JP2010094629A - Catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas Download PDF

Info

Publication number
JP2010094629A
JP2010094629A JP2008269027A JP2008269027A JP2010094629A JP 2010094629 A JP2010094629 A JP 2010094629A JP 2008269027 A JP2008269027 A JP 2008269027A JP 2008269027 A JP2008269027 A JP 2008269027A JP 2010094629 A JP2010094629 A JP 2010094629A
Authority
JP
Japan
Prior art keywords
composite oxide
catalyst
oxide particles
doped
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008269027A
Other languages
Japanese (ja)
Other versions
JP5412789B2 (en
Inventor
Masaaki Akamine
真明 赤峰
Kenji Suzuki
研二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008269027A priority Critical patent/JP5412789B2/en
Publication of JP2010094629A publication Critical patent/JP2010094629A/en
Application granted granted Critical
Publication of JP5412789B2 publication Critical patent/JP5412789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To improve the cleaning performance of exhaust gases for a catalyst for cleaning exhaust gases which is employed for cleaning HC, CO and NOx near a stoichiometric condition. <P>SOLUTION: The catalyst for cleaning exhaust gases includes a catalyst metal-doped CePr-based composite oxide particles which is compounded so that Ce, Pr and a catalyst metal may form oxide particles, in which at least part of each of a Ce oxide and a Pr oxide is incorporated into solid solution with each other, and in which the catalyst metal is incorporated into solid-solution to the oxide particles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エンジンの排気ガス浄化用触媒に関する。     The present invention relates to an exhaust gas purification catalyst for an engine.

ストイキ付近の空燃比で運転されるガソリンエンジン、特にストイキ付近においてリーンとリッチとが繰り返されるように運転されるエンジンの排気ガス浄化用触媒(所謂三元触媒)にあっては、A/Fウィンドウ(触媒がHC(炭化水素)、CO及びNOx(窒素酸化物)を同時に浄化することができる空燃比の範囲)を拡げる酸素吸蔵放出材が不可欠となる。そして、この酸素吸蔵放出材としては、CeとZrとを複合させてなるCeZr系複合酸化物が多く採用されている。     For an exhaust gas purifying catalyst (so-called three-way catalyst) of a gasoline engine operated at an air-fuel ratio near stoichiometric, particularly an engine operated so that lean and rich are repeated near stoichiometric, an A / F window An oxygen storage / release material that expands (the range of the air-fuel ratio in which the catalyst can simultaneously purify HC (hydrocarbon), CO, and NOx (nitrogen oxide)) is essential. As this oxygen storage / release material, a CeZr-based composite oxide obtained by combining Ce and Zr is often used.

ここに、CeZr系複合酸化物は、酸素過剰雰囲気(排気ガスの空燃比がリーンであるとき)では酸素を吸蔵し、雰囲気の酸素濃度が下がったとき(理論空燃比近傍あるいは理論空燃比よりもリッチになったとき)に吸蔵していた酸素を活性酸素として放出するが、これは、CeOのCeイオンが雰囲気に応じて価数変化して酸素との結合・解離を行なうことによる。CeZr系複合酸化物中のZrは、それ自体には酸素吸蔵放出能はないが、CeOに固溶することによって耐熱性を高め、また、酸素の吸蔵放出に関与する酸素欠陥を増大させる働きがある。 Here, the CeZr-based composite oxide occludes oxygen in an oxygen-excessive atmosphere (when the air-fuel ratio of the exhaust gas is lean), and when the oxygen concentration in the atmosphere decreases (near the stoichiometric air-fuel ratio or more than the stoichiometric air-fuel ratio). Oxygen that was occluded when it became rich) is released as active oxygen. This is because the Ce ions of CeO 2 change in valence according to the atmosphere and bind and dissociate with oxygen. Zr in the CeZr-based composite oxide itself does not have oxygen storage / release ability, but it improves heat resistance by being dissolved in CeO 2 and increases oxygen defects involved in oxygen storage / release. There is.

また、CeZr系複合酸化物粒子表面に触媒金属を担持させると、この触媒金属が酸素の吸蔵放出を促進し、酸素吸蔵放出量が増大すること、さらに、触媒金属に対する酸素の結合・解離も促進され、該触媒金属の酸化還元触媒能が高まることも知られている。     In addition, when a catalytic metal is supported on the surface of CeZr-based composite oxide particles, this catalytic metal promotes the storage and release of oxygen, increasing the amount of stored and released oxygen, and further promoting the binding and dissociation of oxygen to the catalytic metal. It is also known that the catalytic reduction of the catalytic metal is enhanced.

しかし、上記CeZr系複合酸化物の場合、300℃よりも低い温度では、その酸素吸蔵放出性能が低く、触媒の低温活性を充分に高めることができないという問題がある。また、CeZr系複合酸化物粒子表面に担持された触媒金属は、高温の排気ガスに晒されると、凝集・シンタリングを生じ易いという問題がある。     However, in the case of the CeZr-based composite oxide, at a temperature lower than 300 ° C., the oxygen storage / release performance is low, and the low temperature activity of the catalyst cannot be sufficiently increased. Further, there is a problem that the catalytic metal supported on the surface of the CeZr-based composite oxide particles is likely to cause aggregation and sintering when exposed to high-temperature exhaust gas.

後者の問題については、触媒金属をCeZr系複合酸化物に固溶(ドープ)するという対策もとられている。例えば、特許文献1には、CeZr複合酸化物粒子にRhを固溶させ、該Rhを粒子表面に分散露出させたものが例示されている。特許文献2には、パティキュレート燃焼用の酸化触媒材ではあるが、CeZr複合酸化物粒子にRh及びPtを固溶させて粒子表面に分散露出させたものが例示されている。     Regarding the latter problem, a countermeasure is taken in which the catalytic metal is dissolved (doped) in the CeZr-based composite oxide. For example, Patent Document 1 exemplifies a case in which Rh is dissolved in CeZr composite oxide particles and the Rh is dispersedly exposed on the particle surface. Patent Document 2 exemplifies an oxidation catalyst material for particulate combustion, in which Rh and Pt are dissolved in CeZr composite oxide particles and dispersedly exposed on the particle surface.

また、パティキュレートの燃焼や排気ガスの浄化とは関係がないが、特許文献4には、空気から酸素を分離するための組成物として、V、Mn、Cu、Mo、W、Pt、Tl、Pb及びBiよりなる群から選択される少なくとも1種の表面ドープ剤を少量含有するCePr複合酸化物を開示する。但し、実施例として開示されている表面ドープ剤はAgであり、他のPt等の金属を表面ドープ剤とする具体例については開示がない。また、当文献には、当該CePr複合酸化物の酸素吸蔵放出性能についての開示もなく、また、そのCePr複合酸化物をパティキュレートの燃焼や排気ガスの浄化に利用することについての開示もない。
特開2004−174490号公報 特開2005−329318号公報 特開昭50−73893号公報
Moreover, although it has nothing to do with combustion of particulates or purification of exhaust gas, Patent Document 4 discloses, as a composition for separating oxygen from air, V, Mn, Cu, Mo, W, Pt, Tl, A CePr composite oxide containing a small amount of at least one surface dopant selected from the group consisting of Pb and Bi is disclosed. However, the surface dopant disclosed as an example is Ag, and there is no disclosure about specific examples using other metals such as Pt as the surface dopant. Further, this document does not disclose the oxygen storage / release performance of the CePr composite oxide, and does not disclose the use of the CePr composite oxide for particulate combustion or exhaust gas purification.
JP 2004-174490 A JP 2005-329318 A JP 50-73893 A

しかし、触媒金属をCeZr系複合酸化物に固溶させても、低温度域での酸素吸蔵放出性能は期待するほどには高くならず、触媒の低温活性を大きく向上させるには至らない。     However, even if the catalyst metal is dissolved in the CeZr-based composite oxide, the oxygen storage / release performance in the low temperature region does not become as high as expected, and the low temperature activity of the catalyst is not greatly improved.

そこで、本発明は、上述のストイキ付近でHC、CO及びNOxの浄化に働く排気ガス浄化用触媒に関し、低温度域でも高い酸素吸蔵放出性能が得られるようにして、その触媒性能の向上を図ることを課題とする。     Accordingly, the present invention relates to an exhaust gas purifying catalyst that works to purify HC, CO, and NOx in the vicinity of the above stoichiometric condition, so that high oxygen storage / release performance can be obtained even in a low temperature range, and the catalytic performance is improved. This is the issue.

本発明は、このような課題を解決するために、触媒金属をドープしたCePr系複合酸化物を触媒に利用した。以下、具体的に説明する。     In order to solve such problems, the present invention uses a CePr-based composite oxide doped with a catalytic metal as a catalyst. This will be specifically described below.

本発明は、エンジンから排出される空燃比がストイキ付近にある排気ガス中のHC、CO及びNOxを浄化する排気ガス浄化用触媒であって、
Ceと、Prと、触媒金属とが酸化物粒子を形成するように複合されてなり、Ce酸化物及びPr酸化物各々の少なくとも一部が互いに固溶し、且つ上記触媒金属が当該酸化物粒子に固溶している触媒金属ドープCePr系複合酸化物粒子を含有することを特徴とする。
The present invention is an exhaust gas purification catalyst that purifies HC, CO, and NOx in exhaust gas in which the air-fuel ratio discharged from the engine is in the vicinity of stoichiometry,
Ce, Pr, and catalyst metal are combined so as to form oxide particles, and at least a part of each of Ce oxide and Pr oxide is in solid solution with each other, and the catalyst metal is the oxide particles. The catalyst metal-doped CePr-based composite oxide particles that are solid-dissolved in the catalyst are contained.

