JP2010096346A - Device for moving transmission-coil of noncontact charger - Google Patents

Device for moving transmission-coil of noncontact charger Download PDF

Info

Publication number
JP2010096346A
JP2010096346A JP2009210392A JP2009210392A JP2010096346A JP 2010096346 A JP2010096346 A JP 2010096346A JP 2009210392 A JP2009210392 A JP 2009210392A JP 2009210392 A JP2009210392 A JP 2009210392A JP 2010096346 A JP2010096346 A JP 2010096346A
Authority
JP
Japan
Prior art keywords
planetary
pulse motor
power transmission
gear
transmission coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009210392A
Other languages
Japanese (ja)
Other versions
JP5297955B2 (en
Inventor
Kiyoyuki Arai
清之 新井
Kenta Fujimori
健太 藤森
Hiroshi Ogayu
拡史 大ヶ生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Nidec Copal Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Electronics Corp filed Critical Nidec Copal Electronics Corp
Priority to JP2009210392A priority Critical patent/JP5297955B2/en
Publication of JP2010096346A publication Critical patent/JP2010096346A/en
Application granted granted Critical
Publication of JP5297955B2 publication Critical patent/JP5297955B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for moving a transmission-coil of a noncontact charger that can be made thin, small, and compact in size, ensuring inhibition of its width from becoming larger. <P>SOLUTION: The device 1 for moving a transmission-coil of a noncontact charger includes: a planet spindle wheel placed rotatably in a case body; a pulse motor 16 for rotating the planet spindle wheel placed in the case body so as to rotate the planet spindle wheel 10; a planetary gear 18 placed rotatably to the planet spindle wheel; an annular external gear 21 meshed with the planetary gear so as to rotate coaxially with the planet spindle wheel; a pulse motor attached to the case body for the rotation of the external ring-gear so as to rotate the external ring-gear; a power-transmission coil placed in part other than the axis of the planet spindle wheel; a control board provided in the case body; and a pulse motor drive-control circuit for driving the pulse motor for rotation of the planet spindle wheel and the pulse motor for the rotation of the external ring-gear which are placed on the control board, and moving the power-transmission coil connected with a cable to a predetermined position detected with a detection sensor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は検出センサーで検出した位置へ送電コイルを移動させ、非接触で携帯電話機、カメラ、PDA、携帯電子端末等の受電コイルを内蔵した電子機器の充電を行なう非接触充電器の送電コイルの移動装置に関する。   The present invention relates to a power transmission coil of a non-contact charger that moves a power transmission coil to a position detected by a detection sensor and charges an electronic device incorporating a power reception coil such as a mobile phone, a camera, a PDA, or a portable electronic terminal in a non-contact manner. It relates to a mobile device.

従来、非接触で電子機器を充電する非接触充電器は、該非接触充電器の送電コイル部分に電子機器の受電コイルを正確に位置させなければ効率よく充電することができなかった。   Conventionally, a non-contact charger that charges an electronic device in a non-contact manner cannot be efficiently charged unless the power receiving coil of the electronic device is positioned accurately in the power transmission coil portion of the non-contact charger.

このため、非接触充電器の送電コイル部分を固定的に設置し、この送電コイル部分に電子機器の受電コイルを正確に位置させて充電するものが考えられていた。
また、電子機器の受電コイルの位置を検出センサーで検出し、送電コイルをスクリューとラックとピニオンを用いて移動させることも考えられているが、前者にあっては使用者が非接触充電器の送電コイル部分に電子機器の受電コイルを正確に位置させることが難しく、少しでも位置がずれていると充電効果が低下するという欠点があり、後者は構造が複雑でコスト高になりやすく、さらなる薄型化への対応が難しいという問題を抱えていた。
For this reason, the power transmission coil portion of the non-contact charger is fixedly installed, and the power reception coil of the electronic device is accurately positioned on the power transmission coil portion to perform charging.
In addition, it is considered that the position of the power receiving coil of the electronic device is detected by a detection sensor, and the power transmitting coil is moved using a screw, a rack, and a pinion. It is difficult to accurately place the power receiving coil of the electronic device in the power transmitting coil part, and there is a disadvantage that the charging effect is reduced if the position is slightly shifted. The latter is complicated in structure and is likely to increase the cost, and further thin. There was a problem that it was difficult to respond to the transformation.

特開2009−89464JP 2009-89464 A 特開2008−301553JP2008-301553 特開平9−190938JP-A-9-190938

本発明は以上のような従来の欠点に鑑み、非接触充電器に受電コイルを内蔵した電子機器を気軽に位置させても、受電コイルを効率よく充電できる位置へ送電コイルを移動させることができ、薄型化を図るとともに、幅方向に大きくなるのを確実に防止することができる小型コンパクトな非接触充電器の送電コイルの移動装置を提供することを目的としている。   In view of the above-described conventional drawbacks, the present invention can move the power transmission coil to a position where the power reception coil can be efficiently charged even if the electronic device having the power reception coil built in the non-contact charger is easily positioned. An object of the present invention is to provide a moving device for a power transmission coil of a small and compact non-contact charger that can be reduced in thickness and reliably prevented from increasing in the width direction.

また、本発明は送電コイルへの配線も他の部品と干渉することなく、確実に行なうことができる非接触充電器の送電コイルの移動装置を提供することを目的としている。   Another object of the present invention is to provide a device for moving a power transmission coil of a non-contact charger that can be reliably performed without interfering with the wiring of the power transmission coil.

本発明の前記ならびにそのほかの目的と新規な特徴は次の説明を添付図面と照らし合わせて読むと、より完全に明らかになるであろう。   The above and other objects and novel features of the present invention will become more fully apparent when the following description is read in conjunction with the accompanying drawings.

ただし、図面はもっぱら解説のためのものであって、本発明の技術的範囲を限定するものではない。   However, the drawings are for explanation only and do not limit the technical scope of the present invention.

上記目的を達成するために、本発明はケース体と、このケース体内に回転可能に取付けられた遊星軸車と、この遊星軸車を回転させる前記ケース体に取付けられた遊星軸車回転用パルスモータと、前記遊星軸車に回転可能に取付けられた遊星歯車と、この遊星歯車と噛み合い、前記遊星軸車と同一軸心で回転するリング状の外輪歯車と、この外輪歯車を回転させる前記ケース体に取付けられた外輪歯車回転用パルスモータと、前記遊星軸車の軸心以外の部位に取付けられた送電コイルと、前記ケース体内に設けられた制御基板と、この制御基板に設けられた前記遊星軸車回転用パルスモータと前記外輪歯車回転用パルスモータを駆動させ、ケーブルで接続された前記送電コイルを検出センサーで検出された所定位置へ移動させるパルスモータ駆動制御回路とで非接触充電器の送電コイルの移動装置を構成している。   In order to achieve the above object, the present invention provides a case body, a planetary axle wheel rotatably mounted in the case body, and a planetary axle wheel rotation pulse attached to the case body for rotating the planetary axle wheel. A motor, a planetary gear rotatably attached to the planetary shaft wheel, a ring-shaped outer ring gear that meshes with the planetary gear and rotates on the same axis as the planetary shaft wheel, and the case that rotates the outer ring gear A pulse motor for rotating the outer ring gear attached to the body, a power transmission coil attached to a portion other than the axis of the planetary axle, a control board provided in the case body, and the control board provided in the control board A pulse motor for driving a planetary axle wheel rotation pulse motor and the outer ring gear rotation pulse motor to move the power transmission coil connected by a cable to a predetermined position detected by a detection sensor Constitute a moving device of the power transmission coils of a contactless charger in the dynamic control circuit.

以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。
(1)ケース体と、このケース体内に回転可能に取付けられた遊星軸車と、この遊星軸車を回転させる前記ケース体に取付けられた遊星軸車回転用パルスモータと、前記遊星軸車に回転可能に取付けられた遊星歯車と、この遊星歯車と噛み合い、前記遊星軸車と同一軸心で回転するリング状の外輪歯車と、この外輪歯車を回転させる前記ケース体に取付けられた外輪歯車回転用パルスモータと、前記遊星軸車の軸心以外の部位に取付けられた送電コイルと、前記ケース体内に設けられた制御基板と、この制御基板に設けられた前記遊星軸車回転用パルスモータと前記外輪歯車回転用パルスモータを駆動させ、ケーブルで接続された前記送電コイルを検出センサーで検出された所定位置へ移動させるパルスモータ駆動制御回路とで構成されているので、遊星軸車、遊星歯車、リング状の外輪歯車の駆動によって、移動体を所定の座標(X、Y)に回転移動させることができる。
したがって、従来のスクリューやラックとピニオンを用いるものと比べ、厚さ寸法を薄く、幅方向の寸法も小さくでき、小型化を図ることができる。
(2)前記(1)によって、動きがすべて円運動であるので、スムーズに移動させることができる。
(3)前記(1)によって、遊星軸車回転用パルスモータと外輪歯車回転用パルスモータの制御で移動体の制御ができるので、制御が容易にできる。
(4)請求項2も前記(1)〜(3)と同様な効果が得られるとともに、リング状の外輪歯車をスムーズに駆動させることができる。
(5)請求項3も前記(1)〜(3)と同様な効果が得られるとともに、送電コイルへ接続されるケーブルを他の部品に干渉することなく確実に配線することができる。
As is clear from the above description, the present invention has the following effects.
(1) A case body, a planetary axle wheel rotatably mounted in the case body, a planetary axle wheel rotation pulse motor attached to the case body for rotating the planet axle axle, and the planetary axle wheel A planetary gear mounted rotatably, a ring-shaped outer ring gear meshing with the planetary gear and rotating on the same axis as the planetary wheel, and an outer ring gear rotation mounted on the case body for rotating the outer ring gear Pulse motor, a power transmission coil attached to a portion other than the axis of the planetary axle, a control board provided in the case body, and the planetary axle rotation pulse motor provided on the control board, A pulse motor drive control circuit that drives the pulse motor for rotating the outer ring gear and moves the power transmission coil connected by a cable to a predetermined position detected by a detection sensor. Since, the planetary shaft wheel, the planetary gear, the driving of the ring-shaped ring gear can be rotated moving the moving body to a predetermined coordinates (X, Y).
Therefore, compared with the conventional one using screws, racks and pinions, the thickness dimension can be reduced, the width dimension can be reduced, and the size can be reduced.
(2) According to the above (1), since all the movements are circular movements, they can be moved smoothly.
(3) According to the above (1), the moving body can be controlled by the control of the planetary axle wheel rotation pulse motor and the outer ring gear rotation pulse motor, so that the control can be facilitated.
(4) In the second aspect, the same effects as in the above (1) to (3) can be obtained, and the ring-shaped outer ring gear can be driven smoothly.
(5) According to the third aspect, the same effects as the above (1) to (3) can be obtained, and the cable connected to the power transmission coil can be reliably wired without interfering with other parts.

本発明を実施するための第1の形態のカバー体を外した斜視図。The perspective view which removed the cover body of the 1st form for implementing this invention. 本発明を実施するための第1の形態の分解斜視図。The disassembled perspective view of the 1st form for implementing this invention. 送電コイルが外輪歯車と遊星軸車の中心に位置する状態の説明図。Explanatory drawing of the state where a power transmission coil is located in the center of an outer ring | wheel gearwheel and a planetary axle wheel. 遊星軸車回転用パルスモータだけの回転状態を示す説明図。Explanatory drawing which shows the rotation state only of the pulse motor for planetary shaft wheel rotation. 外輪歯車回転用パルスモータだけの回転状態を示す説明図。Explanatory drawing which shows the rotation state only of the pulse motor for outer ring | wheel gear rotation. 各パルスモータが同期して回転する状態を示す説明図。Explanatory drawing which shows the state which each pulse motor rotates synchronously. 送電コイルの位置を検出する状態の説明図。Explanatory drawing of the state which detects the position of a power transmission coil. 遊星軸車回転用パルスモータを回転させて原点に移動させる説明図。Explanatory drawing which rotates the planetary shaft wheel rotation pulse motor, and moves it to the origin. 図8に示す各象限とその回転方向の説明図。Explanatory drawing of each quadrant shown in FIG. 8 and its rotation direction. 変換式の説明図。Explanatory drawing of a conversion type | formula. 各パルスモータを同期させて回転させる状態の説明図。Explanatory drawing of the state which rotates each pulse motor synchronizing. 図11に示す各象限とその回転方向の説明図。Explanatory drawing of each quadrant shown in FIG. 11 and its rotation direction. 送電コイルの位置を検出する状態の説明図。Explanatory drawing of the state which detects the position of a power transmission coil. 遊星軸車回転用パルスモータを回転させる状態の説明図。Explanatory drawing of the state which rotates the planetary axle wheel rotation pulse motor. 図14に示す各象限とその回転方向の説明図。Explanatory drawing of each quadrant shown in FIG. 14 and its rotation direction. 変換式の第1の説明図。The 1st explanatory view of a conversion type. 変換式の第2の説明図。The 2nd explanatory view of a conversion type. 変換式の第3の説明図。The 3rd explanatory view of a conversion type. 検出枠の上部の送電コイルの移動範囲を示す説明図。Explanatory drawing which shows the moving range of the power transmission coil of the upper part of a detection frame. 検出枠の下部の送電コイルの移動範囲を示す説明図。Explanatory drawing which shows the movement range of the power transmission coil of the lower part of a detection frame. 図3のA部詳細図。FIG. 4 is a detailed view of part A in FIG. 3. 図3のA部部分断面図。The A section fragmentary sectional view of FIG. 本発明を実施するための第2の形態のカバー体を外した斜視図。The perspective view which removed the cover body of the 2nd form for implementing this invention. 図23のB部部分断面図。The B section fragmentary sectional view of FIG. 本発明を実施するための第3の形態のカバー体を外した斜視図。The perspective view which removed the cover body of the 3rd form for carrying out the present invention. 図25のC部部分断面図。The C section partial sectional view of FIG. 本発明を実施するための第4の形態のカバー体を外した斜視図。The perspective view which removed the cover body of the 4th form for carrying out the present invention. 図27のD部部分断面図。The D section fragmentary sectional view of FIG. 本発明を実施するための第4の形態の平面図。The top view of the 4th form for carrying out the present invention.

以下、図面に示す本発明を実施するための形態により、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.

図1ないし図22に示す本発明を実施するための第1の形態において、1はケース体2のカバー体3に設けられた検出枠4内の、どの位置に受電コイルを内蔵した携帯電話機、カメラ、PDA、携帯電子端末等の電子機器5の受電コイルが位置しているかを検出する検出センサー6で検出した位置に、送電コイル7を自動的に移動させる本発明の非接触充電器の送電コイルの移動装置で、この非接触充電器の送電コイルの移動装置1は薄箱形状のケース体2と、このケース体2のケース本体8内に突出するように取付けられた軸9に回転可能に取付けられた遊星軸車10と、この遊星軸車10を前記ケース本体8に取付けられた軸11に回転可能に取付けられた減速歯車12、13を介して駆動軸14に取付けられたピニオン15で回転駆動させる、前記ケース本体8に取付けられた遊星軸車回転用パルスモータ16と、前記遊星軸車10の軸心と外周部との間に取付けられた軸17に回転可能に取付けられた遊星歯車18と、この遊星歯車18と噛み合い、前記遊星軸車10と同一軸心で回転する等間隔で配置された、前記ケース本体8に取付けられた軸19、19、19に回転可能に取付けられたガイド歯車20、20、20で支持されるリング状の外輪歯車21と、この外輪歯車21を前記ガイド歯車20と一体的に回転するように取付けられた減速歯車22を介して駆動軸23に固定されたピニオン24で回転駆動させる、前記ケース本体8に取付けられた外輪歯車回転用パルスモータ25と、前記遊星歯車18の軸心以外の外周部位に取付けられた軸26に取付けられた送電コイル7と、前記遊星軸車回転用パルスモータ16および前記外輪歯車回転用パルスモータ25の外側部位の前記ケース体2内に設けられた制御基板30と、この制御基板30が設けられた部位とは反対側の前記ケース体2内に設けられた、前記外輪歯車21の位置を検出する外輪歯車センサー27および、前記遊星軸車10の位置を検出する遊星軸車センサー28が設けられたセンサー基板29と、前記遊星歯車18の上面に固定された前記送電コイル7に接続された送電コイル接続ケーブル32、32が接続された端子33、33を有する中継基板34と、前記制御基板30に設けられた前記遊星軸車回転用パルスモータ16と前記外輪歯車回転用パルスモータ25とを駆動させ、ケーブル41で接続された前記検出センサー6で検出された位置へ、前記送電コイル7を移動させるパルスモータ駆動制御回路31とで構成されている。   In the first embodiment for carrying out the present invention shown in FIG. 1 to FIG. 22, reference numeral 1 denotes a mobile phone in which a receiving coil is incorporated at any position in a detection frame 4 provided on the cover body 3 of the case body 2; Power transmission of the non-contact charger of the present invention that automatically moves the power transmission coil 7 to the position detected by the detection sensor 6 that detects whether the power reception coil of the electronic device 5 such as a camera, PDA, or portable electronic terminal is located. In the coil moving device, the power transmitting coil moving device 1 of the non-contact charger can be rotated on a thin box-shaped case body 2 and a shaft 9 attached so as to protrude into the case body 8 of the case body 2. And a pinion 15 attached to the drive shaft 14 via reduction gears 12 and 13 rotatably attached to the shaft 11 attached to the case body 8. Rotation drive with The planetary gear wheel rotation pulse motor 16 attached to the case body 8 and the planetary gear 18 rotatably attached to the shaft 17 attached between the shaft center and the outer periphery of the planetary axle wheel 10. And a guide rotatably meshed with the planetary gear 18 and rotatably attached to the shafts 19, 19, and 19 attached to the case body 8 and arranged at equal intervals rotating on the same axis as the planetary axle wheel 10. The ring-shaped outer ring gear 21 supported by the gears 20, 20, 20 and the outer ring gear 21 are fixed to the drive shaft 23 via a reduction gear 22 attached so as to rotate integrally with the guide gear 20. The outer ring gear rotation pulse motor 25 attached to the case body 8 and driven by the pinion 24 and the shaft 26 attached to the outer peripheral portion other than the axis of the planetary gear 18 are attached. The electric coil 7, the control board 30 provided in the case body 2 outside the planetary axle wheel rotation pulse motor 16 and the outer ring gear rotation pulse motor 25, and the part where the control board 30 is provided A sensor provided with an outer ring gear sensor 27 for detecting the position of the outer ring gear 21 and a planetary axle wheel sensor 28 for detecting the position of the planetary axle wheel 10 provided in the case body 2 on the opposite side to the case body 2. Provided on the control board 30, a board 29, a relay board 34 having terminals 33, 33 connected to power transmission coil connection cables 32, 32 connected to the power transmission coil 7 fixed to the upper surface of the planetary gear 18. The detected planetary wheel rotation pulse motor 16 and the outer ring gear rotation pulse motor 25 are driven and detected by the detection sensor 6 connected by a cable 41. And a pulse motor drive control circuit 31 for moving the power transmission coil 7 to the set position.

前記送電コイル7に接続されるケーブル41は前記制御基板30より前記遊星軸車10の外周部寄りに形成された係合孔35、35、35と背面より係合する係止爪36、36、36により、該遊星軸車10の背面に取付けられた遊星軸車カバー37内に、該遊星軸車10の軸9を中心として、制御基板30側には遊星軸車10の回動による遊星軸車用弧状の遊び38を、遊星歯車18側には遊星歯車18の回動による遊星歯車用弧状の遊び39を有するようにS字状になるように配置し、かつ遊星歯車18の軸部、本発明を実施する形態では軸受部18a、この軸受部18aに挿入されるD字状の軸17との間に形成されるケーブル挿入孔40を介して前記中継基板34の端子33a、33aに接続されている。   The cable 41 connected to the power transmission coil 7 is engaged with engagement holes 35, 35, 35 formed closer to the outer periphery of the planetary axle 10 than the control board 30 and engaging claws 36, 36, 36, a planetary shaft formed by the rotation of the planetary axle wheel 10 on the control board 30 side around the axis 9 of the planetary axle wheel 10 in the planetary axle wheel cover 37 attached to the back surface of the planetary axle wheel 10. An arc-shaped play 38 for a vehicle is disposed in an S shape so as to have an arc-shaped play 39 for the planetary gear 18 by the rotation of the planetary gear 18 on the planetary gear 18 side, and the shaft portion of the planetary gear 18. In the embodiment of the present invention, it is connected to the terminals 33a and 33a of the relay board 34 through a cable insertion hole 40 formed between the bearing portion 18a and the D-shaped shaft 17 inserted into the bearing portion 18a. Has been.

前記ケーブル挿入孔40に挿入されるケーブル41は、該ケーブル挿入孔40の一方の端部に固定状態で設置することにより、ケーブル41をより確実に他の部品と干渉することなく配線することができる。   The cable 41 to be inserted into the cable insertion hole 40 is installed in a fixed state at one end of the cable insertion hole 40 so that the cable 41 can be more reliably wired without interfering with other components. it can.

上記構成の非接触充電器の送電コイルの移動装置1は図3に示すように、送電コイル7が外輪歯車21と遊星歯車18の中心の位置にある状態で、図4に示すように遊星軸車回転用パルスモータ16のみ回転し、外輪歯車回転用パルスモータ25が停止している場合、遊星軸車回転用パルスモータ16とピニオン15、減速歯車13、12と連結されている遊星軸車10がCCW方向に回転すると、遊星軸車10上の遊星歯車18自身も遊星軸車10の中心でCCW方向に回転する。   As shown in FIG. 3, the moving device 1 of the power transmission coil of the non-contact charger having the above-described configuration has the power transmission coil 7 at the center position between the outer ring gear 21 and the planetary gear 18, and as shown in FIG. When only the vehicle rotation pulse motor 16 is rotated and the outer ring gear rotation pulse motor 25 is stopped, the planetary shaft wheel 10 connected to the planetary shaft wheel rotation pulse motor 16, the pinion 15, and the reduction gears 13, 12 is connected. Rotates in the CCW direction, the planetary gear 18 itself on the planetary axle 10 also rotates in the CCW direction at the center of the planetary axle 10.

また、遊星歯車18は固定されている外輪歯車21と噛み合っているので、CW方向に回転する。   Moreover, since the planetary gear 18 is meshed with the fixed outer ring gear 21, it rotates in the CW direction.

図5に示すように外輪歯車回転用パルスモータ25のみ回転し、遊星軸車回転用パルスモータ16が停止している場合、外輪歯車回転用パルスモータ25とピニオン24、減速歯車22、ガイド歯車20と連結されている外輪歯車21がCW方向に回転すると、外輪歯車21と噛み合っている遊星歯車18が遊星歯車中心でCWに方向に回転する。   As shown in FIG. 5, when only the outer ring gear rotation pulse motor 25 rotates and the planetary shaft rotation pulse motor 16 stops, the outer ring gear rotation pulse motor 25 and pinion 24, the reduction gear 22, and the guide gear 20 When the outer ring gear 21 connected to the outer ring gear 21 rotates in the CW direction, the planetary gear 18 meshing with the outer ring gear 21 rotates in the CW direction at the center of the planetary gear.

図6に示すように、遊星軸車回転用パルスモータ16と外輪歯車回転用パルスモータ25が同期して回転し、遊星軸車回転用パルスモータ16と外輪歯車回転用パルスモータ25が同期してCW方向に回転する場合、遊星歯車18が遊星軸車10と外輪歯車21の中心で回転する(遊星歯車中心での遊星歯車の回転は発生しない)。   As shown in FIG. 6, the planetary axle wheel rotation pulse motor 16 and the outer ring gear rotation pulse motor 25 rotate in synchronization, and the planetary axle wheel rotation pulse motor 16 and the outer ring gear rotation pulse motor 25 synchronize. When rotating in the CW direction, the planetary gear 18 rotates at the center of the planetary wheel 10 and the outer ring gear 21 (the rotation of the planetary gear at the planetary gear center does not occur).

使用する場合、送電コイル7がどの象限にあるかを検出センサー6で検出する。
例えば図7に示すように、送電コイル7が第4象限にあることを検出すると、図8に示すように遊星軸車回転用パルスモータ16をθ′回転し、原点(0、0)の位置へ移動させる。この時の回転方向は図9に示すように行ない、θ′は図10に示す変換式で算出する。
When used, the detection sensor 6 detects which quadrant the power transmission coil 7 is in.
For example, as shown in FIG. 7, when it is detected that the power transmission coil 7 is in the fourth quadrant, the planetary wheel rotation pulse motor 16 is rotated by θ ′ as shown in FIG. 8, and the position of the origin (0, 0) Move to. The rotation direction at this time is performed as shown in FIG. 9, and θ ′ is calculated by the conversion equation shown in FIG.

次に図11に示すように、遊星軸車回転用パルスモータ16と外輪歯車回転用パルスモータ25とを同期させて回転させて、(外輪歯車21の外輪歯車センサー27をON)+(基準励磁相をON)まで回転させる。その時の回転方向は図12に示すように行なう。   Next, as shown in FIG. 11, the planetary wheel rotation pulse motor 16 and the outer ring gear rotation pulse motor 25 are rotated in synchronization with each other (the outer ring gear sensor 27 of the outer ring gear 21 is turned ON) + (reference excitation Rotate phase to ON). The rotation direction at that time is performed as shown in FIG.

次に図13に示すように、送電コイル7の位置を検出する。これはバックラッシュ等が原因で、図8に示す操作を行なった時に、原点に送電コイル7が戻っているとは限らないからである。   Next, as shown in FIG. 13, the position of the power transmission coil 7 is detected. This is because the power transmission coil 7 does not always return to the origin when the operation shown in FIG. 8 is performed due to backlash or the like.

次に図14に示すように、遊星軸車回転用パルスモータ16を(遊星軸車10の遊星軸車センサー28をON)+(基準励磁相をON)まで回転させる。その時の回転方向は図15に示すように行なう。   Next, as shown in FIG. 14, the planetary axle wheel rotation pulse motor 16 is rotated to (the planetary axle sensor 28 of the planetary axle 10 is turned on) + (the reference excitation phase is turned on). The rotation direction at that time is performed as shown in FIG.

前記図10に示す変換式の詳細は、検出センサー6にて検出した前記ケース体2のカバー体3の検出枠4内に位置された電子機器5の位置座標(X、Y)に対して、遊星歯車機構を用いて移動体である送電コイル7を(x、y)に移動させる。   The details of the conversion formula shown in FIG. 10 are as follows with respect to the position coordinates (X, Y) of the electronic device 5 positioned within the detection frame 4 of the cover body 3 of the case body 2 detected by the detection sensor 6. Using the planetary gear mechanism, the power transmission coil 7 as a moving body is moved to (x, y).

例えば図16に示すように、検出センサー6にて電子機器5の位置座標B(x、y)を検出する。   For example, as shown in FIG. 16, the position coordinate B (x, y) of the electronic device 5 is detected by the detection sensor 6.

O(o、o):外輪歯車21と遊星軸車10の中心で送電コイル7の原点
A(o、r):遊星歯車18の中心座標
rは遊星歯車18の中心から送電コイル7の中心までの長さ(移動体の回転半径)
B(x、y):電子機器5の位置座標
次に図16に示す状態から図17に示すように、遊星軸車10と外輪歯車21を同期させて回転させ、送電コイル7の位置を原点に維持したまま線分OAと線分のなす角が直角になる角度θまで回転させる。
O (o, o): Origin of the power transmission coil 7 at the center of the outer ring gear 21 and the planetary axle 10 A (o, r): Center coordinates of the planetary gear 18 r is from the center of the planetary gear 18 to the center of the power transmission coil 7 Length (rotating radius of moving body)
B (x, y): position coordinates of electronic device 5 Next, as shown in FIG. 17, the planetary axle wheel 10 and the outer ring gear 21 are rotated in synchronization from the state shown in FIG. The angle θ is rotated to an angle θ at which the angle formed by the line segment OA and the line segment is a right angle.

この時、回転角θはX軸と線分OBのなす角であり、座標B(x、y)より下記の通り、
θ=tan-1(y/x)…(1式)
また、遊星軸車10と外輪歯車21の回転方向は電子機器5の位置が、どの象限に位置しているかにより、回転方向を決定し、最短で線分OAと線分OBのなす角が直角となる角θ回転させるようにする。
At this time, the rotation angle θ is an angle formed by the X axis and the line segment OB, and is as follows from the coordinates B (x, y):
θ = tan −1 (y / x) (Expression 1)
Further, the rotation direction of the planetary axle 10 and the outer ring gear 21 is determined depending on which quadrant the position of the electronic device 5 is located, and the angle formed by the line segment OA and the line segment OB is the shortest. The angle θ is rotated.

各象限による回転方向は下記の通りである。   The direction of rotation by each quadrant is as follows.

第1象限:CCW
第2象限:CW
第3象限:CCW
第4象限:CW
次に、図17に示す状態から図18に示すように、外輪歯車21を固定した状態で遊星軸車10を回転させ、送電コイル7を電子機器5の位置Bまで移動させる。
θ回転した点をA′とし、線分OA′からの遊星軸車10の回転角度をθ′としたとき、遊星歯車18と外輪歯車21の減速比は2分の1であるから、遊星歯車18の回転角は2θ′となる。
また、線分OA"とA"Bは共に同じ長さrであるから、△OBA"は二等辺三角形である。
Quadrant 1: CCW
Quadrant 2: CW
3rd quadrant: CCW
Quadrant 4: CW
Next, as shown in FIG. 18 from the state shown in FIG. 17, the planetary axle wheel 10 is rotated with the outer ring gear 21 fixed, and the power transmission coil 7 is moved to the position B of the electronic device 5.
When the θ-rotated point is A ′ and the rotation angle of the planetary axle wheel 10 from the line segment OA ′ is θ ′, the reduction ratio of the planetary gear 18 and the outer ring gear 21 is ½. The rotation angle of 18 is 2θ ′.
Also, since line segments OA ″ and A ″ B have the same length r, ΔOBA ″ is an isosceles triangle.

よって、OA′の直角線上を送電コイルは動くことになる。   Therefore, the power transmission coil moves on the right angle line of OA ′.

B(x、y)は送電コイル7が移動するθ′は余弦定理により、図10に示すような変換式となる。
また、遊星軸車10の回転方向はXの座標によって決定され、X座標と回転方向の関係は
X>O:CW
X<O:CCW
である。
よって、前記1式および図10に示す式より、原点からのパルスモータの回転角度は下記の通りである。
B (x, y) is a conversion equation as shown in FIG. 10 according to the cosine theorem.
The rotation direction of the planetary axle 10 is determined by the X coordinate, and the relationship between the X coordinate and the rotation direction is X> O: CW
X <O: CCW
It is.
Therefore, from the equation 1 and the equation shown in FIG. 10, the rotation angle of the pulse motor from the origin is as follows.

遊星軸車回転用パルスモータ16の
回転角度:θ+θ′(deg)
遊星軸車回転用パルスモータ16の
パルス数:(θ+θ′)/α(plus)
外輪歯車回転用パルスモータ25の
回転角度:θ(deg)
外輪歯車回転用パルスモータ25の
パルス数:θ/α(plus)
遊星軸車回転用パルスモータ16のパルスあたりの外輪歯車21および遊星軸車10の回転速度=α(deg)
である。
The rotation angle of the pulse motor 16 for rotating the planetary axle wheel: θ + θ ′ (deg)
Number of pulses of the pulse motor 16 for rotating the planetary axle wheel: (θ + θ ′) / α (plus)
Rotation angle of pulse motor 25 for rotating outer ring gear: θ (deg)
Number of pulses of pulse motor 25 for rotating outer ring gear: θ / α (plus)
Rotational speed of the outer ring gear 21 and the planetary axle wheel 10 per pulse of the pulse motor 16 for rotating the planetary axle wheel = α (deg)
It is.

なお、前述した動作によって図19に仮想線で示す枠内を送電コイル7が移動し、検出枠4の上部半分での電子機器5と対応する位置に送電コイル7を移動させることができ、図20に仮想線で示す枠内を送電コイル7が移動し、検出枠4の下部半分での電子機器5と対応する位置に送電コイル7を移動させることができる。   In addition, the power transmission coil 7 can be moved in the frame indicated by the phantom line in FIG. 19 by the above-described operation, and the power transmission coil 7 can be moved to a position corresponding to the electronic device 5 in the upper half of the detection frame 4. The power transmission coil 7 moves within the frame indicated by the phantom line at 20, and the power transmission coil 7 can be moved to a position corresponding to the electronic device 5 in the lower half of the detection frame 4.

なお、制御基板30と送電コイル7と接続されたケーブル41は遊星軸車10の軸9部で遊星軸車10の回動による遊星軸車用弧状の遊び38および、遊星歯車18の回動による遊星歯車用弧状の遊び39により、他の部品と干渉することなく配線された状態となっている。   The cable 41 connected to the control board 30 and the power transmission coil 7 is generated by the rotation of the planetary shaft wheel 10 and the planetary gear 18 by the rotation of the planetary shaft wheel 10 at the shaft 9 portion of the planetary shaft wheel 10. Due to the arc-shaped play 39 for the planetary gear, it is wired without interfering with other parts.

[発明を実施するための異なる形態]
次に、図23ないし図29に示す本発明を実施するための異なる形態につき説明する。なお、これらの本発明を実施するための異なる形態の説明に当って、前記本発明を実施するための第1の形態と同一構成部分には同一符号を付して重複する説明を省略する。
[Different forms for carrying out the invention]
Next, different modes for carrying out the present invention shown in FIGS. 23 to 29 will be described. In the description of the different embodiments for carrying out the present invention, the same components as those in the first embodiment for carrying out the present invention are denoted by the same reference numerals, and redundant description is omitted.

図23および図24に示す本発明を実施するための第2の形態において、前記本発明を実施するための第1の形態と主に異なる点は、遊星歯車18の軸部のケーブル挿入孔40を通過したケーブル41を送電コイル7に直接接続した点で、このように送電コイル7とケーブル41とを接続した非接触充電器の送電コイルの移動装置1Aにしても、前記本発明を実施するための第1の形態と同様な作用効果が得られる。   The second embodiment for carrying out the present invention shown in FIGS. 23 and 24 is mainly different from the first embodiment for carrying out the present invention in that a cable insertion hole 40 in the shaft portion of the planetary gear 18 is used. The present invention is also applied to the moving device 1A of the power transmission coil of the non-contact charger in which the power transmission coil 7 and the cable 41 are thus connected in that the cable 41 that has passed through the power transmission coil 7 is directly connected. Therefore, the same effect as the first embodiment can be obtained.

なお、ケーブル挿入孔40の送電コイル7側のケーブル41をたるみが生じないように固定しておく。   Note that the cable 41 on the power transmission coil 7 side of the cable insertion hole 40 is fixed so as not to sag.

図25および図26に示す本発明を実施するための第3の形態において、前記本発明を実施するための第1の形態と主に異なる点は、遊星歯車18の軸部の軸受部18aに挿入される軸17にチャンネル状のケーブル挿入孔40Aを用い、該ケーブル挿入孔40Aを通過させてケーブル41を配線した点で、このように構成した非接触充電器の送電コイルの移動装置1Bにしても、前記本発明を実施するための第1の形態と同様な作用効果が得られる。   The third embodiment for carrying out the present invention shown in FIG. 25 and FIG. 26 differs from the first embodiment for carrying out the present invention mainly in the bearing portion 18a of the shaft portion of the planetary gear 18. A channel-shaped cable insertion hole 40A is used for the shaft 17 to be inserted, and the cable 41 is routed through the cable insertion hole 40A. Thus, the power transmission coil moving device 1B of the non-contact charger configured as described above is obtained. However, the same effect as the first embodiment for carrying out the present invention can be obtained.

図27ないし図29に示す本発明を実施するための第4の形態において、前記本発明を実施するための第1の形態と主に異なる点は、上部側が半円弧形状で、かつ透明材で形成したカバー体3Aを用いたケース体2Aを使用するとともに、遊星歯車18の軸部の軸受部18aにチャンネル状のケーブル挿入孔40Bを形成してケーブル41を配線し、かつ送電コイル7の外周部に複数個のLED42、42、42、42、42、42を用いて送電コイル7の位置を確認できるようにした点で、このように構成した非接触充電器の送電コイルの移動装置1Cにしても、前記本発明を実施するための第1の形態と同様な作用効果が得られる。   The fourth embodiment for carrying out the present invention shown in FIGS. 27 to 29 is mainly different from the first embodiment for carrying out the present invention in that the upper side has a semicircular arc shape and is made of a transparent material. The case body 2A using the formed cover body 3A is used, a channel-shaped cable insertion hole 40B is formed in the bearing portion 18a of the shaft portion of the planetary gear 18, the cable 41 is wired, and the outer periphery of the power transmission coil 7 The position of the power transmission coil 7 can be confirmed using a plurality of LEDs 42, 42, 42, 42, 42, 42 in the section, and thus the power transmission coil moving device 1 C of the non-contact charger configured in this way is used. However, the same effect as the first embodiment for carrying out the present invention can be obtained.

本発明は非接触充電器の送電コイルの移動装置を製造する産業で利用される。   The present invention is used in an industry for manufacturing a moving device for a power transmission coil of a non-contact charger.

1、1A、1B、1C:非接触充電器の送電コイルの移動装置、
2、2A:ケース体、 3、3A:カバー体、
4:検出枠、 5:電子機器、
6:検出センサー、 7:送電コイル、
8:ケース本体、 9:軸、
10:遊星軸車、 11:軸、
12:減速歯車、 13:減速歯車、
14:駆動軸、 15:ピニオン、
16:遊星軸車回転用パルスモータ、
17:軸、 18:遊星歯車、
19:軸、 20:ガイド歯車、
21:外輪歯車、 22:減速歯車、
23:駆動軸、 24:ピニオン、
25:外輪歯車回転用パルスモータ、
26:軸、 27:外輪歯車センサー、
28:遊星軸車センサー、 29:センサー基板、
30:制御基板、 31:パルスモータ駆動制御回路、
32:送電コイル接続ケーブル、 33、33a:端子、
34:中継基板、 35:係合孔、
36:係止爪、 37:遊星軸車カバー、
38:遊星軸車用弧状の遊び、 39:遊星歯車用弧状の遊び、
40、40A、40B:ケーブル挿入孔、
41:ケーブル、 42:LED。
1, 1A, 1B, 1C: a moving device for a power transmission coil of a non-contact charger,
2, 2A: case body, 3, 3A: cover body,
4: Detection frame, 5: Electronic device,
6: detection sensor, 7: power transmission coil,
8: Case body, 9: Shaft,
10: Planetary axle wheel, 11: Axle,
12: Reduction gear, 13: Reduction gear,
14: Drive shaft, 15: Pinion,
16: Pulse motor for planetary axle wheel rotation,
17: shaft, 18: planetary gear,
19: shaft, 20: guide gear,
21: Outer ring gear, 22: Reduction gear,
23: Drive shaft, 24: Pinion,
25: Pulse motor for rotating outer ring gear,
26: shaft, 27: outer ring gear sensor,
28: Planetary axle sensor, 29: Sensor board,
30: Control board, 31: Pulse motor drive control circuit,
32: Power transmission coil connection cable 33, 33a: Terminal,
34: Relay board, 35: Engagement hole,
36: locking claw, 37: planetary axle cover,
38: Arc-shaped play for planetary axles, 39: Arc-shaped play for planetary gears,
40, 40A, 40B: cable insertion hole,
41: Cable, 42: LED.

Claims (3)

ケース体と、このケース体内に回転可能に取付けられた遊星軸車と、この遊星軸車を回転させる前記ケース体に取付けられた遊星軸車回転用パルスモータと、前記遊星軸車に回転可能に取付けられた遊星歯車と、この遊星歯車と噛み合い、前記遊星軸車と同一軸心で回転するリング状の外輪歯車と、この外輪歯車を回転させる前記ケース体に取付けられた外輪歯車回転用パルスモータと、前記遊星軸車の軸心以外の部位に取付けられた送電コイルと、前記ケース体内に設けられた制御基板と、この制御基板に設けられた前記遊星軸車回転用パルスモータと前記外輪歯車回転用パルスモータを駆動させ、ケーブルで接続された前記送電コイルを検出センサーで検出された所定位置へ移動させるパルスモータ駆動制御回路とからなることを特徴とする非接触充電器の送電コイルの移動装置。 A case body, a planetary axle wheel rotatably attached to the case body, a planetary axle wheel rotation pulse motor attached to the case body for rotating the planet axle axle, and a rotatable to the planet axle axle An attached planetary gear, a ring-shaped outer ring gear that meshes with the planetary gear and rotates on the same axis as the planetary wheel, and a pulse motor for rotating the outer ring gear attached to the case body that rotates the outer ring gear A power transmission coil attached to a portion other than the axis of the planetary axle, a control board provided in the case body, the planetary axle rotation pulse motor provided on the control board, and the outer ring gear And a pulse motor drive control circuit that drives a rotation pulse motor and moves the power transmission coil connected by a cable to a predetermined position detected by a detection sensor. Moving device of the power transmission coils of a contactless charger that. リング状の外輪歯車はケース体に取付けられた2個のガイド歯車および外輪歯車回転用パルスモータによって駆動される、該外輪歯車回転用パルスモータに接続された駆動歯車とで支持されていることを特徴とする請求項1記載の非接触充電器の送電コイルの移動装置。 The ring-shaped outer ring gear is supported by two guide gears attached to the case body and a driving gear connected to the outer ring gear rotation pulse motor, which is driven by the outer ring gear rotation pulse motor. The moving device of the power transmission coil of the non-contact charger according to claim 1. 送電コイルへ接続されるケーブルは制御基板より遊星軸車の背面に取付けられた遊星軸車カバー内に、該遊星軸車の軸部で逆の遊びを有し、かつ遊星歯車の軸部を介して送電コイルに接続されていることを特徴とする請求項1記載の非接触充電器の送電コイルの移動装置。 The cable connected to the power transmission coil has a reverse play in the shaft part of the planetary axle wheel in the planetary axle wheel cover attached to the back surface of the planetary axle wheel from the control board, and via the shaft part of the planetary gear wheel. The apparatus for moving a power transmission coil of a non-contact charger according to claim 1, wherein the device is connected to the power transmission coil.
JP2009210392A 2008-09-16 2009-09-11 Non-contact charger power transmission coil moving device Expired - Fee Related JP5297955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009210392A JP5297955B2 (en) 2008-09-16 2009-09-11 Non-contact charger power transmission coil moving device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008235842 2008-09-16
JP2008235842 2008-09-16
JP2009210392A JP5297955B2 (en) 2008-09-16 2009-09-11 Non-contact charger power transmission coil moving device

Publications (2)

Publication Number Publication Date
JP2010096346A true JP2010096346A (en) 2010-04-30
JP5297955B2 JP5297955B2 (en) 2013-09-25

Family

ID=42258168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009210392A Expired - Fee Related JP5297955B2 (en) 2008-09-16 2009-09-11 Non-contact charger power transmission coil moving device

Country Status (1)

Country Link
JP (1) JP5297955B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020527A1 (en) * 2010-08-09 2012-02-16 パナソニック株式会社 Optical device and power charging system including same
WO2013031236A1 (en) * 2011-09-02 2013-03-07 パナソニック株式会社 Vehicle-mounted charging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837121A (en) * 1994-07-26 1996-02-06 Matsushita Electric Works Ltd Power supply device
JPH09190938A (en) * 1996-01-09 1997-07-22 Tdk Corp Non-contact type battery charger
JP2000341887A (en) * 1999-03-25 2000-12-08 Toyota Autom Loom Works Ltd Power supply coupler, power supply device, receiver and electromagnetic induction type noncontact charger
JP2002199598A (en) * 2000-12-27 2002-07-12 Toko Inc Contactless battery charger
JP2004190850A (en) * 2002-12-12 2004-07-08 Kawaden:Kk Actuator for valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837121A (en) * 1994-07-26 1996-02-06 Matsushita Electric Works Ltd Power supply device
JPH09190938A (en) * 1996-01-09 1997-07-22 Tdk Corp Non-contact type battery charger
JP2000341887A (en) * 1999-03-25 2000-12-08 Toyota Autom Loom Works Ltd Power supply coupler, power supply device, receiver and electromagnetic induction type noncontact charger
JP2002199598A (en) * 2000-12-27 2002-07-12 Toko Inc Contactless battery charger
JP2004190850A (en) * 2002-12-12 2004-07-08 Kawaden:Kk Actuator for valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020527A1 (en) * 2010-08-09 2012-02-16 パナソニック株式会社 Optical device and power charging system including same
CN102972037A (en) * 2010-08-09 2013-03-13 松下电器产业株式会社 Optical device and power charging system including same
JP5436678B2 (en) * 2010-08-09 2014-03-05 パナソニック株式会社 Optical device and charging system including the same
KR101420560B1 (en) 2010-08-09 2014-07-16 파나소닉 주식회사 Optical device and charging system including same
CN102972037B (en) * 2010-08-09 2015-07-15 松下电器产业株式会社 Optical device and power charging system including same
WO2013031236A1 (en) * 2011-09-02 2013-03-07 パナソニック株式会社 Vehicle-mounted charging device
CN103222150A (en) * 2011-09-02 2013-07-24 松下电器产业株式会社 Vehicle-mounted charging device
EP2752963A4 (en) * 2011-09-02 2015-07-15 Panasonic Ip Man Co Ltd Vehicle-mounted charging device

Also Published As

Publication number Publication date
JP5297955B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP6963152B2 (en) Robot wrist structure and robot
JP5856686B2 (en) Separate actuator
JPH0711425Y2 (en) Brushless electrical signal transmitter
US20210159758A1 (en) Motor with speed reducer, and rear wiper motor
JP6430800B2 (en) Mechanical encoders and actuators
WO2018088508A1 (en) Multi-directional drive device, robot joint mechanism, and multi-directional drive method
JP2012223081A (en) Electric actuator and joint apparatus
CN102803789A (en) Worm wheel, reduction gear, and motor with reduction gear
JP5297955B2 (en) Non-contact charger power transmission coil moving device
JP2010273466A (en) Device for moving transmission coil in contactless charger
JP6808474B2 (en) Absolute encoder for motor with gear
US9193067B2 (en) Rotation-transmitting mechanism, conveying apparatus, and driving apparatus
JPWO2008136405A1 (en) Rotation drive device, robot joint structure and robot arm
JP2010084842A (en) Rotary drive device, robot joint structure and robot arm
JP2006166603A5 (en)
JP2020063783A (en) Motor with speed reducer for vehicle
JP2010283982A (en) Device for movement of power transmission coil in non-contact charger
JP2006283876A (en) Rotary motion transmitting device
JP2019187028A (en) Speed reducer-provided motor, wiper driving device, and power window device
KR20140145340A (en) Planetary Gear Apparatus
JP2018105373A (en) Speed reducer, articulation device and robot arm structure
JP2010064185A (en) Finger structure of robot hand
JP5042875B2 (en) Electronic component mounting equipment
JP2005313302A (en) Electric rotary actuator
JP2020203363A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130617

R150 Certificate of patent or registration of utility model

Ref document number: 5297955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees