JP2010094623A - Method for preparing catalyst for removing nitrogen oxide - Google Patents

Method for preparing catalyst for removing nitrogen oxide Download PDF

Info

Publication number
JP2010094623A
JP2010094623A JP2008268807A JP2008268807A JP2010094623A JP 2010094623 A JP2010094623 A JP 2010094623A JP 2008268807 A JP2008268807 A JP 2008268807A JP 2008268807 A JP2008268807 A JP 2008268807A JP 2010094623 A JP2010094623 A JP 2010094623A
Authority
JP
Japan
Prior art keywords
catalyst
component
mesoporous silica
mesopores
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008268807A
Other languages
Japanese (ja)
Other versions
JP5243919B2 (en
Inventor
Kiyoshi Ikemoto
清司 池本
Yasuyoshi Kato
泰良 加藤
Masatoshi Fujisawa
雅敏 藤澤
Naomi Imada
尚美 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2008268807A priority Critical patent/JP5243919B2/en
Publication of JP2010094623A publication Critical patent/JP2010094623A/en
Application granted granted Critical
Publication of JP5243919B2 publication Critical patent/JP5243919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly durable denitrification catalyst which is not deteriorated by coexistence gases such as steam or SO<SB>2</SB>, and which possesses a high initial activity, as a method for improving poisoning-resistance against catalyst poison components such as P or As. <P>SOLUTION: In the method for preparing a catalyst for removing nitrogen oxides, a first component of a composition prepared by pre-burning a V component and an Mo component carried on a Ti oxide and a second component of a mesoporous silica are wet-crushed in the presence of water, then formed, dried and burned. The mesoporous silica possesses tight and uniform mesopores of a porous structure of a pore diameter of 2-5 nm. Reactant gases can enter mesopores but a catalyst poisoning phosphorous compound cannot intrude. The secondary particles of mesoporous silica are made minute while the mesopores are maintained by wet-crushing and mixing a catalyst powder and the mesoporous silica, and such a structure that the mesoporous silica present around TiO<SB>2</SB>carrying the active components is achieved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は排ガス中の窒素酸化物の浄化用触媒に関わり、特に石炭焚きボイラなどからの排ガス中に多く含まれる触媒毒成分(P、Asなど)による脱硝触媒の劣化を防止し、長期間効率良い排ガス浄化が可能な窒素酸化物除去用触媒の製造方法に関するものである。   The present invention relates to a catalyst for purifying nitrogen oxides in exhaust gas, and in particular, prevents deterioration of the denitration catalyst due to catalyst poison components (P, As, etc.) contained in a large amount in exhaust gas from coal-fired boilers, etc. The present invention relates to a method for producing a catalyst for removing nitrogen oxides, which can perform good exhaust gas purification.

石炭焚きボイラなどからの排ガス中には、リン(P)化合物やヒ素(As)化合物といった脱硝触媒にとって触媒毒とされる成分が含まれている。一般的に、リン(P)化合物による脱硝触媒の劣化は、活性成分へのリン(P)化合物の吸着あるいは化学反応が原因であることから、触媒表面にある活性成分が被毒されやすいと考えられている。今後、低品位な亜瀝青炭や瀝青炭を燃料としたボイラが増加する傾向にあり、排ガス中に含まれる触媒毒の量は増加の方向にある。このため、脱硝性能が高くかつ耐毒性の高い触媒が求められており、触媒の劣化防止法について数多くの研究が行われている。   In exhaust gas from a coal-fired boiler or the like, components that are regarded as catalyst poisons for denitration catalysts such as phosphorus (P) compounds and arsenic (As) compounds are included. In general, the deterioration of a denitration catalyst by a phosphorus (P) compound is caused by the adsorption or chemical reaction of the phosphorus (P) compound to the active component, so the active component on the catalyst surface is likely to be poisoned. It has been. In the future, the number of boilers using low-grade subbituminous coal and bituminous coal as fuel will increase, and the amount of catalyst poison contained in the exhaust gas is increasing. For this reason, a catalyst having high denitration performance and high toxicity resistance is required, and many studies have been conducted on methods for preventing catalyst deterioration.