すなわち、上記触媒金属ドープCePr系複合酸化物粒子は、上述の酸素過剰雰囲気では酸素を吸蔵し、雰囲気の酸素濃度が下がったときに吸蔵していた酸素を放出する酸素吸蔵放出性能を有するが、金属成分としてPrを含有することにより、300℃以下の温度でも優れた酸素吸蔵放出性能を示し、Pr比率が高くなると、300℃以上の温度でも優れた酸素吸蔵放出性能を示す。さらに、上記触媒金属ドープCePr系複合酸化物粒子は、雰囲気の酸素濃度の変化によらず、Ceイオン及びPrイオン各々の価数変化によって排気ガス中の酸素を取り込んで該粒子内の酸素を放出する酸素交換反応を起こす性質がある。そして、このCePr系複合酸化物粒子に固溶している触媒金属は上記酸素吸蔵放出及び酸素交換反応を促進する働きがある。     That is, the catalyst metal-doped CePr-based composite oxide particles have an oxygen storage / release capability of storing oxygen in the oxygen-excess atmosphere and releasing the stored oxygen when the oxygen concentration in the atmosphere decreases. By containing Pr as a metal component, excellent oxygen storage / release performance is exhibited even at a temperature of 300 ° C. or lower, and when the Pr ratio is increased, excellent oxygen storage / release performance is exhibited even at a temperature of 300 ° C. or higher. Furthermore, the catalytic metal-doped CePr-based composite oxide particles take in oxygen in the exhaust gas and release oxygen in the particles by changing the valence of Ce ions and Pr ions, regardless of changes in the oxygen concentration of the atmosphere. It has the property of causing an oxygen exchange reaction. The catalytic metal dissolved in the CePr-based composite oxide particles has a function of promoting the oxygen storage / release and the oxygen exchange reaction.

従って、本発明によれば、上記触媒金属ドープCePr系複合酸化物粒子の有する優れた酸素吸蔵放出性能及び酸素交換反応性により、ストイキ付近でのHC、CO及びNOxの浄化性能が高くなり、特にライトオフ性能の向上に有利になる。     Therefore, according to the present invention, due to the excellent oxygen storage / release performance and oxygen exchange reactivity of the catalytic metal-doped CePr-based composite oxide particles, the purification performance of HC, CO, and NOx in the vicinity of stoichiometry is improved. This is advantageous for improving the light-off performance.

しかも、上記触媒金属ドープCePr系複合酸化物粒子は、Ce酸化物とPr酸化物各々の少なくとも一部が互いに固溶していることから、耐熱性が高く、また、その触媒金属は、当該複合酸化物粒子に固溶しているから、高温の排気ガスに晒されたときの凝集・シンタリングを生じ難く、良好な酸素吸蔵放出性能及び酸素交換反応性が長期間にわたって維持される。さらに、上記触媒金属の固溶により、上記CePr系複合酸化物粒子自体のシンタリングも抑制され、そのため、高温の排気ガスに晒されても、広い細孔容積が確保され、良好なガス拡散性が維持される。     Moreover, the catalyst metal-doped CePr-based composite oxide particles have high heat resistance because at least a part of each of the Ce oxide and the Pr oxide is in solid solution with each other. Since it is dissolved in oxide particles, it is difficult to cause aggregation and sintering when exposed to high-temperature exhaust gas, and good oxygen storage / release performance and oxygen exchange reactivity are maintained over a long period of time. Furthermore, due to the solid solution of the catalyst metal, sintering of the CePr-based composite oxide particles itself is also suppressed, so that a wide pore volume is ensured even when exposed to high-temperature exhaust gas, and good gas diffusibility is achieved. Is maintained.

上記CePr系複合酸化物粒子に固溶している触媒金属の一部は、該複合酸化物粒子の表面に分散して露出していることが好ましい。これにより、当該複合酸化物粒子の酸素吸蔵放出性能及び酸素交換反応性が高くなるとともに、その粒子表面に露出した触媒金属が、HC及びCOの酸化、並びにNOxの還元に効率良く働くことになる。     It is preferable that a part of the catalyst metal dissolved in the CePr-based composite oxide particles is dispersedly exposed on the surface of the composite oxide particles. As a result, the oxygen storage / release performance and oxygen exchange reactivity of the composite oxide particles are enhanced, and the catalytic metal exposed on the surface of the particles efficiently acts on the oxidation of HC and CO and the reduction of NOx. .

上記CePr系複合酸化物粒子の表面から2nm深さまでの表層領域における上記触媒金属の濃度が、該複合酸化物粒子全体での該触媒金属の平均濃度の2.5倍以下であることが好ましい。この表面Pt濃度比は2.0倍未満であることがより好ましく、更に1.8倍以下が好ましく、更に好ましいのは1.5倍以下である。     The concentration of the catalyst metal in the surface layer region from the surface of the CePr-based composite oxide particle to a depth of 2 nm is preferably 2.5 times or less of the average concentration of the catalyst metal in the entire composite oxide particle. The surface Pt concentration ratio is more preferably less than 2.0 times, further preferably 1.8 times or less, and more preferably 1.5 times or less.

すなわち、従来の複合酸化物粒子は、触媒金属の多くが粒子表面に酸化物となって担持されており、そのため粒子表面の触媒金属濃度が高い。この酸化物として担持されている触媒金属は、酸素過剰雰囲気では、酸素を介してCe等に結合しているが、雰囲気の酸素濃度が低下すると、その結合が切れて凝集・シンタリングし易いと考えられている。従って、そのような複合酸化物粒子では、高温の排気ガスに晒されると、粒子表面の触媒金属のシンタリングにより、酸素吸蔵放出性能及び酸素交換反応性が、ひいては排気ガス浄化性能が大きく低下する。     That is, in the conventional composite oxide particles, most of the catalyst metal is supported on the particle surface as an oxide, and therefore the catalyst metal concentration on the particle surface is high. The catalyst metal supported as an oxide is bonded to Ce or the like through oxygen in an oxygen-excess atmosphere. However, when the oxygen concentration in the atmosphere decreases, the bond is broken and aggregation and sintering are likely to occur. It is considered. Accordingly, when such composite oxide particles are exposed to high-temperature exhaust gas, the oxygen storage / release performance and oxygen exchange reactivity, and consequently the exhaust gas purification performance, are greatly reduced by sintering of the catalytic metal on the particle surface. .

これに対して、粒子表層の触媒金属濃度が上述の如く粒子全体の平均濃度の2.5倍以下に抑えられている、ということは、粒子表面に酸化物として担持されている触媒金属量が少ないこと、つまり、触媒金属の多くは上記複合酸化物粒子に固溶していることを意味する。従って、当該複合酸化物粒子が高温の排気ガスに晒されても、触媒金属の凝集・シンタリングを生じ難く、凝集・シンタリングするとしても、そのシンタリングの程度は低い。つまり、粒子表面の触媒金属がシンタリングしても、酸素吸蔵放出性能や酸素交換反応性の大きな低下、ないしは排気ガス浄化に有効に働く活性点の大きな減少は生じない。     On the other hand, the catalyst metal concentration of the particle surface layer is suppressed to 2.5 times or less of the average concentration of the entire particle as described above, which means that the amount of the catalyst metal supported as an oxide on the particle surface is small. This means that there is little, that is, most of the catalyst metal is dissolved in the composite oxide particles. Therefore, even if the composite oxide particles are exposed to high-temperature exhaust gas, it is difficult for the catalytic metal to agglomerate and sinter, and even if agglomerated and sintered, the degree of sintering is low. That is, even if the catalyst metal on the particle surface is sintered, the oxygen storage / release performance and the oxygen exchange reactivity are not greatly reduced, or the active sites that are effective for exhaust gas purification are not greatly reduced.

上記触媒金属ドープCePr系複合酸化物粒子は、Ce/Prモル比が1/99以上99/1以下であることが好ましく、さらに好ましいのは、Ce/Prモル比を1/9以上7/3以下とすることである。     The catalyst metal-doped CePr-based composite oxide particles preferably have a Ce / Pr molar ratio of 1/99 or more and 99/1 or less, and more preferably a Ce / Pr molar ratio of 1/9 or more and 7/3. It is as follows.

また、好ましいのは、上記排気ガス浄化用触媒を、担体上に複数の触媒層が積層された構成とし、上記触媒金属ドープCePr系複合酸化物粒子を、最上層よりも下の触媒層に配置することである。これにより、下側触媒層の触媒金属ドープCePr系複合酸化物粒子から放出される活性酸素が上側の触媒層でのHC及びCOの酸化に活用され、該HC及びCOの酸化反応に伴ってNOxの還元反応も進み易くなる。     Preferably, the exhaust gas purifying catalyst has a structure in which a plurality of catalyst layers are stacked on a carrier, and the catalytic metal-doped CePr-based composite oxide particles are arranged in a catalyst layer below the uppermost layer. It is to be. As a result, the active oxygen released from the catalytic metal-doped CePr-based composite oxide particles in the lower catalyst layer is utilized for the oxidation of HC and CO in the upper catalyst layer, and NOx accompanying the oxidation reaction of the HC and CO It is easy to proceed the reduction reaction.

また、好ましいのは、上記触媒金属ドープCePr系複合酸化物粒子は、上記触媒金属としてPtがCePr系複合酸化物粒子に固溶したものであり、上記最上層には、Rhを担持したCeZr系複合酸化物粒子が配置されていることである。これにより、HC及びCOの酸化浄化を主として下側の触媒層のPtドープCePr系複合酸化物粒子によって図り、NOxの還元浄化を主として最上層の触媒層のRh担持CeZr系複合酸化物粒子によって図ることができる。Pdを触媒金属として含ませる場合、上記PtドープCePr系複合酸化物粒子を含む層よりも更に下層に酸素吸蔵材やアルミナ等をサポート材として含有させても良いし、あるいは上記PtドープCePr系複合酸化物粒子を含む層内にPdを担持させた酸素吸蔵材やPdを担持させたアルミナ等を混合するようにしてもよい。     Preferably, the catalyst metal-doped CePr-based composite oxide particles are those in which Pt is dissolved as a catalyst metal in CePr-based composite oxide particles, and the uppermost layer is a CeZr-based catalyst supporting Rh. That is, composite oxide particles are arranged. As a result, oxidation purification of HC and CO is achieved mainly by the Pt-doped CePr-based composite oxide particles in the lower catalyst layer, and NOx reduction purification is achieved mainly by the Rh-supported CeZr-based composite oxide particles in the uppermost catalyst layer. be able to. When Pd is included as a catalyst metal, an oxygen storage material, alumina, or the like may be included as a support material in a lower layer than the layer containing the Pt-doped CePr-based composite oxide particles, or the Pt-doped CePr-based composite. You may make it mix the oxygen storage material which carry | supported Pd, the alumina which carry | supported Pd, etc. in the layer containing an oxide particle.

