JP2010100799A - Method for manufacturing single hollow polymer fine particle - Google Patents
Method for manufacturing single hollow polymer fine particle Download PDFInfo
- Publication number
- JP2010100799A JP2010100799A JP2009006361A JP2009006361A JP2010100799A JP 2010100799 A JP2010100799 A JP 2010100799A JP 2009006361 A JP2009006361 A JP 2009006361A JP 2009006361 A JP2009006361 A JP 2009006361A JP 2010100799 A JP2010100799 A JP 2010100799A
- Authority
- JP
- Japan
- Prior art keywords
- hollow polymer
- fine particles
- weight
- polymer fine
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明は、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子を製造することができる単孔中空ポリマー微粒子の製造方法に関する。更に、本発明は、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子に関する。 The present invention relates to a method for producing single-hole hollow polymer fine particles that can produce single-hole hollow polymer fine particles that do not require a classification operation and have extremely uniform outer diameter and inner diameter. Furthermore, the present invention relates to single-hole hollow polymer particles produced using the method for producing single-hole hollow polymer particles.
単孔を有する中空ポリマー微粒子の製造方法として、親水性のモノマー、架橋性モノマー及び油溶性溶剤を重合開始剤と共に均一溶解してモノマー溶液を調製し、該モノマー溶液を水相中で乳化分散させた後、重合する方法がある。この製造方法は、生成するポリマーと油溶性溶剤との相分離効果を利用して、微粒子中に単孔を形成する方法である。 As a method for producing hollow polymer fine particles having a single hole, a monomer solution is prepared by uniformly dissolving a hydrophilic monomer, a crosslinkable monomer and an oil-soluble solvent together with a polymerization initiator, and the monomer solution is emulsified and dispersed in an aqueous phase. Then, there is a method of polymerizing. This manufacturing method is a method of forming single pores in fine particles by utilizing the phase separation effect between the polymer to be produced and the oil-soluble solvent.
しかし、この方法で得られる単孔を有する中空ポリマー微粒子は、粒子径分布が乳化分散の機械的な操作方法に依存しており、外径(粒子径)、内径(単孔の径)及び外径と内径との比を一定の範囲に制御することは困難であるという問題があった。
外径を揃える目的で、篩いやメッシュ等で分級操作を実施しても、充分に均一な外径分布の中空ポリマー微粒子を得ることは困難である。また、仮に外径を揃えたとしても内径を揃えることはできない。
また、得られた中空ポリマー微粒子を、比重差等を活用した流体力学的方法により分級する方法も知られている。しかし、外径が大きく内径も大きい(中空度の高い)微粒子と、外径が小さく内径も小さい(中空度の低い)微粒子とは同様の移動性を有してしまうことから、この方法ではこれらを分級することはできなかった。
However, the hollow polymer fine particles having a single hole obtained by this method have a particle size distribution that depends on the mechanical operation method of emulsification and dispersion, and the outer diameter (particle diameter), inner diameter (single hole diameter), and outer diameter There is a problem that it is difficult to control the ratio of the diameter to the inner diameter within a certain range.
For the purpose of aligning the outer diameter, it is difficult to obtain hollow polymer fine particles having a sufficiently uniform outer diameter distribution even if a classification operation is performed with a sieve or a mesh. Further, even if the outer diameter is made uniform, the inner diameter cannot be made uniform.
In addition, a method of classifying the obtained hollow polymer fine particles by a hydrodynamic method utilizing a specific gravity difference or the like is also known. However, fine particles having a large outer diameter and a large inner diameter (high hollowness) and fine particles having a small outer diameter and a small inner diameter (low hollowness) have the same mobility. Could not be classified.
これに対して、モノマー成分を種粒子に吸収させたうえで重合させる中空ポリマー微粒子の製造方法が検討されている。この方法によれば、比較的外径が均一な中空ポリマー微粒子が製造できると考えられる。
例えば、特許文献1には、架橋性モノマー、親水性モノマー及びその他のモノマーを含む重合性モノマー成分を、この重合性モノマー成分によるコポリマーとは異なる組成の異種ポリマー微粒子の存在下において水性分散媒体中で分散させて当該異種ポリマー微粒子に重合性モノマー成分を吸収させ、次いで重合性モノマー成分を重合させる工程を有する、単一の内孔を有するポリマー粒子の製造方法が記載されている。上記特許文献1において、上記異種ポリマーの例として、ポリスチレン、又は、アクリル酸、メタクリル酸、アクリルエステル、メタクリルエステル及びブタジエンから選択される少なくとも1種とスチレンとのコポリマーが挙げられている。また、上記架橋性モノマーの例として、ジビニルベンゼン、エチレングリコールジメタクリレート、トリメチロールプロパントリアクリレート等が挙げられている。上記親水性モノマーの例としてアクリル酸、メタクリル酸、メチルメタクリレート、2−ヒドロキシエチルメタクリレート、ビニルピリジン、グリシジルアクリレート、グリシジルメタクリレート等が挙げられている。その他のモノマーの例として、スチレン等が挙げられている。しかしながら、特許文献1に記載された方法では、外径及び内径が充分に均一な中空ポリマー微粒子を得ることは難しかった。特許文献1の実施例においても、概ね単孔の中空ポリマー微粒子は得られているものの、その外径、内径ともに均一でなく、また、単孔構造の微粒子だけではなく複数の孔を有する微粒子が混じっていた。
On the other hand, a method for producing hollow polymer fine particles that are polymerized after the monomer component is absorbed in the seed particles has been studied. According to this method, it is considered that hollow polymer fine particles having a relatively uniform outer diameter can be produced.
For example, Patent Document 1 discloses that a polymerizable monomer component including a crosslinkable monomer, a hydrophilic monomer, and other monomers is contained in an aqueous dispersion medium in the presence of different polymer fine particles having a composition different from that of the copolymer of the polymerizable monomer component. A method for producing polymer particles having a single inner pore is described, which comprises the steps of dispersing the polymerizable monomer component in the different polymer fine particles and then polymerizing the polymerizable monomer component. In Patent Document 1, examples of the heterogeneous polymer include polystyrene or a copolymer of styrene and at least one selected from acrylic acid, methacrylic acid, acrylic ester, methacrylic ester, and butadiene. Examples of the crosslinkable monomer include divinylbenzene, ethylene glycol dimethacrylate, trimethylolpropane triacrylate, and the like. Examples of the hydrophilic monomer include acrylic acid, methacrylic acid, methyl methacrylate, 2-hydroxyethyl methacrylate, vinyl pyridine, glycidyl acrylate, and glycidyl methacrylate. Examples of other monomers include styrene. However, with the method described in Patent Document 1, it has been difficult to obtain hollow polymer fine particles with sufficiently uniform outer diameter and inner diameter. Even in the examples of Patent Document 1, although generally single-hole hollow polymer fine particles are obtained, the outer diameter and inner diameter thereof are not uniform, and fine particles having a plurality of pores as well as single-pore structure fine particles are present. It was mixed.
特許文献2には、イオン性モノマー(A−a)、重合時にモノマーからポリマーへの変化にともない、溶解度パラメーターが変化しないか、または増加する非イオン性モノマー(A−b)及び上記非イオン性モノマー(A−b)以外の非イオン性モノマー(A−c)を含むモノマーを重合して得られる重合体微粒子(A)の存在下に、イオン性モノマー(B−a)、重合時にモノマーからポリマーへの変化にともない、溶解度パラメーターが減少する非イオン性モノマー(B−b)及び非イオン性モノマー(B−b)以外の非イオン性モノマー(B−c)を含むモノマー成分(B)を水性媒体中で水溶性重合開始剤を用いて一定条件を満たす重合温度で乳化重合して平均内孔径が微粒子の平均粒子径の0.25〜0.8倍である単一の内孔を有する中空ポリマー微粒子の製造方法が記載されている。また、特許文献2に記載された製造方法において、上記重合体微粒子(A)とモノマー成分(B)の組み合わせのうち、非イオン性モノマー(A−b)成分を重合することにより得られたポリマーの溶解度パラメーター〔δ(A−b),p〕と非イオン性モノマー(B−b)成分のモノマーの溶解度パラメーター〔δ(B−b),m〕との差の絶対値が1.0以下であることが特徴であるとされている。しかしながら、特許文献2に記載された方法では、外径及び内径が充分に均一な中空ポリマー微粒子を得ることはできなかった。また、特許文献2に記載された製造方法では、水溶性重合開始剤を用いることから、モノマー油滴内の重合開始剤の含有量が少ないため、重合率が低下するだけでなく、水相中での乳化重合が併発して、内孔のない微粒子も混入してしまう問題もあった。 Patent Document 2 discloses an ionic monomer (A-a), a non-ionic monomer (A-b) in which the solubility parameter does not change or increases with a change from monomer to polymer during polymerization, and the non-ionic monomer described above. In the presence of polymer fine particles (A) obtained by polymerizing a monomer containing a nonionic monomer (Ac) other than the monomer (Ab), the ionic monomer (Ba) is separated from the monomer during polymerization. A monomer component (B) containing a nonionic monomer (Bc) other than the nonionic monomer (Bb) and the nonionic monomer (Bb) whose solubility parameter decreases with the change to the polymer. A single inner pore having an average inner pore diameter of 0.25 to 0.8 times the average particle diameter of the fine particles by emulsion polymerization at a polymerization temperature satisfying certain conditions using a water-soluble polymerization initiator in an aqueous medium. Method for producing hollow polymer particles which have been described. In addition, in the production method described in Patent Document 2, a polymer obtained by polymerizing a nonionic monomer (Ab) component out of the combination of the polymer fine particles (A) and the monomer component (B). The absolute value of the difference between the solubility parameter [δ (A−b), p] and the solubility parameter [δ (B−b), m] of the monomer of the nonionic monomer (Bb) component is 1.0 or less It is said that it is the feature. However, with the method described in Patent Document 2, hollow polymer fine particles having a sufficiently uniform outer diameter and inner diameter could not be obtained. In addition, in the production method described in Patent Document 2, since a water-soluble polymerization initiator is used, the content of the polymerization initiator in the monomer oil droplets is small, so that not only the polymerization rate is lowered, but also in the aqueous phase. In addition, there was a problem that emulsion polymerization at the same time and fine particles without inner pores were also mixed.
特許文献3には、親水性モノマー、架橋性モノマー、他のモノマー、油性物質を含む均一混合液Aを、Aに対して不混和性の液体Bにミクロ多孔体膜を通して圧入することにより油滴を得た後に、重合させることにより油性物質を内核とした粒子を得る製造方法が示されている。しかしながら、ミクロ多孔体膜を通す方法は、従来の乳化装置を用いる方法に比べれば外径の分布が均一になるものの、結局は、分級等の操作を行う必要があるという問題があった。 In Patent Document 3, an oil droplet is obtained by press-fitting a homogeneous mixed solution A containing a hydrophilic monomer, a crosslinking monomer, another monomer, and an oily substance into a liquid B immiscible with A through a microporous membrane. A manufacturing method is shown in which particles having an oily substance as an inner core are obtained by polymerization after obtaining the above. However, the method of passing through the microporous membrane has a problem that, although the outer diameter distribution is uniform as compared with the conventional method using an emulsifying apparatus, it is necessary to perform operations such as classification.
本発明は、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子を製造することができる単孔中空ポリマー微粒子の製造方法を提供することを目的とする。更に、本発明は、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子を提供することを目的とする。 An object of the present invention is to provide a method for producing single-hole hollow polymer fine particles that can produce single-hole hollow polymer fine particles having an extremely uniform outer diameter and inner diameter without requiring a classification operation. Furthermore, an object of the present invention is to provide single-hole hollow polymer particles produced using the method for producing single-hole hollow polymer particles.
本発明は、非架橋ポリマーを含有する種粒子を、水を含有する分散媒中に分散させた種粒子分散液と、重付加性油性物質と、油溶性溶剤とを混合し、前記種粒子に前記重付加性油性物質と前記油溶性溶剤とを吸収させて膨潤粒子液滴の分散液を調製する工程と、前記膨潤粒子液滴の分散液と、前記重付加性油性物質と重付加反応する重付加性水性物質とを混合することにより、前記膨潤粒子液滴と、前記分散媒との界面で前記重付加性油性物質と前記重付加性水性物質とを重合させる工程とを有する単孔中空ポリマー微粒子の製造方法である。
以下に本発明を詳述する。
The present invention mixes a seed particle dispersion in which seed particles containing a non-crosslinked polymer are dispersed in a dispersion medium containing water, a polyadditive oily substance, and an oil-soluble solvent. The step of absorbing the polyadditive oily substance and the oil-soluble solvent to prepare a dispersion of swollen particle droplets, and the polyaddition reaction with the dispersion of swollen particle droplets and the polyadditive oily substance A single-hole hollow having a step of polymerizing the polyadditive oily substance and the polyadditive aqueous substance at the interface between the swelling particle droplets and the dispersion medium by mixing the polyadditive aqueous substance. This is a method for producing polymer fine particles.
The present invention is described in detail below.
本発明の単孔中空ポリマー微粒子の製造方法は、非架橋ポリマーを含有する種粒子を、水を含有する分散媒中に分散させた種粒子分散液と、重付加性油性物質と、油溶性溶剤とを混合し、前記種粒子に前記重付加性油性物質と前記油溶性溶剤とを吸収させて膨潤粒子液滴の分散液を調製する工程を有する。なお、本発明の単孔中空ポリマー微粒子の製造方法は、種粒子を分散媒中に分散させた種粒子分散液を調製する工程を有してもよい。 The method for producing single-hole hollow polymer fine particles of the present invention comprises a seed particle dispersion in which seed particles containing a non-crosslinked polymer are dispersed in a dispersion medium containing water, a polyadditive oily substance, and an oil-soluble solvent. And mixing the polyadditive oily substance and the oil-soluble solvent into the seed particles to prepare a dispersion of swollen particle droplets. In addition, the manufacturing method of the single hole hollow polymer microparticles | fine-particles of this invention may have the process of preparing the seed particle dispersion liquid which disperse | distributed the seed particle in the dispersion medium.
上記種粒子は、非架橋ポリマーを含有する。
上記非架橋ポリマーを構成する非架橋性モノマーは特に限定されず、例えば、スチレン、メタクリル酸メチル、メタクリル酸−n−ブチル、メタクリル酸イソブチル、メタクリル酸、アクリル酸メチル、アクリル酸−n−ブチル、アクリル酸イソブチル、アクリル酸等が挙げられる。
The seed particles contain a non-crosslinked polymer.
The non-crosslinkable monomer constituting the non-crosslinked polymer is not particularly limited. For example, styrene, methyl methacrylate, -n-butyl methacrylate, isobutyl methacrylate, methacrylic acid, methyl acrylate, n-butyl acrylate, Examples thereof include isobutyl acrylate and acrylic acid.
上記非架橋性モノマーを重合して上記種粒子を構成する際に、少量の架橋性モノマーを併用してもよい。少量の架橋性モノマーを併用することにより、得られる種粒子の強度が向上する。
上記架橋性モノマーは特に限定されず、例えば、ジビニルベンゼン、エチレングリコールジメタクリレート等が挙げられる。
When polymerizing the non-crosslinkable monomer to form the seed particles, a small amount of a crosslinkable monomer may be used in combination. By using together a small amount of a crosslinkable monomer, the strength of the seed particles obtained is improved.
The crosslinkable monomer is not particularly limited, and examples thereof include divinylbenzene and ethylene glycol dimethacrylate.
上記架橋性モノマーを配合する場合、上記非架橋性モノマーと上記架橋性モノマーとの合計に占める上記架橋性モノマーの配合量の好ましい上限は5重量%である。上記架橋性モノマーの配合量が5重量%を超えると、得られる種粒子への重付加性油性物質等の吸収性が低下し、膨潤粒子液滴が形成されないことがある。上記架橋性モノマーの配合量のより好ましい上限は1重量%である。 When the crosslinkable monomer is blended, the preferable upper limit of the blending amount of the crosslinkable monomer in the total of the non-crosslinkable monomer and the crosslinkable monomer is 5% by weight. When the blending amount of the crosslinkable monomer exceeds 5% by weight, the absorbability of the polyaddition oily substance or the like to the seed particles to be obtained is lowered, and swollen particle droplets may not be formed. A more preferred upper limit of the amount of the crosslinkable monomer is 1% by weight.
上記種粒子の分子量は特に限定されないが、重量平均分子量の好ましい上限は50万である。上記種粒子の重量平均分子量が50万を超えると、得られる種粒子への重付加性油性物質等の吸収性が低下し、膨潤粒子液滴が形成されないことがある。上記種粒子の重量平均分子量のより好ましい上限は10万である。上記種粒子の重量平均分子量の下限は特に限定されないが、1000未満であると、実質的に粒子を形成できないことがある。 The molecular weight of the seed particles is not particularly limited, but a preferable upper limit of the weight average molecular weight is 500,000. When the weight average molecular weight of the seed particles exceeds 500,000, the absorbability of polyaddition oily substances or the like to the obtained seed particles may be reduced, and swollen particle droplets may not be formed. A more preferable upper limit of the weight average molecular weight of the seed particles is 100,000. Although the minimum of the weight average molecular weight of the said seed particle is not specifically limited, When it is less than 1000, a particle | grain may not be formed substantially.
上記種粒子の体積平均粒子径は特に限定されないが、好ましい下限は目的とする単孔中空ポリマー微粒子の平均外径(平均粒子径)の1/10、好ましい上限は目的とする単孔中空ポリマー微粒子の平均外径の1/1.05である。上記種粒子の体積平均粒子径が目的とする単孔中空ポリマー微粒子の平均外径の1/10未満であると、所望の単孔中空ポリマー微粒子の外径を得るために、吸収性能の限界を超えた多くの重付加性油性物質等を吸収する必要があり、吸収残りが発生したり、得られる単孔中空ポリマー微粒子の外径が均一にならなかったりすることがある。上記種粒子の体積平均粒子径が目的とする単孔中空ポリマー微粒子の平均外径の1/1.05を超えると、ごく微量の重付加性油性物質等しか吸収する余地がなく、高い中空度を有する単孔中空ポリマー微粒子が得られないことがある。上記種粒子の体積平均粒子径は、目的とする単孔中空ポリマー微粒子の平均外径の1/8以上であることがより好ましく、1/1.5以下であることがより好ましい。 The volume average particle diameter of the seed particles is not particularly limited, but the preferable lower limit is 1/10 of the average outer diameter (average particle diameter) of the target single-hole hollow polymer fine particles, and the preferable upper limit is the target single-hole hollow polymer fine particles. 1 / 1.05 of the average outer diameter. If the volume average particle diameter of the seed particles is less than 1/10 of the average outer diameter of the desired single-hole hollow polymer fine particles, the limit of absorption performance is limited in order to obtain the desired outer diameter of the single-hole hollow polymer fine particles. It is necessary to absorb a large amount of the polyadditive oily substance and the like, which may cause absorption residue, and the outer diameter of the obtained single-hole hollow polymer fine particles may not be uniform. When the volume average particle diameter of the seed particles exceeds 1 / 1.05 of the average outer diameter of the desired single-hole hollow polymer fine particles, there is no room for absorption of a very small amount of polyadditive oily substance, etc., and high hollowness In some cases, single-hole hollow polymer microparticles having the above cannot be obtained. The volume average particle diameter of the seed particles is more preferably 1/8 or more, and more preferably 1 / 1.5 or less, of the average outer diameter of the target single-hole hollow polymer fine particles.
上記種粒子の形状は特に限定されないが、球状であることが好ましい。上記種粒子の形状が球状でない場合には、重付加性油性物質等を吸収する際に等方的な膨潤がなされず、得られる単孔中空ポリマー微粒子が真球状とならないことがある。 The shape of the seed particles is not particularly limited, but is preferably spherical. When the shape of the seed particles is not spherical, isotropic swelling may not occur when absorbing the polyadditive oily substance and the resulting single-hole hollow polymer fine particles may not be spherical.
上記種粒子は、粒子径のCv値の好ましい上限が30%である。上記種粒子の粒子径のCv値が30%を超えると、膨潤した種粒子の粒子径が均一にならず、得られる単孔中空ポリマー微粒子の粒子径も均一にならないことがある。上記種粒子の粒子径のCv値のより好ましい上限は、20%である。
なお、上記種粒子の粒子径のCv値は、粒子径測定装置により測定される体積平均粒子径mと標準偏差σから、下記式(1)により算出することができる。
Cv=σ/m×100(%) (1)
なお、上記単孔中空ポリマー微粒子の平均外径は、走査型電子顕微鏡により、1視野に約100個の粒子が観察できる倍率で観察し、任意に選択した50個の粒子についてノギスを用いて最長径を測定し、最長径の数平均値を求めることにより算出することができる。
The seed particle has a preferred upper limit of the Cv value of the particle diameter of 30%. When the Cv value of the particle diameter of the seed particles exceeds 30%, the particle diameter of the swollen seed particles may not be uniform, and the particle diameter of the obtained single-hole hollow polymer fine particles may not be uniform. A more preferable upper limit of the Cv value of the particle diameter of the seed particles is 20%.
The Cv value of the particle size of the seed particles can be calculated from the volume average particle size m measured with a particle size measuring device and the standard deviation σ according to the following formula (1).
Cv = σ / m × 100 (%) (1)
The average outer diameter of the single-hole hollow polymer fine particles was observed with a scanning electron microscope at a magnification at which about 100 particles could be observed in one field of view. It can be calculated by measuring the long diameter and obtaining the number average value of the longest diameter.
上記種粒子を調製する方法は特に限定されず、ソープフリー乳化重合、乳化重合、分散重合等の方法が挙げられる。 The method for preparing the seed particles is not particularly limited, and examples thereof include soap-free emulsion polymerization, emulsion polymerization, and dispersion polymerization.
上記分散媒は、水を含有する分散媒であれば特に限定されず、水、又は、水にメタノール、エタノール等の水溶性有機溶剤を添加した混合分散媒等が挙げられる。 The dispersion medium is not particularly limited as long as it contains water, and examples thereof include water or a mixed dispersion medium in which a water-soluble organic solvent such as methanol or ethanol is added to water.
上記分散媒は、必要に応じて、分散剤を含有してもよい。
上記分散剤は特に限定されず、例えば、アルキル硫酸スルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸トリエタノールアミン、ポリオキシエチレンアルキルエーテル、ポリビニルアルコール等が挙げられる。
The dispersion medium may contain a dispersant as necessary.
The dispersant is not particularly limited, and examples thereof include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfate triethanolamine, polyoxyethylene alkyl ether, and polyvinyl alcohol.
上記種粒子分散液における上記種粒子の配合量は特に限定されず、好ましい下限は0.1重量%、好ましい上限は50重量%である。上記種粒子の配合量が0.1重量%未満であると、単孔中空ポリマー微粒子の生産効率が低くなることがある。上記種粒子の配合量が50重量%を超えると、種粒子が凝集してしまうことがある。上記種粒子の配合量のより好ましい下限は0.5重量%、より好ましい上限は30重量%である。 The blending amount of the seed particles in the seed particle dispersion is not particularly limited, and a preferable lower limit is 0.1% by weight and a preferable upper limit is 50% by weight. When the amount of the seed particles is less than 0.1% by weight, the production efficiency of the single-hole hollow polymer fine particles may be lowered. If the blended amount of the seed particles exceeds 50% by weight, the seed particles may aggregate. A more preferable lower limit of the blending amount of the seed particles is 0.5% by weight, and a more preferable upper limit is 30% by weight.
本発明の単孔中空ポリマー微粒子の製造方法において、上記種粒子分散液と、重付加性油性物質と、油溶性溶剤とを混合し、上記種粒子に重付加性油性物質と油溶性溶剤とを吸収させて均一な膨潤粒子液滴の分散液を調製する。 In the method for producing single-hole hollow polymer fine particles of the present invention, the seed particle dispersion, the polyadditive oily substance, and the oil-soluble solvent are mixed, and the polyadditive oily substance and the oil-soluble solvent are mixed with the seed particles. A dispersion of uniform swollen particle droplets is prepared by absorption.
本明細書において重付加性油性物質とは、重付加性を有する化合物であって、水相−有機相の二相系において、有機相側に分配される化合物を意味する。
上記重付加性油性物質は特に限定されず、例えば、油性エポキシ化合物、油性アミン化合物、油性ポリチオール化合物、油性ジイソシアネート等が挙げられる。
In the present specification, the polyadditive oily substance means a compound having polyaddition properties and distributed to the organic phase side in a two-phase system of an aqueous phase and an organic phase.
The polyadditive oily substance is not particularly limited, and examples thereof include oily epoxy compounds, oily amine compounds, oily polythiol compounds, and oily diisocyanates.
上記油性エポキシ化合物は特に限定されず、例えば、ビスフェノールA型ジグリシジルエーテル、ビスフェノールF型ジグリシジルエーテル、レゾルシノールジグリシジルエーテル等が挙げられる。
上記油性アミン化合物は特に限定されず、水相−有機相の二相系において、有機相側に分配されるアミン化合物であればよく、例えば、炭素数5以上の脂肪族アミン、脂環式アミン等が挙げられる。脂肪族アミンとして、窒素原子に炭素数5以上のアルキル基が結合している第一級アミン、第二級アミン又は第三級アミンが挙げられる。なかでも、窒素原子に炭素数5〜16のアルキル基が結合している第一級アミン又は第三級アミンが好ましく、窒素原子に炭素数5〜10のアルキル基が結合した第三級アミンがより好ましい。脂環式アミンとして、炭素数5以上の窒素原子を含む複素環構造を有するアミンが好ましく、ピペリジン又はピペリジン誘導体がより好ましい。例えば、トリ−n−オクチルアミン、ピペリジン、トリ−n−ヘキシルアミン、n−オクチルアミン、メタキシレンジアミン、イソフォロンジアミン、ノルボルネンジアミン、ポリオキシプロピレンジアミン等が挙げられる。
The oily epoxy compound is not particularly limited, and examples thereof include bisphenol A type diglycidyl ether, bisphenol F type diglycidyl ether, resorcinol diglycidyl ether, and the like.
The oily amine compound is not particularly limited as long as it is an amine compound distributed to the organic phase side in a two-phase system of an aqueous phase and an organic phase, for example, an aliphatic amine having 5 or more carbon atoms or an alicyclic amine. Etc. Examples of the aliphatic amine include a primary amine, a secondary amine, or a tertiary amine in which an alkyl group having 5 or more carbon atoms is bonded to a nitrogen atom. Among these, a primary amine or a tertiary amine in which an alkyl group having 5 to 16 carbon atoms is bonded to a nitrogen atom is preferable, and a tertiary amine in which an alkyl group having 5 to 10 carbon atoms is bonded to a nitrogen atom is preferable. More preferred. As the alicyclic amine, an amine having a heterocyclic structure containing a nitrogen atom having 5 or more carbon atoms is preferable, and piperidine or a piperidine derivative is more preferable. For example, tri-n-octylamine, piperidine, tri-n-hexylamine, n-octylamine, metaxylene diamine, isophorone diamine, norbornene diamine, polyoxypropylene diamine and the like can be mentioned.
上記油性ポリチオール化合物は特に限定されず、トリメルカプトプロピオニルオキシエチルイソシアヌレート、トリメチロールプロパントリ−3−メチルメルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート、ジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。 The oily polythiol compound is not particularly limited, and trimercaptopropionyloxyethyl isocyanurate, trimethylolpropane tri-3-methylmercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, dipentaerythritol hexa-3-mercapto Examples include propionate.
上記油性ジイソシアネートは特に限定されず、例えば、4,4’−ジフェニルメタンジイソシアネート、4,4’−ビフェニルジイソシアネートトリデンジイソシアネート、イソホロンジイソシアネート、1,3−キシリレンジイソシアネート等が挙げられる。 The oily diisocyanate is not particularly limited, and examples thereof include 4,4'-diphenylmethane diisocyanate, 4,4'-biphenyl diisocyanate tridenic diisocyanate, isophorone diisocyanate, and 1,3-xylylene diisocyanate.
本明細書において油溶性溶剤とは、logPow(オクタノール/水分配係数)が0以上である溶剤を意味する。溶剤のlogPowは、以下のように求められる。
n−オクタノールと水とを充分に混合した混合液を24時間放置した後、混合液に溶剤を加えてさらに混合する。その後、オクタノール相中に含まれる溶剤濃度(Co)と水相中に含まれる溶剤濃度(Cw)とをガスクロマトグラフィーにより測定し、得られたCo及びCwを用いて、下記式(2)からlogPowを算出できる。
logPow=log(Co/Cw) (2)
Co:オクタノール相中の溶剤濃度
Cw:水相中の溶剤濃度
In this specification, the oil-soluble solvent means a solvent having a logPow (octanol / water partition coefficient) of 0 or more. The logPow of the solvent is determined as follows.
After leaving the mixed liquid in which n-octanol and water are sufficiently mixed for 24 hours, a solvent is added to the mixed liquid and further mixed. Thereafter, the solvent concentration (Co) contained in the octanol phase and the solvent concentration (Cw) contained in the aqueous phase were measured by gas chromatography. Using the obtained Co and Cw, the following formula (2) was obtained. logPow can be calculated.
logPow = log (Co / Cw) (2)
Co: solvent concentration in octanol phase Cw: solvent concentration in water phase
上記油溶性溶剤は特に限定されず、例えば、トルエン、キシレン等の芳香族炭化水素や、ヘプタン、イソオクタン等の脂肪族炭化水素や、シクロヘキサン等の環状炭化水素や、メチルイソブチルケトン等のケトン類や、酢酸エチル等のエステル類等が挙げられる。これらの油溶性溶剤を用いた場合には、後述するように単孔中空ポリマー微粒子のシェルを形成した後、真空乾燥して上記油溶性溶剤を揮発させることによって空洞を有する単孔中空ポリマー微粒子を製造してもよく、上記油溶性溶剤を揮発させずに上記油溶性溶剤を内包する単孔中空ポリマー微粒子を製造してもよい。
これらの油溶性溶剤は単独で用いてもよく、2種以上を併用してもよい。
The oil-soluble solvent is not particularly limited, and examples thereof include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as heptane and isooctane, cyclic hydrocarbons such as cyclohexane, ketones such as methyl isobutyl ketone, And esters such as ethyl acetate. When these oil-soluble solvents are used, single-hole hollow polymer fine particles having cavities are formed by forming a shell of single-hole hollow polymer fine particles as described later, and then vacuum drying to volatilize the oil-soluble solvent. You may manufacture and the single-hole hollow polymer microparticle which includes the said oil-soluble solvent without volatilizing the said oil-soluble solvent may be manufactured.
These oil-soluble solvents may be used alone or in combination of two or more.
また、上記油溶性溶剤として、硬化剤又は硬化促進剤を用いてもよい。
上記硬化剤は特に限定されず、例えば、2−エチル−4−メチルイミダゾール(2E4MZ)、2−メチルイミダゾール(2MZ)等のイミダゾール化合物や、ポリエチレンポリアミン、メタキシレンジアミン等のポリアミン化合物や、トリアルキルテトラヒドロ無水フタル酸、無水トリメリット酸等の酸無水物が挙げられる。上記硬化促進剤は特に限定されず、例えば、モノクロロ酢酸、ジクロロ酢酸等の塩素置換カルボン酸化合物や、p−クロロフェノール、o−クロロフェノール等の塩素置換フェノール化合物や、p−ニトロフェノール等のニトロ置換フェノール化合物や、チオフェノール、2−メルカプトエタノール等のメルカプタン化合物が挙げられる。これらの油溶性溶剤を用いた場合には、上記油溶性溶剤を内包する単孔中空ポリマー微粒子を製造することができる。
なお、上記油溶性溶剤と上記重付加性油性物質とが同一であってもよい。
これらの油溶性溶剤は単独で用いてもよく、2種以上を併用してもよい。
Moreover, you may use a hardening | curing agent or a hardening accelerator as said oil-soluble solvent.
The curing agent is not particularly limited. For example, imidazole compounds such as 2-ethyl-4-methylimidazole (2E4MZ) and 2-methylimidazole (2MZ), polyamine compounds such as polyethylene polyamine and metaxylenediamine, and trialkyls. Examples of the acid anhydride include tetrahydrophthalic anhydride and trimellitic anhydride. The curing accelerator is not particularly limited, and examples thereof include chlorine-substituted carboxylic acid compounds such as monochloroacetic acid and dichloroacetic acid, chlorine-substituted phenolic compounds such as p-chlorophenol and o-chlorophenol, and nitro such as p-nitrophenol. Examples include substituted phenol compounds and mercaptan compounds such as thiophenol and 2-mercaptoethanol. When these oil-soluble solvents are used, single-hole hollow polymer fine particles enclosing the oil-soluble solvent can be produced.
The oil-soluble solvent and the polyaddition oil-based substance may be the same.
These oil-soluble solvents may be used alone or in combination of two or more.
