JP2010095616A - Polysiloxane-based composition and cured product obtained from it - Google Patents

Polysiloxane-based composition and cured product obtained from it Download PDF

Info

Publication number
JP2010095616A
JP2010095616A JP2008267335A JP2008267335A JP2010095616A JP 2010095616 A JP2010095616 A JP 2010095616A JP 2008267335 A JP2008267335 A JP 2008267335A JP 2008267335 A JP2008267335 A JP 2008267335A JP 2010095616 A JP2010095616 A JP 2010095616A
Authority
JP
Japan
Prior art keywords
group
polysiloxane
compound
alkenyl group
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008267335A
Other languages
Japanese (ja)
Other versions
JP5329904B2 (en
Inventor
Takao Manabe
貴雄 眞鍋
Makoto Seino
真 情野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008267335A priority Critical patent/JP5329904B2/en
Publication of JP2010095616A publication Critical patent/JP2010095616A/en
Application granted granted Critical
Publication of JP5329904B2 publication Critical patent/JP5329904B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polysiloxane-based composition being excellent in molding processability, transparency, heat-resistance and light-resistance, being further excellent in crack-resistance at high temperature heating, and especially using a liquid-like polyhedron structure polysiloxane, and a cured product. <P>SOLUTION: The polysiloxane-based composition contains a polyhedron structure polysiloxane-modified substance (A) obtained by modifying compound (b) having a hydrosilyl group capable of being subjected to a hydrosilylation reaction with component (a) and/or an alkenyl group relative to the polyhedron structure polysiloxane based compound (a) containing the alkenyl group and/or the hydrosilyl group, and a curing agent (B) as indispensable components. The polysiloxane-based composition is characterized in that weight reduction at 130°C of the (B) is 2.5% or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

成型加工性、透明性、耐熱性、耐光性に優れ、さらには、高温加熱時の耐クラック性に優れる、特には液状の多面体構造ポリシロキサンを用いることを特徴とするポリシロキサン系組成物に関する。   The present invention relates to a polysiloxane composition that is excellent in molding processability, transparency, heat resistance, and light resistance, and further excellent in crack resistance during high-temperature heating, and in particular, uses a liquid polyhedral polysiloxane.

ポリシロキサン系組成物は、耐熱性、耐寒性、耐候性、耐光性、化学的安定性、電気特性、難燃性、耐水性、透明性、着色性、非粘着性、非腐食性に優れており、様々な産業で利用されている。中でも、多面体構造ポリシロキサンは、その特異的な化学構造から、さらに優れた耐熱性、耐光性、化学的安定性、低誘電性等を示すことが知られている。しかしながら、多面体構造ポリシロキサンは、一般に、多官能性で固体の化合物であり、反応の制御が難しく、ハンドリング性、成型加工性に乏しいため、成形体とすることが困難であった。   Polysiloxane composition is excellent in heat resistance, cold resistance, weather resistance, light resistance, chemical stability, electrical properties, flame resistance, water resistance, transparency, colorability, non-adhesiveness, non-corrosion It is used in various industries. Among these, polyhedral polysiloxanes are known to exhibit superior heat resistance, light resistance, chemical stability, low dielectric constant, and the like due to their specific chemical structure. However, polyhedral polysiloxane is generally a polyfunctional and solid compound, and it is difficult to control the reaction, and it is difficult to obtain a molded body because of poor handling and molding processability.

例えば、官能基含有多面体構造ポリシロキサンを用いたヒドロシリル化硬化性組成物が開示されているが(非特許文献1)、該当技術では、出発原料である多面体構造を有するポリシロキサンが多官能性の固形物であるため、硬化反応の制御が困難であり、塗膜や注入成型が難しい。   For example, a hydrosilylation curable composition using a functional group-containing polyhedral polysiloxane is disclosed (Non-Patent Document 1). However, in the corresponding technology, a polysiloxane having a polyhedral structure as a starting material is polyfunctional. Since it is a solid material, it is difficult to control the curing reaction, and coating and injection molding are difficult.

また、多面体構造を有するポリシロキサン系化合物としては、各種官能基を有するものが知られており、例えば、エポキシ基を含有するもの(特許文献1)、(メタ)アクリロイル基を有するもの(特許文献2)、加水分解性シリル基を有するもの(特許文献3)、オキセタニル基を有するもの(特許文献4)等、各種化合物が報告されている。これらの化合物は、各種硬化開始剤の存在下、熱や光により、架橋し、硬化物を与える。   Further, as polysiloxane compounds having a polyhedral structure, those having various functional groups are known, for example, those having an epoxy group (Patent Document 1), those having a (meth) acryloyl group (Patent Document) 2) Various compounds such as those having hydrolyzable silyl groups (Patent Document 3) and those having oxetanyl groups (Patent Document 4) have been reported. These compounds are crosslinked by heat or light in the presence of various curing initiators to give a cured product.

この他にも、エポキシ基やフェニル基を含有する多面体構造を有するポリシロキサンを用いた硬化性組成物(特許文献1、あるいは、特許文献5〜6)が開示されているが、高温条件化では、加熱による着色が見られるなど、ポリシロキサン系組成物の特性が活かしきれていない。   In addition to this, a curable composition using a polysiloxane having a polyhedral structure containing an epoxy group or a phenyl group (Patent Document 1 or Patent Documents 5 to 6) is disclosed. The characteristics of the polysiloxane composition, such as coloring due to heating, are not fully utilized.

また、上述のようなポリシロキサン系材料においては、非常に高い温度、具体的に例えば、250℃以上での使用が想定されるが、この際の熱膨張、また冷却時の収縮に起因し、クラックが発生する恐れがあるため、材料の信頼性に課題が残る場合があった。   In addition, in the polysiloxane material as described above, it is assumed that the material is used at a very high temperature, specifically, for example, 250 ° C. or more, but due to thermal expansion at this time, and shrinkage at the time of cooling, There is a possibility that cracks may occur, and there are cases where problems remain in the reliability of the material.

上記のように、多面体構造を有するポリシロキサン化合物を用いた材料の開示は見られるが、シロキサン系組成物の特性を有し、ハンドリング、成型加工性に優れ、さらには、高温加熱時の耐クラック性に優れる例は見られず、新たな材料の開発が望まれていた。
特開2004−359933号公報 特開2004−143449号公報 特開2006−269402号公報 特開2005−23256号公報 特表2004−529984号公報 特開2006−22207号公報 J.Am.Chem.Soc.1998,120,8380−8391
As described above, disclosure of a material using a polysiloxane compound having a polyhedral structure is seen, but it has characteristics of a siloxane-based composition, has excellent handling and molding processability, and is resistant to cracking when heated at high temperatures. No example of excellent properties was found, and the development of new materials was desired.
JP 2004-359933 A JP 2004-143449 A JP 2006-269402 A Japanese Patent Laid-Open No. 2005-23256 JP-T-2004-529984 JP 2006-22207 A J. et al. Am. Chem. Soc. 1998, 120, 8380-8391

本発明は、上記課題が解決された、成型加工性、透明性、耐熱性、耐光性、接着性に優れ、さらには高温加熱時の耐クラック性に優れる、ポリシロキサン系組成物および硬化物を提供することを目的とする。   The present invention provides a polysiloxane composition and a cured product, in which the above-mentioned problems are solved, excellent in moldability, transparency, heat resistance, light resistance, adhesiveness, and crack resistance during high temperature heating. The purpose is to provide.

本発明者らは、上記課題を解決すべく、鋭意研究を重ねた結果、本発明をなすに至った。本発明は以下の構成を有するものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have made the present invention. The present invention has the following configuration.

1). アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、前記(a)成分とヒドロシリル化反応可能なヒドロシリル基および/またはアルケニル基を有する化合物(b)を変性して得られた多面体構造ポリシロキサン変性体(A)、および、硬化剤(B)、を必須成分としてなるポリシロキサン系組成物であって、前記(B)の130℃における重量減少が、2.5%以下であることを特徴とする、ポリシロキサン系組成物。   1). For the polyhedral polysiloxane compound (a) containing an alkenyl group and / or a hydrosilyl group, the compound (b) having a hydrosilyl group and / or alkenyl group capable of hydrosilylation reaction with the component (a) is modified. A polysiloxane composition comprising the modified polyhedral polysiloxane (A) and the curing agent (B) obtained as essential components, wherein the weight loss of the (B) at 130 ° C. is 2. A polysiloxane composition characterized by being 5% or less.

2). (A)成分が温度20℃において、液状であることを特徴とする、1)に記載のポリシロキサン系組成物。   2). (A) The polysiloxane composition according to 1), wherein the component is liquid at a temperature of 20 ° C.

3). 化合物(b)が、ヒドロシリル基および/またはアルケニル基を含有する環状シロキサンであることを特徴とする、1)または2)に記載のポリシロキサン系組成物。   3). The polysiloxane composition according to 1) or 2), wherein the compound (b) is a cyclic siloxane containing a hydrosilyl group and / or an alkenyl group.

4). 化合物(b)が、分子末端にヒドロシリル基および/またはアルケニル基を含有する直鎖状シロキサンであることを特徴とする、1)または2)に記載のポリシロキサン系組成物。   4). The polysiloxane composition according to 1) or 2), wherein the compound (b) is a linear siloxane containing a hydrosilyl group and / or an alkenyl group at the molecular end.

5). 化合物(b)が、分子中に少なくとも3個のヒドロシリル基またはアルケニル基を有することを特徴とする、1)〜4)のいずれか1に記載のポリシロキサン系組成物。   5). The polysiloxane composition according to any one of 1) to 4), wherein the compound (b) has at least three hydrosilyl groups or alkenyl groups in the molecule.

6). ヒドロシリル基および/またはアルケニル基を有する化合物(b)のSi原子に直結した水素原子および/またはアルケニル基の数が、アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)のアルケニル基および/またはSi原子に直結した水素原子1個あたり2.5〜20個になる範囲で加えて変性し、未反応の化合物(b)を留去して得られることを特徴とする、1)〜5)のいずれかに1に記載のポリシロキサン系組成物。   6). The number of hydrogen atoms and / or alkenyl groups directly bonded to the Si atom of the compound (b) having a hydrosilyl group and / or alkenyl group is such that the polyhedral polysiloxane compound (a) has an alkenyl group and / or hydrosilyl group. It is modified by adding 2.5 to 20 hydrogen atoms per alkenyl group and / or Si atom directly connected to the Si atom, and is obtained by distilling off the unreacted compound (b). The polysiloxane composition according to any one of 1) to 5).

7). (A)成分が、
[XR1 2SiO−SiO3/2]a[R2 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;R1は、アルキル基またはアリール基;R2は、アルキル基、アリール基、アルケニル基、水素原子、または、他の多面体構造ポリシロキサンと連結している基;Xは、下記一般式(1)あるいは一般式(2)のいずれかの構造を有し、Xが複数ある場合は一般式(1)あるいは一般式(2)の構造が異なっていても良くまた一般式(1)あるいは一般式(2)の構造が混在していても良い。
7). (A) component is
[XR 1 2 SiO—SiO 3/2 ] a [R 2 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; R 1 is an alkyl group or an aryl group; R 2 is an alkyl group, an aryl group, an alkenyl group, a hydrogen atom Or a group linked to another polyhedral polysiloxane; X has a structure represented by the following general formula (1) or general formula (2), and when there are a plurality of X, the general formula (1 ) Or the structure of the general formula (2) may be different, or the structure of the general formula (1) or the general formula (2) may be mixed.

Figure 2010095616
Figure 2010095616

(lは2以上の整数;mは0以上の整数;nは2以上の整数;Yは水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい;Zは、水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい。ただし、YあるいはZの少なくとも1つは水素原子またはアルケニル基である;Rは、アルキル基またはアリール基;また、Xが複数ある場合は式(1)あるいは式(2)の構造が異なっていても良くまた式(1)あるいは式(2)の構造が混在していても良い。)を構成単位とすることを特徴とする1)〜7)のいずれか1に記載のポリシロキサン系組成物。 (L is an integer of 2 or more; m is an integer of 0 or more; n is an integer of 2 or more; Y is bonded to a polyhedral polysiloxane through a hydrogen atom, an alkenyl group, an alkyl group, an aryl group, or an alkylene chain. Z may be the same or different; Z is a hydrogen atom, an alkenyl group, an alkyl group, an aryl group, or a site bonded to the polyhedral polysiloxane via an alkylene chain Yes, and may be the same or different, provided that at least one of Y or Z is a hydrogen atom or an alkenyl group; R is an alkyl group or an aryl group; 1) or the structure of formula (2) may be different, or the structure of formula (1) or formula (2) may be mixed. Polysiloxane composition according to any one of the).

8). 式[AR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Aはアルケニル基および/または水素原子。ただし、少なくとも1つはアルケニル基である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体骨格ポリシロキサンやシロキサン化合物と連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン系化合物(a)に、ヒドロシリル基を有する化合物(b)を、アルケニル基1個あたりSi原子に直結した水素原子が2.5〜20個になる範囲で過剰量加えてヒドロシリル化反応によって変性し、未反応のヒドロシリル基を有する化合物(b)を留去して得られることを特徴とする、1)〜7)のいずれか1に記載のポリシロキサン系組成物。
8). Formula [AR 1 2 SiO—SiO 3/2 ] a [R 4 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; A is an alkenyl group and / or a hydrogen atom provided that at least one is an alkenyl group;. R 1 is An alkyl group or an aryl group; R 4 is a substituent other than an alkenyl group and a hydrogen atom, for example, an alkyl group, an aryl group, or a group linked to another polyhedral skeleton polysiloxane or siloxane compound) In the polyhedral polysiloxane compound (a) composed of siloxane units, the compound (b) having a hydrosilyl group is within a range of 2.5 to 20 hydrogen atoms directly bonded to Si atoms per alkenyl group. 1) to 7 obtained by adding an excess amount to modify by hydrosilylation reaction and distilling off compound (b) having an unreacted hydrosilyl group. The polysiloxane composition according to any one of 1).

9). 式[BR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Bはアルケニル基および/または水素原子。ただし、少なくとも1つは水素原子である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体骨格ポリシロキサンやシロキサン化合物と連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン系化合物(a)に、アルケニル基を有する化合物(b)を、Si原子に直結した水素原子1個あたり、アルケニル基が2.5〜20個になる範囲で過剰量加えてヒドロシリル化反応によって変性し、未反応のアルケニル基を有する化合物(b)を留去して得られることを特徴とする、1)〜8)のいずれか1に記載のポリシロキサン系組成物。
9). Formula [BR 1 2 SiO—SiO 3/2 ] a [R 4 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; B is alkenyl and / or hydrogen atom, provided that at least one is hydrogen atom;. R 1 is An alkyl group or an aryl group; R 4 is a substituent other than an alkenyl group and a hydrogen atom, for example, an alkyl group, an aryl group, or a group linked to another polyhedral skeleton polysiloxane or siloxane compound) The range in which the polyhedral polysiloxane compound (a) composed of siloxane units has 2.5 to 20 alkenyl groups per hydrogen atom directly bonded to the Si atom of the compound (b) having an alkenyl group. 1) to 8), which are obtained by adding an excessive amount of the above and modifying by hydrosilylation reaction to distill off the compound (b) having an unreacted alkenyl group. The polysiloxane composition according to claim 1.

10). 硬化剤(B)の重量平均分子量(Mw)が5000未満であることを特徴とする、1)〜9)のいずれか1に記載のポリシロキサン系組成物。   10). The polysiloxane composition according to any one of 1) to 9), wherein the weight average molecular weight (Mw) of the curing agent (B) is less than 5000.

11). 硬化剤(B)が、重量平均分子量(Mw)5000未満の分子末端にアルケニル基および/またはヒドロシリル基を含有する直鎖状ポリシロキサンであることを特徴とする、1)〜10)のいずれか1に記載のポリシロキサン系組成物。   11). Any one of 1) to 10), wherein the curing agent (B) is a linear polysiloxane containing an alkenyl group and / or a hydrosilyl group at a molecular terminal having a weight average molecular weight (Mw) of less than 5000. 2. The polysiloxane composition according to 1.

12). 硬化剤(B)が、重量平均分子量(Mw)3000未満の分子末端にアルケニル基および/またはヒドロシリル基を含有する直鎖状ポリシロキサンであることを特徴とする、1)〜11)のいずれか1に記載のポリシロキサン系組成物。   12). Any one of 1) to 11), wherein the curing agent (B) is a linear polysiloxane containing an alkenyl group and / or a hydrosilyl group at a molecular terminal having a weight average molecular weight (Mw) of less than 3000. 2. The polysiloxane composition according to 1.

13). 硬化剤(B)の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、1.7未満であることを特徴とする、1)〜12)のいずれか1に記載のポリシロキサン系組成物。   13). The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the curing agent (B) is less than 1.7, and any one of 1) to 12) The polysiloxane composition as described.

14). ヒドロシリル化触媒を含有することを特徴とする、1)〜13)のいずれか1に記載のポリシロキサン系組成物。   14). The polysiloxane composition according to any one of 1) to 13), which contains a hydrosilylation catalyst.

15). 1)〜14)のいずれか1に記載のポリシロキサン系組成物を硬化してなる硬化物。   15). Hardened | cured material formed by hardening | curing the polysiloxane type composition of any one of 1) -14).

本発明によれば、成型加工性、透明性、耐熱性、耐光性、接着性に優れ、さらには、高温加熱時の耐クラック性に優れる、特には液状の多面体構造ポリシロキサン変性体を用いた組成物を提供することができる。   According to the present invention, excellent processability, transparency, heat resistance, light resistance and adhesiveness are obtained, and further, crack resistance at high temperature heating is excellent, in particular, a liquid polyhedral polysiloxane modified body is used. A composition can be provided.

以下に、本発明について詳細に説明する。   The present invention is described in detail below.

<多面体構造ポリシロキサン変性体>
本発明における多面体構造ポリシロキサン変性体は、アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、前記(a)成分とヒドロシリル化反応可能なヒドロシリル基および/またはアルケニル基を有する化合物(b)を変性して得ることが可能である。本発明においては、変性体合成時にはゲル化しないことを特徴とし、得られる多面体構造ポリシロキサン変性体は、ハンドリング性、成形加工性の観点から、温度20℃で液状とすることが可能である。
<Modified polyhedral polysiloxane>
The polyhedral polysiloxane-modified product in the present invention is a polyhedral polysiloxane compound (a) containing an alkenyl group and / or a hydrosilyl group, a hydrosilyl group capable of hydrosilylation reaction with the component (a) and / or It can be obtained by modifying the compound (b) having an alkenyl group. In the present invention, the modified polyhedral polysiloxane is not gelled during synthesis of the modified product, and the resulting polyhedral polysiloxane modified product can be made liquid at a temperature of 20 ° C. from the viewpoint of handling properties and molding processability.

本発明における多面体構造ポリシロキサン変性体としては、アルケニル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、ヒドロシリル基を有する化合物(b)を変性して得られた変性体が、製造の容易さや生産性の観点から好ましい。   As the modified polyhedral polysiloxane in the present invention, a modified product obtained by modifying the polyhedral polysiloxane compound (a) containing an alkenyl group with the compound (b) having a hydrosilyl group is produced. From the viewpoints of ease and productivity.