以上のように本発明によれば、排気ガス中のHC、CO及びNOxをストイキ付近で浄化する排気ガス浄化用触媒が、Ce酸化物及びPr酸化物各々の少なくとも一部が互いに固溶し且つ触媒金属が固溶した触媒金属ドープCePr系複合酸化物粒子を含有するから、該触媒金属ドープCePr系複合酸化物粒子の活発な酸素吸蔵放出及び酸素交換反応により、ストイキ付近でのHC、CO及びNOxの浄化性能が高くなり、特にライトオフ性能の向上に有利になり、しかも、高い耐熱性が得られる。     As described above, according to the present invention, the exhaust gas purifying catalyst that purifies HC, CO, and NOx in the exhaust gas in the vicinity of the stoichiometry is such that at least a part of each of the Ce oxide and the Pr oxide is in solid solution and Since the catalyst metal-doped CePr-based composite oxide particles in which the catalyst metal is solid-solved are contained, HC, CO, and stoichiometry near the stoichiometry are obtained by vigorous oxygen storage and release and oxygen exchange reaction of the catalyst metal-doped CePr-based composite oxide particles. The NOx purification performance is enhanced, which is particularly advantageous for improving the light-off performance, and high heat resistance is obtained.

以下、本発明の実施形態を図面に基づいて説明する。尚、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。     Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is merely illustrative in nature, and is not intended to limit the present invention, its application, or its use.

図1において、1はエンジンであり、その排気通路2に、排気ガス中のHC、CO及びNOxをストイキ付近で浄化する排気ガス浄化用触媒3が設けられている。この排気ガス浄化用触媒3は、図2に一例を示すように、ハニカム担体のセル壁5に複数の触媒層6〜8を積層してなる。この三層構造では、例えば、下層6にPdを担持した活性アルミナ粒子及び酸素吸蔵材を配置し、中間層7にPtを固溶(ドープ)したPtドープCePr系複合酸化物粒子を配置し、上層8にRhを担持したCeZr系複合酸化物粒子を配置する触媒構成とすることができる。     In FIG. 1, reference numeral 1 denotes an engine, and an exhaust gas purification catalyst 3 for purifying HC, CO, and NOx in the exhaust gas in the vicinity of the stoichiometric is provided in the exhaust passage 2 thereof. As shown in FIG. 2, the exhaust gas purifying catalyst 3 is formed by laminating a plurality of catalyst layers 6 to 8 on the cell wall 5 of the honeycomb carrier. In this three-layer structure, for example, active alumina particles supporting Pd and an oxygen storage material are disposed in the lower layer 6, and Pt-doped CePr-based composite oxide particles in which Pt is dissolved (doped) is disposed in the intermediate layer 7. A catalyst configuration in which CeZr-based composite oxide particles supporting Rh are disposed on the upper layer 8 can be employed.

本発明は、三層構造に限定するものではなく、二層構造とすることができ、或いは単層構造とすることができる。二層構造とする場合は、例えば、下層にPtドープCePr系複合酸化物粒子を配置し、上層にRhを担持したCeZr系複合酸化物粒子を配置する触媒構成とすることができる。単層構造とする場合は、例えば、Pdを担持した活性アルミナ粒子、PtドープCePr系複合酸化物粒子、及びRhを担持したCeZr系複合酸化物粒子を混合して触媒層を形成し、或いはPtドープCePr系複合酸化物粒子と、Rhを担持したCeZr系複合酸化物粒子とを混合して触媒層を形成することができる。ハニカム担体はコージェライト等の耐熱性無機材料によって形成することができる。     The present invention is not limited to a three-layer structure, and can be a two-layer structure or a single-layer structure. In the case of a two-layer structure, for example, a catalyst configuration in which Pt-doped CePr-based composite oxide particles are disposed in the lower layer and CeZr-based composite oxide particles supporting Rh are disposed in the upper layer can be employed. In the case of a single layer structure, for example, a catalyst layer is formed by mixing activated alumina particles supporting Pd, Pt-doped CePr-based composite oxide particles, and CeZr-based composite oxide particles supporting Rh, or Pt The catalyst layer can be formed by mixing the doped CePr-based composite oxide particles and the CeZr-based composite oxide particles supporting Rh. The honeycomb carrier can be formed of a heat resistant inorganic material such as cordierite.

本発明の重要な特徴は、上記排気ガス浄化用触媒3の触媒層が、PtドープCePr系複合酸化物粒子を含有することにある。以下、この点を中心に当該触媒の特徴を説明する。     An important feature of the present invention is that the catalyst layer of the exhaust gas purifying catalyst 3 contains Pt-doped CePr-based composite oxide particles. Hereinafter, the characteristics of the catalyst will be described focusing on this point.

<PtドープCePr系複合酸化物粒子のTEM写真>
図3は本発明に係るPtドープCePr系複合酸化物粒子の、大気雰囲気において1000℃の温度に24時間加熱した後のTEM(透過型電子顕微鏡)写真である。この複合酸化物粒子は、触媒金属としてのPtが結晶格子又は原子間に配置されるように固溶したCePr系複合酸化物粒子であり、Ptを除く組成式は、Ce0.9Pr0.1である。また、該複合酸化物粒子のPtドープ量、すなわち、粒子全体のPt濃度(平均濃度)は0.5質量%である。同TEM写真の矢符は当該複合酸化物粒子の表面に分散して露出しているPt粒子を指しており、該Pt粒子の直径は3nm以下である。Ptドープ量は0.1質量%以上2.0質量%以下とすることが好ましい。
<TEM photograph of Pt-doped CePr-based composite oxide particles>
FIG. 3 is a TEM (transmission electron microscope) photograph of the Pt-doped CePr-based composite oxide particles according to the present invention after being heated to a temperature of 1000 ° C. for 24 hours in an air atmosphere. This composite oxide particle is a CePr-based composite oxide particle in which Pt as a catalyst metal is solid-solved so as to be arranged between crystal lattices or atoms, and the composition formula excluding Pt is Ce 0.9 Pr 0. 1 O 2 . The Pt doping amount of the composite oxide particles, that is, the Pt concentration (average concentration) of the entire particles is 0.5% by mass. The arrows in the TEM photograph indicate the Pt particles that are dispersed and exposed on the surface of the composite oxide particles, and the diameter of the Pt particles is 3 nm or less. The Pt doping amount is preferably 0.1% by mass or more and 2.0% by mass or less.

<PtドープCePr系複合酸化物粉末の製法>
Ceイオン、Prイオン、及びPtのヒドロキソ錯体を含む酸性溶液を調製する。Ce源としては硝酸セリウム(III)六水和物を、Pr源としては硝酸プラセオジム(III)六水和物を、Pt源(ヒドロキソ錯体)としてはヘキサヒドロキソ白金(IV)酸エタノールアミン溶液又はヘキサヒドロキソ白金(IV)酸硝酸溶液を、それぞれ採用することができる。これらCe源、Pr源及びPt源各々の所定量と水とを混合して原料溶液(酸性)とする。図4はヘキサヒドロキソ白金(IV)錯イオンの構造を示す。
<Method for producing Pt-doped CePr-based composite oxide powder>
An acidic solution containing Ce ions, Pr ions, and a hydroxo complex of Pt is prepared. Cerium (III) nitrate hexahydrate as the Ce source, praseodymium nitrate (III) nitrate hexahydrate as the Pr source, hexahydroxoplatinum (IV) acid ethanolamine solution or hexagonal as the Pt source (hydroxo complex) Hydroxoplatinum (IV) acid nitric acid solution can be respectively employed. A predetermined amount of each of these Ce source, Pr source and Pt source and water are mixed to obtain a raw material solution (acidic). FIG. 4 shows the structure of the hexahydroxoplatinum (IV) complex ion.

上記原料溶液に塩基性溶液を添加混合して、当該複合酸化物粒子の前駆体であるCe、Pr及びPtの複合水酸化物の沈殿粒子を生成する。この場合、原料溶液を室温で約1時間攪拌した後、これに塩基性溶液として例えば濃度7%程度のアンモニア水を添加すればよい。苛性ソーダ水溶液など他の塩基性溶液を採用することもできる。     A basic solution is added to and mixed with the raw material solution to produce precipitated particles of Ce, Pr and Pt composite hydroxides, which are precursors of the composite oxide particles. In this case, after stirring the raw material solution at room temperature for about 1 hour, an aqueous ammonia having a concentration of, for example, about 7% may be added thereto as a basic solution. Other basic solutions such as aqueous caustic soda can also be employed.

上記の粒子前駆体沈殿物を含む溶液を遠心分離器にかけて上澄み液を除去する。この上澄み液を除去した沈殿脱水物にさらにイオン交換水を加えて攪拌し再び遠心分離器にかける(脱水する)、という水洗・脱水操作を必要回数繰り返す。当該水洗・脱水操作により、余剰塩基性溶液が除去される。     The solution containing the particle precursor precipitate is centrifuged to remove the supernatant. The water washing and dehydration operation of adding ion-exchanged water to the precipitated dehydrated product from which the supernatant has been removed, stirring, and re-centrifuged (dehydrated) is repeated as many times as necessary. The excess basic solution is removed by the washing / dehydrating operation.

上記沈殿脱水物を乾燥させた後、焼成し、粉砕する。乾燥は、例えば大気雰囲気において100℃〜250℃程度の温度に所定時間保持することによって行なうことができる。また、焼成は、例えば大気雰囲気において400℃〜600℃程度の温度に数時間保持することによって行なうことができる。     The precipitate dehydrated product is dried, fired and pulverized. Drying can be performed, for example, by holding at a temperature of about 100 ° C. to 250 ° C. for a predetermined time in an air atmosphere. Moreover, baking can be performed by hold | maintaining at the temperature of about 400 to 600 degreeC for several hours, for example in an atmospheric condition.

これにより、CeとPrとPtとが酸化物粒子を形成するように複合されてなり、Ce酸化物及びPr酸化物各々の少なくとも一部が互いに固溶し、Ptは上記酸化物粒子に固溶し、その一部が上記酸化物粒子表面に分散して露出しているPtドープCePr系複合酸化物粒子が得られる。     As a result, Ce, Pr, and Pt are combined so as to form oxide particles, and at least a part of each of the Ce oxide and the Pr oxide is in solid solution, and Pt is dissolved in the oxide particles. As a result, Pt-doped CePr-based composite oxide particles that are partly dispersed and exposed on the surface of the oxide particles are obtained.

<各種複合酸化物粒子表層のPt濃度>
以下に述べる各種の複合酸化物粉末を調製し、各々の表層領域のPt濃度が粒子全体のPtの平均濃度の何倍になっているかを調べた。
<Pt concentration of various composite oxide particle surface layers>
Various composite oxide powders described below were prepared, and it was examined how many times the Pt concentration in each surface layer region was the average concentration of Pt in the entire particle.

−EthanolPtドープ例1−
Pt源としてヘキサヒドロキソ白金(IV)酸エタノールアミン溶液を使用し、上述のPtドープCePr系複合酸化物粉末の製法に従って、本例に係る複合酸化物粉末を調製した。Ce/Prモル比は9/1とした。Pt源の仕込み量は粒子全体のPt濃度が0.5質量%となるように調整した。得られた複合酸化物粉末を図面又は表においては「EthanolPtドープ Ce/Pr=9/1」又は「EthanolPtドープ Ce0.9Pr0.1」と記する。
-Ethanol Pt doping example 1
Using a solution of ethanolamine hexahydroxoplatinum (IV) as a Pt source, a composite oxide powder according to this example was prepared according to the above-described method for producing a Pt-doped CePr-based composite oxide powder. The Ce / Pr molar ratio was 9/1. The amount of Pt source charged was adjusted so that the Pt concentration of the entire particle was 0.5% by mass. The obtained composite oxide powder is described as “Ethanol Pt-doped Ce / Pr = 9/1” or “Ethanol Pt-doped Ce 0.9 Pr 0.1 O 2 ” in the drawings or tables.

−EthanolPtドープ例2−
Ce/Prモル比を1/9とする他はEthanolPtドープ例1と同じ条件及び方法で本例に係る複合酸化物粉末を調製した。得られた複合酸化物粉末を図面又は表においては「EthanolPtドープ Ce/Pr=1/9」又は「EthanolPtドープ Ce0.1Pr0.9」と記する。
-Ethanol Pt doping example 2-
A composite oxide powder according to this example was prepared under the same conditions and method as in EthanolPt dope example 1 except that the Ce / Pr molar ratio was 1/9. The obtained composite oxide powder is described as “Ethanol Pt-doped Ce / Pr = 1/9” or “Ethanol Pt-doped Ce 0.1 Pr 0.9 O 2 ” in the drawings or tables.

−Pt−Pドープ例1−
Pt源として図5に示すジニトロジアミン白金(II)の硝酸溶液(通称;白金Pソルト)を使用し、他はEthanolPtドープ例1と同じ条件及び方法で本例に係る複合酸化物粉末を調製した。ジニトロジアミン白金(II)の硝酸溶液Pt源とする場合、アンモニア等の塩基性溶液を添加しても、Pt水酸化物として共沈するのは約80%であるので、本例の場合のPt源の仕込み量を目標値の1.25倍にすることで、粒子全体のPt濃度が0.5質量%となるように調整した。得られた複合酸化物粉末を図面又は表においては「Pt−Pドープ Ce/Pr=9/1」又は「Pt−Pドープ Ce0.9Pr0.1」と記する。
-Pt-P doping example 1-
As a Pt source, a nitric acid solution of dinitrodiamineplatinum (II) shown in FIG. 5 (common name: platinum P salt) was used, and a composite oxide powder according to this example was prepared under the same conditions and method as in EthanolPt dope example 1. . When a nitric acid solution Pt source of dinitrodiamine platinum (II) is used, even if a basic solution such as ammonia is added, the coprecipitation of Pt hydroxide is about 80%. By adjusting the charged amount of the source to 1.25 times the target value, the Pt concentration of the whole particle was adjusted to 0.5 mass%. The obtained composite oxide powder is described as “Pt—P doped Ce / Pr = 9/1” or “Pt—P doped Ce 0.9 Pr 0.1 O 2 ” in the drawings or tables.

−Pt−Pドープ例2−
Ce/Prモル比を1/9とする他はPt−Pドープ例1と同じ条件及び方法で本例に係る複合酸化物粉末を調製した。得られた複合酸化物粉末を図面又は表においては「Pt−Pドープ Ce/Pr=1/9」又は「Pt−Pドープ Ce0.1Pr0.9」と記する。
-Pt-P doping example 2-
A composite oxide powder according to this example was prepared under the same conditions and method as in Pt—P dope example 1 except that the Ce / Pr molar ratio was 1/9. The obtained composite oxide powder is described as “Pt—P doped Ce / Pr = 1/9” or “Pt—P doped Ce 0.1 Pr 0.9 O 2 ” in the drawings or tables.

−Pt−P乾固例1−
Ce/Prモル比=9/1のCePr複合酸化物粉末とジニトロジアミン白金(II)硝酸溶液とを混合し、蒸発乾固することにより、本例に係る複合酸化物粉末を調製した。Pt担持量は当該複合酸化物粉末の0.5質量%となるようにした。得られた複合酸化物粉末を図面又は表においては「Pt−P乾固 Ce/Pr=9/1」又は「Pt−P乾固 Ce0.9Pr0.1」と記する。
-Pt-P dry example 1-
A CePr composite oxide powder having a Ce / Pr molar ratio of 9/1 and a dinitrodiamine platinum (II) nitric acid solution were mixed and evaporated to dryness to prepare a composite oxide powder according to this example. The amount of Pt supported was 0.5% by mass of the composite oxide powder. Composite oxide powder obtained in the drawings or table to serial to as "Pt-P dryness Ce / Pr = 9/1" or "Pt-P dryness Ce 0.9 Pr 0.1 O 2".

−Pt濃度測定−
上記各例の複合酸化物粒子の表層領域(表面から2nm深さまでの領域)のPt濃度をXPS(X線光電子分光)分析によって測定し、表面Pt濃度比(表層領域のPt濃度/粒子全体のPt濃度)を求めた(ここで、表面からの特性X線の侵入深さはその特性X線の強度に依存することが知られており、今回は1000eVの強度のX線を用いていることから、上記「2nm」を特定した。)。結果を図6に示す。
-Pt concentration measurement-
The Pt concentration in the surface layer region (region from the surface to a depth of 2 nm) of the composite oxide particles of each of the above examples was measured by XPS (X-ray photoelectron spectroscopy) analysis, and the surface Pt concentration ratio (Pt concentration in the surface layer region / total particle size) It is known that the penetration depth of characteristic X-rays from the surface depends on the intensity of the characteristic X-rays, and this time X-rays with an intensity of 1000 eV are used. From the above, “2 nm” was identified.) The results are shown in FIG.

各複合酸化物粒子の表面Pt濃度比をみると、EthanolPtドープ例1,2及びPt−Pドープ例1,2は2.5倍以下であるが、Pt−P乾固例1は当該濃度比が2.5倍よりも大きくなっている。すなわち、EthanolPtドープ及びPt−Pドープでは、複合酸化物粒子表面に酸化物となって担持されているPt量が少なく、Ptの多くは該複合酸化物粒子に固溶している、ということができる。表面Pt濃度比は2.0倍未満が好ましく、更に1.8倍以下が好ましく、更に好ましいのは1.5倍以下である。また、表面Pt濃度比は1倍よりも大きいことが好ましい。これは、当該複合酸化物粒子の表面に露出している触媒金属を、酸素を吸蔵放出するための仲介物として存在させる、並びに排気ガス浄化に寄与せしめる、という目的のためである。     Looking at the surface Pt concentration ratio of each composite oxide particle, Ethanol Pt doping examples 1 and 2 and Pt-P doping examples 1 and 2 are 2.5 times or less, but Pt-P drying example 1 is the concentration ratio. Is larger than 2.5 times. That is, in Ethanol Pt dope and Pt-P dope, the amount of Pt supported as an oxide on the surface of the composite oxide particle is small, and most of Pt is dissolved in the composite oxide particle. it can. The surface Pt concentration ratio is preferably less than 2.0 times, more preferably 1.8 times or less, and further preferably 1.5 times or less. Further, the surface Pt concentration ratio is preferably larger than 1 time. This is for the purpose of allowing the catalytic metal exposed on the surface of the composite oxide particles to exist as an intermediate for storing and releasing oxygen and to contribute to exhaust gas purification.

<各種複合酸化物粒子の細孔容積、細孔径、結晶子径、比表面積>
上記各例の各複合酸化物粉末に加えて、さらに次の各複合酸化物粉末を調製し、各々の細孔容積等を調べた。
<Pore volume, pore diameter, crystallite diameter, specific surface area of various composite oxide particles>
In addition to the composite oxide powders of the above examples, the following composite oxide powders were further prepared, and the pore volumes and the like were examined.

−EthanolPtドープ例3−
Ce/Prモル比を7/3とする他はEthanolPtドープ例1と同じ条件及び方法で本例に係る複合酸化物粉末を調製した。得られた複合酸化物粉末を図面又は表においては「EthanolPtドープ Ce/Pr=7/3」又は「EthanolPtドープ Ce0.7Pr0.3」と記する。
-Ethanol Pt doping example 3-
A composite oxide powder according to this example was prepared under the same conditions and method as in EthanolPt dope example 1 except that the Ce / Pr molar ratio was 7/3. The obtained composite oxide powder is described as “Ethanol Pt-doped Ce / Pr = 7/3” or “Ethanol Pt-doped Ce 0.7 Pr 0.3 O 2 ” in the drawings or tables.