上記油溶性溶剤の配合量は、目的とする単孔中空ポリマー微粒子の外径及び内径により適宜調整すればよいが、上記重付加性油性物質100重量部に対する好ましい下限は10重量部、好ましい上限は10000重量部である。上記油溶性溶剤の配合量が10重量部未満であると、内孔が形成されないことがある。上記油溶性溶剤の配合量が10000重量部を超えると、得られる単孔中空ポリマー微粒子の強度が著しく低下することがある。上記油溶性溶剤の配合量のより好ましい下限は20重量部、より好ましい上限は1000重量部である。 The blending amount of the oil-soluble solvent may be appropriately adjusted according to the outer diameter and inner diameter of the target single-hole hollow polymer fine particles, but the preferred lower limit with respect to 100 parts by weight of the polyadditive oily substance is 10 parts by weight, and the preferred upper limit is 10,000 parts by weight. When the blending amount of the oil-soluble solvent is less than 10 parts by weight, inner holes may not be formed. When the blending amount of the oil-soluble solvent exceeds 10,000 parts by weight, the strength of the obtained single-hole hollow polymer fine particles may be significantly reduced. A more preferred lower limit of the amount of the oil-soluble solvent is 20 parts by weight, and a more preferred upper limit is 1000 parts by weight.
上記種粒子分散液と、上記重付加性油性物質と、上記油溶性溶剤とを混合する際には、上記重付加性油性物質と上記油溶性溶剤とを直接上記種粒子分散液に加えて混合してもよいが、いったん水を含有する分散媒に添加して乳化液を調製し、該乳化液を上記種粒子分散液に加えて混合する方法が好ましい。いったん乳化液としてから加えることにより、上記重付加性油性物質等をより均一に上記種粒子に吸収させることができる。
上記重付加性油性物質と上記油溶性溶剤とは、これらの混合物の乳化液を調製して上記種粒子分散液に加えて混合してもよいし、各々の乳化液を別個に調製して上記種粒子分散液に加えて混合してもよい。なお、上記乳化液に、上記種粒子分散液を加えて混合してもよい。
When mixing the seed particle dispersion, the polyadditive oily substance, and the oil-soluble solvent, the polyadditive oily substance and the oil-soluble solvent are added directly to the seed particle dispersion and mixed. However, it is preferable to add the dispersion liquid containing water once to prepare an emulsion, and add the emulsion to the seed particle dispersion and mix. Once added as an emulsified liquid, the polyadditive oily substance and the like can be more uniformly absorbed by the seed particles.
The polyadditive oily substance and the oil-soluble solvent may be prepared by preparing an emulsion of these mixtures and mixing them in addition to the seed particle dispersion. Alternatively, each emulsion may be prepared separately. You may mix in addition to a seed particle dispersion. The seed particle dispersion may be added to the emulsion and mixed.
上記重付加性油性物質等の乳化液の分散媒は特に限定されず、上記種粒子分散液に用いた分散媒と同じ分散媒であってもよく、異なる分散媒であってもよい。
上記重付加性油性物質等の乳化液の分散媒は、乳化剤を含有することが好ましい。上記乳化剤は特に限定されず、例えば、アルキル硫酸スルホン酸塩、アルキルベンゼンスルホン酸塩、アルキル硫酸トリエタノールアミン、ポリオキシエチレンアルキルエーテル、ポリビニルアルコール等が挙げられる。
The dispersion medium of the emulsified liquid such as the polyadditive oily substance is not particularly limited, and may be the same dispersion medium as that used in the seed particle dispersion liquid or a different dispersion medium.
The dispersion medium of the emulsion such as the polyadditive oily substance preferably contains an emulsifier. The emulsifier is not particularly limited, and examples thereof include alkyl sulfate sulfonate, alkyl benzene sulfonate, alkyl sulfate triethanolamine, polyoxyethylene alkyl ether, and polyvinyl alcohol.
上記重付加性油性物質等の乳化液と上記種粒子分散液とを混合する際には、上記乳化液の全量を一括で加えて混合してもよいし、分割して加えて混合してもよい。分割して加える場合には、滴下することにより添加してもよい。 When mixing the emulsion such as the polyadditive oily substance and the seed particle dispersion, the whole amount of the emulsion may be added in a lump, or may be divided and added. Good. When adding by dividing | segmenting, you may add by dripping.
上記重付加性油性物質及び上記油溶性溶剤の油性成分の添加量は特に限定されないが、上記種粒子100重量部に対する好ましい下限は15重量部、好ましい上限は100,000重量部である。上記油性成分の添加量が15重量部未満であると、内孔が形成されないことがある。上記油性成分の添加量が100,000重量部を超えると、上記種粒子に吸収しきれない油性成分が発生し、中実微粒子等の混入の原因となることがある。上記油性成分の添加量のより好ましい下限は230重量部、より好ましい上限は50,000重量部である。 The addition amount of the oil component of the polyaddition oily substance and the oil-soluble solvent is not particularly limited, but a preferable lower limit with respect to 100 parts by weight of the seed particles is 15 parts by weight, and a preferable upper limit is 100,000 parts by weight. When the amount of the oil component added is less than 15 parts by weight, the inner hole may not be formed. When the added amount of the oil component exceeds 100,000 parts by weight, an oil component that cannot be absorbed by the seed particles is generated, which may cause mixing of solid fine particles and the like. The more preferable lower limit of the addition amount of the oil component is 230 parts by weight, and the more preferable upper limit is 50,000 parts by weight.
上記種粒子分散液と、上記重付加性油性物質と、上記油溶性溶剤とを混合すると、上記種粒子に上記重付加性油性物質と上記油溶性溶剤とが吸収されて、均一な膨潤粒子液滴が形成される。 When the seed particle dispersion, the polyadditive oily substance, and the oil-soluble solvent are mixed, the polyadditive oily substance and the oil-soluble solvent are absorbed by the seed particles, and a uniform swollen particle liquid is obtained. Drops are formed.
本発明の単孔中空ポリマー微粒子の製造方法において、得られた膨潤粒子液滴の分散液と、上記重付加性油性物質と重付加反応する重付加性水性物質とを混合する工程を行う。 In the method for producing single-hole hollow polymer fine particles of the present invention, a step of mixing the obtained dispersion of swollen particle droplets and a polyaddition aqueous substance that undergoes a polyaddition reaction with the polyaddition oily substance is performed.
上記重付加性水性物質は、上記重付加性油性物質と重付加反応し、かつ、水相−有機相の二相系において、水相側に分配される物質であれば特に限定されない。
上記重付加性油性物質が油性エポキシ化合物である場合、上記重付加性水性物質として、水性アミン化合物等が挙げられる。
上記水性アミン化合物は特に限定されず、例えば、ポリメチレンジアミン、ポリエーテルジアミン、アミノエチルピペラジン、イソホロンジアミン等の脂肪族アミンや、キシリレンジアミン、ジアミノジフェニルエーテル、トルエンジアミン等の芳香族アミンや、無水フタル酸誘導体、無水マレイン酸−ビニルエーテル共重合物等の酸無水物や、ポリフェノールや、ポリチオールや、ベンジルジメチルアミン等の3級アミンや、2−エチル−4−メチルイミダゾール等のイミダゾール等が挙げられる。
The polyaddition aqueous substance is not particularly limited as long as it is a substance that undergoes a polyaddition reaction with the polyaddition oily substance and is distributed to the aqueous phase side in a two-phase system of an aqueous phase and an organic phase.
When the polyadditive oily substance is an oily epoxy compound, examples of the polyadditive aqueous substance include an aqueous amine compound.
The aqueous amine compound is not particularly limited, and examples thereof include aliphatic amines such as polymethylene diamine, polyether diamine, aminoethylpiperazine, and isophorone diamine, aromatic amines such as xylylenediamine, diaminodiphenyl ether, and toluene diamine, and anhydrous amines. Examples include acid anhydrides such as phthalic acid derivatives, maleic anhydride-vinyl ether copolymers, tertiary amines such as polyphenols, polythiols, and benzyldimethylamine, and imidazoles such as 2-ethyl-4-methylimidazole. .
上記重付加性油性物質が油性アミン化合物である場合、上記重付加性水性物質として、水性エポキシ化合物等が挙げられる。
上記水性エポキシ化合物は特に限定されず、例えば、ポリグリセロールポリグリシジルエーテル等が挙げられる。
When the polyadditive oily substance is an oily amine compound, examples of the polyadditive aqueous substance include an aqueous epoxy compound.
The aqueous epoxy compound is not particularly limited, and examples thereof include polyglycerol polyglycidyl ether.
上記重付加性油性物質が油性ジイソシアネートである場合、上記重付加性水性物質として、水性ジオール化合物、水性アミン化合物等が挙げられる。
上記水性ジオール化合物は特に限定されず、例えば、エチレングリコール、プロピレングリコール、テトラメチレングリコール等が挙げられる。
When the polyaddition oily substance is an oily diisocyanate, examples of the polyaddition aqueous substance include an aqueous diol compound and an aqueous amine compound.
The aqueous diol compound is not particularly limited, and examples thereof include ethylene glycol, propylene glycol, and tetramethylene glycol.
上記重付加性水性物質の添加量は特に限定されないが、上記重付加性油性物質の活性部位100モル当量に対し、上記重付加性水性物質の活性部位が1モル当量〜10000モル当量の範囲内であることが好ましい。上記重付加性水性物質の添加量が1モル当量未満であると、重付加性油性物質と重付加性水性物質とがほとんど反応しないため、内孔が形成されないことがある。上記重付加性水性物質の添加量が10000モル当量を超えると、上記重付加性油性物質と反応しない重付加性水性物質が余るため、粒子が凝集してしまうことがある。上記重付加性水性物質の添加量のより好ましい下限は10モル当量、より好ましい上限は1000モル当量である。 The addition amount of the polyaddition aqueous substance is not particularly limited, but the active site of the polyaddition aqueous substance is within the range of 1 to 10,000 molar equivalents relative to 100 mole equivalent of the active site of the polyaddition oily substance. It is preferable that When the addition amount of the polyaddition aqueous substance is less than 1 molar equivalent, the polyaddition oily substance and the polyaddition aqueous substance hardly react with each other, so that an inner hole may not be formed. When the addition amount of the polyaddition aqueous substance exceeds 10,000 molar equivalents, the polyaddition aqueous substance that does not react with the polyaddition oily substance remains, and the particles may aggregate. The minimum with more preferable addition amount of the said polyaddition aqueous substance is 10 molar equivalent, and a more preferable upper limit is 1000 molar equivalent.
上記膨潤粒子液滴の分散液と、上記重付加性水性物質とを混合することにより、上記膨潤粒子液滴と上記分散媒との界面で、上記重付加性油性物質と上記重付加性水性物質とが重合することにより得られたポリマーにより形成されたシェルと、上記油溶性溶剤をコアとするコアシェル粒子分散液が得られる。
本発明の単孔中空ポリマー微粒子の製造方法では、得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥して上記油溶性溶剤を揮発させることにより、空洞を有する単孔中空ポリマー微粒子を製造してもよく、上記油溶性溶剤を揮発させずに上記油溶性溶剤を内包する単孔中空ポリマー微粒子を製造してもよい。
The polyadditive oily substance and the polyadditive aqueous substance are mixed at the interface between the swollen particle drop and the dispersion medium by mixing the dispersion of the swollen particle droplets and the polyadditive aqueous substance. A core-shell particle dispersion having a shell formed of a polymer obtained by polymerizing and an oil-soluble solvent as a core is obtained.
In the method for producing single-hole hollow polymer fine particles of the present invention, the obtained core-shell particles are repeatedly washed with pure water, vacuum-dried, and the oil-soluble solvent is volatilized, whereby a single-hole hollow having a cavity is obtained. Polymer fine particles may be produced, or single-hole hollow polymer fine particles enclosing the oil-soluble solvent may be produced without volatilizing the oil-soluble solvent.
本発明の単孔中空ポリマー微粒子の製造方法によれば、外径及び内径が極めて均一である単孔中空ポリマー微粒子を製造することができる。外径及び内径が極めて均一であることから、篩、風力分級、比重差分級等による特別な分級操作が必要ない。歩留まりが高く、工程も短いので、単孔中空ポリマー微粒子を安く、早く供給することができる。
本発明の単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子もまた、本発明の1つである。
According to the method for producing single-hole hollow polymer particles of the present invention, single-hole hollow polymer particles having an extremely uniform outer diameter and inner diameter can be produced. Since the outer diameter and inner diameter are extremely uniform, no special classification operation such as sieving, air classification, specific gravity differential class or the like is required. Since the yield is high and the process is short, the single-hole hollow polymer fine particles can be supplied cheaply and quickly.
The single-hole hollow polymer particles produced using the method for producing single-hole hollow polymer particles of the present invention are also one aspect of the present invention.
本発明の単孔中空ポリマー微粒子は、空洞を有していてもよく、上記油溶性溶剤を内包していてもよい。
本発明の単孔中空ポリマー微粒子は、空洞を有する場合、外径及び内径が極めて均一であることから、ごく少量の添加で比表面積を向上させることができ、光拡散性、軽量性、断熱性、クッション性、紫外線や可視光や赤外線等の選択吸収や反射、透過性を制御することができる。
The single-hole hollow polymer fine particles of the present invention may have cavities and may contain the oil-soluble solvent.
When the single-hole hollow polymer fine particles of the present invention have cavities, the outer diameter and inner diameter are extremely uniform, so that the specific surface area can be improved with a very small amount of addition, and light diffusibility, light weight, heat insulation Further, cushioning, selective absorption, reflection, and transmission of ultraviolet rays, visible light, infrared rays, and the like can be controlled.
本発明の単孔中空ポリマー微粒子は、上記油溶性溶剤として硬化剤や硬化促進剤を内包する場合、例えば、エポキシ樹脂等の硬化物を製造するための硬化剤又は硬化促進剤を内包するマイクロカプセルとして用いることができる。即ち、硬化剤又は硬化促進剤を内包する本発明の単孔中空ポリマー微粒子を硬化性組成物中に含有し、必要に応じて機械的圧力又は熱でシェルを破壊することにより、硬化反応を開始させて硬化物を製造することができる。本発明の単孔中空ポリマー微粒子の外径及び内径が極めて均一であることから、本発明の単孔中空ポリマー微粒子を含有する硬化性組成物は、シェルの薄い部分で貯蔵中に硬化が開始したり、シェルの厚い部分で硬化中に硬化剤又は硬化促進剤が充分に滲み出さず反応性が低下したりすることがなく、その結果、貯蔵安定性が高く、硬化が均質となる。 When the single-hole hollow polymer fine particles of the present invention include a curing agent or a curing accelerator as the oil-soluble solvent, for example, a microcapsule that includes a curing agent or a curing accelerator for producing a cured product such as an epoxy resin. Can be used as In other words, the single-hole hollow polymer fine particles of the present invention containing a curing agent or a curing accelerator are contained in the curable composition, and the curing reaction is initiated by breaking the shell with mechanical pressure or heat as necessary. To produce a cured product. Since the outer diameter and inner diameter of the single-hole hollow polymer fine particles of the present invention are extremely uniform, the curable composition containing the single-hole hollow polymer fine particles of the present invention begins to harden during storage in a thin portion of the shell. In addition, the curing agent or the curing accelerator does not sufficiently ooze out during the curing in the thick part of the shell, and the reactivity is not lowered. As a result, the storage stability is high and the curing is uniform.
本発明の単孔中空ポリマー微粒子の平均外径(平均粒子径)は特に限定されないが、好ましい下限は0.1μm、好ましい上限は100μmである。平均外径が0.1μm未満であると、充分な大きさの単孔が得られなかったり、内包する油溶性溶剤の量が少なくなったりすることがある。平均外径が100μmを超えると、種粒子への油溶性溶剤の吸収が遅くなるため、生産性が低下することがある。本発明の単孔中空ポリマー微粒子の平均外径のより好ましい下限は0.5μm、より好ましい上限は20μmである。 The average outer diameter (average particle diameter) of the single-hole hollow polymer fine particles of the present invention is not particularly limited, but a preferable lower limit is 0.1 μm and a preferable upper limit is 100 μm. If the average outer diameter is less than 0.1 μm, a sufficiently large single hole may not be obtained, or the amount of the oil-soluble solvent contained may be reduced. When the average outer diameter exceeds 100 μm, the absorption of the oil-soluble solvent into the seed particles is delayed, and thus productivity may be reduced. The more preferable lower limit of the average outer diameter of the single-hole hollow polymer fine particles of the present invention is 0.5 μm, and the more preferable upper limit is 20 μm.
本発明の単孔中空ポリマー微粒子は、外径(粒子径)のCv値の好ましい上限が10%である。外径のCv値が10%を超えると、例えば、本発明の単孔中空ポリマー微粒子を、エポキシ樹脂等の硬化物を製造するための硬化剤又は硬化促進剤を内包するマイクロカプセルとして使用した場合、硬化物の硬化が均質とならないことがある。外径のCv値のより好ましい上限は7%である。
なお、本発明の単孔中空ポリマー微粒子の外径のCv値は、上記種粒子の粒子径のCv値と同様に算出することができる。
In the single-hole hollow polymer fine particles of the present invention, the preferable upper limit of the Cv value of the outer diameter (particle diameter) is 10%. When the Cv value of the outer diameter exceeds 10%, for example, when the single-hole hollow polymer fine particles of the present invention are used as a microcapsule encapsulating a curing agent or a curing accelerator for producing a cured product such as an epoxy resin The cured product may not be homogeneously cured. A more preferable upper limit of the Cv value of the outer diameter is 7%.
The Cv value of the outer diameter of the single-hole hollow polymer fine particles of the present invention can be calculated in the same manner as the Cv value of the particle diameter of the seed particles.
本発明の単孔中空ポリマー微粒子の平均内径は特に限定されないが、好ましい下限は平均外径の5%、好ましい上限は平均外径の99.9%である。平均内径が平均外径の5%未満であると、充分な大きさの単孔が得られなかったり、内包する油溶性溶剤の量が少なくなったりすることがある。平均内径が平均外径の99.9%を超えると、シェルが薄くなるため、内包する油溶性溶剤が漏出することがある。本発明の単孔中空ポリマー微粒子の平均内径のより好ましい下限は平均外径の10%、より好ましい上限は平均外径の99%である。 The average inner diameter of the single-hole hollow polymer fine particles of the present invention is not particularly limited, but a preferable lower limit is 5% of the average outer diameter, and a preferable upper limit is 99.9% of the average outer diameter. If the average inner diameter is less than 5% of the average outer diameter, a sufficiently large single hole may not be obtained, or the amount of the oil-soluble solvent contained may be reduced. When the average inner diameter exceeds 99.9% of the average outer diameter, the shell becomes thin, so that the oil-soluble solvent contained may leak out. The more preferable lower limit of the average inner diameter of the single-hole hollow polymer fine particles of the present invention is 10% of the average outer diameter, and the more preferable upper limit is 99% of the average outer diameter.
本発明の単孔中空ポリマー微粒子は、内径のCv値の好ましい上限が10%である。内径のCv値が10%を超えると、例えば、本発明の単孔中空ポリマー微粒子を、エポキシ樹脂等の硬化物を製造するための硬化剤又は硬化促進剤を内包するマイクロカプセルとして使用した場合、硬化物の硬化が均質とならないことがある。内径のCv値のより好ましい上限は7%である。
なお、本発明の単孔中空ポリマー微粒子の内径のCv値は、上記種粒子の粒子径のCv値と同様に算出することができる。
In the single-hole hollow polymer fine particles of the present invention, the preferable upper limit of the Cv value of the inner diameter is 10%. When the Cv value of the inner diameter exceeds 10%, for example, when the single-hole hollow polymer fine particles of the present invention are used as microcapsules enclosing a curing agent or a curing accelerator for producing a cured product such as an epoxy resin, Curing of the cured product may not be uniform. A more preferable upper limit of the Cv value of the inner diameter is 7%.
In addition, the Cv value of the inner diameter of the single-hole hollow polymer fine particle of the present invention can be calculated in the same manner as the Cv value of the particle diameter of the seed particle.
本発明によれば、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子を製造することがきる単孔中空ポリマー微粒子の製造方法を提供することができる。更に、本発明によれば、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子を提供することができる。 According to the present invention, it is possible to provide a method for producing single-hole hollow polymer fine particles that do not require a classification operation and can produce single-hole hollow polymer fine particles having an extremely uniform outer diameter and inner diameter. Furthermore, according to this invention, the single-hole hollow polymer microparticle manufactured using the manufacturing method of this single-hole hollow polymer microparticle can be provided.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(実施例1)
スチレン100重量部、過硫酸カリウム3重量部、n−オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径0.5μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
Example 1
100 parts by weight of styrene, 3 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring, and a volume average particle size of 0.5 μm, Cv value A seed particle dispersion was prepared in which 15% and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
重付加性油性物質としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート828」)10重量部、油溶性溶剤としてヘプタン90重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。 A mixed solution in which 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 828” manufactured by Japan Epoxy Resin Co., Ltd.) as a polyadditive oily substance and 90 parts by weight of heptane as an oil-soluble solvent are uniformly dissolved, triethanolamine lauryl sulfate as an emulsifier 2 parts by weight and water were added and mixed to prepare an emulsion.
得られた種粒子分散液に、ポリスチレン粒子重量の200倍の油性成分となるように乳化液を加えて混合し、24時間撹拌して、重付加性油性物質、油溶性溶剤を吸収した種粒子の膨潤粒子液滴の分散液を得た。なお、油性成分とは、重付加性油性物質と油溶性溶剤とを構成成分とする。
得られた膨潤粒子液滴の分散液を撹拌しながら、重付加性水性物質として1,3−ビスアミノメチルシクロヘキサン(三菱ガス化学社製「1,3−BAC」)1重量部を滴下し、80℃で5時間反応させることにより、コアがヘプタン、シェルがポリエポキシにより形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥してヘプタンを揮発させて、ポリマー微粒子を得た。
To the obtained seed particle dispersion, an emulsified liquid is added and mixed so as to become an oily component 200 times the weight of polystyrene particles, and stirred for 24 hours to absorb the polyaddition oily substance and oil-soluble solvent. A dispersion of droplets of swollen particles was obtained. The oil component includes a polyaddition oil material and an oil-soluble solvent as constituent components.
While stirring the obtained dispersion of swollen particle droplets, 1 part by weight of 1,3-bisaminomethylcyclohexane (“1,3-BAC” manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a polyadditive aqueous substance was dropped, By reacting at 80 ° C. for 5 hours, a core-shell particle dispersion having a core formed of heptane and a shell formed of polyepoxy was obtained.
The obtained core-shell particles were repeatedly washed with pure water, vacuum dried to volatilize heptane, and polymer fine particles were obtained.
(実施例2)
重付加性油性物質としてポリオキシプロピレントリアミン(BASF社製「D−230」)1重量部を用い、かつ、重付加性水性物質として水性エポキシ(ナガセケムテックス社製「デナコールEX−1310」)10重量部を用いた以外は、実施例1と同様にしてポリマー微粒子を得た。
(Example 2)
1 part by weight of polyoxypropylene triamine ("D-230" manufactured by BASF) is used as the polyaddition oily substance, and an aqueous epoxy ("Denacol EX-1310" manufactured by Nagase ChemteX) is used as the polyaddition aqueous substance 10 Polymer fine particles were obtained in the same manner as in Example 1 except that parts by weight were used.
(実施例3)
重付加性油性物質としてヘキサメチレンジイソシアネート型樹脂(旭化成ケミカルズ社製「デュラネートTSA−100」)10重量部を用いた以外は、実施例1と同様にしてポリマー微粒子を得た。
(Example 3)
Polymer fine particles were obtained in the same manner as in Example 1 except that 10 parts by weight of hexamethylene diisocyanate type resin (“Duranate TSA-100” manufactured by Asahi Kasei Chemicals Corporation) was used as the polyadditive oily substance.
(実施例4)
スチレン100重量部、過硫酸カリウム5重量部、n−オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径0.2μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
Example 4
100 parts by weight of styrene, 5 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring, and a volume average particle size of 0.2 μm, Cv value. A seed particle dispersion was prepared in which 15% and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
重付加性油性物質としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート828」)10重量部、油溶性溶剤としてヘプタン90重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。 A mixed solution in which 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 828” manufactured by Japan Epoxy Resin Co., Ltd.) as a polyadditive oily substance and 90 parts by weight of heptane as an oil-soluble solvent are uniformly dissolved, triethanolamine lauryl sulfate as an emulsifier 2 parts by weight and water were added and mixed to prepare an emulsion.
得られた種粒子分散液に、ポリスチレン粒子重量の20倍の油性成分となるように乳化液を添加した以外は、実施例1と同様にしてポリマー微粒子を得た。 Polymer fine particles were obtained in the same manner as in Example 1 except that an emulsion was added to the obtained seed particle dispersion so that the oil component was 20 times the weight of polystyrene particles.
(実施例5)
スチレン100重量部、過硫酸カリウム0.5重量部、n−オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径2.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
(Example 5)
100 parts by weight of styrene, 0.5 part by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring to obtain a volume average particle size of 2.0 μm, A seed particle dispersion having a Cv value of 15% and spherical non-crosslinked polystyrene particles dispersed in water at a concentration of 1.5% by weight was prepared.
重付加性油性物質としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート828」)10重量部、油溶性溶剤としてヘプタン90重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。 A mixed solution in which 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 828” manufactured by Japan Epoxy Resin Co., Ltd.) as a polyadditive oily substance and 90 parts by weight of heptane as an oil-soluble solvent are uniformly dissolved, triethanolamine lauryl sulfate as an emulsifier 2 parts by weight and water were added and mixed to prepare an emulsion.
得られた種粒子分散液に、ポリスチレン粒子重量の125倍の油性成分となるように乳化液を添加した以外は、実施例1と同様にしてポリマー微粒子を得た。 Polymer fine particles were obtained in the same manner as in Example 1 except that an emulsion was added to the obtained seed particle dispersion so that the oil component was 125 times the weight of polystyrene particles.
(実施例6)
スチレン100重量部、過硫酸カリウム0.5重量部、塩化ナトリウム0.1重量部、n−オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径5.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
(Example 6)
100 parts by weight of styrene, 0.5 part by weight of potassium persulfate, 0.1 part by weight of sodium chloride, 25 parts by weight of n-octyl mercaptan, 2500 parts by weight of water are mixed and reacted at 70 ° C. for 24 hours with stirring. A seed particle dispersion was prepared in which a volume average particle diameter of 5.0 μm, a Cv value of 15%, and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
重付加性油性物質としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート828」)10重量部、油溶性溶剤としてヘプタン90重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。 A mixed solution in which 10 parts by weight of bisphenol A type epoxy resin (“Epicoat 828” manufactured by Japan Epoxy Resin Co., Ltd.) as a polyadditive oily substance and 90 parts by weight of heptane as an oil-soluble solvent are uniformly dissolved, triethanolamine lauryl sulfate as an emulsifier 2 parts by weight and water were added and mixed to prepare an emulsion.
得られた種粒子分散液に、ポリスチレン粒子重量の125倍の油性成分となるように乳化液を添加した以外は、実施例1と同様にしてポリマー微粒子を得た。 Polymer fine particles were obtained in the same manner as in Example 1 except that an emulsion was added to the obtained seed particle dispersion so that the oil component was 125 times the weight of polystyrene particles.
(比較例1)
重付加性油性物質としてビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート828」)10重量部、油溶性溶剤としてヘプタン90重量部を均一に溶解し、多孔質膜を通して乳化剤と水とを含有する連続層に分散させ、乳化分散液を調製した。
得られた乳化分散液を撹拌しながら、重付加性水性物質として1,3−ビスアミノメチルシクロヘキサン(三菱ガス化学社製「1,3−BAC」)1重量部を滴下し、80℃で5時間反応させることにより、コアがヘプタン、シェルがポリエポキシにより形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥してヘプタンを揮発させて、ポリマー微粒子を得た。
(Comparative Example 1)
10 parts by weight of bisphenol A type epoxy resin (“Epicoat 828” manufactured by Japan Epoxy Resin Co., Ltd.) as a polyadditive oily substance and 90 parts by weight of heptane as an oil-soluble solvent are uniformly dissolved, and contain an emulsifier and water through a porous membrane. An emulsified dispersion was prepared by dispersing in a continuous layer.
While stirring the obtained emulsified dispersion, 1 part by weight of 1,3-bisaminomethylcyclohexane (“1,3-BAC” manufactured by Mitsubishi Gas Chemical Co., Ltd.) as a polyadditive aqueous substance was added dropwise, and 5% at 80 ° C. By reacting for a time, a core-shell particle dispersion having a core formed of heptane and a shell formed of polyepoxy was obtained.
The obtained core-shell particles were repeatedly washed with pure water, vacuum dried to volatilize heptane, and polymer fine particles were obtained.
(評価)
実施例1〜6、比較例1で得られたポリマー微粒子について、以下の方法により評価を行った。結果を表1に示した。
(Evaluation)
The polymer fine particles obtained in Examples 1 to 6 and Comparative Example 1 were evaluated by the following methods. The results are shown in Table 1.
(1)外径の測定
得られたポリマー微粒子を、走査型電子顕微鏡により、1視野に約100個が観察できる倍率で観察し、任意に選択した50個の微粒子についてノギスを用いて最長径を測定し、この値の数平均値と変動係数を求め、これらを平均外径、外径Cv値とした。
(1) Measurement of outer diameter The obtained polymer fine particles are observed with a scanning electron microscope at a magnification at which about 100 particles can be observed in one field of view, and the arbitrarily selected 50 fine particles are measured with a caliper to determine the longest diameter. The number average value and the coefficient of variation of this value were obtained, and these were used as the average outer diameter and outer diameter Cv value.
(2)内径の測定及び単孔性の評価
得られたポリマー微粒子を、エポキシ樹脂に包埋した後、樹脂を硬化させ、マイクロトームで断面切片を切り出した。得られた切片を走査型電子顕微鏡により、1視野に約100個の断面が観察できる倍率で観察した。
単孔性について、任意に選択した50個の微粒子の断面を観察して、単一の孔が存在する粒子の数が49個以上であった場合を「◎」、45〜48個であった場合を「○」、40〜44個であった場合を「△」、39個以下であった場合を「×」と評価した。
また、任意に選択した50個の微粒子の断面について、ノギスを用いて単一の孔の最長径を計測し、この値の数平均値と変動係数を求め、これらを平均内径、内径Cv値とした。なお、平均内径、内径Cv値は、単孔の孔が存在する粒子について算出した。
(2) Measurement of inner diameter and evaluation of single porosity After the obtained polymer fine particles were embedded in an epoxy resin, the resin was cured, and a cross section was cut out with a microtome. The obtained slice was observed with a scanning electron microscope at a magnification at which about 100 cross sections could be observed in one field of view.
Regarding the single porosity, the cross section of 50 fine particles arbitrarily selected was observed, and when the number of particles having a single pore was 49 or more, “◎” was 45 to 48. The case was evaluated as “◯”, the case of 40 to 44 as “Δ”, and the case of 39 or less as “×”.
In addition, for the cross section of 50 arbitrarily selected fine particles, the longest diameter of a single hole was measured using a caliper, the number average value and the coefficient of variation of this value were obtained, and these were calculated as the average inner diameter and inner diameter Cv value. did. The average inner diameter and the inner diameter Cv value were calculated for particles having a single hole.
(実施例7)
スチレン100重量部、過硫酸カリウム3重量部、n―オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径0.5μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
(Example 7)
100 parts by weight of styrene, 3 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring, volume average particle diameter 0.5 μm, Cv value A seed particle dispersion was prepared in which 15% and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
重付加性油性物質かつ油溶性溶剤として2−エチル−4−メチルイミダゾール(2E4MZ)100重量部及び油溶性溶剤としてトルエン100重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。 In a mixed solution in which 100 parts by weight of 2-ethyl-4-methylimidazole (2E4MZ) and 100 parts by weight of toluene as an oil-soluble solvent were uniformly dissolved as a polyaddition oily substance and oil-soluble solvent, lauryl sulfate triethanolamine 2 was added as an emulsifier. Part by weight and water were added and mixed to prepare an emulsion.
得られた種粒子分散液に、ポリスチレン粒子重量の200倍の油性成分となるように乳化液を加え、24時間撹拌して、重付加性油性物質及び油溶性溶剤を吸収した種粒子の膨潤粒子液滴の分散液を得た。
得られた膨潤粒子液滴の分散液を撹拌しながら、重付加性水性物質として水性エポキシ(ナガセケムテックス社製「デナコールEX−1310」)1重量部を滴下し、80℃で10時間反応させることにより、コアがトルエン/2−エチル−4−メチルイミダゾール(2E4MZ)、シェルがエポキシ樹脂により形成されている、コアシェル粒子分散液を得た。
得られたコアシェル粒子を、純水を用いて繰り返して洗浄し、真空乾燥してトルエンを揮発させて、ポリマー微粒子を得た。
To the obtained seed particle dispersion, an emulsion is added so that the oil component is 200 times the weight of the polystyrene particles, and the mixture is stirred for 24 hours to absorb the polyaddition oily substance and the oil-soluble solvent, and the seed particle swelling particles. A droplet dispersion was obtained.