上記の触媒の劣化防止の方法には、(1)活性成分への触媒毒の吸着を抑制させる化学的な劣化防止法と、(2)特定の細孔内に活性成分を担持して、分子ふるい効果により触媒毒との接触を物理的に防止する物理的な劣化防止方法とがある。このうち、(1)の方法では、酸化チタンと、バナジウム、銅、鉄、マンガンから選ばれる1種以上の元素の酸化物からなる組成物に、モリブデン、タングステン、スズから選ばれる1種以上の元素の酸化物を吸着・担持したアンモニア接触還元脱硝用触媒(特許文献1)、(2)の方法では、特定の細孔を有する物質としてゼオライトを用いた触媒((特許文献2、3)などが開示されている。また、ナノサイズの細孔を利用した触媒の研究としては、ゼオライト以外に、メソポーラスシリカのメソ孔を利用したものがあり、この方法では例えば、既存のメソポーラスシリカの細孔内に触媒成分を担持した触媒(特許文献4、5、非特許文献1、2)や、ケイ酸ナトリウムなどのケイ酸塩とチタン化合物を用いて、チタン酸化物の周りにメソポーラスシリカを形成させた触媒(特許文献6、7、8)などが挙げられる。
特開昭64−70144号公報 特開昭63−12348号公報 特開昭63−91142号公報 特開2005−152725号公報 特開平9−299794号公報 特開2006−151753号公報 特開2005−314208号公報 特開2005−162596号公報 Xueguaug Wang、J.of Catal.、222(2004)、p565-571 98th CATSJ Meeting abstracts、No.1 A 10
The method for preventing the deterioration of the catalyst includes (1) a chemical deterioration preventing method for suppressing the adsorption of the catalyst poison to the active component, and (2) a molecule in which the active component is supported in a specific pore. There is a physical deterioration prevention method in which contact with the catalyst poison is physically prevented by a sieving effect. Among these, in the method (1), the composition comprising titanium oxide and an oxide of one or more elements selected from vanadium, copper, iron, and manganese is added to one or more selected from molybdenum, tungsten, and tin. In the method of catalytic catalytic reduction denitration that adsorbs / supports elemental oxide (Patent Document 1) and (2), a catalyst using zeolite as a substance having specific pores (Patent Documents 2 and 3) In addition to zeolite, research on catalysts using nano-sized pores has also made use of mesoporous silica, and in this method, for example, pores of existing mesoporous silica are disclosed. The catalyst around which the catalyst component is supported (Patent Documents 4 and 5, Non-Patent Documents 1 and 2), and a silicate and a titanium compound such as sodium silicate are used around the titanium oxide. Such catalysts to form a porous silica (Patent Document 6, 7, 8) can be mentioned.
JP-A 64-70144 JP 63-12348 A JP-A-63-91142 JP 2005-152725 A JP-A-9-299794 JP 2006-151753 A JP-A-2005-314208 JP 2005-162596 A Xueguaug Wang, J. of Catal., 222 (2004), p565-571 98th CATSJ Meeting abstracts, No.1 A 10

しかしながら、上記の従来技術において、(1)の化学的な劣化防止方法では、毒物に対する劣化を完全に防止することは出来ない点において改善の余地が残されている。一方(2)の分子ふるい効果により細孔内への特定の物質(触媒毒となる成分)の侵入を防止する方法は、触媒毒成分と活性成分との接触防止が図られるため効果が高い。しかしながら、このうちゼオライト触媒による物理的な劣化防止方法においては、水蒸気やSO2などの共存ガスによって劣化しやすいなどの改善点が残されている。 However, in the above-described prior art, there is still room for improvement in that the chemical degradation prevention method (1) cannot completely prevent the degradation of poisonous substances. On the other hand, the method (2) for preventing the entry of a specific substance (component that becomes a catalyst poison) into the pores by the molecular sieving effect is highly effective because it prevents contact between the catalyst poison component and the active component. However, among these, the physical deterioration prevention method using a zeolite catalyst still has improvements such as being easily deteriorated by a coexisting gas such as water vapor or SO 2 .

さらに、触媒毒、例えばリン(P)化合物などが侵入できない径のメソ孔を多く持つメソポーラスシリカのメソ孔に脱硝触媒を担持した触媒は、耐酸性に優れた触媒であるが、触媒を担持することにより細孔の入口が閉塞したり狭まったりするため、細孔内での脱硝反応の拡散速度が遅くなり、高い性能が得られにくい、また、これを避けるために触媒成分の担持量を減少させると初期性能が高くできないなど改善の余地が残されている。   Furthermore, a catalyst in which a denitration catalyst is supported in a mesopore of mesoporous silica having a number of mesopores having a diameter that cannot be penetrated by a catalyst poison, such as a phosphorus (P) compound, is a catalyst having excellent acid resistance. As a result, the inlet of the pores is blocked or narrowed, so the diffusion rate of the denitration reaction in the pores is slow, and high performance is difficult to obtain, and the amount of catalyst components supported is reduced to avoid this There is still room for improvement, such as initial performance cannot be improved.

本発明の課題は、上記の従来技術の問題点を解決し、リン(P)やヒ素(As)などの触媒毒成分からの耐毒性の向上法として、水蒸気やSO2などの共存ガスによる劣化を生じず、かつ高い初期活性を有する耐久性の高い脱硝触媒を提供することにある。 The problem of the present invention is to solve the above-mentioned problems of the prior art, and as a method for improving the toxicity resistance from catalytic poison components such as phosphorus (P) and arsenic (As), deterioration due to coexisting gases such as water vapor and SO 2 And providing a highly durable denitration catalyst having high initial activity.

上記の本発明の課題は、次の解決手段で解決される。
請求項1記載の発明は、チタン酸化物に、予めモリブデン及びバナジウムの活性成分を担持後、予備焼成して得た組成物を第1成分、メソポーラスシリカを第2成分とし、上記第1成分と第2成分とを、水存在下で湿式粉砕後、成形、乾燥及び焼成を順次行う窒素酸化物除去用触媒の製造方法である。
The above-mentioned problems of the present invention are solved by the following means.
According to the first aspect of the present invention, a composition obtained by pre-calcining an active component of molybdenum and vanadium on titanium oxide is preliminarily calcined as a first component, mesoporous silica as a second component, and the first component and The second component is a method for producing a catalyst for removing nitrogen oxides, which is subjected to wet pulverization in the presence of water, followed by molding, drying, and firing.

請求項2記載の発明は、チタン酸化物にバナジウム及びモリブデンの活性成分を担持後の予備焼成温度が250℃以上600℃以下(好ましくは300℃以上500℃以下)であり、第1成分と第2成分の重量比(触媒粉末/SiO2)が0.2〜1.5(好ましくは0.5〜1.0)である請求項1記載の窒素酸化物除去用触媒の製造方法である。 According to a second aspect of the present invention, the pre-baking temperature after supporting the active components of vanadium and molybdenum on the titanium oxide is 250 ° C. or higher and 600 ° C. or lower (preferably 300 ° C. or higher and 500 ° C. or lower). 2. The method for producing a catalyst for removing nitrogen oxides according to claim 1, wherein the weight ratio of the two components (catalyst powder / SiO 2 ) is 0.2 to 1.5 (preferably 0.5 to 1.0).

請求項3記載の発明は、前記湿式粉砕の方法が、遊星ボールミル粉砕機を用いて水存在下で粉砕する請求項1記載の窒素酸化物除去用触媒の製造方法である。   The invention according to claim 3 is the method for producing a catalyst for removing nitrogen oxide according to claim 1, wherein the wet pulverization is performed in the presence of water using a planetary ball mill pulverizer.

(作用)
メソポーラスシリカ1は、図2に示すようにマクロ孔3の他に細孔径2〜5nmの細孔構造がしっかりとした均一なメソ孔2を有している。さらに、本発明者らの検討の結果、このメソ細孔2には、図1に示すように反応ガス5は侵入できるが、触媒毒であるリン化合物6などは侵入できないことが明らかになった。
(Function)
As shown in FIG. 2, the mesoporous silica 1 has uniform mesopores 2 having a firm pore structure having a pore diameter of 2 to 5 nm in addition to the macropores 3. Further, as a result of the study by the present inventors, it has been clarified that the reaction gas 5 can enter the mesopores 2 as shown in FIG. 1, but the phosphorus compound 6 or the like, which is a catalyst poison, cannot enter. .

図5は、メソポーラスシリカとメソポーラスシリカにリンを担持した後の細孔分布を示す。リン担持後も、メソポーラスシリカ1のメソ孔2はほとんど減少しておらず、メソ孔2にリン(P)化合物が侵入していないことが分かる。そこで、本発明者らは、メソ孔2を利用して耐毒性を飛躍的に高めた触媒を実現するには、反応ガス5は拡散するがリン化合物6などの触媒毒成分は侵入できない図1に示すような構造を備えた触媒を実現すれば良いと考え、鋭意検討した。その結果、本発明に至ったのである。   FIG. 5 shows the pore distribution after mesoporous silica and mesoporous silica are loaded with phosphorus. Even after phosphorus is supported, the mesopores 2 of the mesoporous silica 1 are hardly decreased, and it can be seen that the phosphorus (P) compound does not enter the mesopores 2. Therefore, in order to realize a catalyst having dramatically enhanced toxicity resistance using the mesopores 2, the present inventors can diffuse the reaction gas 5 but cannot enter the catalyst poison component such as the phosphorus compound 6. The inventors considered that it would suffice to realize a catalyst having a structure as shown in FIG. As a result, the present invention has been achieved.