本発明における好ましい多面体構造ポリシロキサン変性体について、以下、具体的に説明する。本発明における好ましい多面体構造ポリシロキサン変性体は、反応可能な官能基を有するシロキサン単位として[XR1 2SiO−SiO3/2]を必須単位として構成されることを特徴とし、必要に応じて、物性調整ユニットとしての任意のシロキサン単位[R2 3SiO−SiO3/2]を構成単位として含有し、以下の式、
[XR1 2SiO−SiO3/2]a[R2 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Xは反応性官能基を有する基;R1は、アルキル基またはアリール基、;R2は、アルキル基、アリール基、アルケニル基、水素原子、または、他の多面体構造ポリシロキサンと連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン変性体が例示される。ここで、aは平均して1以上、好ましくは2以上であることが好ましく、また、bは、0または1以上の整数である。a+bは6〜24の整数、好ましくは、6〜12の整数である。
The preferred polyhedral polysiloxane-modified product in the present invention will be specifically described below. A preferred polyhedral polysiloxane modified product in the present invention is characterized in that [XR 1 2 SiO—SiO 3/2 ] is an essential unit as a siloxane unit having a reactive functional group, and if necessary, An arbitrary siloxane unit [R 2 3 SiO—SiO 3/2 ] as a physical property adjusting unit is contained as a structural unit, and the following formula:
[XR 1 2 SiO—SiO 3/2 ] a [R 2 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; group having X reactive functional group; R 1 is an alkyl group or an aryl group,; R 2 is Examples of the modified polyhedral polysiloxane include siloxane units represented by an alkyl group, an aryl group, an alkenyl group, a hydrogen atom, or a group connected to another polyhedral polysiloxane. Here, a is an average of 1 or more, preferably 2 or more, and b is 0 or an integer of 1 or more. a + b is an integer of 6 to 24, preferably an integer of 6 to 12.

以下、反応可能な官能基を有するシロキサン単位 [XR1 2SiO−SiO3/2] について説明する。 Hereinafter, the siloxane unit [XR 1 2 SiO—SiO 3/2 ] having a reactive functional group will be described.

反応可能な官能基を有するシロキサン単位は、後述のヒドロシリル化触媒存在下、ヒドロシリル化反応により硬化剤との架橋反応を発生させる、あるいは、熱硬化開始剤あるいは光硬化開始剤の存在下、架橋し、硬化させる役割を担うユニットである。   A siloxane unit having a functional group capable of reacting is crosslinked in the presence of a hydrosilylation catalyst described later by a hydrosilylation reaction, or crosslinked in the presence of a thermal curing initiator or a photocuring initiator. This unit is responsible for curing.

ここで、好ましい反応性官能基を有する基Xとしては、一般式(1)あるいは一般式(2)のいずれかの式で表される基であれば特に限定はないが、mは1〜7の整数であることが好ましく、nは2〜4の整数であることが好ましい。   Here, the group X having a preferable reactive functional group is not particularly limited as long as it is a group represented by any one of the general formula (1) and the general formula (2), but m is 1 to 7. And n is preferably an integer of 2 to 4.

Figure 2010095616
Figure 2010095616

(lは2以上の整数;mは0以上の整数;nは2以上の整数;Yは水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい;Zは、水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい。 (L is an integer of 2 or more; m is an integer of 0 or more; n is an integer of 2 or more; Y is bonded to a polyhedral polysiloxane through a hydrogen atom, an alkenyl group, an alkyl group, an aryl group, or an alkylene chain. Z may be the same or different; Z is a hydrogen atom, an alkenyl group, an alkyl group, an aryl group, or a site bonded to the polyhedral polysiloxane via an alkylene chain Yes, they may be the same or different.

ただし、YあるいはZの少なくとも1つはアルケニル基または水素原子である;Rは、アルキル基またはアリール基;また、Xが複数ある場合は式(1)あるいは式(2)の構造が異なっていても良くまた式(1)あるいは式(2)の構造が混在していても良い)
反応可能な官能基を有するシロキサン単位におけるR1としては、実質的に反応性を有しない置換基、具体的に例えば、アルキル基、アリール基を使用することができる。
However, at least one of Y or Z is an alkenyl group or a hydrogen atom; R is an alkyl group or an aryl group; and when there are a plurality of X, the structures of the formula (1) or the formula (2) are different. Or the structure of formula (1) or formula (2) may be mixed)
As R 1 in the siloxane unit having a reactive functional group, a substituent having substantially no reactivity, specifically, for example, an alkyl group or an aryl group can be used.

本発明における反応可能な官能基を有するシロキサン単位は、多面体骨格を構成する全シロキサン単位のうち、平均して2つ以上含有することが好ましい。すなわち、一般式(1)におけるaは2以上が好ましい。含有する反応可能な官能基を含有するシロキサン単位が少ないと硬化性が不十分となり、さらには、得られる硬化物の強度が低下する恐れがある。   The siloxane unit having a functional group capable of reacting in the present invention preferably contains, on average, two or more siloxane units constituting the polyhedral skeleton. That is, a in the general formula (1) is preferably 2 or more. When there are few siloxane units containing the reactive functional group to contain, sclerosis | hardenability will become inadequate and there exists a possibility that the intensity | strength of the hardened | cured material obtained may fall.

次に、任意のシロキサン単位 [R2 3SiO−SiO3/2] について説明する。 Next, an arbitrary siloxane unit [R 2 3 SiO—SiO 3/2 ] will be described.

本シロキサン単位は、本発明における多面体構造ポリシロキサン変性体および得られる硬化物の物性調整を行うためのユニットである。本シロキサン単位は、実質的に、反応可能な置換基を含有しないため、架橋密度の調整、皮膜性、レベリング性、脆さ改善などが可能となる。   This siloxane unit is a unit for adjusting the physical properties of the modified polyhedral polysiloxane and the resulting cured product in the present invention. Since the present siloxane unit does not substantially contain a reactive substituent, it is possible to adjust the crosslinking density, improve the film property, leveling property, improve brittleness, and the like.

本シロキサン単位におけるR2としては、アルキル基、アリール基、アルケニル基、水素原子、または、他の多面体構造ポリシロキサンと連結している基を好適に用いることができる。前記アルキル基は、メチル基、エチル基、プロピル基、ブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基などが例示されるが、さらには、実質的に反応性を有しない置換基で一部を置き換えられていてもよい。実質的に反応性を有しない置換基で一部を置き換えられたアルキル基としては、具体的に例えば、ポリシロキサニルアルキル基が例示され、レベリング性や皮膜性、また、後述の硬化剤や硬化開始剤との相溶性などの付与も可能となり、また、化合物の性状を液状にすることも可能である。 As R 2 in the present siloxane unit, an alkyl group, an aryl group, an alkenyl group, a hydrogen atom, or a group linked to another polyhedral polysiloxane can be preferably used. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and the like. May be replaced. Specific examples of the alkyl group partially substituted with a substituent having substantially no reactivity include, for example, a polysiloxanylalkyl group. Leveling properties and film properties, and a curing agent described later and Compatibility with a curing initiator can be imparted, and the properties of the compound can be made liquid.

前記他の多面体構造ポリシロキサンと連結している基としては、ポリシロキサンやポリ(メタ)アクリレート、ポリイソブチレン等のポリマー成分を介して連結している基が例示される。   Examples of the group linked to the other polyhedral polysiloxane include groups linked via polymer components such as polysiloxane, poly (meth) acrylate, and polyisobutylene.

<多面体構造ポリシロキサン変性体の製造方法>
本発明における多面体構造ポリシロキサン変性体の製造方法について、説明する。
<Method for producing modified polyhedral polysiloxane>
The manufacturing method of the polyhedral polysiloxane modified body in the present invention will be described.

まず、多面体構造シロキサン系化合物(a)について、説明する。   First, the polyhedral siloxane compound (a) will be described.

前記アルケニル基および/またはヒドロシリル基を含有する多面体構造シロキサン系化合物(a)の合成方法としては、例えば、R3SiXa 3(式中R3は、アルケニル基または水素原子を表し、Xaは、ハロゲン原子、アルコキシ基等の加水分解性官能基を表す)のシラン化合物の加水分解縮合反応によって、得られる。 Examples of the synthesis method of the polyhedral siloxane compound (a) containing the alkenyl group and / or hydrosilyl group include R 3 SiX a 3 (wherein R 3 represents an alkenyl group or a hydrogen atom, and Xa represents (Representing a hydrolyzable functional group such as a halogen atom or an alkoxy group)).

または、R3SiXa 3の加水分解縮合反応によって分子内に3個のシラノール基を有するトリシラノール化合物を合成したのち、さらに、同一もしくは異なる3官能性シラン化合物を反応させることにより閉環し、合成する方法も知られている。さらには、前記トリシラノール化合物に、1官能性シランおよび/または2官能性シランを反応させることにより、部分開裂型の多面体構造ポリシロキサンを合成することもできる。 Alternatively, after synthesizing a trisilanol compound having three silanol groups in the molecule by hydrolysis condensation reaction of R 3 SiX a 3, the ring is closed by reacting the same or different trifunctional silane compounds. The method of doing is also known. Furthermore, a partial cleavage polyhedral polysiloxane can be synthesized by reacting the trisilanol compound with a monofunctional silane and / or a bifunctional silane.

その他の多面体構造シロキサン系化合物(a)の合成方法としては、例えば、テトラエトキシシラン等のテトラアルコキシシランを、トリメチル(2−ヒドロキシエチル)アンモニウムヒドロキシド、テトラメチルアンモニウムヒドロキシド等の4級アンモニウムヒドロキシド等の塩基存在下、加水分解縮合反応により、多面体構造を有するケイ酸塩を得、さらに得られたケイ酸塩をアルケニル基および/またはヒドロシリル基を有するシリルクロライド等のシリル化剤と反応させることにより合成することができる。本発明においては、テトラアルコキシランの替わりに、シリカや稲籾殻等のシリカを含有する物質からも、同様の多面体構造ポリシロキサンを得ることが可能である。   As another method for synthesizing the polyhedral siloxane compound (a), for example, a tetraalkoxysilane such as tetraethoxysilane is replaced with a quaternary ammonium hydroxy such as trimethyl (2-hydroxyethyl) ammonium hydroxide or tetramethylammonium hydroxide. A silicate having a polyhedral structure is obtained by a hydrolysis condensation reaction in the presence of a base such as a hydrogen atom, and the obtained silicate is further reacted with a silylating agent such as a silyl chloride having an alkenyl group and / or a hydrosilyl group. Can be synthesized. In the present invention, the same polyhedral polysiloxane can be obtained from a substance containing silica such as silica or rice husk instead of tetraalkoxylane.

本発明における多面体構造ポリシロキサン系化合物(a)の好ましい例としては、具体的に例えば、以下の式で表されるアルケニル基を有する多面体構造ポリシロキサン系化合物
[AR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Aはアルケニル基および/または水素原子。ただし、少なくとも1つはアルケニル基である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体構造ポリシロキサンやシロキサン化合物と連結している基)が例示される。
As a preferable example of the polyhedral polysiloxane compound (a) in the present invention, specifically, for example, a polyhedral polysiloxane compound having an alkenyl group represented by the following formula:
[AR 1 2 SiO—SiO 3/2 ] a [R 4 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; A is an alkenyl group and / or a hydrogen atom, provided that at least one is an alkenyl group; Group or aryl group; R 4 is a substituent other than an alkenyl group and a hydrogen atom, for example, an alkyl group, an aryl group, or a group linked to other polyhedral polysiloxane or siloxane compound).

このような(a)成分を用いる場合、(b)成分としてヒドロシリル基を有する化合物を用いることにより、例えば、後述のヒドロシリル化触媒の存在下、ヒドロシリル化反応によって多面体構造ポリシロキサン変性体を得ることができる。この際、前記多面体構造シロキサン系化合物(a)のアルケニル基は、すべて反応する必要はなく、一部残存していてもよい。また、複数の多面体構造ポリシロキサン系化合物(a)と複数のヒドロシリル基を有する化合物(b)が反応していても良い。   When such a component (a) is used, by using a compound having a hydrosilyl group as the component (b), for example, to obtain a modified polyhedral polysiloxane by a hydrosilylation reaction in the presence of a hydrosilylation catalyst described later. Can do. At this time, all the alkenyl groups of the polyhedral siloxane compound (a) do not need to react and may partially remain. A plurality of polyhedral polysiloxane compounds (a) and a compound (b) having a plurality of hydrosilyl groups may react.

本発明における多面体構造ポリシロキサン系化合物(a)の他の好ましい例としては、具体的に例えば、
[BR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Bはアルケニル基および/または水素原子。ただし、少なくとも1つは水素原子である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体構造ポリシロキサンやシロキサン化合物と連結している基)が例示される。
As other preferable examples of the polyhedral polysiloxane compound (a) in the present invention, specifically, for example,
[BR 1 2 SiO—SiO 3/2 ] a [R 4 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; B is alkenyl and / or hydrogen atom, provided that at least one is hydrogen atom;. R 1 is An alkyl group or an aryl group; R 4 is a substituent other than an alkenyl group and a hydrogen atom, for example, an alkyl group, an aryl group, or a group linked to another polyhedral polysiloxane or siloxane compound) .

このような(a)成分を用いる場合、(b)成分としてアルケニル基を有する化合物を用いることにより、例えば、後述のヒドロシリル化触媒の存在下、ヒドロシリル化反応によって多面体構造ポリシロキサン変性体を得ることができる。この際、前記多面体構造シロキサン系化合物(a)の水素原子は、すべて反応する必要はなく、一部残存していてもよい。また、複数の多面体構造ポリシロキサン系化合物(a)と複数のアルケニル基を有する化合物(b)が反応していても良い。   When such a component (a) is used, by using a compound having an alkenyl group as the component (b), for example, a modified polyhedral polysiloxane is obtained by a hydrosilylation reaction in the presence of a hydrosilylation catalyst described later. Can do. At this time, all the hydrogen atoms of the polyhedral siloxane compound (a) do not need to react and may partially remain. A plurality of polyhedral polysiloxane compounds (a) and a compound (b) having a plurality of alkenyl groups may react.

次に、ヒドロシリル基および/またはアルケニル基を有する化合物(b)について、説明する。   Next, the compound (b) having a hydrosilyl group and / or an alkenyl group will be described.

前記、ヒドロシリル基を有する化合物は、ヒドロシリル基(Si原子に直結した水素原子)を有するものであり、前記多面体構造シロキサン系化合物(a)のアルケニル基と反応して、多面体構造ポリシロキサン分子に新たに反応性官能基を有する基を導入するための成分である。   The compound having a hydrosilyl group has a hydrosilyl group (a hydrogen atom directly bonded to an Si atom) and reacts with the alkenyl group of the polyhedral siloxane compound (a) to form a new polyhedral polysiloxane molecule. It is a component for introducing a group having a reactive functional group.

本発明における好ましいヒドロシリル基を有する化合物としては、具体的に例えば、ヒドロシリル基(Si原子に直結した水素原子)を有するものであり、前記多面体構造シロキサン系化合物(a)のアルケニル基と反応して、以下の一般式(1)あるいは一般式(2)のいずれかの式で表される反応性官能基Xを形成するものが挙げられる。   As a compound having a preferred hydrosilyl group in the present invention, specifically, for example, a compound having a hydrosilyl group (a hydrogen atom directly bonded to a Si atom) reacts with an alkenyl group of the polyhedral siloxane compound (a). And those that form a reactive functional group X represented by any one of the following general formula (1) and general formula (2).

Figure 2010095616
Figure 2010095616

(lは2以上の整数;mは0以上の整数;nは2以上の整数;Yは水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい;Zは、水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい。ただし、YあるいはZの少なくとも1つは水素原子である;Rは、アルキル基またはアリール基;また、Xが複数ある場合は式(1)あるいは式(2)の構造が異なっていても良くまた式(1)あるいは式(2)の構造が混在していても良い)
前記、ヒドロシリル基を有する化合物としては、ヒドロシリル基含有シロキサン化合物、具体的に例えば、両末端にヒドロシリル基を有する直鎖状のポリシロキサン、ヒドロシリル基を含有する環状シロキサンなどが好ましいものとして挙げられ、さらには、工業的入手性や反応させる際の反応性が良好である、また、得られた硬化物の耐青色レーザー性に優れる等の観点からヒドロシリル基を含有する環状シロキサンが好ましい。これらヒドロシリル基を有する化合物は単独で使用してもよく、2種以上を併用してもよい。
(L is an integer of 2 or more; m is an integer of 0 or more; n is an integer of 2 or more; Y is bonded to a polyhedral polysiloxane through a hydrogen atom, an alkenyl group, an alkyl group, an aryl group, or an alkylene chain. Z may be the same or different; Z is a hydrogen atom, an alkenyl group, an alkyl group, an aryl group, or a site bonded to the polyhedral polysiloxane via an alkylene chain Each of which may be the same or different, provided that at least one of Y or Z is a hydrogen atom; R is an alkyl group or an aryl group; The structure of formula (2) may be different, and the structure of formula (1) or formula (2) may be mixed)
Preferred examples of the compound having a hydrosilyl group include a hydrosilyl group-containing siloxane compound, specifically, for example, a linear polysiloxane having a hydrosilyl group at both ends, a cyclic siloxane having a hydrosilyl group, and the like. Furthermore, a cyclic siloxane containing a hydrosilyl group is preferable from the viewpoints of industrial availability and good reactivity when reacted, and excellent cured blue laser resistance of the obtained cured product. These compounds having a hydrosilyl group may be used alone or in combination of two or more.

前記、両末端にヒドロシリル基を有する直鎖状のポリシロキサンの具体例としては、ジメチルハイドロジェンシリル基で末端が封鎖されたポリもしくはオリゴシロキサン、テトラメチルジシロキサン、ヘキサメチルトリシロキサンなどが例示される。   Specific examples of the linear polysiloxane having hydrosilyl groups at both ends include poly or oligosiloxanes whose ends are blocked with dimethylhydrogensilyl groups, tetramethyldisiloxane, hexamethyltrisiloxane and the like. The

ヒドロシリル基を含有する環状シロキサンとしては、1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジハイドロジェン−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリハイドロジェン−トリメチルシクロシロキサン、1,3,5,7,9−ペンタハイドロジェン−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサハイドロジェン−1,3,5,7,9,11−ヘキサメチルシクロシロキサンなどが例示される。   As cyclic siloxanes containing hydrosilyl groups, 1,3,5,7-tetrahydrogen-1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trihydrogen- 1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-dihydrogen-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trihydro Gen-trimethylcyclosiloxane, 1,3,5,7,9-pentahydrogen-1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexahydrogen Examples include -1,3,5,7,9,11-hexamethylcyclosiloxane.

上記ヒドロシリル基を有する化合物(b)、特には、ヒドロシリル基含有シロキサン化合物の添加量は、多面体構造ポリシロキサン系化合物(a)のアルケニル基の個数1個あたり、Si原子に直結した水素原子の数が2.5〜20個になるように用いることが好ましいが、化合物に依存する。添加量が少ないと、架橋反応によりゲル化が生じてハンドリング性の劣るポリシロキサン変性体となり、多すぎると、硬化物の物性に悪影響を及ぼす場合がある。さらには、過剰量のヒドロシリル基含有シロキサン化合物を存在させるため、例えば減圧・加熱条件下にて、未反応のヒドロシリル基含有シロキサン化合物を取り除くことが好ましい。   The amount of the hydrosilyl group-containing compound (b), in particular, the hydrosilyl group-containing siloxane compound is such that the number of hydrogen atoms directly bonded to Si atoms is one per alkenyl group in the polyhedral polysiloxane compound (a). Although it is preferable to use so that it may become 2.5-20 pieces, it is dependent on a compound. When the addition amount is small, gelation occurs due to a crosslinking reaction, resulting in a modified polysiloxane having poor handling properties. When it is too large, the physical properties of the cured product may be adversely affected. Furthermore, in order to allow an excessive amount of the hydrosilyl group-containing siloxane compound to exist, it is preferable to remove the unreacted hydrosilyl group-containing siloxane compound, for example, under reduced pressure and heating conditions.

前記、アルケニル基を有する化合物(b)は、アルケニル基を有するものであり、前記多面体構造シロキサン系化合物(a)のヒドロシリル基と反応して、多面体構造ポリシロキサン分子に新たな官能基を導入するための成分である。   The compound (b) having an alkenyl group has an alkenyl group and reacts with the hydrosilyl group of the polyhedral siloxane compound (a) to introduce a new functional group into the polyhedral polysiloxane molecule. Is a component for.

前記、アルケニル基を有する化合物(b)としては、アルケニル基含有シロキサン化合物、具体的に例えば、両末端にアルケニル基を有する直鎖状のポリシロキサン、アルケニル基を含有する環状シロキサンなどが好ましいものとして挙げられる。これらアルケニル基を有する化合物は単独で使用してもよく、2種以上を併用してもよい。   As the compound (b) having an alkenyl group, an alkenyl group-containing siloxane compound, specifically, for example, a linear polysiloxane having an alkenyl group at both ends, a cyclic siloxane having an alkenyl group, and the like are preferable. Can be mentioned. These compounds having an alkenyl group may be used alone or in combination of two or more.

前記、両末端にアルケニル基を有する直鎖状のポリシロキサンの具体例としては、ジメチルビニルシリル基で末端が封鎖されたポリもしくはオリゴシロキサン、テトラメチルジビニルジシロキサン、ヘキサメチルジビニルトリシロキサンなどが例示される。   Specific examples of the linear polysiloxane having an alkenyl group at both ends include poly or oligosiloxane blocked with dimethylvinylsilyl groups, tetramethyldivinyldisiloxane, hexamethyldivinyltrisiloxane, etc. Is done.

アルケニル基を含有する環状シロキサンとしては、1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジビニル−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリビニル−トリメチルシクロシロキサン、1,3,5,7,9−ペンタビニル−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサビニル−1,3,5,7,9,11−ヘキサメチルシクロシロキサンなどが例示される。   Examples of the cyclic siloxane containing an alkenyl group include 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trivinyl-1,3. , 5,7-tetramethylcyclotetrasiloxane, 1,5-divinyl-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trivinyl-trimethylcyclosiloxane, , 3,5,7,9-pentavinyl-1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexavinyl-1,3,5,7,9, Examples thereof include 11-hexamethylcyclosiloxane.

アルケニル基を有する化合物(b)、特には、アルケニル基含有シロキサン化合物の添加量は、多面体構造シロキサン中間体のSi原子に直結した水素原子1個あたり、アルケニル基が2.5〜20個になるように用いることが好ましいが、化合物に依存する。添加量が少ないと、架橋反応によりゲル化が生じてハンドリング性の劣るポリシロキサン変性体となり、多すぎると、硬化物の物性に悪影響を及ぼす場合がある。   The addition amount of the alkenyl group-containing compound (b), particularly the alkenyl group-containing siloxane compound, is 2.5 to 20 alkenyl groups per hydrogen atom directly bonded to the Si atom of the polyhedral siloxane intermediate. However, it depends on the compound. When the addition amount is small, gelation occurs due to a crosslinking reaction, resulting in a modified polysiloxane having poor handling properties. When it is too large, the physical properties of the cured product may be adversely affected.

本発明においては、耐熱性、耐光性の観点から、Si原子上は、水素原子、ビニル基およびメチル基から構成されることが好ましい。   In the present invention, from the viewpoint of heat resistance and light resistance, the Si atom is preferably composed of a hydrogen atom, a vinyl group and a methyl group.

本願発明の多面体構造ポリシロキサン変性体は、硬化物を調整する上でハンドリング性等の面から液体であることが好ましく、また、成型体の光線透過率の面で透明であることが好ましい。   The modified polyhedral polysiloxane of the present invention is preferably a liquid from the viewpoint of handling properties and the like when adjusting the cured product, and is preferably transparent in terms of the light transmittance of the molded body.

<ヒドロシリル化触媒>
次に、本発明で用いるヒドロシリル化触媒について説明する。
<Hydrosilylation catalyst>
Next, the hydrosilylation catalyst used in the present invention will be described.

本発明では、多面体構造ポリシロキサン変性体の合成、および、該変性体を用いた組成物を硬化させる際に、ヒドロシリル化触媒を用いることができる。   In the present invention, a hydrosilylation catalyst can be used in synthesizing a polyhedral polysiloxane modified product and curing the composition using the modified product.

本発明で用いるヒドロシリル化触媒としては、通常ヒドロシリル化触媒として用いられるものを用いることができ特に制限はなく、任意のものが使用できる。   As a hydrosilylation catalyst used by this invention, what is normally used as a hydrosilylation catalyst can be used, there is no restriction | limiting in particular, Arbitrary things can be used.

具体的には例示すれば、白金−オレフィン錯体、塩化白金酸、白金の単体、担体(アルミナ、シリカ、カーボンブラック等)に固体白金を担持させたもの;白金−ビニルシロキサン錯体、例えば、Ptn(ViMe2SiOSiMe2Vi)m、Pt〔(MeViSiO)4m;白金−ホスフィン錯体、例えば、Pt(PPh34、Pt(PBu34;白金−ホスファイト錯体、例えば、Pt〔P(OPh)34、Pt〔P(OBu)34(式中、Meはメチル基、Buはブチル基、Viはビニル基、Phはフェニル基を表し、n、mは整数を表す)、Pt(acac)2、また、Ashbyらの米国特許第3159601及び3159662号明細書中に記載された白金−炭化水素複合体、並びにLamoreauxらの米国特許第3220972号明細書中に記載された白金アルコラ−ト触媒も挙げられる。 Specifically, for example, a platinum-olefin complex, chloroplatinic acid, a simple substance of platinum, a carrier (alumina, silica, carbon black, etc.) supported by solid platinum; a platinum-vinylsiloxane complex, for example, Pt n (ViMe 2 SiOSiMe 2 Vi) m , Pt [(MeViSiO) 4 ] m ; platinum-phosphine complex, such as Pt (PPh 3 ) 4 , Pt (PBu 3 ) 4 ; platinum-phosphite complex, such as Pt [P (OPh) 3 ] 4 , Pt [P (OBu) 3 ] 4 (wherein Me represents a methyl group, Bu represents a butyl group, Vi represents a vinyl group, Ph represents a phenyl group, and n and m represent an integer) , Pt (acac) 2, also platinum described in U.S. Patent 3,159,601 and in Pat 3159662 of Ashby et al - hydrocarbon complex, and Lamoreaux et al U.S. Patent Platinum is described in the 3220972 Pat Arcola - DOO catalysts may be mentioned.

また、白金化合物以外の触媒の例としては、RhCl(PPh33、RhCl3、Rh/Al23、RuCl3、IrCl3、FeCl3、AlCl3、PdCl2・2H2O、NiCl2、TiCl4、等が挙げられる。これらの触媒は単独で使用してもよく、2種以上併用しても構わない。触媒活性の点から塩化白金酸、白金−オレフィン錯体、白金−ビニルシロキサン錯体、Pt(acac)2等が好ましい。 Examples of catalysts other than platinum compounds include RhCl (PPh 3 ) 3 , RhCl 3 , Rh / Al 2 O 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 .2H 2 O, NiCl 2. , TiCl 4, include like. These catalysts may be used alone or in combination of two or more. From the viewpoint of catalytic activity, chloroplatinic acid, platinum-olefin complex, platinum-vinylsiloxane complex, Pt (acac) 2 and the like are preferable.

多面体構造ポリシロキサン変性体の合成時および硬化時に用いるヒドロシリル化触媒の添加量としては特に制限はないが、例えば、多面体構造ポリシロキサン系化合物(a)のアルケニル基1モルに対して10-1〜10-10モルの範囲で用いるのがよい。好ましくは10-4〜10-8モルの範囲で用いるのがよい。ヒドロシリル化触媒が多すぎると、ヒドロシリル化触媒の種類によっては、短波長の光に吸収を示すため、得られる硬化物の耐光性が低下する恐れがあり、また、硬化物が発泡する恐れもある。また、ヒドロシリル化触媒が少なすぎると、反応が進まず、目的物が得られない恐れがある。 The addition amount of the hydrosilylation catalyst used at the time of synthesis and curing of the modified polyhedral polysiloxane is not particularly limited, but is, for example, 10 −1 to 1 mol per mol of the alkenyl group of the polyhedral polysiloxane compound (a). It is preferable to use in the range of 10 −10 mol. Preferably, it is used in the range of 10 −4 to 10 −8 mol. If there are too many hydrosilylation catalysts, depending on the type of hydrosilylation catalyst, it absorbs light at short wavelengths, so the light resistance of the resulting cured product may be reduced, and the cured product may also foam. . Moreover, when there are too few hydrosilylation catalysts, reaction may not progress and there exists a possibility that a target object may not be obtained.

また、多面体構造ポリシロキサン変性体のヒドロシリル化反応の反応温度としては、30〜400℃、さらに好ましくは、40〜250℃であることが好ましく、より好ましくは、45〜140℃である。温度が低すぎると反応が十分に進行せず、温度が高すぎると、ゲル化が生じ、ハンドリング性が悪化する恐れがある。   Moreover, as reaction temperature of hydrosilylation reaction of polyhedral polysiloxane modified body, it is 30-400 degreeC, More preferably, it is preferable that it is 40-250 degreeC, More preferably, it is 45-140 degreeC. If the temperature is too low, the reaction does not proceed sufficiently, and if the temperature is too high, gelation may occur and handling properties may deteriorate.

<組成物>
次に、本発明によって得られるポリシロキサン系組成物について説明する。本発明においては、多面体構造ポリシロキサン変性体に硬化剤、ヒドロシリル化触媒、硬化遅延剤、接着性付与剤等も加えることにより得ることができる。また、本願発明に係る多面体構造ポリシロキサン変性体の中でも、本発明における多面体構造ポリシロキサン変性体に後述の硬化剤、ヒドロシリル化触媒、接着性付与剤も配合した組成物により、硬化物が基材との接着性が良好な組成物となす事ができる。
<Composition>
Next, the polysiloxane composition obtained by the present invention will be described. In the present invention, a polyhedral polysiloxane modified product can be obtained by adding a curing agent, a hydrosilylation catalyst, a curing retarder, an adhesiveness imparting agent, and the like. Further, among the polyhedral polysiloxane modifieds according to the present invention, the cured product is a base material by a composition in which the polyhedral polysiloxane modified according to the present invention is blended with a curing agent, a hydrosilylation catalyst, and an adhesion imparting agent described later. And a composition having good adhesiveness.

本発明のポリシロキサン系組成物は、透明な液状組成物となす事が可能である。特に液状の多面体構造ポリシロキサン変性体を用いることで溶媒を用いずとも液状組成物と成すことができ、成型体に流し込み、加熱して硬化させることで容易に成形体を得ることができる。透明であることにより、光学用組成物として用いることができる。   The polysiloxane composition of the present invention can be made into a transparent liquid composition. In particular, by using a liquid polyhedral polysiloxane-modified product, a liquid composition can be formed without using a solvent, and a molded product can be easily obtained by pouring into a molded product and heating to cure. By being transparent, it can be used as an optical composition.

液状の透明組成物を硬化させた成型体は、例えば3mm厚さの成型体での透過率は400nmの光線で75%以上となるものを得ることが可能である。また、多面体構造ポリシロキサン変性体が液状であることで、本発明のポリシロキサン系組成物が容易に液状として得ることができるので好ましい。   For example, a molded product obtained by curing a liquid transparent composition can have a transmittance of 75% or more with a 400 nm light beam in a molded product having a thickness of 3 mm. In addition, it is preferable that the polyhedral polysiloxane-modified product is in liquid form, because the polysiloxane composition of the present invention can be easily obtained in liquid form.

多面体構造ポリシロキサン変性体を含有する組成物をヒドロシリル化反応により硬化させる際に温度を加える場合は、好ましくは、30〜400℃、さらに好ましくは50〜250℃である。硬化温度が高くなり過ぎると、得られる硬化物に外観不良が生じる傾向があり、低すぎると硬化が不十分となる。また、2段階以上の温度条件を組み合わせて硬化させてもよい。   When the temperature is applied when the composition containing the polyhedral polysiloxane modified is cured by a hydrosilylation reaction, the temperature is preferably 30 to 400 ° C, more preferably 50 to 250 ° C. If the curing temperature is too high, the resulting cured product tends to have poor appearance, and if it is too low, curing is insufficient. Moreover, you may make it harden | cure combining the temperature conditions of two or more steps.

具体的には例えば、70℃、120℃、150℃の様に段階的に硬化温度を引き上げていくことで、良好な硬化物を得ることができ好ましい。硬化時間は硬化温度、用いるヒドロシリル化触媒の量及びヒドロシリル基の量その他、本願組成物のその他の配合物の組み合わせにより適宜選択することができるが、あえて例示すれば、好ましくは1分〜12時間、さらには5分〜10時間行うことにより、良好な硬化物を得ることができる。   Specifically, for example, by raising the curing temperature stepwise such as 70 ° C., 120 ° C., and 150 ° C., a preferable cured product can be obtained, which is preferable. The curing time can be appropriately selected depending on the curing temperature, the amount of hydrosilylation catalyst to be used and the amount of hydrosilyl group, and other combinations of the composition of the present application. Furthermore, a good cured product can be obtained by performing the treatment for 5 minutes to 10 hours.

<硬化剤>
次に、本発明に用いる硬化剤について説明する。
<Curing agent>
Next, the curing agent used in the present invention will be described.

硬化剤は、多面体構造ポリシロキサン変性体の主たる反応性基の種類よって使い分けることができる。多面体構造ポリシロキサン変性体がヒドロシリル基を主たる反応性基として有する場合は、アルケニル基を有する化合物、アルケニル基を主たる反応性基として有する場合は、ヒドロシリル基を有する化合物を硬化剤として用いることができる。以下、詳細に説明する。   The curing agent can be properly used depending on the type of main reactive group of the modified polyhedral polysiloxane. When the modified polyhedral polysiloxane has a hydrosilyl group as a main reactive group, a compound having an alkenyl group can be used as a curing agent, and when it has an alkenyl group as a main reactive group, a compound having a hydrosilyl group can be used as a curing agent. . Details will be described below.

本発明における硬化剤は、130℃における重量減少が2.5%以下、さらに好ましくは2.0%であり、かつ、分子量が5000未満、さらには、3000未満であることが好ましい。130℃における重量減少が2.5%を超えると、硬化剤に含まれる低分子量成分の影響により、硬化物の靭性が不十分になる場合があり、さらには、高温加熱の際のクラック発生の可能性が高くなる恐れがある。また、分子量が5000以上の場合、得られる硬化物の弾性率・剛性が不十分となる場合がある。   The curing agent in the present invention preferably has a weight loss at 130 ° C. of 2.5% or less, more preferably 2.0%, and a molecular weight of less than 5000, more preferably less than 3000. If the weight loss at 130 ° C. exceeds 2.5%, the toughness of the cured product may be insufficient due to the influence of low molecular weight components contained in the curing agent, and further, cracks may occur during high temperature heating. There is a possibility that the possibility becomes high. Moreover, when the molecular weight is 5000 or more, the elastic modulus and rigidity of the obtained cured product may be insufficient.

また、本発明における硬化剤の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、1.7未満、さらには、1.6未満であることが好ましい。1.7以上になると、得られる硬化物の高温加熱の際のクラック発生の可能性が高くなる恐れがある。   In addition, the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the curing agent in the present invention is preferably less than 1.7, and more preferably less than 1.6. If it is 1.7 or more, there is a risk that the possibility of cracking during the high-temperature heating of the resulting cured product increases.

ここで、本発明における重量減少の評価方法としては、具体的に例えば、金属製容器に、硬化剤を1g秤取したのち、130±5℃に設定した熱風循環型オーブン内に1時間養生し、その後、オーブンから取り出した後の硬化剤の重量を測定し、その減量を算出することで求めることができる。なお、オーブン内に硬化剤を入れた金属製容器を養生する際には、オーブンからの熱風が直接サンプルに当たらないよう、フード等を被せた上で、投入することが必要である。   Here, as an evaluation method of weight reduction in the present invention, specifically, for example, 1 g of the curing agent is weighed in a metal container and then cured in a hot air circulation oven set at 130 ± 5 ° C. for 1 hour. Thereafter, the weight of the curing agent after taking out from the oven is measured, and the weight loss can be calculated. When curing a metal container in which a curing agent is put in an oven, it is necessary to put in a hood or the like so that hot air from the oven does not directly hit the sample.

なお、本発明における分子量は、GPC法(展開溶媒としてトルエンを使用、ポリスチレン換算)において測定することで得ることができる。   In addition, the molecular weight in this invention can be obtained by measuring in GPC method (Toluene is used as a developing solvent, polystyrene conversion).

前記、アルケニル基を有する硬化剤は、アルケニル基を有する化合物であれば特に限定されないが、1分子中に少なくともアルケニル基を2個含有するものが好ましく、アルケニル基を有する直鎖構造のポリシロキサン、分子末端にアルケニル基を有するポリシロキサン、アルケニル基を含有する環状シロキサンなどのシロキサン化合物がさらに好ましく、特には、高温加熱時における耐クラック性等の観点より直鎖構造のポリシロキサンであることが好ましい。これらアルケニル基を有する化合物は単独で使用してもよく、2種以上を併用してもよい。   The curing agent having an alkenyl group is not particularly limited as long as it is a compound having an alkenyl group, but preferably contains at least two alkenyl groups in one molecule, a linear polysiloxane having an alkenyl group, A siloxane compound such as a polysiloxane having an alkenyl group at the molecular end or a cyclic siloxane containing an alkenyl group is more preferred, and a polysiloxane having a linear structure is particularly preferred from the viewpoint of crack resistance during high-temperature heating. . These compounds having an alkenyl group may be used alone or in combination of two or more.

直鎖構造を有するアルケニル基含有ポリシロキサンの具体例としては、ジメチルシロキサン単位とメチルビニルシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジフェニルシロキサン単位とメチルビニルシロキサン単位及び末端トリメチルシロキシ単位との共重合体、メチルフェニルシロキサン単位とメチルビニルシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジメチルビニルシリル基で末端が封鎖されたポリジメチルシロキサン、ジメチルビニルシリル基で末端が封鎖されたポリジフェニルシロキサン、ジメチルビニルシリル基で末端が封鎖されたポリメチルフェニルシロキサンなどが例示される。本発明における直鎖構造を有するアルケニル基含有ポリシロキサンとしては、得られる硬化物の靭性や耐クラック性の観点から、分子末端にアルケニル基を有することが好ましい。   Specific examples of the alkenyl group-containing polysiloxane having a linear structure include copolymers of dimethylsiloxane units, methylvinylsiloxane units and terminal trimethylsiloxy units, diphenylsiloxane units, methylvinylsiloxane units and terminal trimethylsiloxy units. Copolymer, Copolymer of methylphenylsiloxane unit, methylvinylsiloxane unit and terminal trimethylsiloxy unit, Polydimethylsiloxane blocked with dimethylvinylsilyl group, Polydiphenyl blocked with dimethylvinylsilyl group Examples thereof include siloxane and polymethylphenylsiloxane whose end is blocked with a dimethylvinylsilyl group. The alkenyl group-containing polysiloxane having a linear structure in the present invention preferably has an alkenyl group at the molecular end from the viewpoint of toughness and crack resistance of the resulting cured product.

分子末端にアルケニル基を有するポリシロキサンの具体例としては、先に例示したジメチルアルケニル基で末端が封鎖されたポリシロキサン、ジメチルアルケニルシロキサン単位とSiO2単位、SiO3/2単位、SiO2/2単位からなる群において選ばれる少なくとも1つのシロキサン単位からなるポリシロキサンなどが例示される。 Specific examples of the polysiloxane having an alkenyl group at the molecular end include polysiloxanes whose ends are blocked with the dimethylalkenyl groups exemplified above, dimethylalkenylsiloxane units and SiO 2 units, SiO 3/2 units, SiO 2/2 Examples thereof include polysiloxane composed of at least one siloxane unit selected from the group consisting of units.

アルケニル基を含有する環状シロキサン化合物としては、1,3,5,7−テトラビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリビニル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジビニル−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリビニル−トリメチルシクロシロキサン、1,3,5,7,9−ペンタビニル−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサビニル−1,3,5,7,9,11−ヘキサメチルシクロシロキサンなどが例示される。   Examples of the cyclic siloxane compound containing an alkenyl group include 1,3,5,7-tetravinyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trivinyl-1, 3,5,7-tetramethylcyclotetrasiloxane, 1,5-divinyl-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-trivinyl-trimethylcyclosiloxane, 1,3,5,7,9-pentavinyl-1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexavinyl-1,3,5,7,9 , 11-hexamethylcyclosiloxane and the like.

前記、ヒドロシリル基を有する硬化剤は、ヒドロシリル基を有する化合物であれば特に限定されないが、1分子中に少なくともヒドロシリル基を2個含有するものが好ましく、ヒドロシリル基を有する直鎖構造のポリシロキサン、分子末端にヒドロシリル基を有するポリシロキサン、ヒドロシリル基を含有する環状シロキサンなどのシロキサン化合物が特に好ましい。これらヒドロシリル基を有する化合物は単独で使用してもよく、2種以上を併用してもよい。   The curing agent having a hydrosilyl group is not particularly limited as long as it is a compound having a hydrosilyl group, but preferably contains at least two hydrosilyl groups in one molecule, a linear polysiloxane having a hydrosilyl group, Siloxane compounds such as polysiloxane having a hydrosilyl group at the molecular terminal and cyclic siloxane having a hydrosilyl group are particularly preferred. These compounds having a hydrosilyl group may be used alone or in combination of two or more.

直鎖構造を有するヒドロシリル基含有ポリシロキサンの具体例としては、ジメチルシロキサン単位とメチルハイドロジェンシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジフェニルシロキサン単位とメチルハイドロジェンシロキサン単位及び末端トリメチルシロキシ単位との共重合体、メチルフェニルシロキサン単位とメチルハイドロジェンシロキサン単位及び末端トリメチルシロキシ単位との共重合体、ジメチルハイドロジェンシリル基で末端が封鎖されたポリジメチルシロキサン、ジメチルハイドロジェンシリル基で末端が封鎖されたポリジフェニルシロキサン、ジメチルハイドロジェンシリル基で末端が封鎖されたポリメチルフェニルシロキサン、などが例示される。   Specific examples of hydrosilyl group-containing polysiloxanes having a linear structure include copolymers of dimethylsiloxane units, methylhydrogensiloxane units and terminal trimethylsiloxy units, diphenylsiloxane units, methylhydrogensiloxane units and terminal trimethylsiloxy units. A copolymer of methylphenylsiloxane units with methylhydrogensiloxane units and terminal trimethylsiloxy units, polydimethylsiloxane blocked with dimethylhydrogensilyl groups, and terminal with dimethylhydrogensilyl groups. Examples thereof include polydiphenylsiloxane blocked, polymethylphenylsiloxane blocked at the end with a dimethylhydrogensilyl group, and the like.

分子末端にヒドロシリル基を有するポリシロキサンの具体例としては、先に例示したジメチルハイドロジェンシリル基で末端が封鎖されたポリシロキサン、ジメチルハイドロジェンシロキサン単位(H(CH32SiO1/2単位)とSiO2単位、SiO3/2単位、SiO2/2単位からなる群において選ばれる少なくとも1つのシロキサン単位からなるポリシロキサンなどが例示される。 Specific examples of the polysiloxane having a hydrosilyl group at the molecular end include polysiloxanes whose ends are blocked with dimethylhydrogensilyl groups exemplified above, dimethylhydrogensiloxane units (H (CH 3 ) 2 SiO 1/2 units And a polysiloxane composed of at least one siloxane unit selected from the group consisting of SiO 2 units, SiO 3/2 units, and SiO 2/2 units.

ヒドロシリル基を含有する環状シロキサン化合物としては、1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1−プロピル−3,5,7−トリハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン、1,5−ジハイドロジェン−3,7−ジヘキシル−1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5−トリハイドロジェン−トリメチルシクロシロキサン、1,3,5,7,9−ペンタハイドロジェン−1,3,5,7,9−ペンタメチルシクロシロキサン、1,3,5,7,9,11−ヘキサハイドロジェン−1,3,5,7,9,11−ヘキサメチルシクロシロキサンなどが例示される。   Examples of the cyclic siloxane compound containing a hydrosilyl group include 1,3,5,7-tetrahydrogen-1,3,5,7-tetramethylcyclotetrasiloxane, 1-propyl-3,5,7-trihydrogen. -1,3,5,7-tetramethylcyclotetrasiloxane, 1,5-dihydrogen-3,7-dihexyl-1,3,5,7-tetramethylcyclotetrasiloxane, 1,3,5-tri Hydrogen-trimethylcyclosiloxane, 1,3,5,7,9-pentahydrogen-1,3,5,7,9-pentamethylcyclosiloxane, 1,3,5,7,9,11-hexahydro Examples include Gen-1,3,5,7,9,11-hexamethylcyclosiloxane.

本発明においては、耐熱性、耐光性の観点から、Si原子上は、水素原子、ビニル基およびメチル基から構成されることが好ましい。   In the present invention, from the viewpoint of heat resistance and light resistance, the Si atom is preferably composed of a hydrogen atom, a vinyl group and a methyl group.

硬化剤の添加量は種々設定できるが、アルケニル基1個あたり、Si原子に直結した水素原子が0.3〜5個、好ましくは、0.5〜3個となる割合であることが望ましい。アルケニル基の割合が少なすぎると、発泡等による外観不良が生じやすくなり、また、多すぎると、硬化物の物性に悪影響を及ぼす場合がある。   Although the addition amount of the curing agent can be variously set, it is desirable that the amount of hydrogen atoms directly bonded to Si atoms is 0.3 to 5, preferably 0.5 to 3, per alkenyl group. If the ratio of the alkenyl group is too small, appearance defects due to foaming and the like are likely to occur, and if too large, the physical properties of the cured product may be adversely affected.

<硬化遅延剤>
次に、本発明で用いる硬化遅延剤について説明する。
<Curing retarder>
Next, the curing retarder used in the present invention will be described.

硬化遅延剤は、本発明の多面体構造ポリシロキサン変性体、および、ポリシロキサン系組成物の保存安定性を改良あるいは、硬化過程でのヒドロシリル化反応の反応性を調整するための成分である。本発明においては、硬化遅延剤としては、ヒドロシリル化触媒による付加型硬化性組成物で用いられている公知のものが使用でき、具体的には脂肪族不飽和結合を含有する化合物、有機リン化合物、有機イオウ化合物、窒素含有化合物、スズ系化合物、有機過酸化物等が挙げられる。これらを単独使用、または2種以上併用してもよい。   The curing retarder is a component for improving the storage stability of the modified polyhedral polysiloxane of the present invention and the polysiloxane composition or adjusting the reactivity of the hydrosilylation reaction during the curing process. In the present invention, as the retarder, known compounds used in addition-type curable compositions with hydrosilylation catalysts can be used. Specifically, compounds containing aliphatic unsaturated bonds, organophosphorus compounds , Organic sulfur compounds, nitrogen-containing compounds, tin compounds, organic peroxides, and the like. These may be used alone or in combination of two or more.

前記の脂肪族不飽和結合を含有する化合物としては、具体的には3−ヒドロキシ−3−メチル−1−ブチン、3−ヒドロキシ−3−フェニル−1−ブチン、3,5−ジメチル−1−ヘキシン−3−オール、1−エチニル−1−シクロヘキサノール等のプロパギルアルコール類、エン−イン化合物類、無水マレイン酸、マレイン酸ジメチル等のマレイン酸エステル類等が例示できる。   Specific examples of the compound containing an aliphatic unsaturated bond include 3-hydroxy-3-methyl-1-butyne, 3-hydroxy-3-phenyl-1-butyne, and 3,5-dimethyl-1- Examples thereof include propargyl alcohols such as hexyn-3-ol and 1-ethynyl-1-cyclohexanol, ene-yne compounds, maleic acid esters such as maleic anhydride and dimethyl maleate, and the like.

有機リン化合物としては、具体的にはトリオルガノフォスフィン類、ジオルガノフォスフィン類、オルガノフォスフォン類、トリオルガノフォスファイト類等が例示できる。   Specific examples of the organophosphorus compound include triorganophosphine, diorganophosphine, organophosphon, and triorganophosphite.

有機イオウ化合物としては、具体的にはオルガノメルカプタン類、ジオルガノスルフィド類、硫化水素、ベンゾチアゾール、チアゾール、ベンゾチアゾールジサルファイド等が例示できる。   Specific examples of the organic sulfur compound include organomercaptans, diorganosulfides, hydrogen sulfide, benzothiazole, thiazole, benzothiazole disulfide, and the like.

窒素含有化合物としては、具体的にはN,N,N′,N′−テトラメチルエチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジエチルエチレンジアミン、N,N−ジブチルエチレンジアミン、N,N−ジブチル−1,3−プロパンジアミン、N,N−ジメチル−1,3−プロパンジアミン、N,N,N′,N′−テトラエチルエチレンジアミン、N,N−ジブチル−1,4−ブタンジアミン、2,2’−ビピリジン等が例示できる。   Specific examples of nitrogen-containing compounds include N, N, N ′, N′-tetramethylethylenediamine, N, N-dimethylethylenediamine, N, N-diethylethylenediamine, N, N-dibutylethylenediamine, and N, N-dibutyl. -1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N, N ′, N′-tetraethylethylenediamine, N, N-dibutyl-1,4-butanediamine, 2,2 Examples include '-bipyridine.

スズ系化合物としては、具体的にはハロゲン化第一スズ2水和物、カルボン酸第一スズ等が例示できる。   Specific examples of tin compounds include stannous halide dihydrate, stannous carboxylate, and the like.

有機過酸化物としては、具体的にはジ−t−ブチルペルオキシド、ジクミルペルオキシド、ベンゾイルペルオキシド、過安息香酸t−ブチル等が例示されうる。これらのうち、マレイン酸ジメチル、3,5−ジメチル−1−ヘキシン−3−オール、1−エチニル−1−シクロヘキサノールが、特に好ましい硬化遅延剤として例示できる。   Specific examples of the organic peroxide include di-t-butyl peroxide, dicumyl peroxide, benzoyl peroxide, and t-butyl perbenzoate. Of these, dimethyl maleate, 3,5-dimethyl-1-hexyn-3-ol, and 1-ethynyl-1-cyclohexanol can be exemplified as particularly preferred curing retarders.

硬化遅延剤の添加量は、特に限定するものではないが、ヒドロシリル化触媒1モルに対して10−1〜103モルの範囲で用いるのが好ましく、1〜500モルの範囲で用いるのがより好ましい。また、これらの硬化遅延剤は単独で使用してもよく、2種類以上組み合わせて使用してもよい。   The addition amount of the curing retardant is not particularly limited, but it is preferably used in the range of 10-1 to 103 mol, more preferably in the range of 1 to 500 mol, with respect to 1 mol of the hydrosilylation catalyst. . Moreover, these hardening retarders may be used independently and may be used in combination of 2 or more types.

<接着性付与剤>
接着性付与剤は本願発明の組成物と基材との接着性を向上する目的で用いるものであり、その様な効果があるものは時に制限はないが、シランカップリング剤、エポキシ化合物が好ましい物として例示できる。
<Adhesive agent>
The adhesion-imparting agent is used for the purpose of improving the adhesion between the composition of the present invention and the base material, and although there is no limitation on what has such an effect, a silane coupling agent or an epoxy compound is preferable. It can be illustrated as a thing.

具体的に例えば、多面体構造ポリシロキサン変性体としてヒドロシリル基を含有する多面体構造ポリシロキサン変性体に硬化剤、ヒドロシリル化触媒、接着性付与剤も配合した組成物により、硬化物が基材との接着性が良好な組成物となす事ができる。   Specifically, for example, a polyhedral polysiloxane modified product containing a hydrosilyl group as a modified polyhedral polysiloxane has a composition in which a curing agent, a hydrosilylation catalyst, and an adhesion imparting agent are also blended, so that the cured product adheres to the substrate. It can be made into a composition with good properties.

シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。   The silane coupling agent is not particularly limited as long as it is a compound having at least one functional group reactive with an organic group and one hydrolyzable silicon group in the molecule. The group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group from the viewpoint of handling. From the viewpoints of adhesion and adhesiveness, an epoxy group, a methacryl group, and an acrylic group are particularly preferable. As the hydrolyzable silicon group, an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.

好ましいシランカップリング剤としては、具体的には3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が例示できる。   Preferable silane coupling agents are specifically 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- ( 3,4-epoxycyclohexyl) alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3 -Methacrylic groups such as acryloxypropyltriethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane, Alkoxysilanes having a drill group can be exemplified.

シランカップリング剤の添加量としては、多面体構造ポリシロキサン変性体および硬化剤の合計重量の0.05〜30重量%であることが好ましく、さらに好ましくは、0.1〜15重量%である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物の物性に悪影響を及ぼす場合がある。   The addition amount of the silane coupling agent is preferably 0.05 to 30% by weight, more preferably 0.1 to 15% by weight, based on the total weight of the polyhedral polysiloxane modified product and the curing agent. If the addition amount is small, the effect of improving the adhesiveness does not appear, and if the addition amount is large, the physical properties of the cured product may be adversely affected.

エポキシ化合物としては、例えば、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、2,2’−ビス(4−グリシジルオキシシクロヘキシル)プロパン、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカーボキシレート、、2−(3,4−エポキシシクロヘキシル)−5,5−スピロ−(3,4−エポキシシクロヘキサン)−1,3−ジオキサン、ビス(3,4−エポキシシクロヘキシル)アジペート、1,2−シクロプロパンジカルボン酸ビスグリシジルエステル、トリグリシジルイソシアヌレート等を挙げることができる。   Examples of the epoxy compound include novolak phenol type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, and 2,2′-bis (4-glycidyloxycyclohexyl). Propane, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl) -5,5-spiro- (3,4-epoxycyclohexane) -1,3 -Dioxane, bis (3,4-epoxycyclohexyl) adipate, 1,2-cyclopropanedicarboxylic acid bisglycidyl ester, triglycidyl isocyanurate and the like.

エポキシ化合物の添加量としては、多面体構造ポリシロキサン変性体および硬化剤の合計重量の0.1〜50重量%であることが好ましく、さらに好ましくは、0.2〜15重量%である。添加量が少ないと接着性改良効果が表れず、添加量が多いと硬化物の物性に悪影響を及ぼす場合がある。   The addition amount of the epoxy compound is preferably 0.1 to 50% by weight, more preferably 0.2 to 15% by weight, based on the total weight of the polyhedral polysiloxane modified body and the curing agent. If the addition amount is small, the effect of improving the adhesiveness does not appear, and if the addition amount is large, the physical properties of the cured product may be adversely affected.

また、シランカップリング剤、エポキシ化合物等は単独で使用してもよく、2種併用してもよい。   Moreover, a silane coupling agent, an epoxy compound, etc. may be used independently and may be used together 2 types.

本発明においては、接着性付与剤の効果を高めるために、公知の接着性促進剤を用いることができる。接着性促進剤としては、ボロン酸エステル化合物、有機アルミニウム化合物、有機チタン化合物が挙げられるが、これらに限定されるものではない。   In the present invention, a known adhesion promoter can be used to enhance the effect of the adhesion promoter. Adhesion promoters include, but are not limited to, boronic acid ester compounds, organoaluminum compounds, and organotitanium compounds.

本発明に用いるポリシロキサン系組成物には、上記成分に加え、本発明の効果を妨げない範囲で、必要に応じ、粉砕石英、炭酸カルシウム、カーボンブラック、シリカなどの無機フィラー(充填剤)を添加してもよい。   In addition to the above components, the polysiloxane-based composition used in the present invention may contain an inorganic filler (filler) such as pulverized quartz, calcium carbonate, carbon black, silica, etc., as long as the effects of the present invention are not hindered. It may be added.

本発明で用いることが出来る無機フィラーは、無機物もしくは無機物を含む化合物であれば特に限定されないが、具体的に例えば、石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等のシリカ系無機フィラー、アルミナ、ジルコン、酸化鉄、酸化亜鉛、酸化チタン、窒化ケイ素、窒化ホウ素、窒化アルミ、炭化ケイ素、ガラス繊維、ガラスフレーク、アルミナ繊維、炭素繊維、マイカ、黒鉛、カーボンブラック、フェライト、グラファイト、ケイソウ土、白土、クレー、タルク、水酸化アルミニウム、炭酸カルシウム、炭酸マンガン、炭酸マグネシウム、硫酸バリウム、チタン酸カリウム、ケイ酸カルシウム、無機バルーン、銀粉等を挙げることができる。これらは、単独で用いてもよく、2種類以上併用してもよい。   The inorganic filler that can be used in the present invention is not particularly limited as long as it is an inorganic substance or a compound containing an inorganic substance. Specifically, for example, quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica. , Silica-based inorganic fillers such as ultrafine powder amorphous silica, alumina, zircon, iron oxide, zinc oxide, titanium oxide, silicon nitride, boron nitride, aluminum nitride, silicon carbide, glass fiber, glass flake, alumina fiber, carbon fiber, Mica, graphite, carbon black, ferrite, graphite, diatomaceous earth, clay, talc, aluminum hydroxide, calcium carbonate, manganese carbonate, magnesium carbonate, barium sulfate, potassium titanate, calcium silicate, inorganic balloon, silver powder, etc. Can be mentioned. These may be used alone or in combination of two or more.

無機フィラーは、適宜表面処理をほどこしてもよい。表面処理としては、アルキル化処理、トリメチルシリル化処理、シリコーン処理、カップリング剤による処理等が挙げられるが、特に限定されるものではない。   The inorganic filler may be appropriately subjected to a surface treatment. Examples of the surface treatment include alkylation treatment, trimethylsilylation treatment, silicone treatment, treatment with a coupling agent, and the like, but are not particularly limited.

前記カップリング剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤としては、分子中に有機基と反応性のある官能基と加水分解性のケイ素基を各々少なくとも1個有する化合物であれば特に限定されない。有機基と反応性のある基としては、取扱い性の点からエポキシ基、メタクリル基、アクリル基、イソシアネート基、イソシアヌレート基、ビニル基、カルバメート基から選ばれる少なくとも1個の官能基が好ましく、硬化性及び接着性の点から、エポキシ基、メタクリル基、アクリル基が特に好ましい。加水分解性のケイ素基としては取扱い性の点からアルコキシシリル基が好ましく、反応性の点からメトキシシリル基、エトキシシリル基が特に好ましい。   An example of the coupling agent is a silane coupling agent. The silane coupling agent is not particularly limited as long as it is a compound having at least one functional group reactive with an organic group and one hydrolyzable silicon group in the molecule. The group reactive with the organic group is preferably at least one functional group selected from an epoxy group, a methacryl group, an acrylic group, an isocyanate group, an isocyanurate group, a vinyl group, and a carbamate group from the viewpoint of handling. From the viewpoints of adhesion and adhesiveness, an epoxy group, a methacryl group, and an acrylic group are particularly preferable. As the hydrolyzable silicon group, an alkoxysilyl group is preferable from the viewpoint of handleability, and a methoxysilyl group and an ethoxysilyl group are particularly preferable from the viewpoint of reactivity.

好ましいシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ官能基を有するアルコキシシラン類:3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、メタクリロキシメチルトリメトキシシラン、メタクリロキシメチルトリエトキシシラン、アクリロキシメチルトリメトキシシラン、アクリロキシメチルトリエトキシシラン等のメタクリル基あるいはアクリル基を有するアルコキシシラン類が挙げられる。   Preferred silane coupling agents include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4- Epoxycyclohexyl) alkoxysilanes having an epoxy functional group such as ethyltriethoxysilane: 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-acryloxypropyl Methacrylic or acrylic groups such as triethoxysilane, methacryloxymethyltrimethoxysilane, methacryloxymethyltriethoxysilane, acryloxymethyltrimethoxysilane, acryloxymethyltriethoxysilane Alkoxysilanes which can be mentioned.

上記無機フィラーをポリシロキサン系組成物の組成分として用いることにより、得られる成形体の強度、硬度、弾性率、熱膨張率、熱伝導率、放熱性、電気的特性、光の反射率、難燃性、耐火性等の諸物性を改善することができる。   By using the inorganic filler as a component of the polysiloxane composition, the strength, hardness, elastic modulus, thermal expansion coefficient, thermal conductivity, heat dissipation, electrical characteristics, light reflectance, and difficulty of the resulting molded body are obtained. Various physical properties such as flammability and fire resistance can be improved.

無機フィラーの形状としては、破砕状、片状、球状、棒状等、各種用いることができる。無機フィラーの平均粒径や粒径分布は、特に限定されるものではないが、平均粒径が0.005〜100μmであることが好ましく、さらには0.01〜50μmであることが好ましい。同様に、比表面積についても、特に限定されない。   As the shape of the inorganic filler, various types such as a crushed shape, a piece shape, a spherical shape, and a rod shape can be used. The average particle size and particle size distribution of the inorganic filler are not particularly limited, but the average particle size is preferably 0.005 to 100 μm, and more preferably 0.01 to 50 μm. Similarly, the specific surface area is not particularly limited.

無機フィラーの添加量は特に限定されないが、多面体構造ポリシロキサン変性体と硬化剤の混合物100重量部に対して、1〜1000重量部、よりこの好ましくは、5〜500重量部、さらに好ましくは、10〜300重量部である。無機フィラーの添加量が多すぎると、流動性が悪くなる場合があり、少ないと、得られる成型体の物性が不十分となる場合がある。   The addition amount of the inorganic filler is not particularly limited, but is 1 to 1000 parts by weight, more preferably 5 to 500 parts by weight, and still more preferably, with respect to 100 parts by weight of the mixture of the polyhedral polysiloxane modified and the curing agent. 10 to 300 parts by weight. When the amount of the inorganic filler added is too large, the fluidity may be deteriorated, and when it is small, the physical properties of the obtained molded article may be insufficient.

本願発明の多面体構造ポリシロキサン変性体、硬化剤とに無機フィラーを配合させて組成物とすることができる。多面体構造ポリシロキサン変性体としてはアルケニル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、ヒドロシリル基を有する化合物(b)を変性して得られた変性体が好ましい。   An inorganic filler can be blended with the modified polyhedral polysiloxane of the present invention and the curing agent to form a composition. The modified polyhedral polysiloxane is preferably a modified product obtained by modifying a compound (b) having a hydrosilyl group with respect to a polyhedral polysiloxane compound (a) containing an alkenyl group.

無機フィラーの混合の順序としては、特に限定されないが、貯蔵安定性が良好になりやすいという点においては、無機フィラーと硬化剤を混ぜた後、多面体構造ポリシロキサン変性体を混合する方法が望ましい。また、多面体構造ポリシロキサン変性体、硬化剤がよく混合され安定した成形物が得られやすいという点においては、多面体構造ポリシロキサン変性体、硬化剤を混合したものに無機フィラーを混合することが好ましい。   The order of mixing the inorganic filler is not particularly limited, but from the viewpoint that the storage stability tends to be good, a method of mixing the modified polyhedral polysiloxane after mixing the inorganic filler and the curing agent is desirable. In addition, it is preferable to mix an inorganic filler into a mixture of a polyhedral polysiloxane modified and a curing agent in that the polyhedral polysiloxane modified and the curing agent are well mixed and a stable molded product is easily obtained. .

これら無機フィラーを混合する手段としては、特に限定されるものではないが、具体的に例えば、2本ロールあるいは3本ロール、遊星式撹拌脱泡装置、ホモジナイザー、ディゾルバー、プラネタリーミキサー等の撹拌機、プラストミル等の溶融混練機等が挙げられる。無機フィラーの混合は、常温で行ってもよいし加熱して行ってもよく、また、常圧下に行ってもよいし減圧状態で行ってもよい。混合する際の温度が高いと、成型する前に組成物が硬化する場合がある。また、本発明のポリシロキサン系組成物には、必要に応じて、顔料、蛍光体、着色剤、耐熱性向上剤などの各種添加剤や反応制御剤、離型剤あるいは充填剤用分散剤などを任意で添加することができる。   The means for mixing these inorganic fillers is not particularly limited, but specifically, for example, a stirrer such as a two-roll or three-roll, a planetary stirring deaerator, a homogenizer, a dissolver, a planetary mixer, etc. And melt kneaders such as a plast mill. The mixing of the inorganic filler may be performed at normal temperature, may be performed by heating, may be performed under normal pressure, or may be performed under reduced pressure. If the temperature during mixing is high, the composition may be cured before molding. In addition, the polysiloxane composition of the present invention includes various additives such as pigments, phosphors, colorants, heat resistance improvers, reaction control agents, mold release agents, and dispersants for fillers, as necessary. Can be optionally added.

この充填剤用分散剤としては、例えば、ジフェニルシランジオール、各種アルコキシシラン、カーボンファンクショナルシラン、シラノール基含有低分子量シロキサンなどが挙げられる。   Examples of the filler dispersant include diphenylsilane diol, various alkoxysilanes, carbon functional silane, silanol group-containing low molecular weight siloxane, and the like.

また、本発明のポリシロキサン系組成物を難燃性、耐火性にするためには二酸化チタン、炭酸マンガン、Fe2O3、フェライト、マイカ、ガラス繊維、ガラスフレークなどの公知の添加剤を添加してもよい。なお、これら任意成分は、本発明の効果を損なわないように最小限の添加量に止めることが好ましい。   In addition, in order to make the polysiloxane composition of the present invention flame retardant and fire resistant, a known additive such as titanium dioxide, manganese carbonate, Fe2O3, ferrite, mica, glass fiber, glass flake or the like may be added. Good. In addition, it is preferable to stop these arbitrary components to the minimum addition amount so that the effect of this invention may not be impaired.

本発明に用いるポリシロキサン系組成物は、上記した成分をロール、バンバリーミキサー、ニーダーなどの混練機を用いたり、遊星式攪拌脱泡機を用いて均一に混合し、必要に応じ加熱処理を施したりすることにより得ることができる。   In the polysiloxane composition used in the present invention, the above-mentioned components are uniformly mixed using a kneader such as a roll, a Banbury mixer, a kneader, or a planetary stirring deaerator, and subjected to heat treatment as necessary. Can be obtained.

本発明のポリシロキサン系組成物は、成形材料として使用することができる。成形方法としては、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形、発泡成形、射出成形、液状射出成形、注型成形などの任意の方法を使用することができる。また、本発明のポリシロキサン系組成物を、シリコンやガラスなどの各種基材にスピンコーター等で塗布し、皮膜させて使用することもできる。この際、粘度調整のために、任意の溶剤で希釈して用いてもよい。   The polysiloxane composition of the present invention can be used as a molding material. As a molding method, any method such as extrusion molding, compression molding, blow molding, calender molding, vacuum molding, foam molding, injection molding, liquid injection molding, and cast molding can be used. In addition, the polysiloxane composition of the present invention can be applied to various substrates such as silicon and glass with a spin coater or the like, and can be used as a film. At this time, it may be diluted with an arbitrary solvent for viscosity adjustment.

本発明によるポリシロキサン系組成物から得られる硬化物は、耐熱性、耐光性に優れ、広い波長領域および温度領域において、高い透明性を発現する。また、低誘電特性や低屈折率材料としても好適である。   The cured product obtained from the polysiloxane composition according to the present invention is excellent in heat resistance and light resistance, and exhibits high transparency in a wide wavelength region and temperature region. It is also suitable as a low dielectric property or low refractive index material.

本発明によるポリシロキサン系組成物から得られる硬化物・成形体・膜は、耐熱性、耐光性に優れ、400nm程度の紫外領域の波長の光に対しても、高い透明性を有している。この特性によりオプトデバイス用部材(光学材料)として用いることが可能である。
本発明のポリシロキサン系組成物は、光学材料用組成物として用いることができ、硬化等により、例えば、オプトデバイス用部材として用いることができる。
The cured product / molded body / film obtained from the polysiloxane-based composition according to the present invention is excellent in heat resistance and light resistance, and has high transparency even for light having a wavelength in the ultraviolet region of about 400 nm. . This characteristic makes it possible to use as an optical device member (optical material).
The polysiloxane composition of the present invention can be used as a composition for optical materials, and can be used as an optical device member by curing or the like.

ここで言う光学材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。ここで、光学材料として用途を想定する場合、具体的に、例えば、厚さ3mmでの波長400nmにおける光線透過率が70%以上、さらには、75%以上であることが望ましい。近年、光学材料においては、高い耐熱性や耐光性が要求されており、特に、これらの試験後での光線透過率の低下が小さいもの(低下率が試験前の透過率の好ましくは5%以下)が望まれる。   The optical material mentioned here refers to general materials used for the purpose of allowing light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. Here, when an application is assumed as an optical material, specifically, for example, the light transmittance at a wavelength of 400 nm at a thickness of 3 mm is desirably 70% or more, and more desirably 75% or more. In recent years, optical materials have been required to have high heat resistance and light resistance, and in particular, the decrease in light transmittance after these tests is small (the decrease rate is preferably 5% or less of the transmittance before the test). ) Is desired.

また、本発明によって得られる硬化物は、短波長領域(350nm〜450nm)のレーザー光への耐久性に優れ、例えば、405nm±10nmの青紫色レーザーを長時間照射しても、レーザー光線透過率の変化率を小さく抑制することが可能である。従い、オプトデバイス用部材として用いた場合、デバイスを長寿命化することが可能となる。また、具体的に例えば、短波長領域のレーザーへの高い耐久性を発現させたい場合は、ゲル分率が95%以上であることが好ましい。ゲル分率が95%未満の場合、レーザー透過部の屈折率変化が起こったり、スジが発生したり、また、表面に凹凸を生じたりする場合がある。   Further, the cured product obtained by the present invention is excellent in durability to laser light in a short wavelength region (350 nm to 450 nm). For example, even when irradiated with a blue-violet laser of 405 nm ± 10 nm for a long time, the laser beam transmittance is low. It is possible to suppress the change rate to be small. Therefore, when used as an optical device member, it is possible to extend the life of the device. Further, specifically, for example, when it is desired to develop high durability to a laser in a short wavelength region, the gel fraction is preferably 95% or more. When the gel fraction is less than 95%, the refractive index change of the laser transmitting portion may occur, streaks may occur, or the surface may be uneven.

なお、前記ゲル分率は、具体的に例えば、20±5℃の条件下において、1gのサンプルをステンレス製の金網に包み、トルエンに72時間浸漬した後100℃x5時間の条件で乾燥させた際の、試験前後のサンプル重量を測定することにより算出する。具体的には、 (ゲル分率)=[(試験後の重量)/(試験前の重量)]x100
の計算式にて算出することができる。
Specifically, the gel fraction is, for example, under a condition of 20 ± 5 ° C., 1 g of a sample is wrapped in a stainless steel wire mesh, immersed in toluene for 72 hours, and then dried at 100 ° C. for 5 hours. It is calculated by measuring the sample weight before and after the test. Specifically, (gel fraction) = [(weight after test) / (weight before test)] × 100
It can be calculated by the following formula.

本発明において得られるポリシロキサン系組成物および成形体の用途としては、具体的には、液晶ディスプレイ分野におけるカラーフィルタ、レジスト材料、基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、液晶用フィルム、層間絶縁膜、ゲート絶縁膜、パッシベーション膜などの液晶表示装置周辺材料が例示される。   Specific uses of the polysiloxane composition and molded product obtained in the present invention include color filters, resist materials, substrate materials, light guide plates, prism sheets, deflecting plates, retardation plates, visual fields in the field of liquid crystal displays. Examples of the peripheral material of the liquid crystal display device such as a corner correction film, an adhesive, a polarizer protective film, a liquid crystal film, an interlayer insulating film, a gate insulating film, and a passivation film are exemplified.

また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止剤、反射防止膜、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤が例示される。   In addition, color PDP (plasma display) sealants, antireflection films, antireflection films, optical correction films, housing materials, front glass protective films, front glass substitutes, and adhesives that are expected as next-generation flat panel displays Is exemplified.

またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、封止剤、偏光子保護フィルムが例示される。   Moreover, the board | substrate material in a plasma address liquid crystal (PALC) display, a light-guide plate, a prism sheet, a deflection plate, a phase difference plate, a viewing angle correction film, an adhesive agent, a sealing agent, and a polarizer protective film are illustrated.

また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、各種封止剤、接着剤、また、フィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤が例示される。   Also, front glass protective film, front glass substitute materials, various sealants, adhesives in organic EL (electroluminescence) displays, and various film substrates, front glass protective films, front glass substitutes in field emission display (FED). Examples are materials and adhesives.

またLED表示装置に使用されるLED素子のモールド材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤などが例示される。   Moreover, the mold material of the LED element used for a LED display apparatus, the protective film of a front glass, a front glass alternative material, an adhesive agent, etc. are illustrated.

光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止剤、接着剤が例示される。さらに具体的には、次世代DVD等の光ピックアップ用の部材、例えば、ピックアップレンズ、コリメータレンズ、対物レンズ、センサレンズ、保護フィルム、素子封止剤、センサー封止剤、グレーティング、接着剤、プリズム、波長板、補正板、スプリッタ、ホログラム、ミラー等に好適に用いることができる。   In the optical recording field, VD (video disc), CD / CD-ROM, CD-R / RW, DVD-R / DVD-RAM, MO / MD, PD (phase change disc), disc substrate material for optical cards, Examples include pickup lenses, protective films, sealants, and adhesives. More specifically, optical pickup members such as next-generation DVDs, such as pickup lenses, collimator lenses, objective lenses, sensor lenses, protective films, element sealants, sensor sealants, gratings, adhesives, prisms It can be suitably used for wave plates, correction plates, splitters, holograms, mirrors and the like.

光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部が例示される。また、ビデオカメラの撮影レンズ、ファインダーが例示される。またプロジェクションテレビの投射レンズ、保護フィルム、封止剤、接着剤などが例示される。光センシング機器のレンズ用材料、封止剤、接着剤、フィルムなどが例示される。   In the field of optical equipment, examples include still camera lens materials, viewfinder prisms, target prisms, viewfinder covers, and light receiving sensor sections. In addition, a photographing lens and a viewfinder of a video camera are exemplified. Moreover, the projection lens of a projection television, a protective film, a sealing agent, an adhesive agent, etc. are illustrated. Examples are materials for lenses of optical sensing devices, sealants, adhesives, and films.

光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止剤、接着剤などが例示される。光コネクタ周辺の光ファイバー材料、フェルール、封止剤、接着剤などが例示される。光受動部品、光回路部品ではレンズ、導波路、LED素子の封止剤、接着剤などが例示される。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止剤、接着剤などが例示される。   In the field of optical components, fiber materials, lenses, waveguides, element sealants, adhesives and the like around optical switches in optical communication systems are exemplified. Examples include optical fiber materials, ferrules, sealants, adhesives and the like around the optical connector. Examples of optical passive components and optical circuit components include lenses, waveguides, LED element sealants, adhesives, and the like. Examples include substrate materials, fiber materials, element sealants, adhesives, and the like around an optoelectronic integrated circuit (OEIC).

光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーが例示される。   In the field of optical fibers, examples include sensors for industrial use such as lighting and light guides for decorative displays, displays and signs, and optical fibers for communication infrastructure and for connecting digital devices in the home.

半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料が例示される。   Examples of the semiconductor integrated circuit peripheral material include resist materials for microlithography for LSI and VLSI materials.

自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーネス、燃料ホース、自動車ランプ、ガラス代替品が例示される。また、鉄道車輌用の複層ガラスが例示される。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーネス、耐蝕コートが例示される。   In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, anti-corrosion coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior parts, drive engines, brake oil tanks, automobile protection Examples include rusted steel plates, interior panels, interior materials, protective / bundling wireness, fuel hoses, automobile lamps, and glass substitutes. Moreover, the multilayer glass for rail vehicles is illustrated. Further, examples thereof include a toughness imparting agent for aircraft structural materials, engine peripheral members, wireness for protection and binding, and corrosion-resistant coating.

建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料が例示される。農業用では、ハウス被覆用フィルムが例示される。   In the construction field, interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials are exemplified. In agriculture, a house covering film is exemplified.

次世代の光・電子機能有機材料としては、次世代DVD、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止剤、接着剤などが例示される。   Next-generation DVDs, organic EL element peripheral materials, organic photorefractive elements, light-amplifying elements that are light-to-light conversion devices, optical arithmetic elements, substrate materials around organic solar cells, etc. Examples thereof include fiber materials, element sealants, and adhesives.

本願発明の多面体構造ポリシロキサン変性体を含有する組成物は、光素子封止剤、光学素子用組成物、絶縁膜として好適に用いることができる。前記多面体構造ポリシロキサン変性体としては、アルケニル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、ヒドロシリル基を有する化合物(b)を変性して得られた本願発明の多面体構造ポリシロキサン変性体であることが好ましい。   The composition containing the modified polyhedral polysiloxane of the present invention can be suitably used as an optical element sealing agent, an optical element composition, and an insulating film. As the modified polyhedral polysiloxane, the polyhedral polysiloxane of the present invention obtained by modifying a compound (b) having a hydrosilyl group with respect to a polyhedral polysiloxane compound (a) containing an alkenyl group. A modified product is preferred.

同様に、本願発明のポリシロキサン系組成物は、光素子封止剤、光学素子用組成物、絶縁膜等に好適に用いることができる。   Similarly, the polysiloxane composition of the present invention can be suitably used for an optical element sealing agent, an optical element composition, an insulating film, and the like.

前記光素子封止剤としては、多面体構造ポリシロキサン変性体に、硬化剤、必要に応じて、ヒドロシリル化触媒、硬化遅延剤、接着性付与剤を加えることにより得ることができる。本発明の光素子封止剤は、透明な液状樹脂組成物として取り扱うことが可能である。液状組成物とすることにより、型、パッケージ、基板等に流し込み、加熱して硬化させることで容易に素子封止を実施することができる。本発明の光素子封止剤によって得られる封止層は、高い透明性を有しており、光の取り出し効率の観点で好ましく使用することができる。また、耐熱性、耐光性、耐青紫色レーザー性に優れ、オプトデバイスの長寿命化が可能となる。   The optical element sealing agent can be obtained by adding a curing agent, and if necessary, a hydrosilylation catalyst, a curing retarder, and an adhesion imparting agent to the polyhedral polysiloxane modified product. The optical element sealant of the present invention can be handled as a transparent liquid resin composition. By using a liquid composition, element sealing can be easily performed by pouring into a mold, a package, a substrate, etc., and heating and curing. The sealing layer obtained by the optical element sealing agent of the present invention has high transparency and can be preferably used from the viewpoint of light extraction efficiency. In addition, it is excellent in heat resistance, light resistance, and blue-violet laser resistance, and it is possible to extend the life of the optical device.

液状の光素子封止剤を硬化させた硬化物は、例えば3mm厚さの硬化物での透過率は400nmの光線で75%以上となるものを得ることが可能である。また、多面体構造ポリシロキサン変性体が液状であることで、本発明の光素子封止剤が容易に液状として得ることができるので好ましい。   As the cured product obtained by curing the liquid optical element sealant, for example, it is possible to obtain a cured product having a thickness of 3 mm and having a transmittance of 75% or more with a light beam of 400 nm. In addition, it is preferable that the polyhedral polysiloxane-modified product is in a liquid form because the optical element sealing agent of the present invention can be easily obtained in a liquid form.

硬化させる際に温度を加える場合は、好ましくは、30〜400℃、さらに好ましくは50〜250℃である。硬化温度が高くなり過ぎると、得られる硬化物に外観不良が生じる傾向があり、低すぎると硬化が不十分となる。また、2段階以上の温度条件を組み合わせて硬化させてもよい。具体的には例えば、70℃、120℃、150℃の様に段階的に硬化温度を引き上げていくことで、良好な硬化物を得ることができ好ましい。   When adding temperature when making it harden | cure, Preferably it is 30-400 degreeC, More preferably, it is 50-250 degreeC. If the curing temperature is too high, the resulting cured product tends to have poor appearance, and if it is too low, curing is insufficient. Moreover, you may make it harden | cure combining the temperature conditions of two or more steps. Specifically, for example, by raising the curing temperature stepwise such as 70 ° C., 120 ° C., and 150 ° C., a preferable cured product can be obtained, which is preferable.

本発明においては、必要に応じて、ヒドロシリル化触媒を追加して用いることができる。硬化時間は硬化温度、用いるヒドロシリル化触媒の量及びヒドロシリル基の量、その他、本願組成物のその他の配合物の組み合わせにより適宜選択することができるが、あえて例示すれば、1分〜12時間、好ましくは10分〜8時間行うことにより、良好な硬化物を得ることができる。   In the present invention, a hydrosilylation catalyst can be additionally used as necessary. The curing time can be appropriately selected depending on the curing temperature, the amount of hydrosilylation catalyst to be used and the amount of hydrosilyl group, and other combinations of the composition of the present application. Preferably, a cured product can be obtained by performing for 10 minutes to 8 hours.

本発明における光素子封止剤は、具体的に例えば、素子を搭載したパッケージや基板などに、注入あるいは塗布して使用することが可能である。注入あるいは塗布した後、上述の硬化条件にて、硬化させることで、良好に素子を封止することが可能である。   Specifically, the optical element sealant in the present invention can be used by being injected or applied to, for example, a package or substrate on which an element is mounted. After injection or application, the element can be sealed well by curing under the above-described curing conditions.

本発明に用いる光素子封止剤には、上記必須成分に加え、任意成分として本発明の効果を妨げない範囲で、必要に応じ充填剤として、シリカ、粉砕石英、炭酸カルシウム、カーボンブラック、酸化チタン、酸化亜鉛、アルミナ、蛍光体などの充填剤を添加してもよい。   In addition to the above essential components, the optical element sealant used in the present invention is optionally filled with silica, pulverized quartz, calcium carbonate, carbon black, oxidation as long as it does not interfere with the effects of the present invention. A filler such as titanium, zinc oxide, alumina, or phosphor may be added.

また、本発明の光素子封止剤には、必要に応じて着色剤、耐熱性向上剤などの各種添加剤や反応制御剤、離型剤あるいは充填剤用分散剤などを任意で添加することができる。   In addition, the optical element sealing agent of the present invention may optionally include various additives such as a colorant and a heat resistance improver, a reaction control agent, a mold release agent, or a filler dispersant. Can do.

この充填剤用分散剤としては、例えば、ジフェニルシランジオール、各種アルコキシシラン、カーボンファンクショナルシラン、シラノール基含有低分子量シロキサンなどが挙げられる。   Examples of the filler dispersant include diphenylsilane diol, various alkoxysilanes, carbon functional silane, silanol group-containing low molecular weight siloxane, and the like.

また、本発明の光素子封止剤を難燃性、耐火性にするためには二酸化チタン、炭酸マンガン、Fe2O3、フェライト、マイカ、ガラス繊維、ガラスフレークなどの公知の添加剤を添加してもよい。なお、これら任意成分は、本発明の効果を損なわないように最小限の添加量に止めることが好ましい。   Further, in order to make the optical element sealing agent of the present invention flame retardant and fire resistant, a known additive such as titanium dioxide, manganese carbonate, Fe 2 O 3, ferrite, mica, glass fiber, glass flake or the like may be added. Good. In addition, it is preferable to stop these arbitrary components to the minimum addition amount so that the effect of this invention may not be impaired.

本発明に用いる光素子封止剤は、上記した成分をロール、バンバリーミキサー、ニーダーなどの混練機を用いたり、遊星式攪拌脱泡機を用いて均一に混合し、必要に応じ加熱処理を施したりすることにより得ることができる。   The optical element sealant used in the present invention is mixed uniformly using a kneader such as a roll, a Banbury mixer, a kneader, or a planetary stirring and defoaming machine, and heat-treated as necessary. Can be obtained.

本発明の光素子封止剤は、成形体として使用することができる。成形方法としては、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形、発泡成形、射出成形、液状射出成形、注型成形などの任意の方法を使用することができる。   The optical element sealing agent of this invention can be used as a molded object. As a molding method, any method such as extrusion molding, compression molding, blow molding, calender molding, vacuum molding, foam molding, injection molding, liquid injection molding, and cast molding can be used.

本発明の光素子封止剤により得られる硬化物(封止層)は、耐熱性、耐光性、耐青紫色レーザー性に優れ、400nm程度の近紫外領域の波長の光に対しても、高い光線透過率を発現する。   The cured product (sealing layer) obtained by the optical element sealant of the present invention is excellent in heat resistance, light resistance and blue-violet laser resistance, and is high even for light having a wavelength in the near ultraviolet region of about 400 nm. Expresses light transmittance.

前記光学素子用組成物は、多面体構造ポリシロキサン変性体に、硬化剤、必要に応じて、ヒドロシリル化触媒、硬化遅延剤、接着性付与剤等を加えることにより得ることができる。本発明の光学素子用組成物は、透明な液状樹脂組成物として取り扱うことが可能である。液状組成物とすることにより、例えば、金型に射出・注入して加熱硬化させることで容易に光学素子を製造することができる。   The composition for an optical element can be obtained by adding a curing agent, and, if necessary, a hydrosilylation catalyst, a curing retarder, an adhesiveness imparting agent, etc. to the modified polyhedral polysiloxane. The composition for optical elements of the present invention can be handled as a transparent liquid resin composition. By using a liquid composition, for example, an optical element can be easily manufactured by injection and injection into a mold and curing by heating.

本発明の光学素子用組成物によって得られる光学素子は、高い透明性を有しており、光の取り出し効率の観点で好ましく使用することができる。また、耐熱性、耐光性、耐青紫色レーザー性に優れることから、オプトデバイスの生産上の熱履歴による品質低下を抑制し、また、オプトデバイスの長寿命化が可能となる。   The optical element obtained by the optical element composition of the present invention has high transparency and can be preferably used from the viewpoint of light extraction efficiency. Moreover, since it is excellent in heat resistance, light resistance, and blue-violet laser resistance, it is possible to suppress deterioration in quality due to the thermal history in the production of the opto device, and to extend the life of the opto device.

液状の光学素子用組成物を硬化させた硬化物(光学素子)は、例えば3mm厚さの硬化物での透過率は400nmの光線で75%以上となるものを得ることが可能である。また、多面体構造ポリシロキサン変性体が液状であることで、本発明の光学素子用組成物が容易に液状として得ることができるので好ましい。   As a cured product (optical element) obtained by curing a liquid composition for optical elements, for example, a cured product having a thickness of 3 mm can have a transmittance of 75% or more with a light beam of 400 nm. In addition, it is preferable that the polyhedral polysiloxane-modified product is in a liquid state because the composition for optical elements of the present invention can be easily obtained in a liquid state.

硬化させる際に温度を加える場合は、好ましくは、30〜400℃、さらに好ましくは50〜250℃である。硬化温度が高くなり過ぎると、得られる硬化物に外観不良が生じる傾向があり、低すぎると硬化が不十分となる。また、2段階以上の温度条件を組み合わせて硬化させてもよい。具体的には例えば、70℃、120℃、150℃の様に段階的に硬化温度を引き上げていくことで、良好な硬化物を得ることができ好ましい。   When adding temperature when making it harden | cure, Preferably it is 30-400 degreeC, More preferably, it is 50-250 degreeC. If the curing temperature is too high, the resulting cured product tends to have poor appearance, and if it is too low, curing is insufficient. Moreover, you may make it harden | cure combining the temperature conditions of two or more steps. Specifically, for example, by raising the curing temperature stepwise such as 70 ° C., 120 ° C., and 150 ° C., a preferable cured product can be obtained, which is preferable.

本発明においては、必要に応じて、ヒドロシリル化触媒を追加して用いることができる。   In the present invention, a hydrosilylation catalyst can be additionally used as necessary.

硬化時間は硬化温度、用いるヒドロシリル化触媒の量及びヒドロシリル基の量、その他、本願組成物のその他の配合物の組み合わせにより適宜選択することができるが、あえて例示すれば、1分〜12時間、好ましくは10分〜8時間行うことにより、良好な硬化物を得ることができる。   The curing time can be appropriately selected depending on the curing temperature, the amount of hydrosilylation catalyst to be used and the amount of hydrosilyl group, and other combinations of the composition of the present application. Preferably, a cured product can be obtained by performing for 10 minutes to 8 hours.

本発明における光学素子用組成物は、具体的に例えば、組成物を光学素子の金型に射出、注入し硬化させて得ることが可能である。また、ガラスや各種プラスチック等の光学素子用基材上に塗布した後、硬化させて複合材料として使用したり、また、塗布した後に微細な溝、ホール、ドットを施した鋳型を押し当てながら硬化させることで、表面に微細構造を有する光学素子を作成することも可能である。   The composition for an optical element in the present invention can be specifically obtained by, for example, injecting, injecting the composition into a mold of the optical element and curing it. Also, it can be applied to a substrate for optical elements such as glass and various plastics, and then cured to be used as a composite material, or it can be cured by pressing a mold with fine grooves, holes, and dots after application. By doing so, it is also possible to produce an optical element having a fine structure on the surface.

また、本発明による光学素子用組成物は、例えば、ガラスやプラスチック等の光学素子に反射防止能を付与することも可能である。   Moreover, the composition for optical elements by this invention can also provide antireflection ability to optical elements, such as glass and a plastics, for example.

本発明に用いる光学素子用組成物には、上記必須成分に加え、任意成分として本発明の効果を妨げない範囲で、必要に応じ充填剤として、シリカ、粉砕石英、炭酸カルシウム、カーボンブラック、酸化チタン、酸化亜鉛、アルミナ、蛍光体などの充填剤を添加してもよい。   In the composition for optical elements used in the present invention, in addition to the above essential components, silica, pulverized quartz, calcium carbonate, carbon black, oxidation as a filler, if necessary, as long as it does not interfere with the effects of the present invention as an optional component A filler such as titanium, zinc oxide, alumina, or phosphor may be added.

また、本発明の光学素子用組成物には、必要に応じて着色剤、耐熱性向上剤などの各種添加剤や反応制御剤、離型剤あるいは充填剤用分散剤などを任意で添加することができる。   In addition, the optical element composition of the present invention may be optionally added with various additives such as a colorant and a heat resistance improver, a reaction control agent, a mold release agent, or a filler dispersant. Can do.

この充填剤用分散剤としては、例えば、ジフェニルシランジオール、各種アルコキシシラン、カーボンファンクショナルシラン、シラノール基含有低分子量シロキサンなどが挙げられる。   Examples of the filler dispersant include diphenylsilane diol, various alkoxysilanes, carbon functional silane, silanol group-containing low molecular weight siloxane, and the like.

また、本発明の光学素子用組成物を難燃性、耐火性にするためには二酸化チタン、炭酸マンガン、Fe23、フェライト、マイカ、ガラス繊維、ガラスフレークなどの公知の添加剤を添加してもよい。なお、これら任意成分は、本発明の効果を損なわないように最小限の添加量に止めることが好ましい。 In order to make the composition for optical elements of the present invention flame-retardant and fire-resistant, known additives such as titanium dioxide, manganese carbonate, Fe 2 O 3 , ferrite, mica, glass fiber, glass flakes are added. May be. In addition, it is preferable to stop these arbitrary components to the minimum addition amount so that the effect of this invention may not be impaired.

本発明に用いる光学素子用組成物は、上記した成分をロール、バンバリーミキサー、ニーダーなどの混練機を用いたり、遊星式攪拌脱泡機を用いて均一に混合し、必要に応じ加熱処理を施したりすることにより得ることができる。   The composition for optical elements used in the present invention is uniformly mixed using a kneader such as a roll, a Banbury mixer, a kneader, or a planetary stirring and defoaming machine, and heat-treated as necessary. Can be obtained.

本発明の光学素子用組成物は、成形体として使用することができる。成形方法としては、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形、発泡成形、射出成形、液状射出成形、注型成形などの任意の方法を使用することができる。   The composition for optical elements of the present invention can be used as a molded article. As a molding method, any method such as extrusion molding, compression molding, blow molding, calender molding, vacuum molding, foam molding, injection molding, liquid injection molding, and cast molding can be used.

本発明の光学素子用組成物により得られる硬化物(光学素子)は、耐熱性、耐光性、耐青紫色レーザー性に優れ、400nm程度の近紫外領域の波長の光に対しても、高い光線透過率を発現する。   The cured product (optical element) obtained by the composition for optical elements of the present invention is excellent in heat resistance, light resistance and blue-violet laser resistance, and has a high light beam even for light in the near-ultraviolet region of about 400 nm. Expresses transmittance.

前記絶縁膜は、多面体構造ポリシロキサン変性体に、硬化剤、必要に応じて、ヒドロシリル化触媒、硬化遅延剤、接着性付与剤、溶剤を加え、均一組成物とし、例えば、基板上に塗布した後、加熱により溶剤を除去、組成物を硬化させることによって作成することができる。   The insulating film is a polyhedral polysiloxane modified body, and a curing agent, and if necessary, a hydrosilylation catalyst, a curing retarder, an adhesion-imparting agent, and a solvent are added to form a uniform composition, for example, coated on a substrate Thereafter, the solvent can be removed by heating and the composition can be cured.

上記溶媒は、特に限定されないが、具体的に例えば、エチレンジクロライド、シクロヘキサノン、シクロペンタノン、2 −ヘプタノン、メチルイソブチルケトン、γ−ブチロラクトン、メチルエチルケトン、メタノール、エタノール、ジメチルイミダゾリジノン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、2 −メトキシエチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル(PGME )、プロピレングリコールモノメチルエーテルアセテート(PGMEA )、テトラエチレングリコールジメチルエーテル、トリエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、イソプロパノール、エチレンカーボネート、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、N ,N −ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N −メチルピロリドン、テトラヒドロフラン、ジイソプロピルベンゼン、トルエン、キシレン、メシチレン等が挙げられる。これらの溶媒は、単独で用いてもよく、2種類以上混合して用いても良い。   Although the solvent is not particularly limited, specifically, for example, ethylene dichloride, cyclohexanone, cyclopentanone, 2-heptanone, methyl isobutyl ketone, γ-butyrolactone, methyl ethyl ketone, methanol, ethanol, dimethylimidazolidinone, ethylene glycol monomethyl ether , Ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, 2-methoxyethyl acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), tetraethylene glycol dimethyl ether, triethylene glycol mono Butyl ether, triethylene glycol monomethyl ether , Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, isopropanol, ethylene carbonate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl methoxypropionate, ethyl ethoxypropionate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, N 2, N -Dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran, diisopropylbenzene, toluene, xylene, mesitylene and the like. These solvents may be used alone or in combination of two or more.

基板材料としては、特に限定されず、各種電子部品、光部品、半導体素子や金属配線を搭載した基板等であってもよい。具体的に例えば、ガラス、ガラスエポキシ、シリコンウエハ、SiO2ウエハ、SiNウエハ等の基板材料に加え、液晶表示素子、トランジスタ、ダイオード等の固体素子で構成されている半導体集積回路等が挙げられる。 The substrate material is not particularly limited, and may be various electronic components, optical components, a substrate on which a semiconductor element or metal wiring is mounted, or the like. Specifically, for example, semiconductor integrated circuits composed of liquid crystal display elements, solid elements such as transistors and diodes in addition to substrate materials such as glass, glass epoxy, silicon wafer, SiO 2 wafer, and SiN wafer.

基板への塗布方法としては、特に限定されるものではないが、スピンコート法、ロールコート法、ディッピング法、スプレー法等の公知の方法を用いることができる。膜厚に関しては、用途に応じて調整でき特に限定されるものではないが、乾燥膜厚で、0 .01 〜100 μm 、好ましくは、0.05〜50μm、より好ましくは、0.1〜20μmである。   Although it does not specifically limit as a coating method to a board | substrate, Well-known methods, such as a spin coat method, a roll coat method, a dipping method, a spray method, can be used. The film thickness can be adjusted according to the application and is not particularly limited. 01-100 micrometers, Preferably, it is 0.05-50 micrometers, More preferably, it is 0.1-20 micrometers.

加熱方法は、所定の温度に設定できるのであれば、特に限定されるものではない。具体的に例えば、オーブン、ホットプレート、赤外炉などを使用することができる。また、大気下、窒素雰囲気、アルゴン雰囲気、真空下、酸素濃度をコントロールした減圧下など、用途に応じて、いずれの雰囲気下で加熱してもよい。加熱温度についても特に限定されるものではないが、好ましくは、30〜600℃、さらに好ましくは50〜500 ℃である。温度が高すぎると、絶縁膜に外観不良を引き起こす恐れがあり、低すぎると硬化が不十分となる場合がある。   The heating method is not particularly limited as long as it can be set to a predetermined temperature. Specifically, for example, an oven, a hot plate, an infrared furnace, or the like can be used. Moreover, you may heat in any atmosphere according to a use, such as air | atmosphere, nitrogen atmosphere, argon atmosphere, a vacuum, the pressure reduction which controlled oxygen concentration. The heating temperature is not particularly limited, but is preferably 30 to 600 ° C, more preferably 50 to 500 ° C. If the temperature is too high, the insulating film may be defective in appearance, and if it is too low, curing may be insufficient.

また、2段階以上の温度条件を組み合わせて硬化させてもよい。具体的には例えば、70℃、120℃、150℃の様に段階的に硬化温度を引き上げていくことで、良好な絶縁膜を得ることができ好ましい。加熱時間は硬化温度、用いるヒドロシリル化触媒の量及びヒドロシリル基の量、その他の配合物の組み合わせにより適宜選択することができるが、あえて例示すれば、1分〜12時間、好ましくは10分〜8時間行うことにより、良好な絶縁膜を得ることができる。   Moreover, you may make it harden | cure combining the temperature conditions of two or more steps. Specifically, for example, by raising the curing temperature stepwise like 70 ° C., 120 ° C., and 150 ° C., a favorable insulating film can be obtained, which is preferable. The heating time can be appropriately selected depending on the curing temperature, the amount of hydrosilylation catalyst to be used and the amount of hydrosilyl group, and the combination of other blends, but for example, it is 1 minute to 12 hours, preferably 10 minutes to 8 hours. By performing the time, a good insulating film can be obtained.

本発明の絶縁膜は、必要であれば、膜の機械強度の許す範囲内で、空孔形成剤(発泡剤)を使用し、低誘電率化を図ることができる。空孔形成剤としては特に限定はされないが、溶剤との溶解性、組成物との相溶性を同時に満たしていることが好ましい。   If necessary, the insulating film of the present invention can have a low dielectric constant by using a pore forming agent (foaming agent) within the range allowed by the mechanical strength of the film. Although it does not specifically limit as a hole formation agent, It is preferable that the solubility with a solvent and the compatibility with a composition are satisfy | filled simultaneously.

空孔形成剤として使用できるポリマーとしては、例えば、ポリビニル芳香族化合物(ポリスチレン、ポリビニルピリジン、ハロゲン化ポリビニル芳香族化合物など)、ポリアクリロニトリル、ポリアルキレンオキシド(ポリエチレンオキシドおよびポリプロピレンオキシドなど)、ポリエチレン、ポリ乳酸、ポリシロキサン、ポリカプロラクトン、ポリカプロラクタム、ポリウレタン、ポリメタクリレート(ポリメチルメタクリレートなど)またはポリメタクリル酸、ポリアクリレート(ポリメチルアクリレートなど)およびポリアクリル酸、ポリジエン(ポリブタジエンおよびポリイソプレンなど)、ポリビニルクロライド、ポリアセタール、およびアミンキャップドアルキレンオキシドなどが挙げられる。   Examples of the polymer that can be used as the pore forming agent include polyvinyl aromatic compounds (polystyrene, polyvinyl pyridine, halogenated polyvinyl aromatic compounds, etc.), polyacrylonitrile, polyalkylene oxide (polyethylene oxide, polypropylene oxide, etc.), polyethylene, poly Lactic acid, polysiloxane, polycaprolactone, polycaprolactam, polyurethane, polymethacrylate (such as polymethyl methacrylate) or polymethacrylic acid, polyacrylate (such as polymethyl acrylate) and polyacrylic acid, polydiene (such as polybutadiene and polyisoprene), polyvinyl chloride , Polyacetals, and amine capped alkylene oxides.

その他、ポリフェニレンオキシド、ポリ(ジメチルシロキサン)、ポリテトラヒドロフラン、ポリシクロヘキシルエチレン、ポリエチルオキサゾリン、ポリビニルピリジン、ポリカプロラクトン等であってもよい。   In addition, polyphenylene oxide, poly (dimethylsiloxane), polytetrahydrofuran, polycyclohexylethylene, polyethyloxazoline, polyvinylpyridine, polycaprolactone, and the like may be used.

特にポリスチレンは、空孔形成剤として好適に使用できる。ポリスチレンはとしては、たとえば、アニオン性重合ポリスチレン、シンジオタクチックポリスチレン、未置換および置換ポリスチレン(たとえば、ポリ(α−メチルスチレン))が挙げられ、未置換ポリスチレンが好ましい。   In particular, polystyrene can be suitably used as a pore forming agent. Examples of polystyrene include anionic polymerized polystyrene, syndiotactic polystyrene, unsubstituted and substituted polystyrene (for example, poly (α-methylstyrene)), and unsubstituted polystyrene is preferred.

本発明の絶縁膜は、低誘電性を示すのに加え、高い透明性を有しており、光の取り出し効率の観点で好ましく使用することができる。また、耐熱性、耐光性に優れ、オプトデバイスの長寿命化が可能となる。   In addition to exhibiting low dielectric properties, the insulating film of the present invention has high transparency and can be preferably used from the viewpoint of light extraction efficiency. Moreover, it is excellent in heat resistance and light resistance, and the lifetime of the optical device can be extended.

本発明の絶縁膜は、多様の目的に使用することが出来る。具体的に例えば、LSI、システムLSI、DRAM、SDRAM、RDRAM、D −RDRAM、Si−TFT、酸化物TFT、有機TFT等の半導体装置、マルチチップモジュール多層配線板等の電子部品における絶縁膜、半導体用層間絶縁膜、エッチングストッパー膜、表面保護膜、バッファーコート膜の他、パッシベーション膜、α線遮断膜、フレキソ印刷版のカバーレイフィルム、オーバーコート膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜、平坦化膜等を挙げることができるが、これらに限定されるものではない。   The insulating film of the present invention can be used for various purposes. Specifically, for example, semiconductor devices such as LSI, system LSI, DRAM, SDRAM, RDRAM, D-RDRAM, Si-TFT, oxide TFT, and organic TFT, and insulating films and semiconductors in electronic components such as multichip module multilayer wiring boards Interlayer insulation film, etching stopper film, surface protective film, buffer coat film, passivation film, alpha ray blocking film, flexographic printing plate cover lay film, overcoat film, flexible copper clad plate cover coat, solder resist film A liquid crystal alignment film, a planarizing film, etc. can be mentioned, but it is not limited to these.

次に本発明の組成物を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。   Next, although the composition of this invention is demonstrated in detail based on an Example, this invention is not limited only to these Examples.

(重量減少評価)
軟膏缶にサンプルを1.0〜1.1gの範囲になるように秤取したのちアルミバットに載せ、さらに前記アルミ製バットをアルミホイルで全面覆い130℃に設定した熱風循環式オーブン(セーフティオーブンSPHH−101、エスペック製)に投入した。1時間経過後、室温にて放冷し、サンプル重量を秤量し、加熱前後での重量減少を算出した。
(Weight loss evaluation)
A hot air circulation oven (safety oven) in which a sample was weighed in an ointment can so as to be in the range of 1.0 to 1.1 g and placed on an aluminum bat, and the aluminum bat was covered with aluminum foil over the entire surface and set at 130 ° C. SPHH-101, manufactured by ESPEC). After 1 hour, it was allowed to cool at room temperature, the sample weight was weighed, and the weight loss before and after heating was calculated.

(分子量評価)
分子量および分子量分布は、GPC(TOSOH製:HLC−8220 GPC)により算出した。
(Molecular weight evaluation)
The molecular weight and molecular weight distribution were calculated by GPC (manufactured by TOSOH: HLC-8220 GPC).

(耐熱試験1)
200℃に温度設定した熱風循環オーブン内にて、3mm厚板状成形体を24時間養生して以下の基準で評価した。
○:外観の変化がみられない場合。
×:着色がみられる場合。
(Heat resistance test 1)
In a hot air circulating oven set at 200 ° C., a 3 mm thick plate-like molded body was cured for 24 hours and evaluated according to the following criteria.
○: When the appearance is not changed.
X: When coloring is seen.

(耐光試験)
スガ試験機(株)社製、メタリングウェザーメーター(形式M6T)を用いた。ブラックパネル温度120℃、放射照度0.53kW/m2で、積算放射照度50MJ/m2まで照射後、以下の基準で評価した。
○:外観の変化がみられない場合。
×:着色がみられる場合。
(Light resistance test)
A metering weather meter (model M6T) manufactured by Suga Test Instruments Co., Ltd. was used. Black panel temperature 120 ° C., irradiance 0.53 kW / m 2, after irradiation until the integrated irradiance 50 MJ / m 2, was evaluated according to the following criteria.
○: When the appearance is not changed.
X: When coloring is seen.

(耐熱試験2)
270℃に温度設定した熱風循環オーブン内にて、板状硬化物(30mm×10mm、厚さ2mm)を1時間養生し、形態を目視にて観察した。評価はn=5で行い、試験後にクラックが発生した割合を示した。
(Heat resistance test 2)
A plate-like cured product (30 mm × 10 mm, thickness 2 mm) was cured for 1 hour in a hot-air circulating oven set at 270 ° C., and the form was visually observed. Evaluation was performed at n = 5, and the ratio of occurrence of cracks after the test was shown.

(耐青色レーザー試験)
レーザーダイオード(日亜化学製、製品名:NDHV310APC)を用いて、400〜415nm、20W/mm2の青紫色レーザー光を60℃の環境下、24時間照射した。このときの、レーザー照射開始時と終了時のレーザー透過量をパワーメータ(コヒレント製、製品名:LM−2VIS)で観察して以下の基準で評価した。
○:照射試験前後でのレーザー透過率変化が1%未満であったもの。
△:照射試験前後でのレーザー透過率変化が1%以上10%未満であったもの。
×:照射試験前後でのレーザー透過率変化が10%以上のもの。
(Blue resistance laser test)
Using a laser diode (manufactured by Nichia Corporation, product name: NDHV310APC), 400-415 nm, 20 W / mm 2 of blue-violet laser light was irradiated in an environment of 60 ° C. for 24 hours. At this time, the laser transmission amount at the start and end of laser irradiation was observed with a power meter (manufactured by Coherent, product name: LM-2VIS) and evaluated according to the following criteria.
○: The laser transmittance change before and after the irradiation test was less than 1%.
Δ: The laser transmittance change before and after the irradiation test was 1% or more and less than 10%.
X: The laser transmittance change before and after the irradiation test is 10% or more.

併せて、レーザー照射後のサンプルについて、レーザー照射箇所の外観変化の有無を目視にて確認して以下の基準で評価した。
○:変化が見られないもの。
×:表面の凹凸や照射箇所にスジが生じているもの。
In addition, the sample after laser irradiation was visually checked for the presence or absence of changes in the appearance of the laser irradiated portion, and evaluated according to the following criteria.
○: No change is observed.
X: Surface irregularities and streaks are generated on the irradiated part.

(製造例1)
ビニル基を両末端に含有する直鎖状ポリジメチルシロキサン(クラリアント製、商品名MVD8MV)816.48gを減圧条件下、150℃で、10時間加熱することにより、低分子量成分を留去した。低分子量成分を留去後のMVD8MVの重量は、670.88gであった。GPCにより分子量を算出した結果、低分子量成分を留去前では、数平均分子量(Mn)が1010、重量平均分子量(Mw)が1740であり、留去後では、Mnが1490、Mwが2150であった。
(Production Example 1)
Low molecular weight components were distilled off by heating 816.48 g of linear polydimethylsiloxane containing vinyl groups at both ends (Clariant, trade name MVD8MV) at 150 ° C. for 10 hours under reduced pressure. The weight of MVD8MV after distilling out the low molecular weight component was 670.88 g. As a result of calculating the molecular weight by GPC, the number average molecular weight (Mn) was 1010 and the weight average molecular weight (Mw) was 1740 before the low molecular weight component was distilled off, and after the distillation, Mn was 1490 and Mw was 2150. there were.

なお、用いた直鎖状ポリジメチルシロキサンについて、上記減圧加熱処理前の130℃での重量減少量を評価したところ、3.3%、また、上記減圧処理後の130℃での重量減少量を評価したところ、0.7%であった。   In addition, about the used linear polydimethylsiloxane, when the weight loss amount at 130 degreeC before the said pressure reduction heat processing was evaluated, 3.3%, Moreover, the weight loss amount at 130 degreeC after the said pressure reduction processing was calculated | required. When evaluated, it was 0.7%.

(製造例2)
48%コリン水溶液34.5gとテトラエトキシシラン27.9gの混合溶液を室温で4時間攪拌した後、メタノール30mLを加えて均一溶液とした。次に、ジメチルクロロビニルシラン16.15g、トリメチルクロロシラン14.53gとヘキサン (50mL)の撹拌溶液に、先に調整した溶液をゆっくり滴下した。滴下終了後、室温で3時間攪拌し、ヘキサンを加えて有機層を抽出し、減圧濃縮した。粗生成物をメタノールで洗浄し、吸引ろ過を行い、以下の式で平均組成が表されるビニルジメチルシロキシ基およびトリメチルシロキシ基を含有するオクタシルセスキオキサン
[CH2=CH(CH32SiO−SiO3/2]3.7[(CH33SiO−SiO3/2]4.3を10g得た。
(Production Example 2)
A mixed solution of 34.5 g of 48% choline aqueous solution and 27.9 g of tetraethoxysilane was stirred at room temperature for 4 hours, and then 30 mL of methanol was added to obtain a uniform solution. Next, the previously prepared solution was slowly added dropwise to a stirring solution of 16.15 g of dimethylchlorovinylsilane, 14.53 g of trimethylchlorosilane, and hexane (50 mL). After completion of the dropwise addition, the mixture was stirred at room temperature for 3 hours, hexane was added to extract the organic layer, and the mixture was concentrated under reduced pressure. The crude product is washed with methanol, subjected to suction filtration, and octasilsesquioxane containing vinyldimethylsiloxy group and trimethylsiloxy group whose average composition is represented by the following formula:
[CH 2 = CH (CH 3 ) 2 SiO—SiO 3/2 ] 3.7 10 g of [(CH 3 ) 3 SiO—SiO 3/2 ] 4.3 was obtained.

(製造例3)
製造例2で得た多面体構造ポリシロキサン系化合物10g、白金ビニルシロキサン錯体(白金として3wt%含有する白金ビニルシロキサン錯体、ユミコアプレシャスメタルズジャパン製、Pt-VTSC-3X)1.2μL、トルエン40gの混合溶液を、1、3、5、7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン18.94gとトルエン18.9gの混合溶液に滴下し、100℃で6.5時間加温したのち、室温まで冷却した。
(Production Example 3)
10 g of polyhedral polysiloxane compound obtained in Production Example 2, platinum vinylsiloxane complex (platinum vinylsiloxane complex containing 3 wt% as platinum, Pt-VTSC-3X, manufactured by Umicore Precious Metals Japan) 1.2 μL, toluene 40 g The mixed solution was added dropwise to a mixed solution of 18.94 g of 1,3,5,7-tetrahydrogen-1,3,5,7-tetramethylcyclotetrasiloxane and 18.9 g of toluene, and 6.5 at 100 ° C. After warming for hours, it was cooled to room temperature.

反応終了後、トルエンと過剰量加えた1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサンを留去することにより、ポリシロキサン変性体15.31gを得た。得られた変性体は、無色透明液体であり、1H−NMRにより、1,3,5,7−テトラハイドロジェン−1,3,5,7−テトラメチルシクロテトラシロキサン由来のSiH基が導入されていることを確認した。 After completion of the reaction, 1,31,5,7-tetrahydrogen-1,3,5,7-tetramethylcyclotetrasiloxane added in excess with toluene was distilled off to obtain 15.31 g of a polysiloxane modified product. Obtained. The obtained modified product is a colorless transparent liquid, and SiH groups derived from 1,3,5,7-tetrahydrogen-1,3,5,7-tetramethylcyclotetrasiloxane are introduced by 1 H-NMR. Confirmed that it has been.

(製造例4)
製造例2で得た多面体構造ポリシロキサン系化合物10g、白金ビニルシロキサン錯体(白金として3wt%含有する白金ビニルシロキサン錯体、ユミコアプレシャスメタルズジャパン製、Pt-VTSC-3X)1.5μL、トルエン40gの混合溶液を、テトラメチルジシロキサン21.2gとトルエン20gの混合溶液に滴下し、100℃で6.5時間加温したのち、室温まで冷却した。
(Production Example 4)
10 g of polyhedral polysiloxane compound obtained in Production Example 2, 1.5 μL of platinum vinylsiloxane complex (platinum vinylsiloxane complex containing 3 wt% as platinum, manufactured by Umicore Precious Metals Japan, Pt-VTSC-3X), 40 g of toluene The mixed solution was dropped into a mixed solution of 21.2 g of tetramethyldisiloxane and 20 g of toluene, heated at 100 ° C. for 6.5 hours, and then cooled to room temperature.

反応終了後、トルエンと過剰量加えたテトラメチルジシロキサンを留去することにより、ポリシロキサン変性体12.6gを得た。得られた変性体は、無色透明液体であり、1H−NMRにより、テトラメチルジシロキサン由来のSiH基が導入されていることを確認した。 After completion of the reaction, toluene and an excess amount of tetramethyldisiloxane were distilled off to obtain 12.6 g of a modified polysiloxane. The obtained modified product was a colorless transparent liquid, and it was confirmed by 1 H-NMR that a SiH group derived from tetramethyldisiloxane was introduced.

(実施例1)
製造例3で得られた変性体3.0gに、製造例1で低分子量成分を留去したMVD8MV8.4gを加えて、均一溶液とした。
Example 1
To 3.0 g of the modified product obtained in Production Example 3, 8.4 g of MVD8MV from which the low molecular weight component was distilled off in Production Example 1 was added to obtain a uniform solution.

このようにして得られた溶液を型枠に流し込み、60℃で1時間、80℃で1時間、100℃で1時間、120℃で1時間、150℃で1時間、180℃で1時間加熱して硬化させた後、型枠を取り外した。次に、型枠より取り外した硬化物を、所定の大きさ(30×10×2mm)に切断し、200℃に温度設定した熱風循環オーブン内にて、2時間養生することにより、評価用の板状硬化物を得た。   The solution thus obtained is poured into a mold and heated at 60 ° C. for 1 hour, 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, 150 ° C. for 1 hour, and 180 ° C. for 1 hour. The mold was removed after curing. Next, the cured product removed from the mold is cut into a predetermined size (30 × 10 × 2 mm) and cured for 2 hours in a hot air circulating oven set at 200 ° C. A plate-like cured product was obtained.

得られた硬化物について、各種評価に供した。結果を表1に示す。   The obtained cured product was subjected to various evaluations. The results are shown in Table 1.

(実施例2)
製造例4で得られた変性体3.0gに、製造例1で低分子量成分を留去したMVD8MV3.5gを加えて、均一溶液とした。
(Example 2)
To 3.0 g of the modified product obtained in Production Example 4, MVD8MV 3.5 g obtained by distilling off the low molecular weight component in Production Example 1 was added to obtain a uniform solution.

このようにして得られた溶液を型枠に流し込み、60℃で1時間、80℃で1時間、100℃で1時間、120℃で1時間、150℃で1時間、180℃で1時間加熱して硬化させた後、型枠を取り外した。次に、型枠より取り外した硬化物を、所定の大きさ(30×10×2mm)に切断し、200℃に温度設定した熱風循環オーブン内にて、2時間養生することにより、評価用の板状硬化物を得た。   The solution thus obtained is poured into a mold and heated at 60 ° C. for 1 hour, 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, 150 ° C. for 1 hour, and 180 ° C. for 1 hour. The mold was removed after curing. Next, the cured product removed from the mold is cut into a predetermined size (30 × 10 × 2 mm) and cured for 2 hours in a hot air circulating oven set at 200 ° C. A plate-like cured product was obtained.

得られた硬化物について、各種評価に供した。結果を表1に示す。   The obtained cured product was subjected to various evaluations. The results are shown in Table 1.

(比較例1)
製造例3で得られた変性体3.0gに、市販品のMVD8MV8.37gを加えて、均一溶液とした。このようにして得られた溶液を型枠に流し込み、60℃で1時間、80℃で1時間、100℃で1時間、120℃で1時間、150℃で1時間、180℃で1時間加熱して硬化させた後、型枠を取り外した。次に、型枠より取り外した硬化物を、所定の大きさ(30×10×2mm)に切断し、200℃に温度設定した熱風循環オーブン内にて、2時間養生することにより、評価用の板状硬化物を得た。
得られた硬化物について、各種評価に供した。結果を表1に示す。
(Comparative Example 1)
A commercial product MVD8MV 8.37 g was added to 3.0 g of the modified product obtained in Production Example 3 to obtain a uniform solution. The solution thus obtained is poured into a mold and heated at 60 ° C. for 1 hour, 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, 150 ° C. for 1 hour, and 180 ° C. for 1 hour. The mold was removed after curing. Next, the cured product removed from the mold is cut into a predetermined size (30 × 10 × 2 mm) and cured for 2 hours in a hot air circulating oven set at 200 ° C. A plate-like cured product was obtained.
The obtained cured product was subjected to various evaluations. The results are shown in Table 1.

(比較例2)
製造例4で得られた変性体3.0gに、市販品のMVD8MV3.5gを加えて、均一溶液とした。
(Comparative Example 2)
To 3.0 g of the modified product obtained in Production Example 4, 3.5 g of a commercially available MVD8MV was added to obtain a uniform solution.

このようにして得られた溶液を型枠に流し込み、60℃で1時間、80℃で1時間、100℃で1時間、120℃で1時間、150℃で1時間、180℃で1時間加熱して硬化させた後、型枠を取り外した。次に、型枠より取り外した硬化物を、所定の大きさ(30×10×2mm)に切断し、200℃に温度設定した熱風循環オーブン内にて、2時間養生することにより、評価用の板状硬化物を得た。   The solution thus obtained is poured into a mold and heated at 60 ° C. for 1 hour, 80 ° C. for 1 hour, 100 ° C. for 1 hour, 120 ° C. for 1 hour, 150 ° C. for 1 hour, and 180 ° C. for 1 hour. The mold was removed after curing. Next, the cured product removed from the mold is cut into a predetermined size (30 × 10 × 2 mm) and cured for 2 hours in a hot air circulating oven set at 200 ° C. A plate-like cured product was obtained.

得られた硬化物について、各種評価に供した。結果を表1に示す。   The obtained cured product was subjected to various evaluations. The results are shown in Table 1.

Figure 2010095616
Figure 2010095616

Claims (15)

アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)に対して、前記(a)成分とヒドロシリル化反応可能なヒドロシリル基および/またはアルケニル基を有する化合物(b)を変性して得られた多面体構造ポリシロキサン変性体(A)、および、硬化剤(B)、を必須成分としてなるポリシロキサン系組成物であって、前記(B)の130℃における重量減少が、2.5%以下であることを特徴とする、ポリシロキサン系組成物。   For the polyhedral polysiloxane compound (a) containing an alkenyl group and / or a hydrosilyl group, the compound (b) having a hydrosilyl group and / or alkenyl group capable of hydrosilylation reaction with the component (a) is modified. A polysiloxane composition comprising the modified polyhedral polysiloxane (A) and the curing agent (B) obtained as essential components, wherein the weight loss of the (B) at 130 ° C. is 2. A polysiloxane composition characterized by being 5% or less. (A)成分が温度20℃において、液状であることを特徴とする、請求項1に記載のポリシロキサン系組成物。   The polysiloxane composition according to claim 1, wherein the component (A) is liquid at a temperature of 20 ° C. 化合物(b)が、ヒドロシリル基および/またはアルケニル基を含有する環状シロキサンであることを特徴とする、請求項1または2に記載のポリシロキサン系組成物。   The polysiloxane composition according to claim 1 or 2, wherein the compound (b) is a cyclic siloxane containing a hydrosilyl group and / or an alkenyl group. 化合物(b)が、分子末端にヒドロシリル基および/またはアルケニル基を含有する直鎖状シロキサンであることを特徴とする、請求項1または2に記載のポリシロキサン系組成物。   The polysiloxane composition according to claim 1 or 2, wherein the compound (b) is a linear siloxane containing a hydrosilyl group and / or an alkenyl group at the molecular end. 化合物(b)が、分子中に少なくとも3個のヒドロシリル基またはアルケニル基を有することを特徴とする、請求項1〜4のいずれか1項に記載のポリシロキサン系組成物。   The polysiloxane composition according to any one of claims 1 to 4, wherein the compound (b) has at least three hydrosilyl groups or alkenyl groups in the molecule. ヒドロシリル基および/またはアルケニル基を有する化合物(b)のSi原子に直結した水素原子および/またはアルケニル基の数が、アルケニル基および/またはヒドロシリル基を含有する多面体構造ポリシロキサン系化合物(a)のアルケニル基および/またはSi原子に直結した水素原子1個あたり2.5〜20個になる範囲で加えて変性し、未反応の化合物(b)を留去して得られることを特徴とする、請求項1〜5のいずれかに1項に記載のポリシロキサン系組成物。   The number of hydrogen atoms and / or alkenyl groups directly bonded to the Si atom of the compound (b) having a hydrosilyl group and / or alkenyl group is such that the polyhedral polysiloxane compound (a) contains an alkenyl group and / or a hydrosilyl group. It is modified by adding 2.5 to 20 hydrogen atoms per alkenyl group and / or Si atom directly connected to the Si atom, and is obtained by distilling off the unreacted compound (b). The polysiloxane composition according to any one of claims 1 to 5. (A)成分が、
[XR1 2SiO−SiO3/2]a[R2 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;R1は、アルキル基またはアリール基;R2は、アルキル基、アリール基、アルケニル基、水素原子、または、他の多面体構造ポリシロキサンと連結している基;Xは、下記一般式(1)あるいは一般式(2)のいずれかの構造を有し、Xが複数ある場合は一般式(1)あるいは一般式(2)の構造が異なっていても良くまた一般式(1)あるいは一般式(2)の構造が混在していても良い。
Figure 2010095616
(lは2以上の整数;mは0以上の整数;nは2以上の整数;Yは水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい;Zは、水素原子、アルケニル基、アルキル基、アリール基、もしくは、アルキレン鎖を介して多面体構造ポリシロキサンと結合している部位であり、同一であっても異なっていてもよい。ただし、YあるいはZの少なくとも1つは水素原子またはアルケニル基である;Rは、アルキル基またはアリール基;また、Xが複数ある場合は式(1)あるいは式(2)の構造が異なっていても良くまた式(1)あるいは式(2)の構造が混在していても良い。)を構成単位とすることを特徴とする請求項1〜7のいずれか1項に記載のポリシロキサン系組成物。
(A) component is
[XR 1 2 SiO—SiO 3/2 ] a [R 2 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; R 1 is an alkyl group or an aryl group; R 2 is an alkyl group, an aryl group, an alkenyl group, a hydrogen atom Or a group linked to another polyhedral polysiloxane; X has a structure represented by the following general formula (1) or general formula (2), and when there are a plurality of X, the general formula (1 ) Or the structure of the general formula (2) may be different, or the structure of the general formula (1) or the general formula (2) may be mixed.
Figure 2010095616
(L is an integer of 2 or more; m is an integer of 0 or more; n is an integer of 2 or more; Y is bonded to a polyhedral polysiloxane through a hydrogen atom, an alkenyl group, an alkyl group, an aryl group, or an alkylene chain. Z may be the same or different; Z is a hydrogen atom, an alkenyl group, an alkyl group, an aryl group, or a site bonded to the polyhedral polysiloxane via an alkylene chain Yes, and may be the same or different, provided that at least one of Y or Z is a hydrogen atom or an alkenyl group; R is an alkyl group or an aryl group; (1) or the structure of formula (2) may be different, or the structure of formula (1) or formula (2) may be mixed). Polysiloxane composition according to any one of to 7.
式[AR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Aはアルケニル基および/または水素原子。ただし、少なくとも1つはアルケニル基である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体骨格ポリシロキサンやシロキサン化合物と連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン系化合物(a)に、ヒドロシリル基を有する化合物(b)を、アルケニル基1個あたりSi原子に直結した水素原子が2.5〜20個になる範囲で過剰量加えてヒドロシリル化反応によって変性し、未反応のヒドロシリル基を有する化合物(b)を留去して得られることを特徴とする、請求項1〜7のいずれか1項に記載のポリシロキサン系組成物。
Formula [AR 1 2 SiO—SiO 3/2 ] a [R 4 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; A is an alkenyl group and / or a hydrogen atom provided that at least one is an alkenyl group;. R 1 is An alkyl group or an aryl group; R 4 is a substituent other than an alkenyl group and a hydrogen atom, for example, an alkyl group, an aryl group, or a group linked to another polyhedral skeleton polysiloxane or siloxane compound) In the polyhedral polysiloxane compound (a) composed of siloxane units, the compound (b) having a hydrosilyl group is within a range of 2.5 to 20 hydrogen atoms directly bonded to Si atoms per alkenyl group. It is obtained by adding an excess amount to modify by a hydrosilylation reaction and distilling off the compound (b) having an unreacted hydrosilyl group. The polysiloxane composition according to any one of? 7.
式[BR1 2SiO−SiO3/2]a[R4 3SiO−SiO3/2]b
(a+bは6〜24の整数、aは1以上の整数、bは0または1以上の整数;Bはアルケニル基および/または水素原子。ただし、少なくとも1つは水素原子である;R1は、アルキル基またはアリール基;R4は、アルケニル基および水素原子以外の置換基、例えば、アルキル基、アリール基、または、他の多面体骨格ポリシロキサンやシロキサン化合物と連結している基)で表されるシロキサン単位から構成される多面体構造ポリシロキサン系化合物(a)に、アルケニル基を有する化合物(b)を、Si原子に直結した水素原子1個あたり、アルケニル基が2.5〜20個になる範囲で過剰量加えてヒドロシリル化反応によって変性し、未反応のアルケニル基を有する化合物(b)を留去して得られることを特徴とする、請求項1〜8のいずれか1項に記載のポリシロキサン系組成物。
Formula [BR 1 2 SiO—SiO 3/2 ] a [R 4 3 SiO—SiO 3/2 ] b
(A + b is an integer of 6 to 24, a is an integer of 1 or more, b is 0 or an integer of 1 or more; B is alkenyl and / or hydrogen atom, provided that at least one is hydrogen atom;. R 1 is An alkyl group or an aryl group; R 4 is a substituent other than an alkenyl group and a hydrogen atom, for example, an alkyl group, an aryl group, or a group linked to another polyhedral skeleton polysiloxane or siloxane compound) The range in which the polyhedral polysiloxane compound (a) composed of siloxane units has 2.5 to 20 alkenyl groups per hydrogen atom directly bonded to the Si atom of the compound (b) having an alkenyl group. The compound according to claim 1, wherein the compound is obtained by distilling off the compound (b) having an unreacted alkenyl group by adding an excessive amount thereof to modify by hydrosilylation reaction. The polysiloxane composition according to any one of the above.
硬化剤(B)の重量平均分子量(Mw)が5000未満であることを特徴とする、請求項1〜9のいずれか1項に記載のポリシロキサン系組成物。   The polysiloxane composition according to any one of claims 1 to 9, wherein the curing agent (B) has a weight average molecular weight (Mw) of less than 5,000. 硬化剤(B)が、重量平均分子量(Mw)5000未満の分子末端にアルケニル基および/またはヒドロシリル基を含有する直鎖状ポリシロキサンであることを特徴とする、請求項1〜10のいずれか1項に記載のポリシロキサン系組成物。   11. The curing agent (B) is a linear polysiloxane containing an alkenyl group and / or a hydrosilyl group at a molecular terminal having a weight average molecular weight (Mw) of less than 5000. 2. A polysiloxane composition according to item 1. 硬化剤(B)が、重量平均分子量(Mw)3000未満の分子末端にアルケニル基および/またはヒドロシリル基を含有する直鎖状ポリシロキサンであることを特徴とする、請求項1〜11のいずれか1項に記載のポリシロキサン系組成物。   The curing agent (B) is a linear polysiloxane containing an alkenyl group and / or a hydrosilyl group at a molecular terminal having a weight average molecular weight (Mw) of less than 3000. 2. A polysiloxane composition according to item 1. 硬化剤(B)の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、1.7未満であることを特徴とする、請求項1〜12のいずれか1項に記載のポリシロキサン系組成物。   The ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the curing agent (B) is less than 1.7. The polysiloxane composition described in 1. ヒドロシリル化触媒を含有することを特徴とする、請求項1〜13のいずれか1項に記載のポリシロキサン系組成物。   The polysiloxane composition according to claim 1, comprising a hydrosilylation catalyst. 請求項1〜14のいずれか1項に記載のポリシロキサン系組成物を硬化してなる硬化物。   Hardened | cured material formed by hardening | curing the polysiloxane type composition of any one of Claims 1-14.
JP2008267335A 2008-10-16 2008-10-16 Polysiloxane composition and cured product obtained therefrom Active JP5329904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008267335A JP5329904B2 (en) 2008-10-16 2008-10-16 Polysiloxane composition and cured product obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008267335A JP5329904B2 (en) 2008-10-16 2008-10-16 Polysiloxane composition and cured product obtained therefrom

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013100373A Division JP2013147674A (en) 2013-05-10 2013-05-10 Polysiloxane-based composition and hardened material obtained therefrom

Publications (2)

Publication Number Publication Date
JP2010095616A true JP2010095616A (en) 2010-04-30
JP5329904B2 JP5329904B2 (en) 2013-10-30

Family

ID=42257526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008267335A Active JP5329904B2 (en) 2008-10-16 2008-10-16 Polysiloxane composition and cured product obtained therefrom

Country Status (1)

Country Link
JP (1) JP5329904B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016965A (en) * 2009-07-10 2011-01-27 Momentive Performance Materials Inc Composition for sealing organic light-emitting element, and organic light-emitting device
WO2011148896A1 (en) * 2010-05-28 2011-12-01 株式会社カネカ Polysiloxane composition, hardened material and optical device
JP2011246653A (en) * 2010-05-28 2011-12-08 Kaneka Corp Optical device
JP2012012556A (en) * 2010-07-05 2012-01-19 Kaneka Corp Optical device using organopolysiloxane composition
JP2012102167A (en) * 2010-11-05 2012-05-31 Nitto Denko Corp Silicone resin, sealing material, and optical semiconductor device
JP2012131935A (en) * 2010-12-22 2012-07-12 Kaneka Corp Organopolysiloxane composition and cured product
JP2012144607A (en) * 2011-01-11 2012-08-02 Kaneka Corp Organopolysiloxane-based composition, and cured material
JP2013001813A (en) * 2011-06-16 2013-01-07 Nitto Denko Corp Silicone resin composition, encapsulating layer, reflector and optical semiconductor device
JP2013001815A (en) * 2011-06-16 2013-01-07 Nitto Denko Corp Silicone resin composition, encapsulating layer, reflector and optical semiconductor device
JP2013001814A (en) * 2011-06-16 2013-01-07 Nitto Denko Corp Silicone resin composition, encapsulating layer, reflector and optical semiconductor device
JP2014040522A (en) * 2012-08-22 2014-03-06 Shin Etsu Chem Co Ltd Method for improving fire retardancy of cured silicone rubber
WO2014065143A1 (en) * 2012-10-22 2014-05-01 Jnc株式会社 Thermosetting resin composition
JP2015034303A (en) * 2014-11-18 2015-02-19 株式会社カネカ Organopolysiloxane based composition and cured matter
US9035009B2 (en) 2007-04-17 2015-05-19 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
JP2015098540A (en) * 2013-11-19 2015-05-28 株式会社カネカ Curable composition added with polyhedron structure polysiloxane, cured material, and semiconductor light-emitting device and manufacturing method thereof
US9698320B2 (en) 2010-09-22 2017-07-04 Kaneka Corporation Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
KR101819155B1 (en) * 2011-01-20 2018-01-17 다우 코닝 도레이 캄파니 리미티드 Use of magnesium compound for improving water resistance of cured silicone rubber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091935A (en) * 2005-09-29 2007-04-12 Fujifilm Corp Polymer, composition for forming film, insulating film and method for producing the same
JP2007246880A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor light device and transparent optical member
WO2008010545A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Polysiloxane composition, molded body obtained from the same, and optodevice member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007091935A (en) * 2005-09-29 2007-04-12 Fujifilm Corp Polymer, composition for forming film, insulating film and method for producing the same
JP2007246880A (en) * 2006-02-20 2007-09-27 Matsushita Electric Works Ltd Semiconductor light device and transparent optical member
WO2008010545A1 (en) * 2006-07-21 2008-01-24 Kaneka Corporation Polysiloxane composition, molded body obtained from the same, and optodevice member

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035009B2 (en) 2007-04-17 2015-05-19 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
US9416231B2 (en) 2007-04-17 2016-08-16 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
US9422405B2 (en) 2007-04-17 2016-08-23 Kaneka Corporation Polyhedral polysiloxane modified product and composition using the modified product
JP2011016965A (en) * 2009-07-10 2011-01-27 Momentive Performance Materials Inc Composition for sealing organic light-emitting element, and organic light-emitting device
US9688851B2 (en) 2010-05-28 2017-06-27 Kaneka Corporation Polysiloxane composition, hardened material and optical device
WO2011148896A1 (en) * 2010-05-28 2011-12-01 株式会社カネカ Polysiloxane composition, hardened material and optical device
JP2011246653A (en) * 2010-05-28 2011-12-08 Kaneka Corp Optical device
US9822248B2 (en) 2010-05-28 2017-11-21 Kaneka Corporation Polysiloxane composition, hardened material and optical device
KR101774306B1 (en) * 2010-05-28 2017-09-04 가부시키가이샤 가네카 Polysiloxane composition, hardened material and optical device
JP2012012556A (en) * 2010-07-05 2012-01-19 Kaneka Corp Optical device using organopolysiloxane composition
US9698320B2 (en) 2010-09-22 2017-07-04 Kaneka Corporation Modified product of polyhedral structure polysiloxane, polyhedral structure polysiloxane composition, cured product, and optical semiconductor device
US8772430B2 (en) 2010-11-05 2014-07-08 Nitto Denko Corporation Silicone resin, sealing material, and optical semiconductor device
JP2012102167A (en) * 2010-11-05 2012-05-31 Nitto Denko Corp Silicone resin, sealing material, and optical semiconductor device
JP2012131935A (en) * 2010-12-22 2012-07-12 Kaneka Corp Organopolysiloxane composition and cured product
JP2012144607A (en) * 2011-01-11 2012-08-02 Kaneka Corp Organopolysiloxane-based composition, and cured material
KR101819155B1 (en) * 2011-01-20 2018-01-17 다우 코닝 도레이 캄파니 리미티드 Use of magnesium compound for improving water resistance of cured silicone rubber
JP2013001814A (en) * 2011-06-16 2013-01-07 Nitto Denko Corp Silicone resin composition, encapsulating layer, reflector and optical semiconductor device
JP2013001815A (en) * 2011-06-16 2013-01-07 Nitto Denko Corp Silicone resin composition, encapsulating layer, reflector and optical semiconductor device
JP2013001813A (en) * 2011-06-16 2013-01-07 Nitto Denko Corp Silicone resin composition, encapsulating layer, reflector and optical semiconductor device
JP2014040522A (en) * 2012-08-22 2014-03-06 Shin Etsu Chem Co Ltd Method for improving fire retardancy of cured silicone rubber
WO2014065143A1 (en) * 2012-10-22 2014-05-01 Jnc株式会社 Thermosetting resin composition
JPWO2014065143A1 (en) * 2012-10-22 2016-09-08 Jnc株式会社 Thermosetting resin composition
US9512273B2 (en) 2012-10-22 2016-12-06 Jnc Corporation Thermosetting resin composition
JP2015098540A (en) * 2013-11-19 2015-05-28 株式会社カネカ Curable composition added with polyhedron structure polysiloxane, cured material, and semiconductor light-emitting device and manufacturing method thereof
JP2015034303A (en) * 2014-11-18 2015-02-19 株式会社カネカ Organopolysiloxane based composition and cured matter

Also Published As

Publication number Publication date
JP5329904B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5329904B2 (en) Polysiloxane composition and cured product obtained therefrom
JP6030745B2 (en) Modified polyhedral polysiloxane and composition using the modified
JP5784618B2 (en) Modified polyhedral polysiloxane, polyhedral polysiloxane composition, cured product, and optical semiconductor device
JP5666775B2 (en) Polysiloxane composition, molded article obtained from the same, and optical device member
JP5329905B2 (en) Polysiloxane composition and cured product obtained therefrom
WO2011148896A1 (en) Polysiloxane composition, hardened material and optical device
JP5965195B2 (en) Polysiloxane composition
JP2010095618A (en) Polysiloxane composition, and cured product obtained from the same
JP5571329B2 (en) A polyhedral polysiloxane modified product and a composition containing the modified product.
JP2012201706A (en) Polysiloxane-based composition
JP2011246652A (en) Polysiloxane-based composition
JP2013209565A (en) Polysiloxane-based composition containing modified polyhedral-structure polysiloxane, and cured product obtained by curing the composition
JP6161252B2 (en) Modified polyorganosiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5829466B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5571342B2 (en) Polysiloxane composition, cured product obtained therefrom, and insulating film
JP5912352B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5710998B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP5819089B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP2013147674A (en) Polysiloxane-based composition and hardened material obtained therefrom
JP6075939B2 (en) Polysiloxane composition
JP2012224744A (en) Polysiloxane modified compound with polyhedral structure, composition containing the same, cured product, and optical device using the composition
JP5873677B2 (en) Modified polyhedral polysiloxane, composition containing the modified product, and cured product obtained by curing the composition
JP2013194184A (en) Polysiloxane variant having polyhedral structure, method for producing the variant, composition including the variant and cured material obtained by curing the composition
JP2019127505A (en) Polysiloxane-based composition
JP2013147673A (en) Polysiloxane-based composition and hardened material obtained therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121213

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130725

R150 Certificate of patent or registration of utility model

Ref document number: 5329904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250