−EthanolPtドープ例4−
Ce/Prモル比を5/5とする他はEthanolPtドープ例1と同じ条件及び方法で本例に係る複合酸化物粉末を調製した。得られた複合酸化物粉末を図面又は表においては「EthanolPtドープ Ce/Pr=5/5」又は「EthanolPtドープ Ce0.5Pr0.5」と記する。
-Ethanol Pt doping example 4-
A composite oxide powder according to this example was prepared under the same conditions and method as in EthanolPt dope example 1 except that the Ce / Pr molar ratio was 5/5. The obtained composite oxide powder is described as “Ethanol Pt-doped Ce / Pr = 5/5” or “Ethanol Pt-doped Ce 0.5 Pr 0.5 O 2 ” in the drawings or tables.

−Pt−Pドープ例3−
Ce/Prモル比を5/5とする他はPt−Pドープ例1と同じ条件及び方法で本例に係る複合酸化物粉末を調製した。得られた複合酸化物粉末を図面又は表においては「Pt−Pドープ Ce/Pr=5/5」又は「Pt−Pドープ Ce0.5Pr0.5」と記する。
-Pt-P doping example 3-
A composite oxide powder according to this example was prepared under the same conditions and method as in Pt—P dope example 1 except that the Ce / Pr molar ratio was 5/5. Resulting in the drawings or tables composite oxide powder serial as "Pt-P-doped Ce / Pr = 5/5" or "Pt-P-doped Ce 0.5 Pr 0.5 O 2".

−Pt−P乾固例2−
Ce/Prモル比を5/5とする他はPt−P乾固例1と同じ条件及び方法で本例に係る複合酸化物粉末を調製した。得られた複合酸化物粉末を図面又は表においては「Pt−P乾固 Ce/Pr=5/5」又は「Pt−P乾固 Ce0.5Pr0.5」と記する。
-Pt-P dry example 2-
A composite oxide powder according to this example was prepared under the same conditions and method as in Pt-P drying example 1 except that the Ce / Pr molar ratio was 5/5. The obtained composite oxide powder is described as “Pt—P dry Ce / Pr = 5/5” or “Pt—P dry Ce 0.5 Pr 0.5 O 2 ” in the drawings or tables.

−Pt−P乾固例3−
Ce/Prモル比を1/9とする他はPt−P乾固例1と同じ条件及び方法で本例に係る複合酸化物粉末を調製した。得られた複合酸化物粉末を図面又は表においては「Pt−P乾固 Ce/Pr=1/9」又は「Pt−P乾固 Ce0.1Pr0.9」と記する。
-Pt-P dry example 3-
A composite oxide powder according to this example was prepared under the same conditions and method as in Pt-P drying example 1 except that the Ce / Pr molar ratio was 1/9. The obtained composite oxide powder is described as “Pt—P dry Ce / Pr = 1/9” or “Pt—P dry Ce 0.1 Pr 0.9 O 2 ” in the drawings or tables.

−細孔容積、細孔径、結晶子径、比表面積の測定結果−
上記各複合酸化物について、大気雰囲気において750℃又は1000℃の温度に24時間加熱するエージングを行なった後の、細孔容積、細孔径、結晶子径、及びBET比表面積の測定結果を表1に示す。なお、表1において、「細孔径」は平均細孔径であり、「結晶子径」はX線回折装置を用い、シェラーの式(結晶子径(hkl)=0.9λ/(β1/2・cosθ),ここで、hklはミラー指数、λは特性X線の波長(オングストローム)、β1/2は(hkl)面の半価幅(ラジアン)、θはX線反射角度である。)により求めた。また、「EthanolPtドープ Ce/Pr=1/9」及び「Pt−P乾固 Ce/Pr=1/9」は1000℃×24時間のエージングによってPr11の分相を生ずることから、該エージング後の結晶子径は母相酸化物と分相酸化物の平均値となっている。
-Measurement results of pore volume, pore diameter, crystallite diameter, specific surface area-
Table 1 shows the measurement results of the pore volume, the pore diameter, the crystallite diameter, and the BET specific surface area after aging by heating to a temperature of 750 ° C. or 1000 ° C. for 24 hours in the air atmosphere. Shown in In Table 1, “pore diameter” is an average pore diameter, and “crystallite diameter” is an X-ray diffractometer, and Scherrer's formula (crystallite diameter (hkl) = 0.9λ / (β 1/2 (Cos θ), where hkl is the Miller index, λ is the characteristic X-ray wavelength (angstrom), β 1/2 is the half width (radian) of the (hkl) plane, and θ is the X-ray reflection angle. Determined by In addition, “Ethanol Pt-doped Ce / Pr = 1/9” and “Pt-P dried Ce / Pr = 1/9” cause Pr 6 O 11 phase separation by aging at 1000 ° C. × 24 hours. The crystallite size after aging is an average value of the parent phase oxide and the phase separation oxide.

「EthanolPtドープ」は、Ce/Pr=1/9のケースが例外になるが、基本的には、「Pt−Pドープ」及び「Pt−P乾固」とは違って、平均細孔径の大きさに比べて細孔容積が大きくなっており、BET比表面積も大きくなっている。このことは、EthanolPtドープに係る複合酸化物粒子は、細孔数が多くてガスの拡散性が良いこと、従って、酸素吸蔵放出性能が高いことを意味する。また、「Pt−Pドープ」品と「Pt−P乾固」品とを比較すると、「Pt−Pドープ」品は「Pt−P乾固」品よりも細孔容積と細孔径が小さくなっているが、一方で前者はBET比表面積が大きくなっている。従って、「Pt−Pドープ」品は「Pt−P乾固」品よりも細孔数が増加していると考えられ、ガスの拡散性が良く、酸素吸蔵放出性能が高くなっている。     “Ethanol Pt dope” is an exception in the case of Ce / Pr = 1/9, but basically, unlike “Pt—P dope” and “Pt—P dry-solid”, the average pore diameter is large. Compared with this, the pore volume is increased, and the BET specific surface area is also increased. This means that the complex oxide particles according to EthanolPt dope have a large number of pores and good gas diffusibility, and therefore high oxygen storage / release performance. In addition, comparing the “Pt—P dope” product and the “Pt—P dry” product, the “Pt—P dope” product has a smaller pore volume and pore size than the “Pt—P dry” product. On the other hand, the former has a larger BET specific surface area. Therefore, it is considered that the “Pt—P dope” product has a larger number of pores than the “Pt—P dry” product, and the gas diffusibility is good and the oxygen storage / release performance is high.

また、シェラー式による平均結晶子径をみると、「EthanolPtドープ」は、「Pt−P乾固」よりも小さくなっており、エージングによる粒成長が甚だしくないこと、即ち、耐熱性が高いことがわかる。     In addition, looking at the average crystallite size by Scherrer formula, “Ethanol Pt dope” is smaller than “Pt-P dry-solid”, and grain growth due to aging is not significant, that is, heat resistance is high. Recognize.

ここに、Ce/Prモル比が1/9以上9/1以下である「EthanolPtドープ」の複合酸化物においては、1000℃×24時間エージング後のシェラー式による結晶子径が60nm未満であること、750℃×24時間エージング後の細孔容積が0.12cm/g以上であること、或いは750℃×24時間エージング後の平均細孔径が35nm未満であることが好ましい。 Here, in the complex oxide of “EthanolPt dope” having a Ce / Pr molar ratio of 1/9 or more and 9/1 or less, the crystallite diameter by Scherrer formula after aging at 1000 ° C. × 24 hours is less than 60 nm. it is preferable that the pore volume after 750 ° C. × 24 hours aging is 0.12 cm 3 / g or more, or the average pore size after 750 ° C. × 24 hours aging is less than 35 nm.

<酸素吸蔵放出性能>
上記EthanolPtドープ例1〜4、Pt−Pドープ例1,3及びPt−P乾固例1の各複合酸化物粉末、並びに「EthanolPtドープCeO」粉末について、大気雰囲気において750℃の温度に24時間加熱するエージング後の酸素吸蔵放出量を調べた。「EthanolPtドープCeO」粉末は、EthanolPtドープ例1の製法においてPr源の量を零として調製したものであり、Pt濃度は0.5質量%である。
<Oxygen storage and release performance>
For each of the composite oxide powders of the above Ethanol Pt doping examples 1 to 4, Pt—P doping examples 1 and 3, and Pt—P drying example 1 and “Ethanol Pt doped CeO 2 ” powder, a temperature of 750 ° C. was set at 24 ° C. The amount of oxygen stored and released after aging with heating for an hour was examined. “Ethanol Pt-doped CeO 2 ” powder was prepared in the production method of Ethanol Pt-doped Example 1 with the amount of Pr source being zero, and the Pt concentration was 0.5 mass%.

酸素吸蔵放出量の測定にあたっては、供試材0.10gに、5%Oガス(残;He)を100mL/分の流速で供給しながら、20℃/分の速度で昇温させていき、600℃の温度に20分間保持した後、室温まで冷却する前処理(酸素吸蔵処理)を行なった。しかる後、2%COガス(残;He)を100mL/分の流速で供給しながら、10℃/分の速度で昇温させていき、供試材から放出されるCO量の温度による変化を計測した。そのCO放出量は供試材の酸素放出量に対応する。 In measuring the amount of oxygen occluded and released, the temperature was increased at a rate of 20 ° C./min while supplying 5% O 2 gas (residue; He) at a flow rate of 100 mL / min to 0.10 g of the test material. After maintaining at a temperature of 600 ° C. for 20 minutes, a pretreatment (oxygen storage treatment) for cooling to room temperature was performed. Then, while supplying 2% CO gas (residue; He) at a flow rate of 100 mL / min, the temperature was increased at a rate of 10 ° C./min, and the change in the amount of CO 2 released from the test material depending on the temperature. Was measured. The CO 2 release amount corresponds to the oxygen release amount of the test material.

結果を図7に示す。Ptをドープした複合酸化物粉末はいずれも、Ptを乾固担持した複合酸化物粉末よりも、酸素放出量が多く、また、その酸素放出量が150℃ないし200℃以上の温度域において多くなっている。また、Ptをドープした複合酸化物粉末同士で比較すると、Ce/Pr=9/1(Ce0.9Pr0.1)である「EthanolPtドープ」と「Pt−Pドープ」とでは、前者が後者よりも、酸素放出量が多く、且つその放出ピーク温度が低温側にある。Ce/Pr=5/5(Ce0.5Pr0.5)である「EthanolPtドープ」及び「Pt−Pドープ」をみても、前者は後者よりも、酸素放出量が多く、且つその放出ピーク温度が低温側にある。また、EthanolPtドープ例はいずれも低温から高温に亘る広い温度域で比較的多量の酸素放出がある。以上から、Ptをドープした複合酸化物粉末は、耐熱性が高く、酸素吸蔵放出性能が優れていること(特に、「EthanolPtドープ」の複合酸化物粉末が優れていること)、従って、排気ガス浄化用触媒に有用であることがわかる。なお、「EthanolPtドープCe0.1Pr0.9」に関し、酸素放出量のピークが低温部と高温部の2箇所に現れているのは、Pr11の分相が影響していると考えられる。 The results are shown in FIG. All of the complex oxide powders doped with Pt have a higher oxygen release amount than that of the Pt-supported composite oxide powder, and the oxygen release amount increases in the temperature range of 150 ° C. to 200 ° C. or higher. ing. Further, when comparing Pt-doped composite oxide powders, with “Ethanol Pt dope” and “Pt—P dope” in which Ce / Pr = 9/1 (Ce 0.9 Pr 0.1 O 2 ), The former has a larger oxygen release amount than the latter, and its peak emission temperature is on the low temperature side. Looking at “EthanolPt dope” and “Pt-P dope” in which Ce / Pr = 5/5 (Ce 0.5 Pr 0.5 O 2 ), the former has more oxygen release than the latter, and its The emission peak temperature is on the low temperature side. Further, all of the EthanolPt dope examples release a relatively large amount of oxygen in a wide temperature range from low temperature to high temperature. From the above, the composite oxide powder doped with Pt has high heat resistance and excellent oxygen storage / release performance (particularly, the composite oxide powder of “Ethanol Pt dope” is excellent), and therefore, exhaust gas. It turns out that it is useful for the catalyst for purification | cleaning. Note relates "EthanolPt doped Ce 0.1 Pr 0.9 O 2", the peak of the oxygen release amount appears in the two places of the low temperature portion and the high-temperature portion is to influence phase separation of Pr 6 O 11 is It is thought that there is.

図8はCe/Pr=9/1(Ce0.9Pr0.1)である「EthanolPtドープ」と「Pt−P乾固」品の50℃〜600℃での酸素放出量を比較したものである。同図から、EthanolPtドープ例は酸素放出量が多いことがわかる。 Fig. 8 compares the amount of oxygen released from 50 ° C to 600 ° C for "EthanolPt dope" and "Pt-P dry-solid" products with Ce / Pr = 9/1 (Ce 0.9 Pr 0.1 O 2 ). It is a thing. From the figure, it can be seen that the Ethanol Pt doped example has a large oxygen release amount.

図9は、図7のEthanolPtドープ例1〜4及び「EthanolPtドープCeO」のデータに基いて、「EthanolPtドープ」品に関し、Pr/(Ce+Pr)モル比が50℃〜600℃での酸素放出量(トータル量)に及ぼす影響をみたものである。なお、同図の「□」は「Pt−P乾固Ce0.9Pr0.1」品についてのプロットである。同図によれば、Pr比率が高くなるに従って酸素放出量が増大することがわかる。 FIG. 9 shows oxygen release at a Pr / (Ce + Pr) molar ratio of 50 ° C. to 600 ° C. for the “Ethanol Pt doped” product based on the data of Ethanol Pt dopes 1 to 4 and “Ethanol Pt doped CeO 2 ” in FIG. This shows the effect on the amount (total amount). In the figure, “□” is a plot for a “Pt—P dried Ce 0.9 Pr 0.1 O 2 ” product. According to the figure, it can be seen that the oxygen release amount increases as the Pr ratio increases.

<酸素交換反応性>
上記「EthanolPtドープ Ce/Pr=9/1」粉末及び「Pt−P乾固 Ce/Pr=9/1」粉末の他に、「EthanolPtドープ Ce/Zr=9/1」粉末及び「Pt−P乾固 Ce/Zr=9/1」粉末を準備し、それら複合酸化物粉末の酸素交換反応性を評価した。「EthanolPtドープ Ce/Zr=9/1」粉末は、EthanolPtドープ例1の製法においてPr源に代えてZr源(オキシ硝酸ジルコニウム2水和物)を採用して調製したものであり、Pt濃度は0.5質量%である。「Pt−P乾固 Ce/Zr=9/1」粉末は、Pt−P乾固例1の製法において、CePr複合酸化物粉末に代えて、Ce/Zrモル比=9/1のCeZr複合酸化物粉末を採用して調製したものであり、Pt担持量は0.5質量%である。
<Oxygen exchange reactivity>
In addition to the above “Ethanol Pt-doped Ce / Pr = 9/1” powder and “Pt-P dry Ce / Pr = 9/1” powder, “Ethanol Pt-doped Ce / Zr = 9/1” powder and “Pt-P Dry / Ce / Zr = 9/1 ”powders were prepared, and the oxygen exchange reactivity of these composite oxide powders was evaluated. “Ethanol Pt-doped Ce / Zr = 9/1” powder was prepared by employing a Zr source (zirconium oxynitrate dihydrate) instead of the Pr source in the production method of Ethanol Pt-doped Example 1, and the Pt concentration was 0.5% by mass. The “Pt—P dry Ce / Zr = 9/1” powder was replaced with the CeZr composite oxide of Ce / Zr molar ratio = 9/1 in place of the CePr composite oxide powder in the production method of Pt—P dry example 1. The powder was prepared by using a product powder, and the amount of Pt supported was 0.5% by mass.

まず、各供試粉末150mgをペレット状にし、大気雰囲気において750℃の温度に24時間加熱するエージングを行なった。次いで、He雰囲気で室温から600℃の温度まで上昇させ、該600℃の温度で質量数18の酸素ガス(18;3.5%,残He,流量;100mL/分)を供給し、供試材から放出される酸素の質量数及び濃度を調べた。結果を図10に示す。同図において、「CePrPtドープ」は「EthanolPtドープ Ce/Pr=9/1」を、「CePrPt乾固」は「Pt−P乾固 Ce/Pr=9/1」を、「CeZrPtドープ」は「EthanolPtドープ Ce/Zr=9/1」を、「CeZrPt乾固」は「Pt−P乾固 Ce/Zr=9/1」を、それぞれ意味する。 First, 150 mg of each sample powder was pelletized and aged by heating to a temperature of 750 ° C. for 24 hours in an air atmosphere. Next, the temperature is raised from room temperature to 600 ° C. in a He atmosphere, and oxygen gas having a mass number of 18 ( 18 O 2 ; 3.5%, remaining He, flow rate; 100 mL / min) is supplied at the temperature of 600 ° C. The mass number and concentration of oxygen released from the specimen were examined. The results are shown in FIG. In the figure, “CePrPt dope” is “EthanolPt dope Ce / Pr = 9/1”, “CePrPt dry solid” is “Pt-P dry Ce / Pr = 9/1”, and “CeZrPt dope” is “CeZrPt dope”. “EthanolPt-doped Ce / Zr = 9/1” and “CeZrPt dry” mean “Pt—P dry Ce / Zr = 9/1”, respectively.

いずれの供試材においても、質量数16の酸素(16)及び質量数16の酸素原子と質量数18の酸素原子とからなる酸素(1618O)を放出しており、酸素過剰雰囲気において酸素交換反応を生ずることがわかる。その酸素交換反応は、Ptをドープした複合酸化物の方がPtを乾固担持した複合酸化物よりも活発であり、「EthanolPtドープ Ce/Pr=9/1」粉末によって調製した供試材が最も活発である。 In any test materials, and releasing oxygen (16 O 18 O) consisting of an oxygen atom and the mass number 18 oxygen atoms of a mass number 16 of oxygen (16 O 2) and the mass number 16, hyperoxia It can be seen that an oxygen exchange reaction occurs in the atmosphere. The oxygen exchange reaction is more active in the composite oxide doped with Pt than the composite oxide in which Pt is dry-supported, and the test material prepared with “EthanolPt-doped Ce / Pr = 9/1” powder is Most active.

<三元触媒性能(ライトオフ性能)>
複合酸化物粉末として、上記EthanolPtドープ例1〜4及びPt−P乾固例1〜3の他に、「Pt−P乾固 Ce/Pr=7/3」を準備した。「Pt−P乾固 Ce/Pr=7/3」は、Pt−P乾固例1の製法において、Ce/Prモル比が7/3となるようにしたものであり、Pt担持量は0.5質量%である。これらの8種類の各複合酸化物粉末を用いて、図2に示す中間層7の材料構成が相異なる三層構造の各サンプル触媒、並びに下層の材料構成が相異なる二層構造の各サンプル触媒を調製した。また、中間層7に複合酸化物に代えてCeOを採用した三層構造のサンプル触媒、並びに下層に複合酸化物に代えてCeOを採用した二層構造のサンプル触媒も調製した。これらサンプル触媒の層構成は表2のとおりである。
<Three-way catalyst performance (light-off performance)>
As a composite oxide powder, “Pt—P dry Ce / Pr = 7/3” was prepared in addition to the above Ethanol Pt dope examples 1 to 4 and Pt—P dry examples 1 to 3. “Pt—P dry Ce / Pr = 7/3” is a method in which the Ce / Pr molar ratio was 7/3 in the production method of Pt—P dry example 1, and the Pt loading was 0. 0.5% by mass. Using each of these 8 types of composite oxide powders, each sample catalyst having a three-layer structure in which the material composition of the intermediate layer 7 shown in FIG. 2 is different, and each sample catalyst having a two-layer structure in which the material composition of the lower layer is different. Was prepared. In addition, a sample catalyst having a three-layer structure employing CeO 2 instead of the composite oxide for the intermediate layer 7 and a sample catalyst having a two-layer structure employing CeO 2 instead of the composite oxide for the lower layer were also prepared. Table 2 shows the layer structure of these sample catalysts.

表2において、「PtドープCePr系複合酸化物」はEthanolPtドープ例1〜4の複合酸化物粉末を意味し、「Pt乾固CePr系複合酸化物」はPt−P乾固例1〜3及び「Pt−P乾固 Ce/Pr=7/3」の複合酸化物粉末を意味する。「Rh/CeZrNd複合酸化物」は、CeZrNd複合酸化物(CeO:ZrO:Nd=23:67:10(質量比))粒子にRhを蒸発乾固法で担持させたものである。「Pd/Al」はLaを5質量%含有する活性アルミナにPdを蒸発乾固法で担持させたものである。また、表中の「g/L」単位で表した数値は、担体1リットル当たりの各成分の担持量である。 In Table 2, “Pt-doped CePr-based composite oxide” means the composite oxide powder of EthanolPt-doped Examples 1 to 4, and “Pt dry-solid CePr-based composite oxide” means Pt—P dry-solid examples 1 to 3 and This means a composite oxide powder of “Pt—P dry Ce / Pr = 7/3”. “Rh / CeZrNd composite oxide” is a CeZrNd composite oxide (CeO 2 : ZrO 2 : Nd 2 O 3 = 23: 67: 10 (mass ratio)) particles supported by Rh by evaporation to dryness. is there. “Pd / Al 2 O 3 ” is obtained by supporting Pd on an activated alumina containing 5% by mass of La 2 O 3 by the evaporation to dryness method. Moreover, the numerical value represented by the unit of “g / L” in the table is the loading amount of each component per liter of the carrier.

上記各サンプル触媒について、エージング(酸素を2%、水蒸気を10%含む窒素ガス中で900℃の温度に24時間保持)を行なった後、模擬排気ガス流通反応装置及び排気ガス分析装置を用いて、プリコンディショニングを行ない、次いで、ライトオフ温度T50(℃)を測定した。プリコンディショニングは、模擬排気ガスを空間速度60000/hで触媒に流しながら、ガス温度を100℃から30℃/分の速度で600℃まで上昇させるというものである。模擬排気ガスについては、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。ライトオフ温度の測定も、プリコンディショニングの場合と同じ条件で行なった。A/F=14.7、A/F=13.8及びA/F=15.6のときのガス組成を表3に示す。     Each sample catalyst was aged (held at a temperature of 900 ° C. for 24 hours in nitrogen gas containing 2% oxygen and 10% water vapor for 24 hours), and then used a simulated exhaust gas flow reactor and an exhaust gas analyzer. Then, preconditioning was performed, and then the light-off temperature T50 (° C.) was measured. Preconditioning is to raise the gas temperature from 100 ° C. to 600 ° C. at a rate of 30 ° C./min while flowing simulated exhaust gas through the catalyst at a space velocity of 60000 / h. For the simulated exhaust gas, the A / F was set to ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. It was forced to vibrate with amplitude. The light-off temperature was also measured under the same conditions as for preconditioning. Table 3 shows the gas composition when A / F = 14.7, A / F = 13.8 and A / F = 15.6.

ライトオフ温度T50(℃)は、模擬排気ガス温度の上昇により、触媒下流で検出されるガスの各成分(HC、CO及びNOx(窒素酸化物))濃度が、触媒に流入するガスの各成分(HC、CO及びNOx)濃度の半分になった時点(すなわち浄化率が50%になった時点)の触媒入口ガス温度である。測定結果を図11に示す。同図において、「◆」、「■」及び「▲」は、HC、CO及びNOxの浄化に関するライトオフ温度T50を示す。また、「Ce100%3層」は中間層7にCeOを配置し三層構造のサンプル触媒、「Ce100%2層」は下層にCeOを配置した二層構造のサンプル触媒のことである。「×」については後述する。 The light-off temperature T50 (° C.) is the concentration of each component (HC, CO and NOx (nitrogen oxide)) detected downstream of the catalyst due to the rise in the simulated exhaust gas temperature. This is the catalyst inlet gas temperature at the time when the concentration of (HC, CO and NOx) becomes half (that is, when the purification rate becomes 50%). The measurement results are shown in FIG. In the figure, “♦”, “■”, and “▲” indicate the light-off temperature T50 relating to the purification of HC, CO, and NOx. “Ce 100% 3 layers” is a sample catalyst having a three-layer structure in which CeO 2 is arranged in the intermediate layer 7, and “Ce 100% two layers” is a sample catalyst having a two-layer structure in which CeO 2 is arranged in the lower layer. “X” will be described later.

PtドープCePr系複合酸化物粉末を採用した実施例はPt乾固CePr系複合酸化物粉末を採用した比較例よりも、ライトオフ温度T50が低くなっており、図7に示す酸素吸蔵放出特性の評価結果(Ptドープの方がPt乾固よりも酸素放出量が多い)、並びに図10の酸素交換反応性の評価結果(Ptドープの方がPt乾固よりも酸素交換反応を生じ易い)と符合している。また、実施例に関し、Ce/Pr比とライトオフ温度T50との関係をみると、Ce/Pr比が小さくなる(Pr比率が高くなる)につれてライトオフ温度T50が低くなっていく傾向が見られる。これも、図9のCe/Pr比が小さくなる(Pr比率が高くなる)につれて酸素吸蔵放出量が増大していく傾向に符合している。以上から、実施例は、PtドープCePr系複合酸化物粉末の優れた酸素吸蔵放出性能及び酸素交換反応性によって、三元触媒性能(ライトオフ性能)が良くなっている、ということができる。     The Example which employ | adopted Pt dope CePr type complex oxide powder has light-off temperature T50 lower than the comparative example which employ | adopted Pt dry-solid CePr type complex oxide powder, and the oxygen storage-release characteristic shown in FIG. The evaluation result (Pt dope has a larger oxygen release amount than Pt dryness), and the oxygen exchange reactivity evaluation result of FIG. 10 (Pt dope is more likely to cause oxygen exchange reaction than Pt dryness). It matches. Further, regarding the example, when the relationship between the Ce / Pr ratio and the light-off temperature T50 is observed, the light-off temperature T50 tends to decrease as the Ce / Pr ratio decreases (the Pr ratio increases). . This also coincides with the tendency that the oxygen storage / release amount increases as the Ce / Pr ratio in FIG. 9 decreases (the Pr ratio increases). From the above, it can be said that in the examples, the three-way catalyst performance (light-off performance) is improved by the excellent oxygen storage / release performance and oxygen exchange reactivity of the Pt-doped CePr-based composite oxide powder.

図11の「×」はA/F=20の模擬排気ガスを用いて測定した各サンプル触媒のリーンNOx浄化率を示す。この模擬排気ガスは、触媒によるHC及びCOの浄化を促進すべく、エンジンの排気通路に二次エアを供給するケースを想定したものである。実施例では比較例よりも、当該リーンNOx浄化率が高くなっているが、これには、PtドープCePr系複合酸化物粉末の優れた酸素交換反応性が影響していると考えられる。図11から、本発明によれば、二次エアを供給するケースでのNOx浄化率の落ち込みも抑制されるということができる。     “X” in FIG. 11 indicates the lean NOx purification rate of each sample catalyst measured using the simulated exhaust gas of A / F = 20. This simulated exhaust gas assumes a case where secondary air is supplied to the exhaust passage of the engine in order to promote the purification of HC and CO by the catalyst. In the examples, the lean NOx purification rate is higher than in the comparative example, but this is considered to be due to the excellent oxygen exchange reactivity of the Pt-doped CePr-based composite oxide powder. From FIG. 11, according to the present invention, it can be said that the drop in the NOx purification rate in the case of supplying secondary air is also suppressed.

なお、上記実施例のPtドープCePr系複合酸化物の金属成分はCe、Pr及びPtであるが、これにZrなど他の金属成分を配合することもできる。また、ゼオライトを含有するHCトラップ層を、図2に示した触媒層6よりも下層に配置することで、冷間始動時の未燃HC成分の大気中への排出量を低減させるようにしてもよい。     The metal components of the Pt-doped CePr-based composite oxide of the above examples are Ce, Pr, and Pt, but other metal components such as Zr can also be blended therein. In addition, by disposing the HC trap layer containing zeolite below the catalyst layer 6 shown in FIG. 2, the amount of unburned HC components discharged into the atmosphere during cold start is reduced. Also good.

また、本発明は、ヘキサヒドロキソ白金(IV)酸エタノールアミン溶液以外のPt源でPtをドープしたCePr系複合酸化物を用いるケースも含む。     The present invention also includes a case of using a CePr-based composite oxide doped with Pt with a Pt source other than a hexahydroxoplatinum (IV) acid ethanolamine solution.

本発明の実施例に係るエンジンの排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification system of the engine which concerns on the Example of this invention. 本発明に係る排気ガス浄化用触媒を示す断面図である。1 is a cross-sectional view showing an exhaust gas purifying catalyst according to the present invention. 本発明の実施例に係る複合酸化物粒子のTEM写真である。It is a TEM photograph of complex oxide particles concerning an example of the present invention. ヘキサヒドロキソ白金(IV)錯イオンの構造式を示す図である。It is a figure which shows the structural formula of a hexahydroxo platinum (IV) complex ion. ジニトロジアミン白金(II)の構造式を示す図である。It is a figure which shows the structural formula of dinitrodiamine platinum (II). 各種複合酸化物粒子の表面Pt濃度比を示すグラフ図である。It is a graph which shows the surface Pt density | concentration ratio of various composite oxide particles. 各種複合酸化物粉末の酸素吸蔵放出量の温度変化を示すグラフ図である。It is a graph which shows the temperature change of the oxygen storage-and-release amount of various composite oxide powder. Ptドープ複合酸化物とPt乾固複合酸化物の酸素放出量を比較したグラフ図である。It is the graph which compared the oxygen release amount of Pt dope complex oxide and Pt dry solid complex oxide. Ptドープ複合酸化物のPr/(Ce+Pr)モル比と酸素放出量との関係を示すグラフ図である。It is a graph which shows the relationship between Pr / (Ce + Pr) molar ratio and oxygen release amount of Pt dope complex oxide. 各種複合酸化物の酸素交換反応性を示すグラフ図である。It is a graph which shows the oxygen exchange reactivity of various complex oxides. 排気ガス浄化用触媒のCe/Prモル比とライトオフ温度T50及びリーンNOx浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between Ce / Pr molar ratio of the exhaust gas purification catalyst, light-off temperature T50, and lean NOx purification rate.

符号の説明Explanation of symbols

1 エンジン
2 排気通路
3 排気ガス浄化用触媒
5 担体
6 下触媒層
7 中間触媒層
8 上触媒層
DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust passage 3 Exhaust gas purification catalyst 5 Carrier 6 Lower catalyst layer 7 Intermediate catalyst layer 8 Upper catalyst layer

Claims (6)

エンジンから排出される排気ガス中のHC、CO及びNOxをストイキ付近で浄化する排気ガス浄化用触媒であって、
Ceと、Prと、触媒金属とが酸化物粒子を形成するように複合されてなり、Ce酸化物及びPr酸化物各々の少なくとも一部が互いに固溶し、且つ上記触媒金属が当該酸化物粒子に固溶している触媒金属ドープCePr系複合酸化物粒子を含有することを特徴とする排気ガス浄化用触媒。
An exhaust gas purifying catalyst for purifying HC, CO and NOx in exhaust gas discharged from an engine in the vicinity of stoichiometry,
Ce, Pr, and catalyst metal are combined so as to form oxide particles, and at least a part of each of Ce oxide and Pr oxide is in solid solution with each other, and the catalyst metal is the oxide particles. A catalyst for exhaust gas purification, comprising catalytic metal-doped CePr-based composite oxide particles that are dissolved in the catalyst.
請求項1において、
上記CePr系複合酸化物粒子に固溶している触媒金属の一部は、該粒子表面に分散して露出していることを特徴とする排気ガス浄化用触媒。
In claim 1,
An exhaust gas purifying catalyst, wherein a part of the catalyst metal solid-dissolved in the CePr-based composite oxide particles is dispersed and exposed on the particle surface.
請求項1又は請求項2において、
上記触媒金属ドープCePr系複合酸化物粒子は、Ce/Prモル比が1/99以上99/1以下であることを特徴とする排気ガス浄化用触媒。
In claim 1 or claim 2,
The catalyst metal-doped CePr-based composite oxide particles have an Ce / Pr molar ratio of 1/99 or more and 99/1 or less, and an exhaust gas purifying catalyst.
請求項1又は請求項2において、
上記触媒金属ドープCePr系複合酸化物粒子は、Ce/Prモル比が1/9以上7/3以下であることを特徴とする排気ガス浄化用触媒。
In claim 1 or claim 2,
The catalyst metal-doped CePr-based composite oxide particles have an Ce / Pr molar ratio of 1/9 or more and 7/3 or less.
請求項1乃至請求項4のいずれか一において、
担体上に複数の触媒層が積層して形成され、
上記触媒金属ドープCePr系複合酸化物粒子は、最上層よりも下の触媒層に配置されていることを特徴とする排気ガス浄化用触媒。
In any one of Claims 1 thru | or 4,
A plurality of catalyst layers are laminated on the support,
An exhaust gas purifying catalyst, wherein the catalyst metal-doped CePr-based composite oxide particles are disposed in a catalyst layer below the uppermost layer.
請求項5において、
上記触媒金属ドープCePr系複合酸化物粒子は、上記触媒金属としてPtがCePr系複合酸化物粒子に固溶したものであり、
上記最上層には、Rhを担持したCeZr系複合酸化物粒子が配置されていることを特徴とする排気ガス浄化用触媒。
In claim 5,
The catalyst metal-doped CePr-based composite oxide particles are obtained by dissolving Pt as the catalyst metal in CePr-based composite oxide particles,
An exhaust gas purifying catalyst, wherein CeZr-based composite oxide particles supporting Rh are arranged in the uppermost layer.
JP2008269027A 2008-10-17 2008-10-17 Exhaust gas purification catalyst Expired - Fee Related JP5412789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269027A JP5412789B2 (en) 2008-10-17 2008-10-17 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269027A JP5412789B2 (en) 2008-10-17 2008-10-17 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2010094629A true JP2010094629A (en) 2010-04-30
JP5412789B2 JP5412789B2 (en) 2014-02-12

Family

ID=42256697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269027A Expired - Fee Related JP5412789B2 (en) 2008-10-17 2008-10-17 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP5412789B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095418A (en) * 2008-10-17 2010-04-30 Mazda Motor Corp Composite oxide for purifying exhaust gas and method for producing the same
JP2015100788A (en) * 2013-11-28 2015-06-04 マツダ株式会社 Production method of catalyst material, production method of particulate filter with catalyst using the same, and production method of three way catalyst for gasoline engine
CN114433060A (en) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 Catalyst for treating bromine-containing petrochemical organic waste gas and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423293B1 (en) * 1996-09-06 2002-07-23 Ford Global Technologies, Inc. Oxygen storage material for automotive catalysts and process of using
JP2003135962A (en) * 2001-10-30 2003-05-13 Nissan Motor Co Ltd System for purifying exhaust gas
JP2005305363A (en) * 2004-04-23 2005-11-04 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2006346603A (en) * 2005-06-16 2006-12-28 Cataler Corp Catalyst composition
JP2008012410A (en) * 2006-07-04 2008-01-24 Cataler Corp Catalyst for purifying exhaust gas
JP2008178767A (en) * 2007-01-23 2008-08-07 Mazda Motor Corp Diesel oxidation catalyst
JP2008212833A (en) * 2007-03-05 2008-09-18 Mazda Motor Corp Composite oxide for exhaust gas purifying catalyst and exhaust gas purifying catalyst containing this composite oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423293B1 (en) * 1996-09-06 2002-07-23 Ford Global Technologies, Inc. Oxygen storage material for automotive catalysts and process of using
JP2003135962A (en) * 2001-10-30 2003-05-13 Nissan Motor Co Ltd System for purifying exhaust gas
JP2005305363A (en) * 2004-04-23 2005-11-04 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2006346603A (en) * 2005-06-16 2006-12-28 Cataler Corp Catalyst composition
JP2008012410A (en) * 2006-07-04 2008-01-24 Cataler Corp Catalyst for purifying exhaust gas
JP2008178767A (en) * 2007-01-23 2008-08-07 Mazda Motor Corp Diesel oxidation catalyst
JP2008212833A (en) * 2007-03-05 2008-09-18 Mazda Motor Corp Composite oxide for exhaust gas purifying catalyst and exhaust gas purifying catalyst containing this composite oxide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6012057191; LOGAN, A.D. et al: 'Oxygen availability in mixed cerium/praseodymium oxides and the effect of noble metals' Journal of Materials Research Vol.9, No.2, 199402, p.468-475 *
JPN6012059574; BORCHERT, H. et al: 'Electronic and Chemical Properties of Nanostructured Cerium Dioxide Doped with Praseodymium' J. Phys. Chem. B Vol.109, No.12, 20050304, p.5728-5738 *
JPN6012059576; SADYKOV, V.A. et al: 'Fuel-rich methane combustion: Role of the Pt dispersion and oxygen mobility in a fluorite-like compl' Catalysis Today Vol.117, No.4, 20060720, 475-483 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010095418A (en) * 2008-10-17 2010-04-30 Mazda Motor Corp Composite oxide for purifying exhaust gas and method for producing the same
JP2015100788A (en) * 2013-11-28 2015-06-04 マツダ株式会社 Production method of catalyst material, production method of particulate filter with catalyst using the same, and production method of three way catalyst for gasoline engine
CN114433060A (en) * 2020-10-16 2022-05-06 中国石油化工股份有限公司 Catalyst for treating bromine-containing petrochemical organic waste gas and preparation method and application thereof
CN114433060B (en) * 2020-10-16 2024-02-02 中国石油化工股份有限公司 Bromated organic waste gas treatment catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP5412789B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP6703537B2 (en) Nitrous oxide removal catalyst for exhaust systems
JP5381008B2 (en) Particulate filter and manufacturing method thereof
JP2006334490A (en) Catalyst for cleaning exhaust gas
WO2015075875A1 (en) Catalyst material for exhaust gas purification and method for producing same
JP5488214B2 (en) Exhaust gas purification catalyst
JP5023969B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP4697284B2 (en) Exhaust gas purification catalyst
JP4985299B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP2007069076A (en) Catalyst for cleaning exhaust gas and diesel particulate filter with catalyst
JP5412789B2 (en) Exhaust gas purification catalyst
JP2009106855A (en) Catalyst material for cleaning exhaust gas component and particulate filter with the same catalyst material
JP2016203116A (en) Catalyst for exhaust gas purification
JP5488215B2 (en) Exhaust gas purification catalyst
JP5834925B2 (en) Particulate filter with catalyst
US11446638B2 (en) Hydrogen-producing catalyst and exhaust gas purifying catalyst using same
JP4589032B2 (en) Exhaust gas purification catalyst and oxygen storage material for the catalyst
JP4858394B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP5412788B2 (en) Exhaust gas purification catalyst
JP6194699B2 (en) Manufacturing method of particulate filter with catalyst
JP5589320B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5391640B2 (en) Exhaust gas purification catalyst
JP5029273B2 (en) Particulate filter
JP5034871B2 (en) Exhaust gas component purification catalyst material and particulate filter with the catalyst material
JP2019171323A (en) Catalyst material for purifying particulates, and method for manufacturing the same
JP2009078202A (en) Catalytic metal-deposited oxygen storage material, method for manufacturing the same and catalyst using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5412789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees