JP2010099820A - Clamp device, method of machining cylindrical workpiece in lathe by clamp device, and method of machining cylindrical workpiece in milling machine by clamp device - Google Patents

Clamp device, method of machining cylindrical workpiece in lathe by clamp device, and method of machining cylindrical workpiece in milling machine by clamp device Download PDF

Info

Publication number
JP2010099820A
JP2010099820A JP2008293902A JP2008293902A JP2010099820A JP 2010099820 A JP2010099820 A JP 2010099820A JP 2008293902 A JP2008293902 A JP 2008293902A JP 2008293902 A JP2008293902 A JP 2008293902A JP 2010099820 A JP2010099820 A JP 2010099820A
Authority
JP
Japan
Prior art keywords
cylindrical workpiece
workpiece
peripheral surface
outer peripheral
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008293902A
Other languages
Japanese (ja)
Inventor
Yukio Ito
伊藤  幸男
Tomio Tajima
富美雄 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAJIMA KK
Tajima Inc
Original Assignee
TAJIMA KK
Tajima Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAJIMA KK, Tajima Inc filed Critical TAJIMA KK
Priority to JP2008293902A priority Critical patent/JP2010099820A/en
Publication of JP2010099820A publication Critical patent/JP2010099820A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Jigs For Machine Tools (AREA)
  • Gripping On Spindles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a clamp device adapted to hold a non-elliptical cylindrical workpiece material without distortion, and directly hold a distorted non-elliptical cylindrical workpiece material, and finally machine them into a distortion-free elliptical cylindrical shape or optional non-elliptical cylindrical shape. <P>SOLUTION: The clamp device 100 includes: an installation section 2 to install a bottom surface 1A of a cylindrical workpiece and a circular workpiece 1 or the like by dividing them into multiple sections; a lift drive mechanism 20 to individually raise and lower installation surfaces 2A to 2H; a clamp mechanism 10 which is disposed at an outer peripheral surface position 2Y of each of these installation surfaces of the installation section, and expands and reduces in an outside diameter direction; and a pressure control mechanism 30 to control and apply an abutting pressure uniformly onto the bottom surface 1A and an outer peripheral surface 1B of the cylindrical workpiece with respect to the lift drive mechanism and the clamp mechanism. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非真円筒(円筒ワーク・円形ワーク等)の素材ワークとなるジェットエンジン・ロケットエンジン・ガスタービン等の燃焼筒(円筒状ワーク)や円形ワーク等を把持するクランプ装置とこれによる燃焼筒の加工方法に係わり、特に、非真円筒の素材ワークを、歪ませることなく把持するとともに歪んだ非真円筒の素材ワークをそのまま把持し最終的に歪みの無い真円筒形や任意形状の非真円筒形に加工可能とするクランプ装置とこれによる旋盤及びフライス盤の加工方法に関するものである。  The present invention relates to a clamping device that grips a combustion cylinder (cylindrical workpiece) such as a jet engine, a rocket engine, or a gas turbine that is a material workpiece of a non-true cylinder (cylindrical workpiece, circular workpiece, etc.), a circular workpiece, and the like, and combustion by this In particular, the non-cylindrical material workpiece is gripped without distortion, and the distorted non-cylindrical material workpiece is gripped as it is. The present invention relates to a clamping device that can be machined into a true cylindrical shape, and a lathe and milling machine machining method using the clamping device.

近年、例えば、航空機による国際的な物流増大に対応する事と、対地球環境向上を図るための低燃費性の要求が高まり、航空機の機体軽量化と燃費改善が図られている。その具体的方策として、ジェットエンジンも4発から2発に減少されるとともに、一発あたりのエンジン出力の大型化が図られている。これに伴い、エンジンの外周壁・噴射口を形成する燃焼筒も大口径化と長尺化とともに非真円の外周面になっている。従って、非真円の外周面で全体形状が歪みやすい燃焼筒を把持するクランプ装置には、特別の工夫が施されなければならい。  In recent years, for example, there has been an increase in demands for low fuel consumption in order to cope with an increase in international logistics by aircraft and to improve the environment for the earth, and weight reduction and improvement in fuel consumption of aircraft have been attempted. As a specific measure, the number of jet engines is reduced from four to two, and the engine output per shot is increased. In connection with this, the combustion cylinder which forms the outer peripheral wall and injection port of an engine is also a non-circular outer peripheral surface with the large diameter and lengthening. Therefore, a special device must be applied to the clamp device that holds the combustion cylinder whose overall shape is easily distorted on the non-circular outer peripheral surface.

上記燃焼筒について、具体的な加工例を以下に説明する。上記燃焼筒は、各短身筒体に分割して加工後に円筒ワークとしたものである。具体的には、図4に示すように、燃焼筒1は、外周径Dが軸心方向Oに対して放物線状(壺状)に連続的に変化する形状を呈している。また、図5に示すように、その外周は、取付座3が複数個所にわたり設けられた凹凸形状を呈している。このため、燃焼筒1は、軸心方向に所定長Lに分割した円筒ワーク1Aとし、これを1つのユニットにして加工する。その加工方法は、図5に示すように、テーブル上の冶具にクランプされた円筒ワーク1Aは、その内周面がボーリングカッターBCで加工され、外周面の凹凸部が無い外周面がバイトBTで加工され、凹凸部が正面フライスFCで加工され、図6に示すように、別の円筒ワーク1Bは、各凹凸部間を繋ぐ外周面ミーリングカッターMCで加工される。上記円筒ワーク1A,1Bは、隣接して接続される各円筒ワークのフランジ端面1Cがフライス加工され、この加工後に締結手段で接続して1つの放物線状(壺状)の燃焼筒1´に形成される。  A specific processing example of the combustion cylinder will be described below. The combustion cylinder is divided into short cylindrical bodies to form a cylindrical workpiece after processing. Specifically, as shown in FIG. 4, the combustion cylinder 1 has a shape in which the outer diameter D continuously changes in a parabolic shape (a bowl shape) with respect to the axial direction O. Moreover, as shown in FIG. 5, the outer periphery is exhibiting the uneven | corrugated shape in which the attachment seat 3 was provided over several places. For this reason, the combustion cylinder 1 is a cylindrical workpiece 1A divided into a predetermined length L in the axial direction, and this is processed as one unit. As shown in FIG. 5, the cylindrical workpiece 1A clamped by a jig on the table is processed by a boring cutter BC on the inner peripheral surface, and the outer peripheral surface without an uneven portion on the outer peripheral surface is a bite BT. The uneven part is processed by the front milling FC, and another cylindrical workpiece 1B is processed by the outer peripheral surface milling cutter MC connecting the uneven parts as shown in FIG. The cylindrical workpieces 1A and 1B are formed into a single parabolic (cage-shaped) combustion cylinder 1 'by milling a flange end face 1C of each cylindrical workpiece connected adjacently and connecting with fastening means after this processing. Is done.

上記加工方法の具体例は、図7により行われる。第一工程において、▲1▼短身寸法の円筒ワーク1Aの外側の荒削・旋削ミル加工に際して、テーブル上の冶具に締め付け時に、円筒ワークが凹まないかダイヤルゲージで測定しながらクランプし、上蓋をする。▲2▼加工後に歪み確認する。クランプを外しダイヤルゲージで測定してひずみ確認する。▲3▼外周面の仕上げ。▲4▼内周面の加工。上蓋を外して内側ヌスミ加工する。第二工程おいて、▲5▼内径・外形の荒加工・仕上げ加工する。クランプは円筒ワークのテーブル上の冶具に、例えば、8か所で行う。▲6▼内側のポケット加工をして加工終了とする。▲7▼加工後に、外周面と上端面の歪み測定をする。上記加工方法では、約2mmの加工歪み誤差が発生する問題がある。  A specific example of the above processing method is shown in FIG. In the first step, (1) when roughing or turning milling outside the cylindrical workpiece 1A with a short dimension, when tightening to a jig on the table, the cylindrical workpiece is clamped while measuring with a dial gauge to determine if it is recessed. do. (2) Check the distortion after processing. Remove the clamp and check the strain by measuring with a dial gauge. (3) Finishing the outer peripheral surface. (4) Processing of the inner peripheral surface. Remove the top lid and finish inside. In the second step, (5) roughing and finishing the inner diameter and outer shape. Clamping is performed at, for example, eight places on a jig on the table of the cylindrical workpiece. {Circle around (6)} The inner pocket is processed to finish the processing. (7) After processing, measure the distortion of the outer peripheral surface and the upper end surface. The above processing method has a problem that a processing distortion error of about 2 mm occurs.

そこで、上記円筒ワーク1Aの加工歪みを除去する加工方法は、図8に示すものが提案されている。その加工方法は、第一工程から第三工程としたものである。第一工程は、▲1▼テーブル上の冶具に8か所クランプ締めし、内径・外径の旋削による荒加工をする。加工後にクランプを外して、歪みを開放する。▲2▼歪んだ隙間にスペーサーSを入れてクランプする。端面と内径の歪みを旋削による荒加工する。加工後に、クランプ状態とアンクランプ状態でひずみの有無を測定する。歪み有れば、再度クランプし直し、荒加工と測定とを繰り返す。円筒ワーク1Aの歪みの多くは、この旋削工程で発生する。続く、第二工程は、▲3▼円筒ワークの外側の荒削ミル加工に際して、テーブル上の冶具に締付け時に、円筒ワークが凹まないかダイヤルゲージで測定しながらクランプし、上蓋をする。▲4▼加工後に、歪み確認する。クランプを外しダイヤルゲージで測定してひずみ確認する。▲5▼外周面のミル仕上げ。▲6▼内周面の加工、上蓋を外して内側ヌスミ加工する。そして、第三工程は、▲7▼内側加工に際して、ダイヤルゲージで測定しながら円筒ワークのフランジ外周の8か所をクランプする。この後、内径の仕上げ加工とポケット加工を行う。加工後に、クランプ状態とフリー状態との内径歪みの測定を行う。  Thus, a machining method for removing machining distortion of the cylindrical workpiece 1A has been proposed as shown in FIG. The processing method is changed from the first step to the third step. In the first step, (1) clamping is performed at 8 places on a jig on the table, and roughing is performed by turning inner and outer diameters. After processing, remove the clamp to release the distortion. (2) Insert the spacer S into the distorted gap and clamp it. Roughing of the end face and inner diameter by turning. After processing, the presence or absence of strain is measured in a clamped state and an unclamped state. If there is distortion, re-clamp and repeat roughing and measurement. Most of the distortion of the cylindrical workpiece 1A occurs in this turning process. In the second step, (3) when roughing the outside of the cylindrical workpiece, when clamping to a jig on the table, the cylindrical workpiece is clamped while measuring with a dial gauge to determine whether the cylindrical workpiece is recessed or not, and the upper lid is covered. (4) After processing, check the distortion. Remove the clamp and check the strain by measuring with a dial gauge. (5) Mill finish on the outer peripheral surface. (6) Processing of the inner peripheral surface, removing the upper lid and processing the inside. Then, in the third step, (7) at the time of inner working, the eight places on the outer periphery of the flange of the cylindrical workpiece are clamped while measuring with a dial gauge. Thereafter, finishing of the inner diameter and pocketing are performed. After processing, the inner diameter distortion between the clamped state and the free state is measured.

上記加工で求められる円筒ワークの要求精度は、内径の部分:±0.051mm、全長:±0.1mmである。この要求精度が確保されるか否かは、第一工程において、テーブル上の冶具に8か所クランプ締めし、内径・外径の旋削による荒加工後にクランプを外して歪みを開放し、歪んだ隙間にスペーサーを入れてクランプする手作業の正確さに支配されている。しかして、作業者の技能レベルにより円筒ワークの要求精度が制限され、加工歪みの極小な高品質の円筒ワークの加工が保証され難い上に、加工に必要以上の時間を要し、その生産性を低下しているという問題点を有している。  The required accuracy of the cylindrical workpiece required by the above processing is the inner diameter portion: ± 0.051 mm and the total length: ± 0.1 mm. Whether or not this required accuracy is ensured in the first step is clamped to 8 jigs on the table, and after the rough machining by turning of the inner and outer diameters, the clamp is removed to release the distortion and the distortion It is governed by the accuracy of the manual work of clamping with a spacer in the gap. Therefore, the required accuracy of the cylindrical workpiece is limited by the skill level of the operator, and it is difficult to guarantee the machining of a high-quality cylindrical workpiece with minimal machining distortion. Has the problem of lowering.

上記問題点を解消すべく、円筒ワークを歪み無くクランプするクランプ装置の開発が思考される。その一例として、安定して工作物をクランプしつつクランプ歪みを抑制し、加工装置による加工精度を向上させることができるようにした工作物のクランプ装置および工作物のクランプ方法がある。その構成は、工作物がメインクランプ機構によりクランプされるとともに所定位置に位置設定され、この工作物が更にサブクランプ機構によりクランプされる。メインクランプ機構では、メインクランパ用加圧手段を使用してメインクランパの先端を同期して工作物に加圧させることで、この工作物が所定位置でクランプされる。サブクランプ機構では、サブクランパ用加圧手段を使用してサブクランパの先端を同期して工作物に加圧させることで、この工作物をクランプさせるものが提供されている(例えば、特許文献1参照。)。  In order to solve the above problems, it is considered to develop a clamping device that clamps a cylindrical workpiece without distortion. As an example, there is a workpiece clamping device and a workpiece clamping method capable of suppressing clamping distortion while stably clamping the workpiece and improving machining accuracy by the machining apparatus. The configuration is such that the workpiece is clamped by the main clamp mechanism and positioned at a predetermined position, and this workpiece is further clamped by the sub-clamp mechanism. In the main clamp mechanism, the workpiece is clamped at a predetermined position by using the main clamper pressurizing means to pressurize the tip of the main clamper synchronously to the workpiece. In the sub-clamp mechanism, there is provided a mechanism that clamps the workpiece by pressing the tip of the sub-clamper in synchronization with the sub-clamper pressing means (for example, see Patent Document 1). ).

また、肉の薄い周壁を有するワークでも、高密度に配置した多数の掴持爪によって、歪ませることなく正確に且つ強固に把握して精度の高い旋削加工を行うものがある。その構成は、旋盤の主軸に固定した筒状のチャック本体の後壁に、ワークの端面を受けるリング状のワークストッパーを設け、同チャック本体の前部外周寄りに、圧力流体により前進し、ばねにより後退するピストンを有する多数のシリンダを高密度で配置し、上記ピストンには、前面をスパイラル状とした高硬度の丸棒状ワーク掴持爪を、その後部のねじを利用して交換可能に固定し、上記各シリンダを共通の制御回路を経て圧力流体供給手段に連通させ、上記チャック本体はワークの加工基準部とチャック本体を同芯に保持する手段を備えた旋盤用フレキシブルパワーチャックが提供されている(例えば、特許文献2参照。)。  Some workpieces having a thin peripheral wall can be accurately and firmly grasped by a large number of gripping claws arranged at high density without being distorted to perform highly accurate turning. The structure is such that a ring-shaped workpiece stopper that receives the end face of the workpiece is provided on the rear wall of the cylindrical chuck body fixed to the main spindle of the lathe, and is moved forward by pressure fluid near the front outer periphery of the chuck body. A large number of cylinders with pistons retreating at high density are arranged at high density, and a high-hardness round bar-shaped workpiece gripping claw with a spiral front face is fixed to the piston in a replaceable manner using the screw at the rear part A flexible power chuck for a lathe is provided, in which each cylinder is communicated with a pressure fluid supply means via a common control circuit, and the chuck body has means for holding the workpiece reference portion and the chuck body concentrically. (For example, refer to Patent Document 2).

更に、主軸の回転制御軸C軸と、タレット刃物台の主軸直角方向の制御軸X軸と、タレット刃物台の前記C軸及び前記X軸とに直角な方向の制御軸Y軸と、前記C軸と平行に配置され工具を装着するタレットの旋回角度制御軸Ct軸との同時制御による合成運動で工具刃先がX軸上に位置され且工具切刃のすくい角が切削面の切削点における接線に対し一定の角度となるように制御しながら切削する旋削による非真円加工方法が提供されている(例えば、特許文献3参照。)。  Furthermore, the rotation control axis C-axis of the main shaft, the control axis X-axis perpendicular to the main axis of the turret tool post, the control axis Y-axis perpendicular to the C-axis and the X-axis of the turret tool post, and the C The tool edge is positioned on the X axis by the combined motion of the turret turning angle control axis Ct axis of the turret which is arranged parallel to the axis and the tool is mounted, and the rake angle of the tool cutting edge is tangent to the cutting point of the cutting surface In contrast, there is provided a non-round processing method by turning that performs control while maintaining a constant angle (see, for example, Patent Document 3).

特開2004−283985号公報  JP 2004-283985 A 特開平7−256505号公報  JP 7-256505 A 特許第3070990号公報  Japanese Patent No. 3070990

上記クランプ装置や旋盤用フレキシブルパワーチャックは、何れも、ワークの外周面を多数のサブクランプ片で歪み無くクランプするために、その駆動源として流体シリンダを採用している。しかしながら、ワークの片側となる外周面を把持するとともに、その外周面のほぼ全面を包囲するから、外周面の旋削加工に支障を来たすと言う問題点が残存している。この問題点は、燃焼筒を分割した円筒ワークの端面加工・外周面加工・内周面加工等を実施するためのクランプ装置において、重大な課題である。更には、加工前に発生しているワーク端面の隙間歪みを補正するクランプ装置としての機能を持たず、これらを解決すべき新規なクランプ装置及びその加工方法の開発が望まれている。  Both the clamping device and the lathe flexible power chuck employ a fluid cylinder as a drive source for clamping the outer peripheral surface of the workpiece with a large number of sub-clamp pieces without distortion. However, since the outer peripheral surface on one side of the workpiece is gripped and almost the entire outer peripheral surface is surrounded, there remains a problem that the turning of the outer peripheral surface is hindered. This problem is a serious problem in a clamping device for performing end face processing, outer peripheral surface processing, inner peripheral surface processing, and the like of a cylindrical workpiece obtained by dividing a combustion cylinder. Furthermore, there is a demand for the development of a novel clamping device and a machining method therefor that do not have a function as a clamping device that corrects gap distortion on the workpiece end surface that occurs before machining, and that should solve these problems.

また、旋削による非真円加工方法は、ほぼ真円な素材から所定寸法の非真円加工を施す技術であるから、任意な非真円ワーク素材を徐々に間欠切削することなく、即ち連続切削させながら真円に加工を進めることがでないという問題がある。更には、任意な非真円ワーク素材を所定寸法の非真円に加工することも困難である。  Further, the non-round machining method by turning is a technique for performing non-round machining of a predetermined dimension from a substantially round material, so that any non-round workpiece material is gradually cut intermittently, that is, continuous cutting. There is a problem that it is not possible to proceed to a perfect circle while letting it go. Furthermore, it is difficult to process an arbitrary non-circular workpiece material into a non-circular circle having a predetermined dimension.

本発明は、上記クランプ装置や旋盤用フレキシブルパワーチャック及び真円から非真円への加工方法における問題点に鑑みてなされたもので、その目的は、非真円筒の素材ワークを、歪ませることなく把持するとともに歪んだ非真円筒の素材ワークをそのまま把持し最終的に歪みの無い真円筒形や任意形状の非真円筒形に加工可能とするクランプ装置とこれによる新規な加工方法を提供することにある。  The present invention has been made in view of the problems in the above-described clamping device, lathe flexible power chuck, and processing method from a perfect circle to a non-perfect circle, and its purpose is to distort a non-cylindrical material workpiece. A clamping device that can grip a non-cylindrical material workpiece that is gripped and distorted as it is, and that can finally be processed into a true cylindrical shape without any distortion or a non-cylindrical shape of any shape, and a novel processing method using the clamping device are provided. There is.

上記目的を達成するべく本発明の請求項1によるクランプ装置は、円筒ワーク・円形ワーク等の底面を放射状に多分割して載置する搭載部と、上記各搭載面を個別に昇降させる昇降駆動機構と、上記搭載部の各搭載面の外周面位置に配置し外径方向に拡縮するクランプ機構と、上記昇降駆動機構および上記クランプ機構に対して円筒ワークの底面および外周面にその当接圧を均等に制御付与する圧力制御機構と、を具備したことを特徴とする。  In order to achieve the above object, a clamping device according to a first aspect of the present invention comprises a mounting portion for placing a bottom surface of a cylindrical work, a circular work, etc. in a radially divided manner, and a lifting drive for moving up and down each mounting surface individually. A mechanism, a clamp mechanism which is disposed at the outer peripheral surface position of each mounting surface of the mounting portion and expands / contracts in the outer diameter direction, and the contact pressure on the bottom surface and outer peripheral surface of the cylindrical workpiece with respect to the lifting drive mechanism and the clamp mechanism And a pressure control mechanism for evenly controlling.

また、本発明の請求項2によるクランプ装置は、請求項1記載のクランプ装置において、上記昇降駆動機構は、流体駆動シリンダと昇降ピストンとからなることを特徴とする。  According to a second aspect of the present invention, there is provided a clamping device according to the first aspect, wherein the elevating drive mechanism comprises a fluid driven cylinder and an elevating piston.

また、本発明の請求項3によるクランプ装置は、請求項1記載のクランプ装置において、上記クランプ機構は、流体圧力式のフォームロックチャックであることを特徴とする。  According to a third aspect of the present invention, there is provided a clamping device according to the first aspect, wherein the clamping mechanism is a fluid pressure type foam lock chuck.

上記請求項1〜3におけるクランプ装置は、円筒ワーク・円形ワーク等の底面を放射状に多分割して載置する搭載部と、上記各搭載面を個別に昇降させる昇降駆動機構と、上記搭載部の各搭載面の外周面位置に配置し外径方向に拡縮するクランプ機構と、上記昇降駆動機構および上記クランプ機構に対して円筒ワークの底面および外周面にその当接圧を均等に制御付与する圧力制御機構とを備えたものであるから、非真円筒の素材ワークは、その底面に凹凸があっても、底面及び外周面を歪ませることなく把持される。また、クランプ機構は、流体圧力式のフォームロックチャックであるから、円筒ワークの外周面を一層確実に歪み無く把持される。更に、昇降駆動機構は、流体駆動シリンダと昇降ピストンであるから、クランプ機構と昇降駆動機構とを円滑・確実に作用させられる。  The clamp apparatus according to any one of claims 1 to 3 includes a mounting portion that places the bottom surface of a cylindrical workpiece, a circular workpiece, etc. in a radially divided manner, a lifting drive mechanism that individually lifts and lowers each of the mounting surfaces, and the mounting portion. A clamp mechanism that is disposed at the outer peripheral surface position of each mounting surface and expands and contracts in the outer diameter direction, and the contact pressure is uniformly applied to the bottom surface and the outer peripheral surface of the cylindrical workpiece with respect to the lifting drive mechanism and the clamp mechanism. Since the pressure control mechanism is provided, the non-cylindrical material workpiece is gripped without distorting the bottom surface and the outer peripheral surface even if the bottom surface has irregularities. Further, since the clamp mechanism is a fluid pressure type foam lock chuck, the outer peripheral surface of the cylindrical workpiece can be gripped more reliably and without distortion. Furthermore, since the lift drive mechanism is a fluid drive cylinder and a lift piston, the clamp mechanism and the lift drive mechanism can be operated smoothly and reliably.

また、本発明の請求項4のクランプ装置による旋盤の円筒ワーク加工方法は、円筒ワーク・円形ワーク等の底面を放射状に多分割して載置する搭載部と、上記搭載部の各搭載面の外周面位置に配置し外径方向に拡縮するクランプ機構と、上記各搭載面を個別に昇降させる昇降駆動機構と、上記昇降駆動機構および上記クランプ機構に対して円筒ワークの底面および外周面にその当接圧を均等に制御付与する圧力制御機構とからなるクランプ装置を、旋盤の回転制御軸C軸となる主軸に装着させ、刃物台を主軸直角方向に制御軸X軸で行い、刃物台を上記C軸及び上記X軸に直角な方向に制御軸Y軸で行わせることを特徴とする。  According to a fourth aspect of the present invention, there is provided a method for machining a cylindrical workpiece of a lathe using a clamping device, comprising: a mounting portion on which a bottom surface of a cylindrical workpiece, a circular workpiece or the like is radially divided and placed; and each mounting surface of the mounting portion. A clamp mechanism that is disposed at the outer peripheral surface position and expands / contracts in the outer diameter direction, an elevating drive mechanism that individually elevates and lowers each mounting surface, and the elevating drive mechanism and the clamp mechanism on the bottom surface and outer peripheral surface of the cylindrical workpiece. A clamping device composed of a pressure control mechanism that uniformly controls and applies the contact pressure is mounted on the main shaft that is the rotation control axis C axis of the lathe, and the tool post is moved in the direction perpendicular to the main shaft with the control axis X axis. The control axis is Y axis in a direction perpendicular to the C axis and the X axis.

また、本発明の請求項5のクランプ装置による旋盤の円筒ワーク加工方法は、請求項4記載のクランプ装置による旋盤の円筒ワーク加工方法において、上記昇降駆動機構は、流体駆動シリンダと昇降ピストンとからなることを特徴とするものである。  According to a fifth aspect of the present invention, there is provided a method for machining a cylindrical workpiece of a lathe by a clamping device according to a fourth aspect of the present invention, wherein the lifting drive mechanism includes a fluid driven cylinder and a lifting piston. It is characterized by.

また、本発明の請求項6のクランプ装置による旋盤の円筒ワーク加工方法は、請求項4記載のクランプ装置による旋盤の円筒ワーク加工方法において、上記クランプ機構は、流体圧力式のフォームロックチャックであることを特徴とするものである。  According to a sixth aspect of the present invention, there is provided a lathe cylindrical work machining method using a clamping device according to a fourth aspect of the present invention, wherein the clamping mechanism is a fluid pressure type foam lock chuck. It is characterized by this.

上記請求項4〜6のクランプ装置による旋盤の円筒ワーク加工方法は、クランプ装置により、非真円筒(円筒ワーク・円形ワーク等)の素材ワークは、その外周や底面に凹凸があっても、底面及び外周面を歪ませることなく把持される。続いて、旋盤の回転制御軸C軸となる主軸に装着させ、タレット刃物台を主軸直角方向に制御軸X軸で行い、タレット刃物台を上記C軸及び上記X軸に直角な方向に制御軸Y軸で行わせるから、歪んだ非真円筒の素材ワークをそのまま把持して加工され、最終的に歪みの無い真円筒ワーク又は所定寸法の非真円筒ワークに加工される。更に、クランプ機構は、流体圧力式のフォームロックチャックであるから、円筒ワークの外周面を一層確実に歪み無く把持される。更に、昇降駆動機構は、流体駆動シリンダと昇降ピストンであるから、クランプ機構と昇降駆動機構とを円滑・確実に作用させられる。  The cylindrical workpiece machining method for a lathe using the clamping device according to any one of claims 4 to 6 is such that the workpiece material of a non-true cylinder (cylindrical workpiece, circular workpiece, etc.) can be And the outer peripheral surface is gripped without being distorted. Subsequently, it is mounted on the main axis which is the rotation control axis C-axis of the lathe, the turret tool post is controlled by the control axis X-axis in the direction perpendicular to the main axis, and the turret tool post is controlled in the direction perpendicular to the C-axis and the X-axis. Since the process is performed on the Y axis, the distorted non-true cylindrical workpiece is processed by being gripped as it is, and finally processed into a true cylindrical work having no distortion or a non-true cylindrical work having a predetermined dimension. Furthermore, since the clamp mechanism is a fluid pressure type foam lock chuck, the outer peripheral surface of the cylindrical workpiece can be more reliably gripped without distortion. Furthermore, since the lift drive mechanism is a fluid drive cylinder and a lift piston, the clamp mechanism and the lift drive mechanism can be operated smoothly and reliably.

また、本発明の請求項7のクランプ装置による旋盤の円筒ワーク加工方法は、円筒ワーク・円形ワーク等の底面を放射状に多分割して載置する搭載部と、上記搭載部の各搭載面の外周面位置に配置し外径方向に拡縮するクランプ機構と、上記各搭載面を個別に昇降させる昇降駆動機構と、上記昇降駆動機構および上記クランプ機構に対して円筒ワークの底面および外周面にその当接圧を均等に制御付与する圧力制御機構とからなるクランプ装置を、フライス盤のテーブル上に旋回可能に搭載し、上記円筒ワークの上端面を加工する立型主軸の正面刃具で行い、円筒ワークの内周面の加工を立型主軸のボーリングカッターで行い、円筒ワークの短寸外周面の加工を立型主軸のミーリングカッターで行い、円筒ワークの凹凸座がある外周面の加工を横型主軸の正面刃具で行い、円筒ワークの平坦な外周面の加工を横型主軸のバイトで行わせることを特徴とする。  According to a seventh aspect of the present invention, there is provided a method of machining a cylindrical workpiece of a lathe by a clamping device according to a seventh aspect of the present invention. A clamp mechanism that is disposed at the outer peripheral surface position and expands / contracts in the outer diameter direction, an elevating drive mechanism that individually elevates and lowers each mounting surface, and the elevating drive mechanism and the clamp mechanism on the bottom surface and outer peripheral surface of the cylindrical workpiece. A clamping device composed of a pressure control mechanism that uniformly controls and applies the contact pressure is mounted on a table of a milling machine so as to be able to turn, and is performed with a front cutting tool of a vertical spindle that processes the upper end surface of the cylindrical workpiece. Machining of the inner peripheral surface of a cylindrical workpiece is performed with a boring cutter of a vertical spindle, and processing of a short outer peripheral surface of a cylindrical workpiece is performed with a milling cutter of a vertical spindle, and processing of the outer peripheral surface with an uneven seat of a cylindrical workpiece is performed. Performed in front cutting tool of the lateral principal axis, characterized in that to perform the machining of the flat outer circumferential surface of the cylindrical workpiece in bytes of the lateral principal axis.

また、本発明の請求項8のクランプ装置による旋盤の円筒ワーク加工方法は、請求項7記載のクランプ装置による旋盤の円筒ワーク加工方法において、上記立型主軸と横型主軸とは、首振り自在のユニバーサルヘッドで構成されたことを特徴とする。  According to a eighth aspect of the present invention, there is provided a lathe cylindrical workpiece machining method using the clamping device according to the seventh aspect, wherein the vertical spindle and the horizontal spindle are swingable. It is composed of a universal head.

上記請求項7〜8のクランプ装置による旋盤の円筒ワーク加工方法は、クランプ装置により、非真円筒の素材ワークは、その外周や底面に凹凸があっても、底面及び外周面を歪ませることなく把持される。続いて、フライス盤により、最終的に歪みの無い真円筒ワーク又は所定寸法の非真円筒ワークに加工される。上記立型主軸と横型主軸とは、首振り自在のユニバーサルヘッドであれば、一台のフライス盤により、円筒ワークの外周面・円筒ワークの凹凸座がある外周面・内周面・両端面等が均等に加工される。  The cylindrical workpiece processing method for a lathe using the clamp device according to any one of claims 7 to 8 is such that a non-true cylindrical material workpiece is not distorted on the bottom surface and the outer peripheral surface even when the outer periphery and the bottom surface are uneven. Grasped. Subsequently, the workpiece is finally processed into a true cylindrical workpiece having no distortion or a non-true cylindrical workpiece having a predetermined size by a milling machine. If the vertical spindle and horizontal spindle are universal heads that can swing freely, the outer peripheral surface of the cylindrical workpiece, the outer peripheral surface with the concave and convex seats of the cylindrical workpiece, the inner peripheral surface, both end surfaces, etc. Evenly processed.

本発明のクランプ装置によると、特に、非真円筒やこの底面に凹凸がある素材ワークを、歪ませることなく把持できる。また、歪んだ非真円筒の素材ワークは、そのままの歪み状態で確実に把持でき、且つ、最終的に歪みの無い真円加工や非真円加工を確実に実施できる。  According to the clamping device of the present invention, it is possible to grip a non-true cylinder or a material workpiece having irregularities on its bottom surface without distortion. In addition, a distorted non-cylindrical material workpiece can be reliably gripped in the state of distortion as it is, and finally round processing and non-round processing without distortion can be reliably performed.

本発明のクランプ装置による旋盤の円筒ワーク加工方法は、非真円筒(円筒ワーク・円形ワーク等)の素材ワークを、歪ませることなく把持でき、歪んだ非真円筒の素材ワークをそのまま把持して最終的に歪みの無い真円筒ワーク又は所定寸法の非真円筒ワークに加工できる。また、円筒ワークの外周面・内周面・両端面が均等に全自動加工できる。  The method of machining a cylindrical workpiece of a lathe using the clamping device of the present invention is capable of gripping a non-true cylinder (cylindrical workpiece, circular workpiece, etc.) material workpiece without distortion, and holding a distorted non-true cylinder workpiece as it is. Ultimately, it can be processed into a true cylindrical work without distortion or a non-cylindrical work of a predetermined size. In addition, the outer peripheral surface, inner peripheral surface, and both end surfaces of the cylindrical workpiece can be processed fully automatically.

本発明のクランプ装置によるフライス盤の円筒ワーク加工方法によると、特に、非真円筒(円筒ワーク・円形ワーク等)の素材ワークを、歪ませることなく把持でき、歪んだ非真円筒の素材ワークをそのまま把持して最終的に歪みの無い真円筒ワークを加工できる。また、円筒ワークの外周面・内周面・両端面が均等に全自動加工できる。  According to the milling machine cylindrical workpiece processing method using the clamping device of the present invention, in particular, a non-true cylinder (cylindrical workpiece, circular workpiece, etc.) material workpiece can be gripped without being distorted, and a distorted non-true cylinder material workpiece is left as it is. A true cylindrical workpiece that is finally distorted can be machined by gripping. In addition, the outer peripheral surface, inner peripheral surface, and both end surfaces of the cylindrical workpiece can be processed fully automatically.

以下、図1乃至図3を参照して本発明のクランプ装置の第1の実施の形態を説明する。
図1はクランプ装置の全体を示す斜視図、図2はクランプ装置の断面図、図3はクラン プ装置の作用断面図である。
A first embodiment of the clamping device of the present invention will be described below with reference to FIGS.
FIG. 1 is a perspective view showing the entire clamping device, FIG. 2 is a sectional view of the clamping device, and FIG. 3 is an operational sectional view of the clamping device.

本発明のクランプ装置100は、下記のように構成されている。まず、図1と図2に示すように、その主たる構成要件は、円筒ワーク1の底面1Aを放射状に多分割して載置する搭載部2と、上記搭載部2の各搭載面2A〜2Hの外周面位置2Yに配置し外径方向に拡縮するクランプ機構10と、上記各搭載面2A〜2Hを個別に昇降させる昇降駆動機構20と、上記昇降駆動機構20および上記クランプ機構10に対して円筒ワーク1の底面1Aおよび外周面1Bの大径鍔1B´に対してその当接圧を均等に制御して付与する圧力制御機構30とからなる。上記圧力制御機構30は、オイルタンク30Aとオイルポンプ30Bとモーター30Cとからなり、圧力調節器30Dにより吐出圧が微調節される。そして、上記クランプ機構10及び昇降駆動機構20への油圧供給は、配管Pに介在された各開閉弁V1,V2との開閉操作により行われる。勿論、上記油圧に替えて、圧縮空気(エアー源)EOとしても良い。  The clamping device 100 of the present invention is configured as follows. First, as shown in FIG. 1 and FIG. 2, the main constituent requirements are a mounting portion 2 for mounting the bottom surface 1 </ b> A of the cylindrical workpiece 1 in a radially divided manner, and mounting surfaces 2 </ b> A to 2 </ b> H of the mounting portion 2. A clamp mechanism 10 that is arranged at the outer peripheral surface position 2Y and expands and contracts in the outer diameter direction, a lift drive mechanism 20 that lifts and lowers the mounting surfaces 2A to 2H individually, and the lift drive mechanism 20 and the clamp mechanism 10 It consists of a pressure control mechanism 30 that uniformly controls and applies the contact pressure to the bottom surface 1A of the cylindrical workpiece 1 and the large-diameter flange 1B 'of the outer peripheral surface 1B. The pressure control mechanism 30 includes an oil tank 30A, an oil pump 30B, and a motor 30C, and the discharge pressure is finely adjusted by a pressure regulator 30D. The hydraulic pressure is supplied to the clamp mechanism 10 and the elevation drive mechanism 20 by opening / closing operations with the on-off valves V1 and V2 interposed in the pipe P. Of course, instead of the oil pressure, compressed air (air source) EO may be used.

以下、クランプ装置100の詳細構成を説明する。四角形(乃至は円形)の機体Kには、円盤状の搭載部2を搭載しており、円筒ワーク1の底面1Aを多分割して載置すべく、例えば8分割した各搭載面2A〜2Hが放射状の三角形に構成されている。上記搭載部2の各搭載面2A〜2Hは、機体Kの上面において昇降動可能となるように、昇降駆動機構20の各昇降体L1〜L8に連結されている。上記各昇降体L1〜L8は、機体Kの底部すなわち各搭載面2A〜2Hの真下位置に配置したシリンダ体C1〜C8に嵌合されている。これにより、圧力制御機構30からの所定圧力に制御された圧力油を各シリンダ体21A〜21Hに一斉に供給される。これにより、上記昇降駆動機構20の各昇降体L1〜L8は、各搭載面2A〜2Hに対して円筒ワーク1の底面1Aにその底面の凹凸歪みに係わりなく上昇量が微調節され、均等圧に制御して付与することができる。  Hereinafter, a detailed configuration of the clamping device 100 will be described. A square (or circular) machine body K is equipped with a disk-shaped mounting portion 2, and each mounting surface 2 </ b> A to 2 </ b> H divided into, for example, eight parts is mounted to divide the bottom surface 1 </ b> A of the cylindrical workpiece 1 into multiple parts. Are configured in a radial triangle. The mounting surfaces 2A to 2H of the mounting unit 2 are connected to the lifting bodies L1 to L8 of the lifting drive mechanism 20 so as to be movable up and down on the upper surface of the body K. Each of the lifting bodies L1 to L8 is fitted to cylinder bodies C1 to C8 arranged at the bottom of the body K, that is, directly below the mounting surfaces 2A to 2H. Thereby, the pressure oil controlled to the predetermined pressure from the pressure control mechanism 30 is supplied to each cylinder body 21A-21H simultaneously. Thereby, the raising / lowering bodies L1 to L8 of the raising / lowering driving mechanism 20 are finely adjusted with respect to the mounting surfaces 2A to 2H on the bottom surface 1A of the cylindrical work 1 regardless of the uneven distortion of the bottom surface, and the equal pressure It can be controlled and given.

上記クランプ機構10は、図2に見るように、流体圧力式のフォームロックチャックが採用されている。その構成は、機体Kの上面における各搭載面2A〜2Hの外周面位置2Yに例えば8セット配置され、外径方向に拡縮するクランプ片10A〜10Hをシリンダ体21A〜21Hに嵌合されている。しかして、圧力制御機構30からの所定圧力に制御された圧力油を各シリンダ体21A〜21Hに一斉に供給することにより、各クランプ片10A〜10Hは、円筒ワーク1の外周面1B又は大径鍔1B´にその凹凸歪みや非真円に係わりなく中心方向への移動量が各別に微調節され均等圧に制御して付与することができる。尚、横旋盤による円筒ワーク1の加工時には、機体Kの裏面にチャックに把持される保持筒HKを備えている。また、フライス盤による円筒ワーク1の加工時には、保持筒HKを回転テーブル上に配置して加工される。  As shown in FIG. 2, the clamp mechanism 10 employs a fluid pressure type foam lock chuck. For example, eight sets are arranged at outer peripheral surface positions 2Y of the mounting surfaces 2A to 2H on the upper surface of the machine body K, and clamp pieces 10A to 10H that expand and contract in the outer diameter direction are fitted to the cylinder bodies 21A to 21H. . Thus, by supplying pressure oil controlled to a predetermined pressure from the pressure control mechanism 30 to the cylinder bodies 21A to 21H all at once, each of the clamp pieces 10A to 10H has the outer peripheral surface 1B or the large diameter of the cylindrical workpiece 1. Regardless of the unevenness distortion or non-circularity, the amount of movement in the center direction can be finely adjusted for each of the ridges 1B ′, and can be imparted by controlling to equal pressure. When the cylindrical workpiece 1 is machined by a horizontal lathe, a holding cylinder HK held by a chuck is provided on the back surface of the machine body K. Further, when the cylindrical workpiece 1 is processed by the milling machine, the holding cylinder HK is disposed on the rotary table.

本発明のクランプ装置100は、以下のように作用する。先ず、図3に示すように、円筒ワーク・円形ワーク1等は、この底面1Aが搭載部2を放射状に多分割した各搭載面(上面)2A〜2Hに載置される。ここで、上記圧力制御機構30からの所定圧力に制御された圧力油(又はエアー圧)を昇降駆動機構20の各シリンダ体C1〜C8に一斉に供給する。これにより、上記昇降駆動機構20の各搭載面2A〜2Hに対して各昇降体L1〜L8が円筒ワーク1の底面1Aにその凹凸歪みに係わりなく上昇量接触し、均等圧に制御付与される。従って、円筒ワーク・円形ワーク1等は、その底面1Aが加工前の凹凸面であっても、加工時に生じた加工歪みがあっても、上記クランプ装置100の各搭載面(上面)2A〜2Hに載置する時、底面1Aの面形状に倣って支持される。続いて、図4に示すように、円筒ワーク・円形ワーク1等の外周面位置2Yに対して、クランプ機構10のシリンダ体21A〜21Hに嵌合されている各クランプ片10A〜10Hによりクランプ把持する。その作用手順は、圧力制御機構30からの所定圧力に制御された圧力油(又はエアー圧)がクランプ機構10のシリンダ体21A〜21Hに注入される。これで、外径方向に拡開した状態にある各クランプ片10A〜10Hは、円筒ワーク1の外周面1Bにその凹凸歪みや非真円に係わりなく中心方向への移動量が各別に微調節され均等圧に与されクランプ把持される。  The clamping device 100 of the present invention operates as follows. First, as shown in FIG. 3, the cylindrical workpiece, the circular workpiece 1, and the like are placed on the mounting surfaces (upper surfaces) 2 </ b> A to 2 </ b> H in which the bottom surface 1 </ b> A divides the mounting portion 2 into multiple portions. Here, pressure oil (or air pressure) controlled to a predetermined pressure from the pressure control mechanism 30 is supplied to the cylinder bodies C <b> 1 to C <b> 8 of the elevating drive mechanism 20 all at once. Thereby, each raising / lowering body L1-L8 contacts the bottom surface 1A of the cylindrical workpiece 1 with the ascending amount irrespective of the uneven distortion, and is given control to equal pressure with respect to each mounting surface 2A-2H of the raising / lowering drive mechanism 20. . Therefore, even if the bottom surface 1A of the cylindrical work / circular work 1 or the like is an uneven surface before processing or there is processing distortion caused during processing, each mounting surface (upper surface) 2A to 2H of the clamping device 100 is provided. Is placed following the surface shape of the bottom surface 1A. Subsequently, as shown in FIG. 4, clamp holding is performed by the clamp pieces 10 </ b> A to 10 </ b> H fitted to the cylinder bodies 21 </ b> A to 21 </ b> H of the clamp mechanism 10 with respect to the outer peripheral surface position 2 </ b> Y of the cylindrical work / circular work 1. To do. In the operation procedure, pressure oil (or air pressure) controlled to a predetermined pressure from the pressure control mechanism 30 is injected into the cylinder bodies 21 </ b> A to 21 </ b> H of the clamp mechanism 10. As a result, the clamp pieces 10A to 10H in a state of being expanded in the outer diameter direction are finely adjusted on the outer peripheral surface 1B of the cylindrical workpiece 1 independently of the amount of movement in the center direction regardless of the uneven distortion or non-circularity. Then, it is applied with uniform pressure and clamped.

以上のように、円筒ワーク・円形ワーク1等は、例え、非真円筒の素材ワークであっても、歪ませることなく把持される。また、クランプ機構は、流体圧力式のフォームロックチャックであるから、円筒ワークの外周面を一層確実に歪み無く把持される。更に、昇降駆動機構は、流体駆動シリンダと昇降ピストンであるから、クランプ機構と昇降駆動機構とを円滑・確実に作用させられる。横旋盤による円筒ワーク1の加工時には、機体Kの裏面にチャック(図示なし)に把持される保持筒HKを備えている。また、フライス盤による円筒ワーク1の加工時には、保持筒HKを回転テーブル(図示なし)上に配置して加工される。  As described above, the cylindrical workpiece / circular workpiece 1 or the like is gripped without being distorted even if it is a non-true cylindrical workpiece. Further, since the clamp mechanism is a fluid pressure type foam lock chuck, the outer peripheral surface of the cylindrical workpiece can be gripped more reliably and without distortion. Furthermore, since the lift drive mechanism is a fluid drive cylinder and a lift piston, the clamp mechanism and the lift drive mechanism can be operated smoothly and reliably. When the cylindrical workpiece 1 is machined by a horizontal lathe, a holding cylinder HK that is held by a chuck (not shown) is provided on the back surface of the machine body K. Further, when the cylindrical workpiece 1 is processed by the milling machine, the holding cylinder HK is disposed on a rotary table (not shown).

本発明の実施形態となるクランプ装置100によれば、下記の効果が奏せられる。特に、非真円筒やこの底面に凹凸がある素材ワークを、歪ませることなく把持できる。また、歪んだ非真円筒の素材ワークは、そのままの歪み状態で確実に把持でき、且つ、最終的に歪みの無い真円加工や非真円加工を確実に実施できる。しかして、横旋盤やフライス盤による円筒ワーク1の加工時のクランプ装置として有効的に使用できる。  The clamp device 100 according to the embodiment of the present invention has the following effects. In particular, it is possible to grip a non-true cylinder or a material workpiece having irregularities on the bottom surface without distortion. In addition, a distorted non-cylindrical material workpiece can be reliably gripped in the state of distortion as it is, and finally round processing and non-round processing without distortion can be reliably performed. Therefore, it can be effectively used as a clamping device when the cylindrical workpiece 1 is machined by a horizontal lathe or a milling machine.

尚、本発明のクランプ装置100は、上記第1の実施の形態における構成に限定されず、その発明の要旨内での設計変更が自由にできる。例えば、クランプ機構及び降駆動機構の詳細構成の設計変更や、上記昇降駆動機構および上記クランプ機構を均等に制御して付与する圧力制御機構の詳細構成の設計変更が可能である。  In addition, the clamp apparatus 100 of this invention is not limited to the structure in the said 1st Embodiment, A design change can be made freely within the summary of the invention. For example, the design change of the detailed configuration of the clamp mechanism and the descending drive mechanism and the design change of the detailed configuration of the pressure control mechanism that controls and applies the lifting drive mechanism and the clamp mechanism equally are possible.

続いて、本発明の第二の実施の形態となるクランプ装置100による旋盤の円筒ワーク加工方法を説明する。先ず、図4は横旋盤によるCNC制御装置の構成図、図5は円筒ワークの外観図、図6は円筒ワークの各加工箇所の断面図である。  Next, a lathe cylindrical workpiece machining method using the clamp device 100 according to the second embodiment of the present invention will be described. First, FIG. 4 is a configuration diagram of a CNC control device using a horizontal lathe, FIG. 5 is an external view of a cylindrical workpiece, and FIG. 6 is a cross-sectional view of each processing portion of the cylindrical workpiece.

上記クランプ装置100を使用する横旋盤200は、図4に見るように構成されている。上記横旋盤200には、回転制御軸C軸となる主軸201と、例えば、刃物台Tを主軸の軸線Oに対して直角方向に進退制御する制御軸X軸202と、刃物台Tを上記主軸201の軸線O方向に移動させる制御軸Y軸203と、主軸201に把持された円筒ワーク(被加工材)1の中心位置01から外周面までの半径値0Xを検知する外径検知手段204と、主軸201の回転角位置毎に外径検知手段204からの半径値0Xを記憶する半径値記憶手段205と、上記半径値記憶手段205に記憶する半径値を主軸201の回転角位置毎に出力する半径値出力手段206と、この半径値出力手段206からの半径値0Xにより制御軸X軸202を駆動し、刃物台Tを主軸の軸線Oに対して直角方向に進退制御する駆動制御手段207と、全ての手段201〜207をソフトウエア(切削運転プログラム)により運転制御するCNC制御装置210とからなる。上記外径検知手段204の具体的な構成は、外径1Bの表面と近接センサSまでの距離を半径値0Xとして検知し、その数値を半径値記憶手段205に出力するセンサ形式のものと、外径表面に当接させたローラーRが外径表面の凹凸量により出没移動させ、その出没移動量により、半径値0Xとして検知し、その数値を半径値記憶手段205に出力するセンサ形式との何れかが任意に採用される。  A horizontal lathe 200 using the clamping device 100 is configured as shown in FIG. The horizontal lathe 200 includes a main shaft 201 serving as a rotation control axis C, a control axis X-axis 202 that controls the tool post T to advance and retract in a direction perpendicular to the axis O of the main shaft, and the tool post T to the main shaft. 201, a control axis Y axis 203 that moves in the direction of the axis O of 201, and an outer diameter detection means 204 that detects a radius value 0X from the center position 01 of the cylindrical workpiece (workpiece) 1 gripped by the main shaft 201 to the outer peripheral surface. The radius value storage means 205 that stores the radius value 0X from the outer diameter detection means 204 for each rotation angle position of the spindle 201 and the radius value that is stored in the radius value storage means 205 is output for each rotation angle position of the spindle 201. And a drive control means 207 for driving the control axis X axis 202 by the radius value 0X from the radius value output means 206 and controlling the tool post T to advance and retreat in a direction perpendicular to the axis O of the spindle. And all Consisting CNC controller 210. for operation control means 201 to 207 by software (cutting operation program). The specific configuration of the outer diameter detecting means 204 is a sensor type that detects the distance between the surface of the outer diameter 1B and the proximity sensor S as a radius value 0X, and outputs the numerical value to the radius value storage means 205; The roller R that is in contact with the outer diameter surface moves up and down according to the unevenness amount of the outer diameter surface, detects the radius value 0X based on the amount of the protruding and moved movement, and outputs the numerical value to the radius value storage unit 205. Either is arbitrarily adopted.

しかして、上記横旋盤200によると、図1〜図4に見る様に、円筒ワーク(被加工材)1の外周面が切削される。まず、円筒ワーク(被加工材)1は、クランプ装置100にその昇降駆動機構20の各搭載面2A〜2Hに対して各昇降体20A〜20Hが円筒ワーク1の底面1Aにその凹凸歪みに係わりなく上昇量が微調節されて均等圧に制御付与される。また、各クランプ片10A〜10Hは、円筒ワーク1の外周面1Bにその凹凸歪みや非真円に係わりなく中心方向への移動量が各別に微調節され均等圧に制御付与され、把持歪み無く保持される。上記クランプ装置100に保持された円筒ワーク(被加工材)1は、機体Kの裏面に設けた保持筒HKを横旋盤200のチャック40に把持される。  Therefore, according to the horizontal lathe 200, as shown in FIGS. 1 to 4, the outer peripheral surface of the cylindrical workpiece (workpiece) 1 is cut. First, in the cylindrical workpiece (workpiece) 1, the lifting bodies 20 </ b> A to 20 </ b> H are associated with the uneven distortion on the bottom surface 1 </ b> A of the cylindrical workpiece 1 with respect to the mounting surfaces 2 </ b> A to 2 </ b> H of the lifting / lowering drive mechanism 20. The amount of increase is finely adjusted, and control is given to a uniform pressure. Further, the clamp pieces 10A to 10H are finely adjusted on the outer peripheral surface 1B of the cylindrical workpiece 1 regardless of the unevenness distortion or non-circularity, and the amount of movement in the center direction is finely adjusted for each pressure so as to be controlled to equal pressure, so that there is no gripping distortion. Retained. The cylindrical workpiece (workpiece) 1 held by the clamping device 100 is held by the chuck 40 of the horizontal lathe 200 on the holding cylinder HK provided on the back surface of the machine body K.

続いて、図4〜図6に示すように、上記CNC制御装置210による横旋盤200の自動運転が行われる。円筒ワーク(被加工材)1の外周面が非真円であれば、この非真円の半径値0Xを主軸201の回転角位置毎に外径検知手段204で検知する。そして、上記半径値記憶手段205に記憶する半径値を主軸201の回転角位置毎に出力する半径値出力手段206により、この半径値出力手段206からの半径値0Xにより駆動制御手段207が制御軸X軸202を駆動し、刃物台Tを主軸の軸線Oに対して直角方向(外径方向)に進退制御される。これにより、非真円の外周面に対してバイトBによる断続切削が起こらず、均等な切り込み量のもとに円滑な旋削が行われる。即ち、非真円の外周面に対して非真円の外周面に仕上げるのであれば、仕上げ寸法に半径値0Xを補正しつつ駆動制御手段207で制御軸X軸202を補正制御して行われる。また、非真円の外周面に対して真円の外周面に仕上げるのであれば、仕上げ寸法に半径値0Xを補正しつつ駆動制御手段207で制御軸X軸202を補正制御して行われる。  Subsequently, as shown in FIGS. 4 to 6, the horizontal lathe 200 is automatically operated by the CNC control device 210. If the outer peripheral surface of the cylindrical workpiece (workpiece) 1 is a non-perfect circle, the radius value 0X of the non-perfect circle is detected by the outer diameter detection means 204 for each rotation angle position of the main shaft 201. Then, a radius value output means 206 for outputting the radius value stored in the radius value storage means 205 for each rotation angle position of the main shaft 201 causes the drive control means 207 to control the control shaft based on the radius value 0X from the radius value output means 206. The X axis 202 is driven, and the tool post T is controlled to advance and retreat in a direction perpendicular to the axis O of the main shaft (outer diameter direction). As a result, intermittent cutting by the cutting tool B does not occur on the outer peripheral surface of the non-circular circle, and smooth turning is performed with a uniform cutting amount. In other words, if the non-perfect outer peripheral surface is finished with respect to the non-perfect outer peripheral surface, the drive control means 207 corrects and controls the control axis X axis 202 while correcting the radius value 0X to the finished dimension. . Further, if the outer peripheral surface of the non-perfect circle is finished to be a perfect outer peripheral surface, the driving control means 207 corrects and controls the control axis X axis 202 while correcting the radius value 0X to the finished dimension.

その具体例は、図5の円筒ワーク(被加工材)1において、加工箇所(a)(b)(c)(f)の外周面は、図6(I)に示す非真円形をなし、これに類似した中心O1からの半径値0Xがバイト軌跡OX1となる。このバイト軌跡OX1のように制御されて、円筒ワーク(被加工材)1における加工箇所(a)(b)(c)(f)の外周面が、所定形状の真円又は非真円寸法に加工される。また、図5の円筒ワーク(被加工材)1において、加工箇所(d)(e)の外周面は、図6(II)に示す非真円形(半球突起を周期的に設けた外周)をなし、これに類似した中心O1からの半径値0Xがバイト軌跡OX2となる。このバイト軌跡OX2のように制御されて、円筒ワーク(被加工材)1における加工箇所(d)(e)の外周面が、所定形状の非真円寸法に加工される。更に、図5の円筒ワーク(被加工材)1において、加工箇所(g)の外周面は、図6(III)に示す非真円形(凸状面を周期的に設けた外周)をなし、これに類似した中心O1からの半径値0Xがバイト軌跡OX3となる。このバイト軌跡OX3のように制御されて、円筒ワーク(被加工材)1における加工箇所(g)の外周面が、所定形状の非真円寸法に加工される。この様に、円筒ワーク(被加工材)1に対して、加工前の外周形状が非真円や凹凸部が有っても、任意な形状に仕上げ加工される。勿論、外周面に限らず端面や内周面についても、刃物台TとバイトB方向の切り替えにより、同様に任意な形状に仕上げ加工される。  The specific example is that in the cylindrical workpiece (workpiece) 1 of FIG. 5, the outer peripheral surfaces of the machining locations (a), (b), (c), and (f) have a non-circular shape shown in FIG. A radius value 0X from the center O1 similar to this becomes a byte locus OX1. The outer peripheral surface of the machining locations (a), (b), (c), and (f) in the cylindrical workpiece (workpiece) 1 is controlled to be a perfect circle or non-circular dimension of a predetermined shape under the control of the bite locus OX1. Processed. Further, in the cylindrical workpiece (workpiece) 1 of FIG. 5, the outer peripheral surfaces of the processing locations (d) and (e) are non-circular (the outer periphery provided with hemispherical protrusions periodically) shown in FIG. 6 (II). None, a radius value 0X from the center O1 similar to this becomes the bite locus OX2. The outer peripheral surface of the machining locations (d) and (e) in the cylindrical workpiece (workpiece) 1 is machined into a non-circular dimension of a predetermined shape under the control of the bite locus OX2. Furthermore, in the cylindrical workpiece (workpiece) 1 in FIG. 5, the outer peripheral surface of the processing location (g) is a non-true circle (outer periphery provided with a convex surface periodically) shown in FIG. A radius value 0X from the center O1 similar to this becomes a byte locus OX3. The outer peripheral surface of the machining location (g) in the cylindrical workpiece (workpiece) 1 is machined into a non-circular dimension of a predetermined shape under the control of the bite locus OX3. In this way, the cylindrical workpiece (workpiece) 1 is finished into an arbitrary shape even if the outer peripheral shape before processing has a non-round or uneven portion. Of course, not only the outer peripheral surface but also the end surface and the inner peripheral surface are similarly finished to an arbitrary shape by switching between the tool post T and the tool B direction.

本発明の実施形態となるクランプ装置100による旋盤の円筒ワーク加工方法によれば、下記の効果が奏せられる。特に、非真円筒の素材ワークを、歪ませることなく把持でき、歪んだ非真円筒の素材ワークをそのまま把持して最終的に歪みの無い真円筒ワークを加工できる。また、円筒ワークの外周面・内周面・両端面が均等に全自動加工できる。  According to the lathe cylindrical workpiece machining method using the clamp device 100 according to the embodiment of the present invention, the following effects can be obtained. In particular, a non-cylinder material workpiece can be gripped without being distorted, and a distorted non-cylinder material workpiece can be gripped as it is to finally process a true cylinder workpiece without distortion. In addition, the outer peripheral surface, inner peripheral surface, and both end surfaces of the cylindrical workpiece can be processed fully automatically.

尚、本発明のクランプ装置100による旋盤の円筒ワーク加工方法は、上記実施の形態における構成に限定されず、その発明の要旨内での設計変更が自由にできる。例えば、クランプ機構及び降駆動機構の詳細構成の設計変更や、上記昇降駆動機構および上記クランプ機構を均等に制御して付与する圧力制御機構の詳細構成。そして、旋盤を制御する駆動制御手段の各手段やソフトウエア(切削運転プログラム)については、特別に詳細を開示しなかったが現存の旋盤におけるCNC制御装置における各種のソフトウエア(切削運転プログラム)が適用できるとともに、適宜な仕様変更・設計変更が可能である。例えば、刃物台Tは、通常複数本のバイトを装備し、自動で選択的に切り替えられるタレット方式が採用される。  The lathe cylindrical workpiece machining method by the clamping device 100 of the present invention is not limited to the configuration in the above embodiment, and the design can be freely changed within the gist of the invention. For example, the detailed configuration of the clamp mechanism and the descending drive mechanism, and the detailed configuration of the pressure control mechanism that controls and applies the lifting drive mechanism and the clamp mechanism equally. Further, although the details of the drive control means and software (cutting operation program) for controlling the lathe were not disclosed in detail, various software (cutting operation programs) in the CNC control device in the existing lathe are available. In addition to being applicable, appropriate specification changes and design changes are possible. For example, the turret T is usually equipped with a plurality of cutting tools and adopts a turret method that is automatically and selectively switched.

続いて、本発明の第三の実施の形態となるクランプ装置100によるフライス盤の円筒ワーク加工方法を説明する。先ず、図7はフライス盤によるCNC制御装置の構成図、図8は円筒ワークの加工正面図、図9は円筒ワークの各加工箇所の断面図である。  Then, the cylindrical workpiece processing method of the milling machine by the clamp apparatus 100 which becomes 3rd embodiment of this invention is demonstrated. First, FIG. 7 is a block diagram of a CNC control device using a milling machine, FIG. 8 is a machining front view of a cylindrical workpiece, and FIG. 9 is a sectional view of each machining location of the cylindrical workpiece.

上記クランプ装置100を使用するフライス盤300は、図7に見るように構成されている。上記フライス盤300のテーブル301上に旋回可能に搭載し、上記円筒ワーク1の上端面1Aを加工する立型主軸VHの正面刃具C1で行い、円筒ワーク1の内周面の加工を立型主軸VHのボーリングカッターBCで行い、円筒ワーク1の短寸外周面の加工を立型主軸のミーリングカッターMCで行い、円筒ワークの凹凸座がある外周面1Bの加工を横型主軸HHの正面刃具C1で行い、円筒ワーク1の平坦な外周面1Dの加工を横型主軸HHのバイトBTで行わせる。尚、非真円の外周や凹凸座がある外周面1Bの加工時には、円筒ワーク(被加工材)1の中心位置01から外周面までの半径値0Xを検知する外径検知手段204と、円筒ワーク(被加工材)1の回転角位置毎に外径検知手段204からの半径値0Xを記憶する半径値記憶手段205と、上記半径値記憶手段205に記憶する半径値を円筒ワーク(被加工材)1の回転角位置毎に出力する半径値出力手段206と、この半径値出力手段206からの半径値0Xにより、横型主軸HSまたは首振り自在のユニバーサルヘッドUHを駆動し、加工面に対して進退制御する駆動制御手段207と、全ての手段201〜207をソフトウエア(切削運転プログラム)により運転制御するCNC制御装置210とからなる。上記外径検知手段204の具体的な構成は、外径表面1Bと近接センサSまでの距離を半径値0Xとして検知し、その数値を半径値記憶手段205に出力する形式のものと、外径表面に当接させたローラーRが外径表面の凹凸量により出没移動させ、その出没移動量により、半径値0Xとして検知し、その数値を半径値記憶手段205に出力する形式とからなる物が採用される。  The milling machine 300 using the clamping device 100 is configured as shown in FIG. It is mounted on the table 301 of the milling machine 300 so as to be able to turn, and is performed by the front cutting tool C1 of the vertical spindle VH that processes the upper end surface 1A of the cylindrical work 1, and the inner peripheral surface of the cylindrical work 1 is processed by the vertical spindle VH. The boring cutter BC is used to process the short outer peripheral surface of the cylindrical workpiece 1 with the milling cutter MC of the vertical spindle, and the outer peripheral surface 1B with the uneven seat of the cylindrical workpiece is processed with the front cutting tool C1 of the horizontal spindle HH. Then, the processing of the flat outer peripheral surface 1D of the cylindrical workpiece 1 is performed with the cutting tool BT of the horizontal main shaft HH. It should be noted that an outer diameter detecting means 204 for detecting a radius value 0X from the center position 01 of the cylindrical workpiece (workpiece) 1 to the outer peripheral surface at the time of processing the outer peripheral surface 1B having a non-circular outer periphery or an uneven seat, and a cylinder A radius value storage unit 205 that stores a radius value 0X from the outer diameter detection unit 204 for each rotation angle position of the workpiece (workpiece) 1, and a radius value stored in the radius value storage unit 205 is a cylindrical workpiece (workpiece). Material) Radial value output means 206 that outputs at each rotation angle position of 1 and the radial value 0X from this radius value output means 206 drives the horizontal main shaft HS or the swingable universal head UH to the machining surface. Drive control means 207 for performing forward / backward control, and a CNC control device 210 for controlling the operation of all means 201 to 207 by software (cutting operation program). The specific configuration of the outer diameter detecting means 204 is such that the distance between the outer diameter surface 1B and the proximity sensor S is detected as a radius value 0X, and the numerical value is output to the radius value storage means 205, and the outer diameter The roller R brought into contact with the surface moves up and down by the amount of unevenness on the surface of the outer diameter, detects the radius value 0X based on the amount of movement and the amount of movement, and outputs the numerical value to the radius value storage means 205. Adopted.

しかして、上記フライス盤300によると、図7〜図9に見る様に、円筒ワーク(被加工材)1の外周面が切削される。まず、円筒ワーク(被加工材)1は、クランプ装置100にその昇降駆動機構20の各搭載面2A〜2Hに対して各昇降体20A〜20Hが円筒ワーク1の底面1Aにその凹凸歪みに係わりなく上昇量が微調節されて均等圧に制御付与され、また、各クランプ片10A〜10Hは、円筒ワーク1の外周面1Bにその凹凸歪みや非真円に係わりなく中心方向への移動量が各別に微調節され均等圧に制御付与され、把持歪み無く保持される。上記クランプ装置100は、機体Kの裏面に設けた保持筒HKをフライス盤300のテーブル301上に旋回可能に搭載される。  Therefore, according to the milling machine 300, the outer peripheral surface of the cylindrical workpiece (workpiece) 1 is cut as seen in FIGS. First, in the cylindrical workpiece (workpiece) 1, the lifting bodies 20 </ b> A to 20 </ b> H are associated with the uneven distortion on the bottom surface 1 </ b> A of the cylindrical workpiece 1 with respect to the mounting surfaces 2 </ b> A to 2 </ b> H of the lifting / lowering drive mechanism 20. The amount of ascent is finely adjusted and equal pressure is controlled, and the clamp pieces 10A to 10H have the amount of movement in the center direction on the outer peripheral surface 1B of the cylindrical workpiece 1 regardless of irregularities or non-circularity. Each is finely adjusted and given a uniform pressure, and is held without gripping distortion. In the clamping device 100, a holding cylinder HK provided on the back surface of the machine body K is mounted on a table 301 of a milling machine 300 in a turnable manner.

続いて、図7〜図9に示すように、上記CNC制御装置310によるフライス盤300の自動運転が行われる。円筒ワーク(被加工材)1の外周面加工に際して非真円であれば、この非真円の半径値0Xをクランプ装置100(円筒ワーク1)の回転角位置毎に外径検知手段204で検知する。そして、上記半径値記憶手段205に記憶する半径値を円筒ワーク1の回転角位置毎に出力する半径値出力手段206により、この半径値出力手段206からの半径値0Xにより駆動制御手段207が横型主軸HHを半径方向に進退させて正面刃具C1で加工を始める。これで、非真円の円筒ワーク(被加工材)1の外周面加工が均等な切り込み量のもとに、歯損させることなく安定して加工が進められる。従って、円筒ワーク1の平坦な外周面1Dの加工は、半径値0Xの変化が微少であることから、駆動制御手段207で横型主軸HHを半径方向に進退させることなく、横型主軸HHのバイトBTや正面刃具C1を所定の切り込み量だけの制御により行われる。更に、非真円(又は真円)の外周面に対して非真円の所定寸法の外周面に仕上げるのであれば、仕上げ寸法に半径値0Xを補正しつつ駆動制御手段207で横型主軸HHを補正制御して行われる。この様に、円筒ワーク(被加工材)1に対して、加工前の外周形状が非真円や凹凸部が有っても、任意な形状に仕上げ加工される。勿論、外周面に限らず内周面や端面についても、上記円筒ワーク1の上端面1Aを加工する立型主軸VHの正面刃具C1で行い、円筒ワーク1の内周面の加工を立型主軸VHのボーリングカッターBCで行なわれる。  Subsequently, as shown in FIGS. 7 to 9, automatic operation of the milling machine 300 is performed by the CNC control device 310. If the outer peripheral surface of the cylindrical workpiece (workpiece) 1 is not a perfect circle, the radius value 0X of the non-true circle is detected by the outer diameter detection means 204 for each rotation angle position of the clamp device 100 (cylindrical workpiece 1). To do. Then, a radius value output means 206 for outputting the radius value stored in the radius value storage means 205 for each rotation angle position of the cylindrical workpiece 1 causes the drive control means 207 to be a horizontal type by the radius value 0X from the radius value output means 206. The main shaft HH is advanced and retracted in the radial direction, and machining is started with the front blade C1. As a result, the outer peripheral surface machining of the non-circular cylindrical workpiece (workpiece) 1 can be stably carried out without causing tooth damage under the uniform cut amount. Accordingly, since the machining of the flat outer peripheral surface 1D of the cylindrical workpiece 1 has a slight change in the radius value 0X, the cutting tool 207 does not cause the horizontal main shaft HH to advance or retreat in the radial direction, so that the cutting tool BT of the horizontal main shaft HH is used. Or the front cutting tool C1 is controlled by a predetermined cut amount. Furthermore, if the outer surface of the non-perfect circle (or perfect circle) is finished to a non-circular outer peripheral surface having a predetermined dimension, the drive control means 207 corrects the horizontal spindle HH by correcting the radius value 0X in the finished dimension. This is performed under correction control. In this way, the cylindrical workpiece (workpiece) 1 is finished into an arbitrary shape even if the outer peripheral shape before processing has a non-round or uneven portion. Of course, not only the outer peripheral surface but also the inner peripheral surface and the end surface are processed by the front cutting tool C1 of the vertical spindle VH that processes the upper end surface 1A of the cylindrical workpiece 1, and the inner peripheral surface of the cylindrical workpiece 1 is processed by the vertical spindle. This is done with a VH boring cutter BC.

その具体例は、図8の円筒ワーク(被加工材)1において、図8の円筒ワーク(被加工材)1において、加工箇所(a)(b)(c)(f)の外周面は、図9(I)に示す非真円形をなし、これに類似した中心O1からの半径値0Xがバイト軌跡OX4となる。この切削軌跡OX4のように制御されて、円筒ワーク(被加工材)1における加工箇所(a)(b)(c)(f)の外周面が、所定形状の真円又は非真円寸法に加工される。また、図8の円筒ワーク(被加工材)1において、加工箇所(d)(e)の外周面は、図9(II)に示す非真円形(半球突起を周期的に設けた外周)をなし、これに類似した中心O1からの半径値0Xがバイト軌跡OX5となる。この切削軌跡OX5のように制御されて、円筒ワーク(被加工材)1における加工箇所(d)(e)の外周面が、所定形状の非真円寸法に加工される。更に、図8の円筒ワーク(被加工材)1において、加工箇所(g)の外周面は、図9(III)に示す非真円形(凸状面を周期的に設けた外周)をなし、これに類似した中心O1からの半径値0Xが切削軌跡OX6となる。この切削軌跡OX6のように制御されて、円筒ワーク(被加工材)1における加工箇所(g)の外周面が、所定形状の非真円寸法に加工される。この様に、円筒ワーク(被加工材)1に対して、加工前の外周形状が非真円や凹凸部が有っても、任意な形状に仕上げ加工される。勿論、外周面に限らず端面や内周面についても、ボーリングカッターBCにより、同様に任意な形状に仕上げ加工される。  The specific example is the cylindrical workpiece (workpiece) 1 in FIG. 8, and in the cylindrical workpiece (workpiece) 1 in FIG. 8, the outer peripheral surfaces of the machining locations (a), (b), (c), and (f) are: A non-true circle shown in FIG. 9 (I) is formed, and a radius value 0X from the center O1 similar to this becomes a byte locus OX4. The outer peripheral surface of the machining locations (a), (b), (c), and (f) in the cylindrical workpiece (workpiece) 1 is controlled to be a perfect circle or a non-circular dimension of a predetermined shape by being controlled like this cutting locus OX4. Processed. Further, in the cylindrical workpiece (workpiece) 1 in FIG. 8, the outer peripheral surfaces of the processing locations (d) and (e) are non-circular (the outer periphery provided with hemispherical protrusions periodically) shown in FIG. 9 (II). None, a radius value 0X from the center O1 similar to this becomes a bite locus OX5. The outer peripheral surface of the machining locations (d) and (e) in the cylindrical workpiece (workpiece) 1 is machined into a non-circular dimension of a predetermined shape under the control of the cutting locus OX5. Further, in the cylindrical workpiece (workpiece) 1 of FIG. 8, the outer peripheral surface of the machining location (g) is a non-circular shape (the outer periphery provided with a convex surface periodically) shown in FIG. A radius value 0X from the center O1 similar to this becomes a cutting locus OX6. Under the control of the cutting locus OX6, the outer peripheral surface of the machining location (g) in the cylindrical workpiece (workpiece) 1 is machined into a non-circular dimension of a predetermined shape. In this way, the cylindrical workpiece (workpiece) 1 is finished into an arbitrary shape even if the outer peripheral shape before processing has a non-round or uneven portion. Of course, not only the outer peripheral surface but also the end surface and the inner peripheral surface are similarly finished to an arbitrary shape by the boring cutter BC.

本発明の実施形態となるクランプ装置100によるフライス盤の円筒ワーク加工方法によれば、下記の効果が奏せられる。特に、非真円筒の素材ワークを、歪ませることなく把持でき、歪んだ非真円筒の素材ワークをそのまま把持して最終的に歪みの無い真円筒ワークを加工できる。また、円筒ワークの外周面・内周面・両端面が均等に全自動加工できる。  According to the cylindrical workpiece processing method of a milling machine by the clamp device 100 according to the embodiment of the present invention, the following effects can be obtained. In particular, a non-cylinder material workpiece can be gripped without being distorted, and a distorted non-cylinder material workpiece can be gripped as it is to finally process a true cylinder workpiece without distortion. In addition, the outer peripheral surface, inner peripheral surface, and both end surfaces of the cylindrical workpiece can be processed fully automatically.

尚、本発明のクランプ装置100によるフライス盤の円筒ワーク加工方法は、上記第1の実施の形態における構成に限定されず、その発明の要旨内での設計変更が自由にできる。例えば、クランプ機構及び降駆動機構の詳細構成の設計変更や、上記昇降駆動機構および上記クランプ機構を均等に制御して付与する圧力制御機構の詳細構成。そして、フライス盤を制御する駆動制御手段の各手段やソフトウエア(切削運転プログラム)についても、特別に詳細を開示しなかったが現存のフライス盤におけるCNC制御装置における各種のソフトウエア(切削運転プログラム)が適用できるとともに、適宜な仕様変更・設計変更が可能である。  In addition, the cylindrical work processing method of the milling machine by the clamp apparatus 100 of this invention is not limited to the structure in the said 1st Embodiment, A design change can be made freely within the summary of the invention. For example, the detailed configuration of the clamp mechanism and the descending drive mechanism, and the detailed configuration of the pressure control mechanism that controls and applies the lifting drive mechanism and the clamp mechanism equally. Further, the details of each means and software (cutting operation program) of the drive control means for controlling the milling machine were not disclosed, but various software (cutting operation programs) in the CNC control device in the existing milling machine are In addition to being applicable, appropriate specification changes and design changes are possible.

本発明は、その対象物を円筒ワークの実施例で説明したものであるが、様々な形式のワークへの適用が可能である。例えば、円柱状の円形ワークや多角形ワークの実施も可能である。  In the present invention, the object is described in the embodiment of the cylindrical workpiece. However, the present invention can be applied to various types of workpieces. For example, a cylindrical circular workpiece or a polygonal workpiece can be implemented.

本発明の第1の実施の形態を示し、クランプ装置全体の斜視図である。1 shows a first embodiment of the present invention and is a perspective view of an entire clamping device. FIG. 本発明の第1の実施の形態を示し、クランプ装置の断面図である。1 is a cross-sectional view of a clamp device according to a first embodiment of the present invention. 本発明の第1の実施の形態を示し、クランプ装置の作用断面図である。FIG. 2 is a sectional view showing the operation of the clamp device according to the first embodiment of the present invention. 本発明の第2の実施の形態を示し、横旋盤とこのCNC制御装置の構成図である。The 2nd Embodiment of this invention is shown and it is a block diagram of a horizontal lathe and this CNC control apparatus. 本発明の第2の実施の形態を示し、円筒ワークの外観図である。The 2nd Embodiment of this invention is shown and it is an external view of a cylindrical workpiece. 本発明の第2の実施の形態を示し、円筒ワークの各加工箇所の断面図である。It is sectional drawing of each processing location of the cylindrical workpiece which shows the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示し、フライス盤とこのCNC制御装置の構成図である。FIG. 9 is a block diagram of a milling machine and this CNC control device according to a third embodiment of the present invention. 本発明の第3の実施の形態を示し、円筒ワークの加工正面図である。The 3rd Embodiment of this invention is shown and it is a process front view of a cylindrical workpiece. 本発明の第3の実施の形態を示し、円筒ワークの各加工箇所の断面図である。It is sectional drawing of each processing location of the cylindrical workpiece which shows the 3rd Embodiment of this invention. 従来方法を示し、旋盤による燃焼筒の加工方法の斜視図である。It is a perspective view of the processing method of the combustion cylinder by a lathe showing a conventional method. 従来方法を示し、フライス盤による燃焼筒の加工方法の斜視図である。It is a perspective view of the processing method of the combustion cylinder by a milling machine which shows the conventional method. 従来方法を示し、フライス盤による燃焼筒の部分加工の斜視図である。It is a perspective view of the partial processing of the combustion cylinder by a milling machine, showing a conventional method. 従来方法を示し、円筒ワークの加工方法の工程図である。It is process drawing of the processing method of a cylindrical workpiece which shows a conventional method. 従来方法を示し、円筒ワークの加工歪みを除去する加工方法の工程図である。It is process drawing of the processing method which shows the conventional method and removes the processing distortion of a cylindrical workpiece.

符号の説明Explanation of symbols

1 円筒ワーク
1A 底面
1B 外周面
1B´ 大径鍔
1C 上面
2 搭載部
2A〜2H 搭載面
2Y 外周面
10 クランプ機構
10A〜10H クランプ片
21A〜21H シリンダ体
20 昇降駆動機構
L1〜L8 昇降体
C1〜C8 シリンダ体
30 圧力制御機構
30A オイルタンク
30B オイルポンプ
30C モーター
30D 圧力調節器
100 クランプ装置
EO 圧縮空気(エアー源)
K 機体
HK 保持筒
P 配管
0 主軸の軸線
01 中心位置
0X 半径値
0X1 バイト軌跡
0X2 バイト軌跡
0X3 バイト軌跡
0X4 切削軌跡
0X5 切削軌跡
0X6 切削軌跡
R ローラー
S 近接センサ
VH 立型主軸
HH 横型主軸
UH ユニバーサルヘッド
200 横旋盤
201 主軸(回転制御軸C軸)
202 制御軸X軸
203 制御軸Y軸
204 外径検知手段
205 半径値記憶手段
206 半径値出力手段
207 駆動制御手段
210 CNC制御装置
300 フライス盤
DESCRIPTION OF SYMBOLS 1 Cylindrical workpiece 1A Bottom surface 1B Outer peripheral surface 1B 'Large diameter ridge 1C Upper surface 2 Mounting part 2A-2H Mounting surface 2Y Outer peripheral surface 10 Clamp mechanism 10A-10H Clamp piece 21A-21H Cylinder body 20 Elevating drive mechanism L1-L8 Elevating body C1- C8 Cylinder body 30 Pressure control mechanism 30A Oil tank 30B Oil pump 30C Motor 30D Pressure regulator 100 Clamp device EO Compressed air (air source)
K Airframe HK Holding cylinder P Piping 0 Spindle axis 01 Center position 0X Radius value 0X1 Byte locus 0X2 Byte locus 0X3 Byte locus 0X4 Cutting locus 0X5 Cutting locus 0X6 Cutting locus R Roller S Proximity sensor VH Vertical spindle HH Horizontal spindle UH Universal head 200 Horizontal lathe 201 Spindle (Rotation control axis C axis)
202 Control axis X axis 203 Control axis Y axis 204 Outer diameter detection means 205 Radius value storage means 206 Radius value output means 207 Drive control means 210 CNC controller 300 Milling machine

Claims (8)

円筒ワーク・円形ワーク等の底面を放射状に多分割して載置する搭載部と、上記各搭載面を個別に昇降させる昇降駆動機構と、上記搭載部の各搭載面の外周面位置に配置し外径方向に拡縮するクランプ機構と、上記昇降駆動機構および上記クランプ機構に対して円筒ワークの底面および外周面にその当接圧を均等に制御付与する圧力制御機構と、を具備したことを特徴とするクランプ装置。  Placed on the outer peripheral surface position of each mounting surface of the mounting part, the mounting part that divides the bottom surface of cylindrical work, circular work etc. radially and divides and mounts, the lifting drive mechanism that raises and lowers each mounting surface individually A clamp mechanism that expands and contracts in the outer diameter direction, and a pressure control mechanism that uniformly controls and applies the contact pressure to the bottom surface and the outer peripheral surface of the cylindrical workpiece with respect to the lifting drive mechanism and the clamp mechanism. And clamping device. 上記昇降駆動機構は、流体駆動シリンダと昇降ピストンとからなることを特徴とする請求項1記載のクランプ装置。  2. The clamping device according to claim 1, wherein the elevating drive mechanism comprises a fluid drive cylinder and an elevating piston. 上記クランプ機構は、流体圧力式のフォームロックチャックであることを特徴とする請求項1記載のクランプ装置。  2. The clamping device according to claim 1, wherein the clamping mechanism is a fluid pressure type foam lock chuck. 円筒ワーク・円形ワーク等の底面を放射状に多分割して載置する搭載部と、上記搭載部の各搭載面の外周面位置に配置し外径方向に拡縮するクランプ機構と、上記各搭載面を個別に昇降させる昇降駆動機構と、上記昇降駆動機構および上記クランプ機構に対して円筒ワークの底面および外周面にその当接圧を均等に制御付与する圧力制御機構とからなるクランプ装置を、旋盤の回転制御軸C軸となる主軸に装着させ、刃物台を主軸直角方向に制御軸X軸で行い、刃物台を上記C軸及び上記X軸に直角な方向に制御軸Y軸で行わせることを特徴とするクランプ装置による旋盤の円筒ワーク加工方法。  A mounting portion that divides the bottom surface of a cylindrical workpiece or circular workpiece into multiple pieces radially, a clamp mechanism that is disposed at the outer peripheral surface position of each mounting surface of the mounting portion and expands / contracts in the outer diameter direction, and each of the mounting surfaces A lathe comprising a lift drive mechanism that individually lifts and lowers, and a pressure control mechanism that uniformly controls and applies the contact pressure to the bottom surface and the outer peripheral surface of the cylindrical workpiece with respect to the lift drive mechanism and the clamp mechanism, Is attached to the main axis which is the rotation control axis C axis of the turret, the turret is moved in the direction perpendicular to the main axis by the control axis X axis, and the turret is moved in the direction perpendicular to the C axis and the X axis by the control axis Y axis. A lathe cylindrical workpiece machining method using a clamping device characterized by 上記昇降駆動機構は、流体駆動シリンダと昇降ピストンとからなることを特徴とする請求項4記載のクランプ装置による旋盤の円筒ワーク加工方法。  5. The method for machining a cylindrical workpiece of a lathe by a clamping device according to claim 4, wherein the lifting drive mechanism comprises a fluid drive cylinder and a lifting piston. 上記クランプ機構は、流体圧力式のフォームロックチャックであることを特徴とする請求項4記載のクランプ装置による旋盤の円筒ワーク加工方法。  5. The method of machining a cylindrical workpiece of a lathe with a clamping device according to claim 4, wherein the clamping mechanism is a fluid pressure type foam lock chuck. 円筒ワーク・円形ワーク等の底面を放射状に多分割して載置する搭載部と、上記搭載部の各搭載面の外周面位置に配置し外径方向に拡縮するクランプ機構と、上記各搭載面を個別に昇降させる昇降駆動機構と、上記昇降駆動機構および上記クランプ機構に対して円筒ワークの底面および外周面にその当接圧を均等に制御付与する圧力制御機構とからなるクランプ装置を、フライス盤のテーブル上に旋回可能に搭載し、上記円筒ワークの上端面を加工する立型主軸の正面刃具で行い、円筒ワークの内周面の加工を立型主軸のボーリングカッターで行い、円筒ワークの短寸外周面の加工を立型主軸のミーリングカッターで行い、円筒ワークの凹凸座がある外周面の加工を横型主軸の正面刃具で行い、円筒ワークの平坦な外周面の加工を横型主軸のバイトで行わせることを特徴とするフライス盤による円筒ワーク加工方法。  A mounting portion that divides the bottom surface of a cylindrical workpiece or circular workpiece into multiple pieces radially, a clamp mechanism that is disposed at the outer peripheral surface position of each mounting surface of the mounting portion and expands / contracts in the outer diameter direction, and each of the mounting surfaces A milling machine comprising: a lifting drive mechanism for individually lifting and lowering; and a pressure control mechanism for uniformly controlling and applying the contact pressure to the bottom surface and the outer peripheral surface of the cylindrical workpiece with respect to the lifting drive mechanism and the clamp mechanism It is mounted on the table of the cylinder work piece with a vertical spindle front cutting tool that processes the upper end surface of the cylindrical workpiece, and the inner peripheral surface of the cylindrical workpiece is machined with a vertical spindle boring cutter. Machining of the outer peripheral surface is performed with a milling cutter of the vertical spindle, processing of the outer peripheral surface of the cylindrical workpiece with an uneven seat is performed with the front cutter of the horizontal spindle, and processing of the flat outer peripheral surface of the cylindrical workpiece is performed with the horizontal spindle. Cylindrical workpiece machining method according milling for causing performed at site. 上記立型主軸と横型主軸とは、首振り自在のユニバーサルヘッドで構成されたことを特徴とする請求項7記載のフライス盤による円筒ワーク加工方法。  8. The method of machining a cylindrical workpiece by a milling machine according to claim 7, wherein the vertical spindle and the horizontal spindle are constituted by a universal head that can swing freely.
JP2008293902A 2008-10-21 2008-10-21 Clamp device, method of machining cylindrical workpiece in lathe by clamp device, and method of machining cylindrical workpiece in milling machine by clamp device Pending JP2010099820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008293902A JP2010099820A (en) 2008-10-21 2008-10-21 Clamp device, method of machining cylindrical workpiece in lathe by clamp device, and method of machining cylindrical workpiece in milling machine by clamp device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008293902A JP2010099820A (en) 2008-10-21 2008-10-21 Clamp device, method of machining cylindrical workpiece in lathe by clamp device, and method of machining cylindrical workpiece in milling machine by clamp device

Publications (1)

Publication Number Publication Date
JP2010099820A true JP2010099820A (en) 2010-05-06

Family

ID=42290917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008293902A Pending JP2010099820A (en) 2008-10-21 2008-10-21 Clamp device, method of machining cylindrical workpiece in lathe by clamp device, and method of machining cylindrical workpiece in milling machine by clamp device

Country Status (1)

Country Link
JP (1) JP2010099820A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160114447A1 (en) * 2014-10-23 2016-04-28 Fu Ding Electronical Technology (Jiashan) Co.,Ltd. Clamping device
CN106181483A (en) * 2016-08-18 2016-12-07 天津爱田汽车部件有限公司 U-shaped workpiece positioning clamping device
KR101826161B1 (en) * 2015-09-17 2018-02-06 삼성중공업(주) Clamping apparatus
CN108972085A (en) * 2018-09-14 2018-12-11 山东瀚业机械有限公司 A kind of column cap end surface machining apparatus
JP2021070143A (en) * 2019-11-01 2021-05-06 株式会社牧野フライス製作所 Work-piece gripping device
CN113275472A (en) * 2021-05-21 2021-08-20 中国人民解放军海军航空大学 Ring support device with adjustable diameter size
JP2021122869A (en) * 2020-02-03 2021-08-30 株式会社ツガミ Machine tool
CN114406324A (en) * 2022-01-18 2022-04-29 浙江金易达机械股份有限公司 Milling lathe for end cover spigot surface of motor of intelligent equipment and operation method
CN114683081A (en) * 2022-04-25 2022-07-01 山东大学 Workpiece low-damage deformation control system based on multi-source perception of cutting process

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9802284B2 (en) * 2014-10-23 2017-10-31 Fu Ding Electronical Technology (Jiashan) Co., Ltd. Clamping device
US20160114447A1 (en) * 2014-10-23 2016-04-28 Fu Ding Electronical Technology (Jiashan) Co.,Ltd. Clamping device
KR101826161B1 (en) * 2015-09-17 2018-02-06 삼성중공업(주) Clamping apparatus
CN106181483A (en) * 2016-08-18 2016-12-07 天津爱田汽车部件有限公司 U-shaped workpiece positioning clamping device
CN108972085A (en) * 2018-09-14 2018-12-11 山东瀚业机械有限公司 A kind of column cap end surface machining apparatus
CN108972085B (en) * 2018-09-14 2024-04-30 山东瀚业机械有限公司 Column cap end face machining device
JP2021070143A (en) * 2019-11-01 2021-05-06 株式会社牧野フライス製作所 Work-piece gripping device
JP7377117B2 (en) 2020-02-03 2023-11-09 株式会社ツガミ Machine Tools
JP2021122869A (en) * 2020-02-03 2021-08-30 株式会社ツガミ Machine tool
CN113275472A (en) * 2021-05-21 2021-08-20 中国人民解放军海军航空大学 Ring support device with adjustable diameter size
CN114406324A (en) * 2022-01-18 2022-04-29 浙江金易达机械股份有限公司 Milling lathe for end cover spigot surface of motor of intelligent equipment and operation method
CN114683081B (en) * 2022-04-25 2023-01-20 山东大学 Workpiece low-damage deformation control system based on multisource perception of cutting process
CN114683081A (en) * 2022-04-25 2022-07-01 山东大学 Workpiece low-damage deformation control system based on multi-source perception of cutting process

Similar Documents

Publication Publication Date Title
JP2010099820A (en) Clamp device, method of machining cylindrical workpiece in lathe by clamp device, and method of machining cylindrical workpiece in milling machine by clamp device
KR101002610B1 (en) Cylindrical grinding method for producing hard metal tools and cylindrical grinding machine for grinding cylindrical starting bodies during the production of hard metal tools
JP5615129B2 (en) Clamping device
JP2010155300A (en) Machine tool
KR20140002562U (en) Jig for preventing distortion of pipe in machining and the pipe machining machine with the jig
CN102294611A (en) Clamp for processing small end inclined plane of connecting rod
CN105290423A (en) Double-head digital controlled lathe
CN104841991A (en) Machining method of H-shaped thin-wall parts
JP4572133B2 (en) Internal processing equipment for hollow workpieces
CN101693341B (en) Special clamp for grinding internal thread of ball screw nut
CN103506887B (en) A kind of gantry pay-off
CN105772794B (en) One kind cone double machine barrel processing tool
CN104015119A (en) Method and device for grinding central hole in shaft type part by utilizing rocker drilling machine
JP7167631B2 (en) Machine tool and gear machining method using machine tool
CN203509072U (en) Ejector pin
CN215470475U (en) Car cylinder body foundry goods anchor clamps and foundry goods production line of polishing
JP5082679B2 (en) Machine tool system
JP2006346786A (en) Part machining method and nc machine tool
CN101947656A (en) Ejection device of numerically controlled lathe
CN203901083U (en) Device for grinding center holes of shaft parts through radial drilling machine
CN113146470A (en) Car cylinder body foundry goods anchor clamps and foundry goods production line of polishing
JP2005319553A (en) Centering and machining method of workpiece
JP4304469B2 (en) Honing machine tool change method and honing machine.
JP3454030B2 (en) Processing method of cylinder head
CN111185723A (en) Machining process capable of improving concentricity of inner circle and outer circle of rotor machining