. In addition, when the damping of the vibration after the moving block stops is slow, it is necessary to assemble the parts after waiting for the damping of the vibration in the moving block in the assembling apparatus, resulting in a decrease in work efficiency. On the other hand, in this embodiment, a plurality of members are cold-drawn together to form the track rail 142, and the vibration of the track rail 142 is caused by friction or internal friction between the plurality of members. By consuming energy, the vibration control property of the track rail 142 is improved.

図3を用いて、本実施例における軌道レール142の詳細な構成について説明する。図3(a)は、冷間引き抜き加工を行って軌道レール142を形成する前の、軌道レール142を形成すべき鋼管材102と制震部材103とが示されている。図3(b)には、冷間引き抜き加工を行った後の軌道レール142の断面が示されている。軌道レール142は、鋼管材2によって形成された中空構造部材としてのレール外殻部2と、制震部材103が塑性変形してその外壁面が全周に亘ってレール外殻部2の内壁に密接(密着)して形成された内部部材としての制震部3とによって構成されている。   A detailed configuration of the track rail 142 in the present embodiment will be described with reference to FIG. FIG. 3A shows the steel pipe material 102 and the vibration control member 103 on which the track rail 142 is to be formed before cold track drawing is performed to form the track rail 142. FIG. 3B shows a cross section of the track rail 142 after the cold drawing process. The track rail 142 includes a rail outer shell portion 2 as a hollow structural member formed by the steel pipe material 2, and a vibration control member 103 plastically deformed so that an outer wall surface of the rail outer shell portion 2 extends to the inner wall of the rail outer shell portion 2. It is comprised by the vibration control part 3 as an internal member formed closely (closely).

なお、本実施例において密接とは、中空構造部材としてのレール外殻部2の内壁と、内部部材としての制震部3の外壁面とが隙間なく接している状態を意味している。また、密着とは、中空構造部材としてのレール外殻部2の内壁と、内部部材としての制震部3の外壁面とが隙間なく離れないように接している状態を意味している。密接、密着という用語の意味は、以下の実施例においても同様に解釈できる。また、本実施例においては上記のように、レール外殻部2の内壁と、制震部3の外壁面とが全周に亘って密接(密着)しているが、このことは、内部部材の外壁面の略全面が中空構造部材の内壁の略全面に密接(密着)することに相当する。これは、中空構造部材としてのレール外殻部2の内壁と、内部部材としての制震部3の外壁面とが完全に全面において密接(密着)していることを必ずしも示していない。部分的に微小な隙間が生じていることを除外するものではない。   In addition, close in this embodiment means a state in which the inner wall of the rail outer shell portion 2 as a hollow structural member and the outer wall surface of the vibration control portion 3 as an inner member are in contact with each other without a gap. Further, the close contact means a state in which the inner wall of the rail outer shell portion 2 as a hollow structural member and the outer wall surface of the vibration control portion 3 as an internal member are in contact with each other without leaving a gap. The meaning of the terms “close” and “close” can be similarly interpreted in the following examples. Further, in this embodiment, as described above, the inner wall of the rail outer shell portion 2 and the outer wall surface of the vibration control portion 3 are in close contact (close contact) over the entire circumference. This corresponds to the fact that the substantially entire surface of the outer wall is closely (closely) adhered to the substantially entire surface of the inner wall of the hollow structural member. This does not necessarily indicate that the inner wall of the rail outer shell portion 2 as a hollow structural member and the outer wall surface of the vibration control portion 3 as an inner member are completely in close contact (adherence) over the entire surface. It is not excluded that a minute gap is generated partially.

図3(a)に示すように、加工前には断面円形の鋼管材102の内部に、冷間引き抜き加工の後の最終的な鋼管材2の中空部の形状に近い断面形状を有し、且つ制震性を有する金属材料で形成された制震部材3が備えられている。この制震部材3の材料としては、Mg−Zr合金、Al−Zn合金、Mg合金の他、例えばスターサイレント(登録商標、大同特殊鋼(株)製)などを用いることができる。この制震部材3の特徴は、外部から加えられた振動エネルギーを内部摩擦によって効率的に消費可能である点にある。なお、制震部材3の材料として先に例示した材料によって、振動の減衰効率が高くなる周波数が異なることが分かっている。従って、軌道レール142として振動を抑制したい周波数あるいは、軌道レール142の固有振動数においてより高い減衰効率を示す制震部材3を選択することで、より効率的に軌道レール142の振動を抑制することができる。   As shown in FIG. 3 (a), the cross-sectional shape is close to the shape of the hollow portion of the final steel pipe material 2 after cold drawing inside the steel pipe material 102 having a circular cross section before processing, In addition, a vibration control member 3 made of a metal material having vibration control is provided. As a material of the vibration control member 3, for example, Star Silent (registered trademark, manufactured by Daido Special Steel Co., Ltd.) can be used in addition to the Mg—Zr alloy, Al—Zn alloy, and Mg alloy. The characteristic of this damping member 3 is that vibration energy applied from the outside can be efficiently consumed by internal friction. In addition, it turns out that the frequency from which the damping efficiency of vibration becomes high differs with the material illustrated previously as a material of the damping member 3. FIG. Therefore, the vibration of the track rail 142 can be more efficiently suppressed by selecting the damping member 3 that exhibits a higher damping efficiency at the frequency at which vibration is to be suppressed as the track rail 142 or the natural frequency of the track rail 142. Can do.

本実施例においては、鋼管材2の内部に制震部材3を配置した状態で冷間引き抜き加工を行い、図3(b)に示す形状とする。その後、高周波焼き入れ、ボールBが接触する部分について研削による後加工が施される。このことで、軌道レール142が形成される。   In the present embodiment, cold drawing is performed in a state where the damping member 3 is disposed inside the steel pipe material 2, and the shape shown in FIG. Thereafter, induction hardening and post-processing by grinding are performed on the portion where the ball B comes into contact. Thus, the track rail 142 is formed.

図4には、鋼管材102と制震部材103とをダイス200を通過させて冷間引き抜き加工を行い、レール外殻部2と制震部3とが形成される様子について示す。なお、ダイス200の形状は、鋼管材102を変形させて軌道レール142の外形形状とさせることができ、且つ図3(b)に示すように、制震部3の外壁とレール外殻部2の内壁とが全周に亘って密接(密着)するように検討の上で決定される。また、ダイス200の形状、鋼管材の引き抜き速度などは、冷間引き抜き加工時に制震部材103に作用する塑性加工応力によって制震部材103の制震特性が変化しないように設定される。また、中間加熱を行
う場合には、加熱温度も制震部材103の制震特性が変化しないように設定される。
In FIG. 4, the steel pipe material 102 and the vibration control member 103 are passed through the die 200 to perform cold drawing, and the rail outer shell portion 2 and the vibration control portion 3 are formed. In addition, the shape of the die 200 can be obtained by deforming the steel pipe material 102 to obtain the outer shape of the track rail 142, and as shown in FIG. 3B, the outer wall of the vibration control portion 3 and the rail outer shell portion 2 are formed. The inner wall is determined in consideration so as to be in close contact (close contact) over the entire circumference. In addition, the shape of the die 200, the drawing speed of the steel pipe material, and the like are set so that the damping characteristics of the damping member 103 are not changed by the plastic working stress acting on the damping member 103 during cold drawing. In addition, when performing intermediate heating, the heating temperature is also set so that the damping characteristics of the damping member 103 do not change.

この構成に係る軌道レール142においては、レール外殻部2に外部から力や衝撃が作用することで生じた振動は、レール外殻部2と制震部3の界面を通過して制震部3の内部に伝播する。そして、主に制震部3の内部組織どうしの摩擦(内部摩擦)によって振動エネルギーは消費され、振動が抑制される。   In the track rail 142 according to this configuration, vibration caused by external force or impact acting on the rail outer shell portion 2 passes through the interface between the rail outer shell portion 2 and the vibration control portion 3, and the vibration control portion. 3 propagates inside. And vibration energy is consumed mainly by the friction (internal friction) between the internal structures of the damping part 3, and a vibration is suppressed.

なお、本実施例においてレール外殻部2(または鋼管材102)の厚みは、焼き入れ時の熱が制震部3に影響を及ぼさない範囲の厚みとして予め決定してもよい。また、鋼管材102の内壁あるいは制震部材103の外壁に対しては予め表面粗し処理を行ってもよい。これにより、図3(b)に示した状態においてレール外殻部2と制震部3との界面の結合力をより高めることが可能となる。そうすると、より効率良くレール外殻部2の振動エネルギーが制震部3に伝播するので、より効率よく制震効果を得ることが可能となる。   In the present embodiment, the thickness of the rail outer shell portion 2 (or the steel pipe material 102) may be determined in advance as a thickness within a range in which heat during quenching does not affect the vibration control portion 3. Further, the surface roughening treatment may be performed on the inner wall of the steel pipe material 102 or the outer wall of the vibration control member 103 in advance. Thereby, in the state shown in FIG.3 (b), it becomes possible to heighten the coupling | bonding force of the interface of the rail outer shell part 2 and the damping part 3 more. If it does so, since the vibration energy of the rail outer shell part 2 will propagate to the damping part 3 more efficiently, it becomes possible to obtain the damping effect more efficiently.

なお、上記の実施例においては、制震部材103の断面形状は冷間引き抜き加工の前に、予め予想される制震部3の断面形状に近い形状に加工しておいた。一般に鋼管材を冷間引き抜き加工する場合には、加工後の断面形状に近い芯金を鋼管材の内部に配置することで、良好な加工性が得られることが知られているからである。上記の実施例における制震部材103は、この芯金の機能をも有するので、より精密に軌道レール142の外形を成形可能となる。これに対し、制震部材103が、より塑性加工し易い材料で形成されている場合には、図5(a)に示すように、制震部材203の断面形状を円形としてもよい。これによれば、一般に入手し易い円形の断面形状を有する制震部材203を鋼管材102の内部に挿入し、両者を一緒に冷間引き抜き加工するというさらに簡便な作業によって軌道レール142を形成することが可能になる。   In the above-described embodiment, the cross-sectional shape of the vibration control member 103 is processed into a shape close to the predicted cross-sectional shape of the vibration control unit 3 before cold drawing. This is because, in general, when cold-drawing a steel pipe material, it is known that good workability can be obtained by arranging a metal core close to the cross-sectional shape after processing inside the steel pipe material. Since the damping member 103 in the above embodiment also has the function of the core bar, the outer shape of the track rail 142 can be formed more precisely. On the other hand, when the vibration control member 103 is formed of a material that is easier to plastically process, the cross-sectional shape of the vibration control member 203 may be circular as shown in FIG. According to this, the track rail 142 is formed by a simpler operation of inserting the damping member 203 having a circular cross-sectional shape that is generally available into the steel pipe material 102 and cold-drawing them together. It becomes possible.

また、上記の実施例において鋼管材102の内部に制震部材103または203を配置する工程は配置工程に相当する。鋼管材102の内部に制震部材103または203が配置された状態で冷間引き抜き加工を行う工程は成形工程に相当する。   Further, in the above embodiment, the step of arranging the vibration control member 103 or 203 inside the steel pipe material 102 corresponds to the arrangement step. A process of performing cold drawing in a state where the damping member 103 or 203 is disposed inside the steel pipe material 102 corresponds to a forming process.

(実施例2)
次に、本発明における実施例2について説明する。本実施例では、軌道レール142を鋼管材112の内部に鋼管材113を配置させた状態で、両者に対して冷間引き抜き加工を行う例について説明する。
(Example 2)
Next, a second embodiment of the present invention will be described. In the present embodiment, an example in which cold drawing is performed on the track rail 142 in a state where the steel pipe material 113 is disposed inside the steel pipe material 112 will be described.

本実施例においては、鋼管材112の内部には特に制震性に優れた制震部材を配置するのではなく、第2の鋼管材113を配置させる。そして、その状態で両者に冷間引き抜き加工を施す。これにより、軌道レール142を形成する。   In the present embodiment, a second steel pipe material 113 is arranged in the steel pipe material 112, not a vibration damping member having particularly excellent vibration damping performance. And the cold drawing process is given to both in the state. Thereby, the track rail 142 is formed.

本実施例における軌道レール142では、レール外殻部12において発生した振動が制震部13に伝播する際に、中空構造部材としてのレール外殻部12の内壁と内部部材としての制震部13の外壁面とが相対的に変位し、振動エネルギーは両者の界面における摩擦により消費される。   In the track rail 142 in the present embodiment, when vibration generated in the rail outer shell portion 12 propagates to the vibration control portion 13, the inner wall of the rail outer shell portion 12 as a hollow structural member and the vibration control portion 13 as an internal member. The outer wall surface is relatively displaced, and vibration energy is consumed by friction at the interface between the two.

本実施例によれば、入手性の高い一般的な鋼管材112と113を2重に配置して冷間引き抜き加工を行うという、簡単な構成及び製法により、制震性に優れた軌道レール142を形成することができる。ここで、鋼管材112と鋼管材113の材質は同じとしてもよい。そうすると、両者の線膨張係数を完全に一致させることができるので、制震性の温度特性を安定させることが可能である。また鋼管材112と鋼管材113の材質を変更してもよい。そうすると、両者の共振周波数の差を大きく設定することができ、レール外殻部12の共振点においてより効率的に振動を減衰させることが可能である。さらに、鋼管
材113の材質として、実施例1で説明した制震性の高い材料を用いてもよい。そうすれば、レール外殻部12に生じた振動の振動エネルギーをより効率的に、制震部13とレール外殻部12との界面及び、制震部13の内部の両方で摩擦として消費することができ、より高い制震効果を得ることが可能である。
According to the present embodiment, the track rail 142 having excellent seismic control characteristics is obtained by a simple configuration and manufacturing method in which the common steel pipe materials 112 and 113 having high availability are arranged twice and cold drawing is performed. Can be formed. Here, the material of the steel pipe material 112 and the steel pipe material 113 may be the same. Then, since the linear expansion coefficient of both can be made to correspond completely, it is possible to stabilize the temperature characteristic of vibration control. Further, the material of the steel pipe material 112 and the steel pipe material 113 may be changed. As a result, the difference between the resonance frequencies of the two can be set large, and the vibration can be attenuated more efficiently at the resonance point of the rail outer shell portion 12. Further, as the material of the steel pipe material 113, the material having high vibration control properties described in the first embodiment may be used. If it does so, the vibration energy of the vibration which arose in the rail outer shell part 12 will be consumed more efficiently as friction both in the interface of the damping part 13 and the rail outer shell part 12, and the inside of the damping part 13. It is possible to obtain a higher vibration control effect.

なお、図6においては、鋼管材112と鋼管材113とを2重に配置して冷間引き抜き加工を行った例について説明したが、図7に示すように、さらに多くの鋼管材112〜114を重ねて配置し、積層構造にしても構わない。これにより、レール外殻部加工後の鋼管材12の内壁と制震部13の外壁面との間の摩擦及び、制震部13の内壁と制震部14の外壁面との間の摩擦によって振動エネルギーを消費することができ、レール外殻部13において発生した振動をより効率的に減衰させることができる。また、鋼管材をさらに多く重ねて配置して冷間引き抜き加工を行うようにしても構わない。   In addition, in FIG. 6, although the steel pipe material 112 and the steel pipe material 113 were arrange | positioned twice and the example which performed cold drawing processing was demonstrated, as shown in FIG. 7, still more steel pipe materials 112-114 are shown. May be stacked to form a laminated structure. Thereby, the friction between the inner wall of the steel pipe 12 after the rail outer shell processing and the outer wall surface of the damping part 13 and the friction between the inner wall of the damping part 13 and the outer wall surface of the damping part 14 are caused. Vibration energy can be consumed, and vibration generated in the rail outer shell portion 13 can be damped more efficiently. Further, it is possible to perform cold drawing by arranging more steel pipe members.

また、上記の実施例においては、運動案内装置及び案内部材として図1に示した直進運動案内装置1の軌道レール142を例に挙げて本発明について説明した。しかしながら、運動案内装置は直進運動案内装置に限られない。また、案内部材は軌道レールに限られない。例えば、運動案内装置としてボールスプライン装置やボールねじ装置、案内部材としてボールスプライン軸やボールねじ軸を用いた場合にも、本発明を適用することができる。   In the above embodiment, the present invention has been described by taking the track rail 142 of the linear motion guide device 1 shown in FIG. 1 as an example of the motion guide device and the guide member. However, the motion guide device is not limited to a straight motion guide device. Further, the guide member is not limited to the track rail. For example, the present invention can be applied to a case where a ball spline device or a ball screw device is used as the motion guide device, and a ball spline shaft or a ball screw shaft is used as the guide member.

また、上記の実施例における鋼管材102、112、113、114はステンレス鋼によって形成されていてもよいことは当然である。   Of course, the steel pipe materials 102, 112, 113, and 114 in the above embodiments may be formed of stainless steel.

また、上記の実施例においては、軌道レール142においてレール外殻部2、12と制震部3、13とは、レール外殻部2、12の内壁の全周に亘って密接していた(内部部材の外壁面の略全面が中空構造部材の内壁の略全面に密接していた)。このことにより、内部部材と中空構造部材の接触面積が大きくなるので、より効率的に振動を抑制することができる。しかしながら、本発明において中空構造部材と内部部材とは、必ずしも中空構造部材の内壁の全周に亘って密接している必要はない。中空構造部材の内壁の少なくとも一部において内部部材と密接していれば、程度の差こそあれ、本発明の効果は得ることができる。   In the above-described embodiment, the rail outer shell portions 2 and 12 and the vibration control portions 3 and 13 in the track rail 142 are in close contact with the entire circumference of the inner walls of the rail outer shell portions 2 and 12 ( The substantially entire outer wall surface of the inner member was in close contact with the substantially entire inner wall of the hollow structural member). As a result, the contact area between the internal member and the hollow structural member is increased, so that vibration can be more efficiently suppressed. However, in the present invention, the hollow structural member and the internal member do not necessarily need to be in close contact over the entire circumference of the inner wall of the hollow structural member. As long as at least a part of the inner wall of the hollow structural member is in close contact with the internal member, the effects of the present invention can be obtained to some extent.

(実施例3)
次に、本発明を、ボールねじ軸に対するボールねじ溝の転造加工を行う場合に適用した例について説明する。図8には、本実施例における直進運動案内装置20の概略構成を示す。図8(a)は直線運動案内装置20を軸方向から見た図、図8(b)は軸に垂直な方向から見た図である。この直進運動案内装置20は、ナット161とボールねじ軸162とから構成されているボールねじ装置である。このボールねじ装置においては、ボールねじ軸162に設けられたボール転送溝162a及び、ナット161に設けられたボール転送溝(不図示)を負荷ボールが軸方向荷重を受けながらころがり運動することで、ナット161がボールねじ軸162に沿って円滑に直線運動を行う。
(Example 3)
Next, an example will be described in which the present invention is applied to the case of rolling a ball screw groove on a ball screw shaft. FIG. 8 shows a schematic configuration of the linear motion guide device 20 in the present embodiment. FIG. 8A is a diagram of the linear motion guide device 20 viewed from the axial direction, and FIG. 8B is a diagram viewed from the direction perpendicular to the axis. The linear motion guide device 20 is a ball screw device including a nut 161 and a ball screw shaft 162. In this ball screw device, the load ball rolls and moves in a ball transfer groove 162a provided in the ball screw shaft 162 and a ball transfer groove (not shown) provided in the nut 161 while receiving an axial load. The nut 161 smoothly performs linear motion along the ball screw shaft 162.

図8に示した案内部材としてのボールねじ軸162は、鋼管材に転造加工によってボールねじ溝162aを付することで形成されている。また、転造加工の後に鋼管材に対して高周波焼き入れが施される。本実施例においては、ボールねじ軸162を形成すべき鋼管材122の内部に、円柱状の制震部材123を配置した状態で転造加工を施している。制震部材123の材質としては、実施例1で制震部材2の材質として例示したものを用いることができる。   The ball screw shaft 162 as a guide member shown in FIG. 8 is formed by attaching a ball screw groove 162a to a steel pipe material by rolling. Moreover, induction hardening is given to a steel pipe material after a rolling process. In the present embodiment, the rolling process is performed in a state in which the columnar damping member 123 is disposed inside the steel pipe member 122 where the ball screw shaft 162 is to be formed. As a material of the damping member 123, the material exemplified as the material of the damping member 2 in the first embodiment can be used.

図9(a)には、本実施例における転造加工前の鋼管材122及び制震部材123を示
す。また、図9(b)には、転造加工によって形成されたボールねじ軸162の、ねじ軸外殻部22及び制震部23について示す。本実施例においては、鋼管材122に転造加工によってボールねじ溝162aを付した際に、ねじ軸外殻部22の内壁にはボールねじ溝162aに相当する螺旋状の凸条22aが発生する。そして、この凸条22aが発生した際に、制震部材123に凸条22aが食い込むことで、制震部材123における凸条22aと相当する部分が内側に塑性変形するとともに、凸条22aと制震部材123とが強固に結合して密接する。なお、図9(b)においては、ねじ軸外殻部22の凸条22a以外の部分では、ねじ軸外殻部22と制震部23との間に隙間があることとなっているが、制震部材123の延性によっては、凸条22aが食い込むことにより、上記隙間が存在しなくなる場合も考えられる。その場合は、ねじ軸外殻部22と制震部23との密着性をより高めることができる。
FIG. 9A shows a steel pipe material 122 and a vibration control member 123 before rolling in this embodiment. FIG. 9B shows the screw shaft outer shell portion 22 and the vibration control portion 23 of the ball screw shaft 162 formed by rolling. In this embodiment, when the ball screw groove 162a is attached to the steel pipe member 122 by rolling, a spiral ridge 22a corresponding to the ball screw groove 162a is generated on the inner wall of the screw shaft outer shell portion 22. . When the ridge 22a is generated, the ridge 22a bites into the damping member 123, so that a portion corresponding to the ridge 22a in the damping member 123 is plastically deformed inward, and the ridge 22a and the damping are formed. The seismic member 123 is tightly coupled and in close contact. In FIG. 9B, there is a gap between the screw shaft outer shell portion 22 and the vibration control portion 23 at a portion other than the protrusion 22a of the screw shaft outer shell portion 22, Depending on the ductility of the damping member 123, the above-described gap may not exist due to the ridge 22a biting in. In this case, the adhesion between the screw shaft outer shell portion 22 and the vibration control portion 23 can be further increased.

この構成に係るボールねじ軸162においては、ねじ軸外殻部22に外部から力や衝撃が作用することで生じた振動は、ねじ軸外殻部22と制震部23の界面を通過して制震部23の内部に伝播する。そして、主に制震部23の内部組織どうしの摩擦(内部摩擦)によって振動エネルギーは消費され、振動が抑制される。よって、簡単な構成及び製造方法によって直線運動案内装置20におけるボールねじ軸162の振動を抑制することが可能となる。   In the ball screw shaft 162 according to this configuration, vibration caused by external force or impact acting on the screw shaft outer shell portion 22 passes through the interface between the screw shaft outer shell portion 22 and the vibration control portion 23. Propagates inside the vibration control part 23. And vibration energy is consumed mainly by the friction (internal friction) between the internal structures of the vibration control part 23, and a vibration is suppressed. Therefore, the vibration of the ball screw shaft 162 in the linear motion guide device 20 can be suppressed with a simple configuration and manufacturing method.

次に、図10には、鋼管材132の内側に第2の鋼管材133を配置した状態で、両者に転造加工を施し、ボールねじ軸162を形成する場合について示す。図10(a)は転造加工前の状態を、図10(b)は転造加工後の状態を示す。この例では、転造加工によってねじ軸外殻部32の内壁に凸条32aが発生した際に、鋼管材133における凸条32aに相当する部分が内側に塑性変形し、制震部33が形成される。 Next, FIG. 10 shows a case where the ball screw shaft 162 is formed by rolling the two steel pipe members 133 inside the steel pipe member 132 and rolling them. FIG. 10A shows a state before the rolling process, and FIG. 10B shows a state after the rolling process. In this example, when the ridge 32a is generated on the inner wall of the screw shaft outer shell portion 32 by rolling, the portion corresponding to the ridge 32a in the steel pipe material 133 is plastically deformed inward to form the vibration control portion 33. Is done.

本実施例におけるボールねじ軸162では、ねじ軸外殻部32において発生した振動が制震部33に伝播する際に、中空構造部材としてのねじ軸外殻部32の内壁の凸条32aと内部部材としての制震部33の外壁面とが相対的に変位し、振動エネルギーは両者の界面における摩擦により消費される。   In the ball screw shaft 162 according to the present embodiment, when the vibration generated in the screw shaft outer shell portion 32 propagates to the vibration control portion 33, the protrusions 32a on the inner wall of the screw shaft outer shell portion 32 as the hollow structural member The outer wall surface of the damping part 33 as a member is relatively displaced, and vibration energy is consumed by friction at the interface between the two.

本実施例によれば、入手性の高い一般的な鋼管材132と133を2重に配置して転造加工を行うという、簡単な構成及び製法により、制震性に優れたボールねじ軸162を形成することができる。   According to the present embodiment, the ball screw shaft 162 having excellent seismic control performance is obtained by a simple configuration and manufacturing method in which common steel pipe materials 132 and 133 having high availability are doubled and rolled. Can be formed.

なお、本実施例においてねじ軸外殻部22、32(または鋼管材122、132)の厚みは、焼き入れ時の熱が制震部23、33に影響を及ぼさない範囲の厚みとして予め決定してもよい。また、鋼管材122の内壁あるいは、制震部材123の外壁面に対しては予め表面粗し処理を行ってもよい   In this embodiment, the thickness of the screw shaft outer shell portions 22 and 32 (or the steel pipe materials 122 and 132) is determined in advance as a thickness within a range in which the heat during quenching does not affect the vibration control portions 23 and 33. May be. Further, the inner wall of the steel pipe member 122 or the outer wall surface of the vibration control member 123 may be subjected to surface roughening treatment in advance.

また、本実施例において鋼管材122、132の内部に制震部材123または第2の鋼管材133を配置する工程は配置工程に相当する。鋼管材122、132の内部に制震部材123または第2の鋼管材133が配置された状態で転造加工を行う工程は成形工程に相当する。   In the present embodiment, the step of arranging the vibration control member 123 or the second steel pipe member 133 inside the steel pipe members 122 and 132 corresponds to an arrangement step. The process of performing the rolling process in a state in which the damping member 123 or the second steel pipe 133 is disposed inside the steel pipes 122 and 132 corresponds to a forming process.

なお、図10においては、鋼管材132と第2の鋼管材133とを2重に配置して転造加工を行った例について説明したが、さらに多くの鋼管材を重ねて配置し、積層構造にしても構わない。   In addition, in FIG. 10, although the example which performed the rolling process by arrange | positioning the steel pipe material 132 and the 2nd steel pipe material 133 in duplicate was demonstrated, more steel pipe materials are piled up and laminated | stacked structure It doesn't matter.

また、本実施例における鋼管材122、132、133はステンレス鋼によって形成されていてもよいことは当然である。   Of course, the steel pipe members 122, 132, and 133 in this embodiment may be formed of stainless steel.

また、本実施例においては、ボールねじ軸162においてねじ軸外殻部22、32と制震部23、33とは、ねじ軸外殻部22、32の凸条22a,32aの全周において密接していた。このことにより、内部部材と中空構造部材の接触面積が大きくなるので、より効率的に振動を抑制することができる。しかしながら、本発明において中空構造部材と内部部材とは、必ずしも中空構造部材の内壁の全周に亘って密接している必要はない。中空構造部材の内壁の少なくとも一部において内部部材と密接していれば、程度の差こそあれ、本発明の効果は得ることができる。   In the present embodiment, in the ball screw shaft 162, the screw shaft outer shell portions 22, 32 and the vibration control portions 23, 33 are in close contact with each other around the ridges 22a, 32a of the screw shaft outer shell portions 22, 32. Was. As a result, the contact area between the internal member and the hollow structural member is increased, so that vibration can be more efficiently suppressed. However, in the present invention, the hollow structural member and the internal member do not necessarily need to be in close contact over the entire circumference of the inner wall of the hollow structural member. As long as at least a part of the inner wall of the hollow structural member is in close contact with the internal member, the effects of the present invention can be obtained to some extent.

本発明の実施例1に係る直線運動案内装置の外観斜視図である。It is an external appearance perspective view of the linear motion guide apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る直線運動案内装置の一部断面図を含む正面図である。It is a front view including the partial cross section figure of the linear motion guide apparatus which concerns on Example 1 of this invention. 本発明の実施例1に係る軌道レールの冷間引き抜き加工前の状態と加工後の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state before cold drawing of the track rail which concerns on Example 1 of this invention, and the state after a process. 本発明の実施例1に係る冷間引き抜き加工の様子を説明するための図である。It is a figure for demonstrating the mode of the cold drawing processing which concerns on Example 1 of this invention. 本発明の実施例1に係る軌道レールの冷間引き抜き加工前の状態と加工後の状態の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the state before the cold drawing process of the track rail which concerns on Example 1 of this invention, and the state after a process. 本発明の実施例2に係る軌道レールの冷間引き抜き加工前の状態と加工後の状態を示す縦断面図である。It is a longitudinal cross-sectional view which shows the state before cold drawing of the track rail which concerns on Example 2 of this invention, and the state after a process. 本発明の実施例2に係る軌道レールの冷間引き抜き加工前の状態と加工後の状態の他の例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other example of the state before the cold drawing process of the track rail which concerns on Example 2 of this invention, and the state after a process. 本発明の実施例3に係る直線運動案内装置を示す図である。It is a figure which shows the linear motion guide apparatus which concerns on Example 3 of this invention. 本発明の実施例3に係るボールねじ軸の転造加工前の状態と加工後の状態を示す横断面図である。It is a cross-sectional view which shows the state before a rolling process of the ball screw shaft which concerns on Example 3 of this invention, and the state after a process. 本発明の実施例3に係るボールねじ軸の転造加工前の状態と加工後の状態の他の例を示す横断面図である。It is a cross-sectional view which shows the other example of the state before the rolling process of the ball screw shaft which concerns on Example 3 of this invention, and the state after a process.

符号の説明Explanation of symbols

1 直線運動案内装置、2 レール外殻部、3 制震部、12 レール外殻部、13 制震部、14 制震部、20 直線運動案内装置、22 ねじ軸外殻部、22a 凸条、23 制震部、32 ねじ軸外殻部、32a 凸条、33 制震部、102 鋼管材、103 制震部材、112 鋼管材、113 鋼管材、114 鋼管材、122 鋼管材、123 制震部材、132 鋼管材、133 鋼管材、141 移動ブロック、142 軌道レール、152 蓋部材、161 ナット、162 ボールねじ軸、162a ボールねじ溝、200 ダイス   DESCRIPTION OF SYMBOLS 1 Linear motion guide apparatus, 2 Rail outer shell part, 3 Damping part, 12 Rail outer shell part, 13 Damping part, 14 Damping part, 20 Linear motion guiding apparatus, 22 Screw shaft outer shell part, 22a Convex line, 23 Damping part, 32 Screw shaft outer shell part, 32a Convex strip, 33 Damping part, 102 Steel pipe material, 103 Damping member, 112 Steel pipe material, 113 Steel pipe material, 114 Steel pipe material, 122 Steel pipe material, 123 Damping member , 132 Steel pipe material, 133 Steel pipe material, 141 Moving block, 142 Track rail, 152 Lid member, 161 Nut, 162 Ball screw shaft, 162a Ball screw groove, 200 dies

Claims (10)

運動案内装置における移動体を、多数の転動体を介して往復移動可能に支持することにより、前記移動体の運動のための軌道を形成する運動案内装置の案内部材であって、
軸方向から見た前記案内部材の外周部全周を構成する閉断面構造の中空構造部材と、
前記中空構造部材の内側の中空部に、その外壁面の少なくとも一部が該中空構造部材の内壁に密接するように配置されるとともに前記中空構造部材の振動エネルギーを内部摩擦または該中空構造部材との接触摩擦によって消費する内部部材と、
を有することを特徴とする案内部材。
A movement guide apparatus guide member that forms a trajectory for movement of the moving body by supporting the moving body in the movement guide apparatus so as to be able to reciprocate through a plurality of rolling elements,
A hollow structural member having a closed cross-sectional structure constituting the entire outer periphery of the guide member as viewed from the axial direction;
The hollow structural member is disposed in the hollow portion inside so that at least a part of its outer wall surface is in close contact with the inner wall of the hollow structural member, and vibration energy of the hollow structural member is absorbed by internal friction or the hollow structural member. Internal members consumed by contact friction of
A guide member comprising:
前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置した状態で、両方の部材に冷間引き抜き加工を行うことによってともに変形させ、前記内部部材の外壁面の少なくとも一部が前記中空構造部材の内壁に密接するように形成されたことを特徴とする請求項1に記載の案内部材。   In a state where the member to form the inner member is arranged inside the tubular member to form the hollow structural member, both members are deformed together by cold drawing, and the outer wall surface of the inner member is formed. The guide member according to claim 1, wherein at least a part of the guide member is formed in close contact with an inner wall of the hollow structural member. 前記内部部材の外壁面の略全面が前記中空構造部材の内壁の略全面に密接することを特徴とする請求項1または2に記載の案内部材。 The guide member according to claim 1, wherein substantially the entire outer wall surface of the inner member is in close contact with the substantially entire inner wall of the hollow structural member. 前記内部部材がさらに閉断面構造を有するとともに、該内部部材の内側の中空部に、外壁面の少なくとも一部が該内部部材の内壁に密接して該内部部材の振動エネルギーを内部摩擦または該内部部材との接触摩擦によって消費する、さらなる内部部材が配置される積層構造を有することを特徴とする請求項1から3のいずれか一項に記載の案内部材。   The inner member further has a closed cross-sectional structure, and at least a part of the outer wall surface is in close contact with the inner wall of the inner member in the hollow portion inside the inner member so that the vibration energy of the inner member is internally frictioned or the inner The guide member according to any one of claims 1 to 3, wherein the guide member has a laminated structure in which a further inner member is disposed due to contact friction with the member. 前記内部部材の内壁の略全面に、該内部部材の内側の中空部に配置された前記さらなる内部部材の外壁面の略全面が密接することを特徴とする請求項4に記載の案内部材。   5. The guide member according to claim 4, wherein a substantially entire surface of an outer wall surface of the further inner member disposed in a hollow portion inside the inner member is in close contact with a substantially entire surface of the inner wall of the inner member. 前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置した状態で、両方の部材に転造加工を行うことによってともに変形させ、前記内部部材の外壁面の少なくとも一部が前記中空構造部材の内壁に密接するように形成されたことを特徴とする請求項1に記載の案内部材。   In a state where the member to form the inner member is disposed inside the tubular member to form the hollow structural member, both members are deformed by performing a rolling process on the outer wall surface of the inner member. The guide member according to claim 1, wherein at least a part is formed so as to be in close contact with an inner wall of the hollow structural member. 前記内部部材と前記中空構造部材の線膨張係数を略一致させたことを特徴とする請求項1から6のいずれか一項に記載の案内部材。   The guide member according to any one of claims 1 to 6, wherein linear expansion coefficients of the internal member and the hollow structural member are substantially matched. 請求項1から7のいずれか一項に記載の案内部材と、
前記案内部材に沿って移動自在に設けられる移動体と、
前記移動体と前記案内部材の間に介装される多数の転動体と、
を備えた運動案内装置。
A guide member according to any one of claims 1 to 7,
A movable body provided movably along the guide member;
A large number of rolling elements interposed between the movable body and the guide member;
An exercise guide device comprising:
前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置する配置工程と、
前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置した状態で冷間引き抜き加工を行うことによってともに変形させる成形工程と、
を有し、
前記成形工程において、前記管状の部材の外形を前記中空構造部材の外形と略一致させるとともに、前記内部部材の外壁面の少なくとも一部を前記中空構造部材の内壁に密接させることを特徴とする請求項1に記載の案内部材の製造方法。
An arrangement step of disposing a member to form the internal member inside a tubular member to form the hollow structural member;
A molding step in which the hollow structural member is deformed together by performing cold drawing in a state where the member to form the internal member is disposed inside the tubular member to be formed;
Have
The molding step is characterized in that the outer shape of the tubular member substantially matches the outer shape of the hollow structural member, and at least a part of the outer wall surface of the inner member is in close contact with the inner wall of the hollow structural member. Item 2. A method for manufacturing a guide member according to Item 1.
前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置する配置工程と、
前記中空構造部材を形成すべき管状の部材の内部に前記内部部材を形成すべき部材を配置した状態で転造加工を行うことによってともに変形させる成形工程と、
を有し、
前記成形工程において、前記内部部材の外壁面の少なくとも一部を前記中空構造部材の内壁に密接させることを特徴とする請求項1に記載の案内部材の製造方法。
An arrangement step of disposing a member to form the internal member inside a tubular member to form the hollow structural member;
A molding step of deforming together by performing a rolling process in a state where the member to form the internal member is disposed inside the tubular member to form the hollow structural member;
Have
The method for manufacturing a guide member according to claim 1, wherein in the molding step, at least a part of the outer wall surface of the inner member is brought into close contact with the inner wall of the hollow structural member.
JP2008274778A 2008-10-24 2008-10-24 Guide member manufacturing method Active JP5322578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008274778A JP5322578B2 (en) 2008-10-24 2008-10-24 Guide member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008274778A JP5322578B2 (en) 2008-10-24 2008-10-24 Guide member manufacturing method

Publications (2)

Publication Number Publication Date
JP2010101453A true JP2010101453A (en) 2010-05-06
JP5322578B2 JP5322578B2 (en) 2013-10-23

Family

ID=42292262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008274778A Active JP5322578B2 (en) 2008-10-24 2008-10-24 Guide member manufacturing method

Country Status (1)

Country Link
JP (1) JP5322578B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121023A1 (en) * 2011-12-13 2013-06-13 Festo Ag & Co. Kg Linear unit has guide bar that is provided with cylindrical guide surface for forming outer tube arranged in tube inner space which is arranged with stiffening structure
DE102017113540A1 (en) * 2017-06-20 2018-12-20 Technische Universität Darmstadt Linear guide and a method for its production

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285386A (en) * 1987-05-15 1988-11-22 株式会社日立製作所 Vibrationproof supporter
JPH0631852A (en) * 1992-07-21 1994-02-08 Toyota Motor Corp Vibration-damping metal pipe
JPH0628402U (en) * 1992-09-16 1994-04-15 エヌティエヌ株式会社 Lead screw device
JPH0635648U (en) * 1991-12-27 1994-05-13 光洋精工株式会社 Direct acting guide device
JP2002239670A (en) * 2001-02-13 2002-08-27 Okiyama Seisakusho:Kk Method for machining unevenness for thread of metal pipe
JP2003181583A (en) * 2001-12-19 2003-07-02 Nsk Ltd Rolled ball screw and component rolling method of ball screw groove

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285386A (en) * 1987-05-15 1988-11-22 株式会社日立製作所 Vibrationproof supporter
JPH0635648U (en) * 1991-12-27 1994-05-13 光洋精工株式会社 Direct acting guide device
JPH0631852A (en) * 1992-07-21 1994-02-08 Toyota Motor Corp Vibration-damping metal pipe
JPH0628402U (en) * 1992-09-16 1994-04-15 エヌティエヌ株式会社 Lead screw device
JP2002239670A (en) * 2001-02-13 2002-08-27 Okiyama Seisakusho:Kk Method for machining unevenness for thread of metal pipe
JP2003181583A (en) * 2001-12-19 2003-07-02 Nsk Ltd Rolled ball screw and component rolling method of ball screw groove

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121023A1 (en) * 2011-12-13 2013-06-13 Festo Ag & Co. Kg Linear unit has guide bar that is provided with cylindrical guide surface for forming outer tube arranged in tube inner space which is arranged with stiffening structure
DE102017113540A1 (en) * 2017-06-20 2018-12-20 Technische Universität Darmstadt Linear guide and a method for its production

Also Published As

Publication number Publication date
JP5322578B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
RU2461754C2 (en) Transmission with flat synchronous belt
JP5322578B2 (en) Guide member manufacturing method
CN103587350B (en) A kind of automobile driving axle
JP2008133936A (en) Roller, transfer device, and manufacturing method of roller
CN111232010A (en) Gradient strength buffering energy-absorbing device
CN103769451A (en) Minor radius bend forming method of ultrathin tubular product
JP6632612B2 (en) Spindle for ball screw mechanism and method of manufacturing spindle
JP2013066903A (en) Hollow power-transmission shaft
JPWO2004041458A1 (en) Deformed element pipe for hydraulic bulge processing, hydraulic bulge processing apparatus using the same, hydraulic bulge processing method, and hydraulic bulge processed product
JP2007075824A (en) Hollow shaft
CN206325957U (en) A kind of rectangular mould structure
CN202228823U (en) Connecting pipe, pipeline connecting structure and dehumidifier
CN105735506A (en) Extrusion type automatic resetting magnetic shape memory alloy damper
TWI444545B (en) Ball screw with cooling and damping
CN205502280U (en) Extrusion type is from restoring to throne magnetism shape memory alloy attenuator
Liu et al. Mechanism of hydrojoining and approach to increase torsion strength of assembled camshafts
JP2009074748A5 (en)
JP4606942B2 (en) Winding core manufacturing equipment
CN2832342Y (en) Mandrel for manufacturing small curvature radius siphon die
JP2007136499A (en) Insert drive type friction welding method and equipment
JP2011183415A (en) Method for manufacturing lead screw
WO2019237238A1 (en) Transmission roller, cycloidal pin speed reducer provided with same and bearing
JP6011241B2 (en) Tapered segment for UOE steel pipe expansion machine
JP2007051747A (en) Bearing wound with nonmetallic material
JP2015039702A (en) Mold cooling structure and bush used for mold cooling structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5322578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250