本発明では、図1に示す構造を備えた触媒を実現するための手段として、触媒粉末と市販の50〜70μmの粒径を有する二次粒子(一次粒子が凝集したもの)を含むメソポーラスシリカを湿式で粉砕しながら混合することが重要である。こうすることで、メソ孔2を維持しつつもメソポーラスシリカ1の二次粒子が微細化され、活性成分が担持されたTiO24の周りにメソポーラスシリカ1が存在する図1に示す構造を実現できる。メソポーラスシリカ1の二次粒子の粉砕を伴わない粉砕法や混合法では、第2成分であるメソポーラスシリカ1のマクロ孔3が破壊されないため、図1に示すような触媒を得ることができない。 In the present invention, as means for realizing the catalyst having the structure shown in FIG. 1, mesoporous silica containing catalyst powder and commercially available secondary particles having a particle size of 50 to 70 μm (aggregates of primary particles) is used. It is important to mix while wet grinding. By doing so, the secondary particles of the mesoporous silica 1 are refined while maintaining the mesopores 2, and the structure shown in FIG. 1 in which the mesoporous silica 1 exists around the TiO 2 4 supporting the active component is realized. it can. In the pulverization method or mixing method that does not involve pulverization of the secondary particles of the mesoporous silica 1, the macropores 3 of the mesoporous silica 1 that is the second component are not destroyed, and thus a catalyst as shown in FIG. 1 cannot be obtained.

また、高い脱硝性能を確保することを目的として、触媒の細孔内への反応ガス5の拡散性を低下させないためにメソポーラスシリカ1のメソ孔2には触媒成分が担持されないことが重要である。上記の触媒を得る手段として、触媒成分4には酸化チタンに予め活性成分を担持・焼成した粉末を用いる。こうすることにより、チタン酸化物上に脱硝活性成分が担持された活性の高い粉末を得るとともに、酸化物の構造を安定化させ、水共存下においても酸化物の構造が容易に変化することを防ぐ作用と、触媒粉末の粒子径を増大させる効果を得ることができる。   In order to ensure high denitration performance, it is important that the mesopores 2 of the mesoporous silica 1 do not carry a catalyst component so as not to reduce the diffusibility of the reaction gas 5 into the pores of the catalyst. . As a means for obtaining the above catalyst, the catalyst component 4 is a powder in which an active component is previously supported and fired on titanium oxide. By doing this, it is possible to obtain a highly active powder in which a denitration active component is supported on titanium oxide, stabilize the oxide structure, and easily change the oxide structure even in the presence of water. The effect | action which prevents and the effect which increases the particle diameter of catalyst powder can be acquired.

一方、多孔質シリカ7を用いた触媒では図3に示すように、リン(P)化合物6が脱硝触媒成分4と接触し、被毒が進行することや、図4に示すように、リン(P)化合物6が脱硝触媒成分4と接触しないような緻密な構造を持つ触媒では、ガスの拡散性が低下するため、脱硝活性と耐毒性の両立がなされない。   On the other hand, in the catalyst using the porous silica 7, as shown in FIG. 3, the phosphorus (P) compound 6 comes into contact with the denitration catalyst component 4 and the poisoning proceeds, and as shown in FIG. P) In a catalyst having a dense structure in which the compound 6 does not come into contact with the denitration catalyst component 4, gas diffusibility is lowered, so that both denitration activity and toxicity resistance cannot be achieved.

本発明によれば、メソポーラスシリカの二次粒子間に脱硝触媒を担持することで高活性な触媒となり、さらにリン(P)やヒ素(As)などの触媒毒による劣化を抑制することが可能となる。   According to the present invention, a denitration catalyst is supported between secondary particles of mesoporous silica so that it becomes a highly active catalyst, and further, it is possible to suppress deterioration due to catalyst poisons such as phosphorus (P) and arsenic (As). Become.

本発明の実施例を図面と共に説明する。
本実施例の触媒成分は、アンモニアを還元剤とした接触還元脱硝反応に優れたチタン原料にモリブデン及びバナジウムを主成分とする酸化物が好ましいが、通常の脱硝触媒活性を有する触媒であれば特に限定はされない。また、脱硝触媒に用いる原料は、通常脱硝触媒に用いられる原料でよく、特に限定はされない。例えば、チタン原料としては、含水酸化チタン粉末、酸化チタンスラリ、TiO2ゾルなど、Mo原料としては、モリブデン酸アンモニウム、三酸化モリブデン、Moの複合酸化物など、V原料としては、メタバナジン酸アンモニウム、硫酸バナジル、硝酸バナジル、MoとVの複合酸化物(例えば特開2000−308832号公報)などを用いると好結果を得やすい。またはタングステン(W)成分を添加しても良い。W原料としては、メタタングステン酸アンモニウム、Wの複合酸化物などを用いる。
Embodiments of the present invention will be described with reference to the drawings.
The catalyst component of this embodiment is preferably an oxide mainly composed of molybdenum and vanadium as a titanium raw material excellent in catalytic reduction denitration reaction using ammonia as a reducing agent, but is particularly a catalyst having normal denitration catalytic activity. There is no limitation. Moreover, the raw material used for a denitration catalyst may be a raw material normally used for a denitration catalyst, and is not specifically limited. For example, as titanium raw material, hydrous titanium oxide powder, titanium oxide slurry, TiO 2 sol, etc., as Mo raw material, ammonium molybdate, molybdenum trioxide, Mo composite oxide, etc., as V raw material, ammonium metavanadate, When vanadyl sulfate, vanadyl nitrate, a composite oxide of Mo and V (for example, JP 2000-308832 A) or the like is used, good results are easily obtained. Alternatively, a tungsten (W) component may be added. As the W raw material, ammonium metatungstate, W composite oxide, or the like is used.

上記チタン原料の粉末にバナジウム酸化物を担持する方法、タングステン酸化物及びモリブデン酸化物を担持する方法は、特に限定されないが、水と共に混練する方法、酸化チタンに活性成分を含浸する方法、など通常触媒担体に活性成分を担持する方法で有れば特に限定されない。活性成分を担持後は、乾燥処理を行い、焼成処理を行う。焼成温度は250℃以上600℃以下で、特に300℃〜500℃が好ましい。焼成温度が250℃未満であると、次の工程において、この調製した触媒成分とメソポーラスシリカを粉砕・混合する際に、脱硝触媒成分が水に溶出し、メソポーラスシリカのメソ孔内に担持されてしまうため好ましくない。また、600℃を超えると、チタン酸化物などの酸化物にシンタリングが生じ、脱硝活性に悪影響を引き起こすため好ましくない。   The method of supporting the vanadium oxide on the titanium raw material powder, the method of supporting the tungsten oxide and the molybdenum oxide are not particularly limited, but a method of kneading with water, a method of impregnating the titanium oxide with an active ingredient, etc. The method is not particularly limited as long as the active component is supported on the catalyst carrier. After loading the active ingredient, a drying process is performed and a baking process is performed. The baking temperature is 250 ° C. or higher and 600 ° C. or lower, and 300 ° C. to 500 ° C. is particularly preferable. When the calcining temperature is less than 250 ° C., when the prepared catalyst component and mesoporous silica are pulverized and mixed in the next step, the denitration catalyst component is eluted in water and supported in the mesopores of the mesoporous silica. Therefore, it is not preferable. On the other hand, when the temperature exceeds 600 ° C., sintering occurs in an oxide such as titanium oxide, which causes an adverse effect on the denitration activity.

本発明では、触媒成分である第1成分と第2成分であるメソポーラスシリカとを湿式で粉砕しながら混合することが重要である。湿式条件下で粉砕することにより、第1及び第2成分の粒子を粉砕しながらも混合することができる。湿式条件で粉砕する手段としては、媒体攪拌型粉砕機が好ましく、遊星ボールミルが適する。ボールの粒径、粉砕時間等の湿式粉砕条件は、粉砕機の性能により異なるため一概にはいえないが、通常、粉砕混合後の混合物の粒径を確認しながら条件を決めるとよい。粉砕後に得られる粒子の平均粒径は、2〜30μmが好ましい。前記平均粒径が2μm未満だと、メソ孔の残存率が低くなり、また、30μmを超えると、粉砕が不十分で目的とする混合物が得られない。   In the present invention, it is important to mix the first component, which is the catalyst component, and the mesoporous silica, which is the second component, while pulverizing in a wet manner. By grinding under wet conditions, the particles of the first and second components can be mixed while being ground. As a means for pulverizing under wet conditions, a medium stirring pulverizer is preferable, and a planetary ball mill is suitable. The wet pulverization conditions such as the particle size of the balls and the pulverization time vary depending on the performance of the pulverizer, and thus cannot be generally described. The average particle size of the particles obtained after pulverization is preferably 2 to 30 μm. When the average particle size is less than 2 μm, the residual ratio of mesopores is low, and when it exceeds 30 μm, the intended mixture cannot be obtained due to insufficient pulverization.

さらに、触媒成分とメソポーラスシリカの重量比は、酸化チタンの担持量がシリカに対する重量比で0.2〜1.5、さらには0.5〜1.0が好ましく、酸化チタンの担持量がシリカに対する重量比で0.2未満になると十分な活性を得ることができず、重量比で1.5を超えると、触媒成分がメソポーラスシリカの二次粒子の表面に担持されるため耐久性が低下し、反応ガスの触媒内部への拡散も阻害する。   Further, the weight ratio of the catalyst component to the mesoporous silica is such that the supported amount of titanium oxide is 0.2 to 1.5, more preferably 0.5 to 1.0, and the supported amount of titanium oxide is silica. When the weight ratio to the weight ratio is less than 0.2, sufficient activity cannot be obtained, and when the weight ratio exceeds 1.5, the catalyst component is supported on the surface of the secondary particles of mesoporous silica, resulting in lower durability. In addition, the diffusion of the reaction gas into the catalyst is also inhibited.

この触媒のメソ孔は、細孔径が2〜5nmの細孔径分布が小さく均一な細孔が適しており、2nm未満になると反応ガスの拡散抵抗により高い活性が得られなく、5nmを超えると触媒毒であるリン(P)化合物がメソ孔内に進入し易く、高い耐久性が得られなくなる。   As the mesopores of this catalyst, uniform pores having a small pore size distribution of 2 to 5 nm are suitable, and if it is less than 2 nm, high activity cannot be obtained due to diffusion resistance of the reaction gas, and if it exceeds 5 nm, the catalyst The poisonous phosphorus (P) compound is likely to enter the mesopores, and high durability cannot be obtained.

(実施例1)
以下、具体例を用いて本発明を詳細に説明する。
チタニアゾル(石原産業(株)製、CS−N、粒径d50=50nm)をサンドバス上で蒸発乾固後、500℃で2時間の焼成を行った粉末に、特開2000−308832号公報記載の方法で溶解させ調製した、示性式NH43Mo2315で表せる活性成分を含有した液を、原子比でTi/V=84/16となる条件で含浸し、サンドバス上で蒸発乾固後、150℃で1時間乾燥後、500℃で2時間の焼成を行って担体試料1を得た。担体試料1のTiO2とメソポーラスシリカ(日本化学工業、MCM−41、平均細孔径4nm、平均粒子径50μm)のSiO2の重量比がTiO2:SiO2=1:1の条件において遊星ボールミル(Puluerisette、FRITSCH Co.Ltd製)を用い、メソポーラスシリカ(MPS)の重量に対して約7倍量の水を加え、このメソポーラスシリカスラリが隠れる程度までアルミナボール(直径20mmと5mm)を入れ、10分間の粉砕・混合したスラリをサンドバス上で蒸発乾固を行った。この時、湿式による粉砕混合後に得られたスラリの平均粒子径は約2μmである。これを500℃で2時間の焼成を行って触媒1を得た。
Example 1
Hereinafter, the present invention will be described in detail using specific examples.
JP-A-2000-308832 describes a powder obtained by evaporating and drying a titania sol (manufactured by Ishihara Sangyo Co., Ltd., CS-N, particle size d50 = 50 nm) on a sand bath, followed by baking at 500 ° C. for 2 hours. A solution containing the active ingredient represented by the formula NH 4 3Mo 2 V 3 O 15, which was prepared by dissolving by the above method, was impregnated under the condition that Ti / V = 84/16 in terms of atomic ratio, and on a sand bath After evaporation to dryness, drying was performed at 150 ° C. for 1 hour, followed by baking at 500 ° C. for 2 hours to obtain a carrier sample 1. TiO 2 and mesoporous silica carrier sample 1 (Chemical Industry, MCM-41, the average pore size 4 nm, average particle size 50 [mu] m) weight ratio of SiO 2 is TiO a 2: SiO 2 = 1: planetary ball mill in one condition ( Using Puluerisette (manufactured by FRITSCH Co. Ltd), add about 7 times the amount of water to the weight of mesoporous silica (MPS), and put alumina balls (diameter 20 mm and 5 mm) to the extent that this mesoporous silica slurry is hidden. The slurry pulverized and mixed for a minute was evaporated to dryness on a sand bath. At this time, the average particle size of the slurry obtained after the wet pulverization and mixing is about 2 μm. This was calcined at 500 ° C. for 2 hours to obtain Catalyst 1.

(実施例2〜6)
実施例1における担体試料1とメソポーラスシリカの重量比を、それぞれTiO2:SiO2=0.2:1、0.5:1、1.5:1、0.1:1、2.0:1の条件に変えた以外は実施例1と同様にして触媒2、3、4、5、6を得た。
(Examples 2 to 6)
The weight ratios of the carrier sample 1 and mesoporous silica in Example 1 were TiO 2 : SiO 2 = 0.2: 1, 0.5: 1, 1.5: 1, 0.1: 1, 2.0: Catalysts 2, 3, 4, 5, and 6 were obtained in the same manner as in Example 1 except that the conditions were changed to 1.

(実施例7〜9)
実施例1における担体試料1の焼成温度を、それぞれ250、300、600℃に変えた以外は実施例1と同様にして触媒7、8、9を得た。
(Examples 7 to 9)
Catalysts 7, 8, and 9 were obtained in the same manner as in Example 1 except that the calcination temperature of the carrier sample 1 in Example 1 was changed to 250, 300, and 600 ° C., respectively.

(実施例10)
実施例1において、担体試料1のチタン原料をG5(ミレニアム製)の条件に変えた以外は実施例1と同様にして触媒10を得た。
(Example 10)
In Example 1, a catalyst 10 was obtained in the same manner as in Example 1 except that the titanium raw material of the carrier sample 1 was changed to G5 (Millennium) conditions.

(比較例1)
実施例1において、担体試料1とメソポーラスシリカをサンドバス上で撹拌棒により撹拌しながら蒸発乾固を行う条件に変えた以外は実施例1と同様にして触媒11を得た。
(Comparative Example 1)
In Example 1, catalyst 11 was obtained in the same manner as in Example 1 except that carrier sample 1 and mesoporous silica were changed to the conditions for evaporation to dryness while stirring with a stirring rod on a sand bath.

(比較例2)
実施例1において、担体試料1とメソポーラスシリカの混合スラリを、遊星ボールミルを用いてスラリの平均粒子径が約1μmになるまで粉砕を行う条件に変えた以外は実施例1と同様にして触媒12を得た。
(Comparative Example 2)
In Example 1, the catalyst 12 was prepared in the same manner as in Example 1 except that the mixed slurry of the carrier sample 1 and mesoporous silica was changed to a condition in which the slurry was ground using a planetary ball mill until the average particle diameter of the slurry became about 1 μm. Got.

(比較例3)
実施例1において、担体試料1とシリカ(富田製薬(株)製、マイコンF)を重量比でTiO2:SiO2=1:1の条件に変えた以外は実施例1と同様にして触媒13を得た。
(Comparative Example 3)
In Example 1, the catalyst 13 was prepared in the same manner as in Example 1 except that the carrier sample 1 and silica (manufactured by Tomita Pharmaceutical Co., Ltd., microcomputer F) were changed to TiO 2 : SiO 2 = 1: 1 by weight. Got.

(比較例4)
実施例1において、担体試料1とシリカゾル(日産化学(株)、OSゾル)を重量比でTiO2:SiO2=0.5:1の条件に変えた以外は実施例1と同様にして触媒14を得た。
(Comparative Example 4)
In Example 1, the catalyst was prepared in the same manner as in Example 1 except that the carrier sample 1 and silica sol (Nissan Chemical Co., Ltd., OS sol) were changed to a TiO 2 : SiO 2 = 0.5: 1 condition by weight ratio. 14 was obtained.

(比較例5)
チタニアゾルと示性式NH43Mo2315で表させる活性成分を含有した液とメソポーラスシリカとを一度に粉砕混合する条件とした以外は実施例1と同様にして触媒15を得た。
(Comparative Example 5)
A catalyst 15 was obtained in the same manner as in Example 1 except that the liquid containing the active ingredient represented by titania sol and the formula NH 4 3Mo 2 V 3 O 15 and mesoporous silica were mixed and ground at the same time.

(比較例6)
実施例1における担体試料1の焼成温度を、700℃に変えた以外は実施例1と同様にして触媒16を得た。
(Comparative Example 6)
A catalyst 16 was obtained in the same manner as in Example 1 except that the calcination temperature of the carrier sample 1 in Example 1 was changed to 700 ° C.

触媒1〜16の粉末を油圧プレスにより加圧成形後、8〜17μm(10〜20mesh)に破砕・整粒を行った。これを用いて表2に示す条件により初期の脱硝性能を測定した。さらに、リン(P)化合物による加速劣化試験の代表としてP22O5換算で4wt%のリン酸水溶液を含浸後、350℃で1時間の焼成を行い、劣化試験後の脱硝性能を測定した。試験結果を纏めて表1に示す。また、実施例1、比較例1、2の粉体の平均粒子径をレーザー回折・散乱法を用いた粒子計測器(Mastersizer:シスメックス株式会社製)により計測した。測定結果を纏めて表3に示す。

Figure 2010094623
Figure 2010094623
Figure 2010094623
The powders of the catalysts 1 to 16 were pressure-molded by a hydraulic press and then crushed and sized to 8 to 17 μm (10 to 20 mesh). Using this, the initial denitration performance was measured under the conditions shown in Table 2. Further, as a representative of the accelerated deterioration test using a phosphorus (P) compound, after impregnating a 4 wt% phosphoric acid aqueous solution in terms of P 2 2O 5 , firing was performed at 350 ° C. for 1 hour, and the denitration performance after the deterioration test was measured. The test results are summarized in Table 1. Moreover, the average particle diameter of the powder of Example 1 and Comparative Examples 1 and 2 was measured with a particle measuring device (Mastersizer: manufactured by Sysmex Corporation) using a laser diffraction / scattering method. The measurement results are summarized in Table 3.
Figure 2010094623
Figure 2010094623
Figure 2010094623