While stirring the obtained dispersion of swollen particle droplets, 1 part by weight of an aqueous epoxy (“Denacol EX-1310” manufactured by Nagase ChemteX Corp.) is added dropwise as a polyadditive aqueous substance and reacted at 80 ° C. for 10 hours. As a result, a core-shell particle dispersion in which the core was formed of toluene / 2-ethyl-4-methylimidazole (2E4MZ) and the shell was formed of an epoxy resin was obtained.
The obtained core-shell particles were repeatedly washed with pure water, vacuum-dried, and toluene was volatilized to obtain polymer fine particles.
(実施例8)
重付加性油性物質かつ油溶性溶剤として2−メチルイミダゾール(2MZ)100重量部を用いた以外は、実施例7と同様にしてポリマー微粒子を得た。
(Example 8)
Polymer fine particles were obtained in the same manner as in Example 7, except that 100 parts by weight of 2-methylimidazole (2MZ) was used as the polyaddition oily substance and the oil-soluble solvent.
(実施例9)
スチレン100重量部、過硫酸カリウム5重量部、n―オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径0.2μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
Example 9
100 parts by weight of styrene, 5 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring, and a volume average particle size of 0.2 μm, Cv value. A seed particle dispersion was prepared in which 15% and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
重付加性油性物質かつ油溶性溶剤として2−エチル−4−メチルイミダゾール(2E4MZ)100重量部及び油溶性溶剤としてトルエン100重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。 In a mixed solution in which 100 parts by weight of 2-ethyl-4-methylimidazole (2E4MZ) and 100 parts by weight of toluene as an oil-soluble solvent were uniformly dissolved as a polyaddition oily substance and oil-soluble solvent, lauryl sulfate triethanolamine 2 was added as an emulsifier. Part by weight and water were added and mixed to prepare an emulsion.
得られた種粒子分散液に、ポリスチレン粒子重量の20倍の油性成分となるように乳化液を加えた以外は、実施例7と同様にしてポリマー微粒子を得た。 Polymer fine particles were obtained in the same manner as in Example 7 except that an emulsion was added to the obtained seed particle dispersion so that the oil component was 20 times the weight of polystyrene particles.
(実施例10)
スチレン100重量部、過硫酸カリウム0.5重量部、n―オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径2.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
(Example 10)
100 parts by weight of styrene, 0.5 parts by weight of potassium persulfate, 25 parts by weight of n-octyl mercaptan, and 2500 parts by weight of water were mixed and reacted at 70 ° C. for 24 hours with stirring to obtain a volume average particle size of 2.0 μm, A seed particle dispersion having a Cv value of 15% and spherical non-crosslinked polystyrene particles dispersed in water at a concentration of 1.5% by weight was prepared.
重付加性油性物質かつ油溶性溶剤として2−エチル−4−メチルイミダゾール(2E4MZ)100重量部及び油溶性溶剤としてトルエン100重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。 In a mixed solution in which 100 parts by weight of 2-ethyl-4-methylimidazole (2E4MZ) and 100 parts by weight of toluene as an oil-soluble solvent were uniformly dissolved as a polyaddition oily substance and oil-soluble solvent, lauryl sulfate triethanolamine 2 was added as an emulsifier. Part by weight and water were added and mixed to prepare an emulsion.
得られた種粒子分散液に、ポリスチレン粒子重量の125倍の油性成分となるように乳化液を加えた以外は、実施例7と同様にしてポリマー微粒子を得た。 Polymer fine particles were obtained in the same manner as in Example 7 except that an emulsion was added to the obtained seed particle dispersion so that the oil component was 125 times the weight of polystyrene particles.
(実施例11)
スチレン100重量部、過硫酸カリウム0.5重量部、塩化ナトリウム0.1重量部、n―オクチルメルカプタン25重量部、水2500重量部を混合し、攪拌しながら70℃で24時間反応させて、体積平均粒子径5.0μm、Cv値15%、かつ、球状の非架橋のポリスチレン粒子が1.5重量%の濃度で水に分散された種粒子分散液を調製した。
(Example 11)
100 parts by weight of styrene, 0.5 part by weight of potassium persulfate, 0.1 part by weight of sodium chloride, 25 parts by weight of n-octyl mercaptan, 2500 parts by weight of water are mixed and reacted at 70 ° C. for 24 hours with stirring. A seed particle dispersion was prepared in which a volume average particle diameter of 5.0 μm, a Cv value of 15%, and spherical non-crosslinked polystyrene particles were dispersed in water at a concentration of 1.5% by weight.
重付加性油性物質かつ油溶性溶剤として2−エチル−4−メチルイミダゾール(2E4MZ)100重量部及び油溶性溶剤としてトルエン100重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。 In a mixed solution in which 100 parts by weight of 2-ethyl-4-methylimidazole (2E4MZ) and 100 parts by weight of toluene as an oil-soluble solvent were uniformly dissolved as a polyaddition oily substance and oil-soluble solvent, lauryl sulfate triethanolamine 2 was added as an emulsifier. Part by weight and water were added and mixed to prepare an emulsion.
得られた種粒子分散液に、ポリスチレン粒子重量の125倍の油性成分となるように乳化液を加えた以外は、実施例7と同様にしてポリマー微粒子を得た。 Polymer fine particles were obtained in the same manner as in Example 7 except that an emulsion was added to the obtained seed particle dispersion so that the oil component was 125 times the weight of polystyrene particles.
(比較例2)
メタクリル酸2重量部、アクリロニトリル8重量部及び2,2−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)0.1重量部を含有するイソプロピルアルコール溶液400重量部に、あらかじめ平均粒子径5μmに微粉砕した1−シアノエチル−2−フェニルイミダゾール90重量部を分散させた。この分散液を、窒素雰囲気下、50℃で3時間反応させることにより、コアが1−シアノエチル−2−フェニルイミダゾール、シェルがメタクリル酸/アクリロニトリル共重合体により形成されている、コアシェル粒子分散液を得た。その後、得られた分散液を濾過してポリマー微粒子を得た。
(Comparative Example 2)
To 400 parts by weight of an isopropyl alcohol solution containing 2 parts by weight of methacrylic acid, 8 parts by weight of acrylonitrile and 0.1 part by weight of 2,2-azobis (4-methoxy-2,4-dimethylvaleronitrile), an average particle size of 5 μm is previously provided. 90 parts by weight of finely pulverized 1-cyanoethyl-2-phenylimidazole was dispersed. By reacting this dispersion at 50 ° C. for 3 hours in a nitrogen atmosphere, a core-shell particle dispersion in which the core is formed of 1-cyanoethyl-2-phenylimidazole and the shell is formed of a methacrylic acid / acrylonitrile copolymer is obtained. Obtained. Thereafter, the obtained dispersion was filtered to obtain polymer fine particles.
(比較例3)
温度計、還流冷却器及びテフロン(登録商標)製半月型攪拌装置を備えた内容積1000mLの三ツ口丸底フラスコに、2−メチルイミダゾール(2MZ)28.0g及びアクリルポリマー(東亞合成社製「レゼダGP−300」)4.99gを仕込み、次いで、メチルイソブチルケトン(MIBK)593.95gを加え、温度を70℃に上げて完全に溶解した。次いで、ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製「エピコート828」)の50重量%MIBK溶液143.74gを加えて混合し、混合物を300rpmの速度で攪拌しながら70℃で10時間反応させ、反応率をほぼ100%まで到達させることにより、コアが2−メチルイミダゾール(2MZ)、シェルがアクリルポリマーにより形成されている、コアシェル粒子分散液を得た。その後、得られた分散液を濾過してポリマー微粒子を得た。
(Comparative Example 3)
To a 1000 mL three-necked round bottom flask equipped with a thermometer, a reflux condenser and a Teflon (registered trademark) half-moon stirrer, 28.0 g of 2-methylimidazole (2MZ) and an acrylic polymer (“RESEDA” manufactured by Toagosei Co., Ltd.) GP-300 ")) was charged to 4.99 g, then 593.95 g of methyl isobutyl ketone (MIBK) was added and the temperature was raised to 70 ° C to completely dissolve. Next, 143.74 g of a 50 wt% MIBK solution of bisphenol A type epoxy resin (Japan Epoxy Resin “Epicoat 828”) was added and mixed, and the mixture was reacted at 70 ° C. for 10 hours while stirring at a speed of 300 rpm. By causing the reaction rate to reach almost 100%, a core-shell particle dispersion in which the core was formed of 2-methylimidazole (2MZ) and the shell was formed of an acrylic polymer was obtained. Thereafter, the obtained dispersion was filtered to obtain polymer fine particles.
(比較例4)
重付加性油性物質かつ油溶性溶剤として2−エチル−4−メチルイミダゾール(2E4MZ)100重量部及び油溶性溶剤としてトルエン100重量部を均一に溶解した混合液に、乳化剤としてラウリル硫酸トリエタノールアミン2重量部と水とを加えて混合し、乳化液を調製した。
(Comparative Example 4)
In a mixed solution in which 100 parts by weight of 2-ethyl-4-methylimidazole (2E4MZ) and 100 parts by weight of toluene as an oil-soluble solvent were uniformly dissolved as a polyaddition oily substance and oil-soluble solvent, lauryl sulfate triethanolamine 2 was added as an emulsifier. Part by weight and water were added and mixed to prepare an emulsion.
得られた乳化液を、水に加えた(種粒子を用いなかった)以外は、実施例7と同様にしてポリマー微粒子を得た。 Polymer fine particles were obtained in the same manner as in Example 7, except that the obtained emulsion was added to water (no seed particles were used).
(評価)
実施例7〜11、比較例2〜4で得られたポリマー微粒子について、以下の方法により評価を行った。結果を表2に示した。
(Evaluation)
The polymer fine particles obtained in Examples 7 to 11 and Comparative Examples 2 to 4 were evaluated by the following methods. The results are shown in Table 2.
(1)外径の測定
得られたポリマー微粒子を、走査型電子顕微鏡により、1視野に約100個が観察できる倍率で観察し、任意に選択した50個の微粒子についてノギスを用いて最長径を測定し、この値の数平均値と変動係数を求め、これらを平均外径、外径Cv値とした。
(1) Measurement of outer diameter The obtained polymer fine particles are observed with a scanning electron microscope at a magnification at which about 100 particles can be observed in one field of view, and the arbitrarily selected 50 fine particles are measured with a caliper to determine the longest diameter. The number average value and the coefficient of variation of this value were obtained, and these were used as the average outer diameter and outer diameter Cv value.
(2)内径の測定及び単孔性の評価
得られたポリマー微粒子を、エポキシ樹脂に包埋した後、樹脂を硬化させ、マイクロトームで断面切片を切り出した。得られた切片を走査型電子顕微鏡により、1視野に約100個の断面が観察できる倍率で観察した。
単孔性について、任意に選択した50個の微粒子の断面を観察して、単一の孔が存在する粒子の数が49個以上であった場合を「◎」、45〜48個であった場合を「○」、40〜44個であった場合を「△」、39個以下であった場合を「×」と評価した。
また、任意に選択した50個の微粒子の断面について、ノギスを用いて単一の孔の最長径を計測し、この値の数平均値と変動係数を求め、これらを平均内径、内径Cv値とした。なお、平均内径、内径Cv値は、単孔の孔が存在する粒子について算出した。
(2) Measurement of inner diameter and evaluation of single porosity After the obtained polymer fine particles were embedded in an epoxy resin, the resin was cured, and a cross section was cut out with a microtome. The obtained slice was observed with a scanning electron microscope at a magnification at which about 100 cross sections could be observed in one field of view.
Regarding the single porosity, the cross section of 50 fine particles arbitrarily selected was observed, and when the number of particles having a single pore was 49 or more, “◎” was 45 to 48. The case was evaluated as “◯”, the case of 40 to 44 as “Δ”, and the case of 39 or less as “×”.
In addition, for the cross section of 50 arbitrarily selected fine particles, the longest diameter of a single hole was measured using a caliper, the number average value and the coefficient of variation of this value were obtained, and these were calculated as the average inner diameter and inner diameter Cv value. did. The average inner diameter and the inner diameter Cv value were calculated for particles having a single hole.
(3)貯蔵安定性評価
得られたポリマー微粒子10重量部と、エポキシ樹脂(ジャパンエポキシレジン社製「JER828」)100重量部との混合物を、40℃で7日間放置した。放置後、混合物がゲル状態になっていない場合を「○」、ゲル状態になった場合を「×」と評価した。
(3) Evaluation of storage stability A mixture of 10 parts by weight of the obtained polymer fine particles and 100 parts by weight of an epoxy resin (“JER828” manufactured by Japan Epoxy Resin Co., Ltd.) was left at 40 ° C. for 7 days. After standing, the case where the mixture was not in a gel state was evaluated as “◯”, and the case where the mixture was in a gel state was evaluated as “X”.
本発明によれば、分級操作が必要なく、外径及び内径が極めて均一な単孔中空ポリマー微粒子を製造することができる単孔中空ポリマー微粒子の製造方法を提供することができる。更に、本発明によれば、該単孔中空ポリマー微粒子の製造方法を用いて製造される単孔中空ポリマー微粒子を提供することができる。 According to the present invention, it is possible to provide a method for producing single-hole hollow polymer fine particles that can produce single-hole hollow polymer fine particles that do not require a classification operation and have extremely uniform outer diameter and inner diameter. Furthermore, according to this invention, the single-hole hollow polymer microparticle manufactured using the manufacturing method of this single-hole hollow polymer microparticle can be provided.
Claims (7)
前記膨潤粒子液滴の分散液と、前記重付加性油性物質と重付加反応する重付加性水性物質とを混合することにより、前記膨潤粒子液滴と、前記分散媒との界面で前記重付加性油性物質と前記重付加性水性物質とを重合させる工程とを有する
ことを特徴とする単孔中空ポリマー微粒子の製造方法。 A seed particle dispersion in which seed particles containing a non-crosslinked polymer are dispersed in a dispersion medium containing water, a polyadditive oily substance, and an oil-soluble solvent are mixed, and the polyadditive property is added to the seed particles. A step of absorbing an oily substance and the oil-soluble solvent to prepare a dispersion of swollen particle droplets;
The polyaddition at the interface between the swollen particle droplets and the dispersion medium is performed by mixing the dispersion of the swollen particle droplets with a polyaddition aqueous substance that undergoes a polyaddition reaction with the polyaddition oily substance. A method for producing single-hole hollow polymer fine particles comprising a step of polymerizing a hydrophilic oily substance and the polyadditive aqueous substance.
The single-hole hollow polymer fine particle according to claim 5 or 6, wherein the Cv value of the inner diameter is 10% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006361A JP2010100799A (en) | 2008-09-29 | 2009-01-15 | Method for manufacturing single hollow polymer fine particle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008251051 | 2008-09-29 | ||
JP2009006361A JP2010100799A (en) | 2008-09-29 | 2009-01-15 | Method for manufacturing single hollow polymer fine particle |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010100799A true JP2010100799A (en) | 2010-05-06 |
Family
ID=42291715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009006361A Pending JP2010100799A (en) | 2008-09-29 | 2009-01-15 | Method for manufacturing single hollow polymer fine particle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010100799A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010185064A (en) * | 2008-09-29 | 2010-08-26 | Sekisui Chem Co Ltd | Method for producing single hollow polymer fine particle |
WO2012014279A1 (en) * | 2010-07-27 | 2012-02-02 | 積水化学工業株式会社 | Method for manufacturing single-hole hollow polymer microparticles |
US8470398B2 (en) | 2008-09-29 | 2013-06-25 | Sekisui Chemical Co., Ltd. | Method for producing single-hole hollow polymer microparticles |
CN108137950A (en) * | 2015-10-09 | 2018-06-08 | 罗门哈斯公司 | Hollow polymeric compositions |
JP2019081902A (en) * | 2018-12-21 | 2019-05-30 | 株式会社巴川製紙所 | Resin composition, adhesive tape, method for producing resin composition, and method for producing adhesive tape |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820604A (en) * | 1994-07-06 | 1996-01-23 | Kanebo Nsc Ltd | Production of hollow polymer particle |
JP2006257415A (en) * | 2005-02-17 | 2006-09-28 | Kobe Univ | Heat storage capsule and utilization thereof |
JP2006336021A (en) * | 2006-08-17 | 2006-12-14 | Sekisui Chem Co Ltd | Porous hollow polymer particle, method for producing porous hollow polymer particle, porous ceramic filter and method for producing porous ceramic filter |
JP2007070484A (en) * | 2005-09-07 | 2007-03-22 | Sekisui Chem Co Ltd | Hollow fine particle and composite material |
JP2010185064A (en) * | 2008-09-29 | 2010-08-26 | Sekisui Chem Co Ltd | Method for producing single hollow polymer fine particle |
-
2009
- 2009-01-15 JP JP2009006361A patent/JP2010100799A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820604A (en) * | 1994-07-06 | 1996-01-23 | Kanebo Nsc Ltd | Production of hollow polymer particle |
JP2006257415A (en) * | 2005-02-17 | 2006-09-28 | Kobe Univ | Heat storage capsule and utilization thereof |
JP2007070484A (en) * | 2005-09-07 | 2007-03-22 | Sekisui Chem Co Ltd | Hollow fine particle and composite material |
JP2006336021A (en) * | 2006-08-17 | 2006-12-14 | Sekisui Chem Co Ltd | Porous hollow polymer particle, method for producing porous hollow polymer particle, porous ceramic filter and method for producing porous ceramic filter |
JP2010185064A (en) * | 2008-09-29 | 2010-08-26 | Sekisui Chem Co Ltd | Method for producing single hollow polymer fine particle |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010185064A (en) * | 2008-09-29 | 2010-08-26 | Sekisui Chem Co Ltd | Method for producing single hollow polymer fine particle |
US8470398B2 (en) | 2008-09-29 | 2013-06-25 | Sekisui Chemical Co., Ltd. | Method for producing single-hole hollow polymer microparticles |
WO2012014279A1 (en) * | 2010-07-27 | 2012-02-02 | 積水化学工業株式会社 | Method for manufacturing single-hole hollow polymer microparticles |
CN102439050A (en) * | 2010-07-27 | 2012-05-02 | 积水化学工业株式会社 | Method for producing single-hole hollow polymer microparticles |
US20120189848A1 (en) * | 2010-07-27 | 2012-07-26 | Sekisui Chemical Co., Ltd. | Method for producing single-hole hollow polymer particles |
US8465836B2 (en) * | 2010-07-27 | 2013-06-18 | Sekisui Chemical Co., Ltd. | Method for producing single-hole hollow polymer particles |
KR101761926B1 (en) | 2010-07-27 | 2017-07-26 | 세키스이가가쿠 고교가부시키가이샤 | Method for producing single-hole hollow polymer particles |
CN108137950A (en) * | 2015-10-09 | 2018-06-08 | 罗门哈斯公司 | Hollow polymeric compositions |
CN108137950B (en) * | 2015-10-09 | 2021-08-10 | 罗门哈斯公司 | Hollow polymer composition |
JP2019081902A (en) * | 2018-12-21 | 2019-05-30 | 株式会社巴川製紙所 | Resin composition, adhesive tape, method for producing resin composition, and method for producing adhesive tape |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4714780B2 (en) | Method for producing single-hole hollow polymer fine particles | |
JP4742161B2 (en) | Method for producing single-hole hollow polymer fine particles | |
JP2010100799A (en) | Method for manufacturing single hollow polymer fine particle | |
WO2012014279A1 (en) | Method for manufacturing single-hole hollow polymer microparticles | |
JP6644215B2 (en) | Porous particles, method for producing porous particles, and block copolymer | |
JP6644216B2 (en) | Organic polymer porous particles, method for producing organic polymer porous particles, and block copolymer | |
JP5291484B2 (en) | Method for producing polymer fine particles containing curing agent or curing accelerator | |
JP2011115755A (en) | Core-shell particle, and method for manufacturing the same | |
TW202334262A (en) | Hollow particles, method for producing hollow particles, and resin composition | |
CN108164657A (en) | A kind of shape memory epoxy foam | |
CN103585936B (en) | A kind of preparation method of plastic hollow bead and its product prepared and application | |
JP5438659B2 (en) | Method for producing curing agent and / or curing accelerator-encapsulated capsule, curing agent and / or curing accelerator-encapsulated capsule, and thermosetting resin composition | |
CN112218913B (en) | Porous body and method for producing porous body | |
KR20150053731A (en) | Production method for curing agent and/or curing accelerant complex particles, curing agent and/or curing accelerant complex particles, and heat-curable resin composition | |
JP5620323B2 (en) | Method for producing curing agent and / or curing accelerator composite particle, curing agent and / or curing accelerator composite particle, and thermosetting resin composition | |
CN1139614C (en) | Epoxy resin solidified microsphere water-base system and its preparation method | |
TWI483972B (en) | Single hole hollow polymer microparticle manufacturing method | |
CN108948274A (en) | A kind of preparation method of grade polymer composite microsphere | |
JP2003147166A (en) | Epoxy resin composition having low permittivity | |
JP5933977B2 (en) | Curing agent and / or curing accelerator encapsulating capsule, and thermosetting resin composition | |
WO2023228964A1 (en) | Hollow particles, resin composition, resin molded body, resin composition for sealing, cured product and semiconductor device | |
JP2011190356A (en) | Microcapsule for curing epoxy resin | |
TW201410728A (en) | Preparation method for curing agent and/or curing accelerator complex particles, curing agent and/or curing accelerator complex particles, and thermocurable resin composition | |
JP2012062431A (en) | Curing accelerator composite particle and method for producing curing accelerator composite particle | |
DE112006001776T5 (en) | Process for the preparation of a microparticulate curing catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131001 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131202 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20131202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150113 |