脱硝率の計算は、以下の(1)式に従い算出した。
また、リン(P)加速劣化試験後と初期脱硝率との反応速度定数比であるk/k0の計算は(2)式に従い算出した。

Figure 2010094623
Figure 2010094623
The denitration rate was calculated according to the following formula (1).
The calculation of k / k0, which is the reaction rate constant ratio between the phosphorus (P) accelerated deterioration test and the initial denitration rate, was calculated according to equation (2).
Figure 2010094623
Figure 2010094623

表1より、リン(P)化合物による耐久性を示すk/k0値が、実施例1〜4、すなわち担体試料1とメソポーラスシリカの重量比が、それぞれTiO2:SiO2=1:1((実施例1))、0.2:1(実施例2)、0.5:1(実施例3)、1.5:1(実施例4)の条件では、0.8以上の高い耐毒性を示すことが明らかである。これは、本発明の作用が十二分に発揮された結果であると示唆される。 From Table 1, the k / k0 value indicating durability by the phosphorus (P) compound is as in Examples 1 to 4, that is, the weight ratio of the carrier sample 1 to the mesoporous silica is TiO 2 : SiO 2 = 1: 1 (( Example 1)), 0.2: 1 (Example 2), 0.5: 1 (Example 3), 1.5: 1 (Example 4) It is clear that This is suggested to be the result that the effect of the present invention was fully exhibited.

一方で、実施例5、6によると、担体試料1とメソポーラスシリカの重量比が、TiO2:SiO2=0.1:1(実施例5)では初期活性が10%と低い脱硝活性であり、担体試料1とメソポーラスシリカの重量比が、TiO2:SiO2=2:1(実施例6)であると、耐毒性がk/k0=0.6と本発明による効果の寄与が小さくなっていることが示唆される。 On the other hand, according to Examples 5 and 6, when the weight ratio of the carrier sample 1 and mesoporous silica is TiO 2 : SiO 2 = 0.1: 1 (Example 5), the initial activity is 10% and the denitration activity is low. When the weight ratio of the carrier sample 1 to the mesoporous silica is TiO 2 : SiO 2 = 2: 1 (Example 6), the contribution of the effect of the present invention is small, ie, the k-k0 = 0.6. It is suggested that

一方、比較例3のようにメソポーラスシリカの代わりにシリカ原料を用いた例では、メソポーラスシリカによって得られていた耐毒性は得られないことが明らかであり、これは比較例4のシリカゾルでも同様である。これは、実施例1〜4では、メソポーラスシリカのメソ孔によりリン(P)化合物の被毒を抑制しているが、図3に示すように、比較例3及び比較例4のシリカを用いて脱硝触媒成分の周りを覆った触媒の構造では、リン(P)化合物が脱硝酸触媒と接触するため耐毒性が発現していないためである。
また、実施例7〜9の焼成温度による影響については、250℃、300℃、600℃による予備焼成では実施例1と同等の初期性能と耐毒性を得ていることからこの間の焼成温度による活性低下はないものと考える。
On the other hand, in the example using silica raw material instead of mesoporous silica as in Comparative Example 3, it is clear that the toxicity resistance obtained with mesoporous silica cannot be obtained, and this is the same with the silica sol of Comparative Example 4. is there. In Examples 1 to 4, the mesoporous silica mesopores suppress the phosphorous (P) compound poisoning. As shown in FIG. 3, the silicas of Comparative Examples 3 and 4 are used. This is because, in the structure of the catalyst covering the periphery of the denitration catalyst component, the phosphorus (P) compound is brought into contact with the denitration catalyst, so that the toxicity resistance is not expressed.
Moreover, about the influence by the calcination temperature of Examples 7-9, since the initial stage performance and toxicity resistance equivalent to Example 1 were obtained in the preliminary calcination by 250 degreeC, 300 degreeC, and 600 degreeC, activity by the calcination temperature in the meantime We think that there is no decline.

一方、比較例6の予備焼成温度が700℃の例では、触媒成分のシンタリングにより、初期性能が低下していることが明らかである。
さらに、実施例10より、チタン酸化物の原料が変わっても同じように初期活性及び耐久性を確保できることが明らかである。
On the other hand, in the example in which the pre-baking temperature of Comparative Example 6 is 700 ° C., it is apparent that the initial performance is degraded due to sintering of the catalyst component.
Furthermore, from Example 10, it is clear that the initial activity and durability can be secured in the same manner even if the raw material of titanium oxide is changed.

一方、本発明の粉砕混合を行わずに乾燥、焼成した例である比較例1やメソポーラスシリカのメソ孔の構造が破壊された原料を用いた例においては、耐毒性の発現がなされていないことが示唆される。また、同様に本発明の予備焼成の効果をなくし、原料を一度に粉砕混合した例である比較例5においても、耐毒性の発現がなされていないことが示唆される。これらは、触媒成分の周りにメソポーラスシリカが十分に存在せず、表面に分散している触媒成分がP化合物による被毒を受けるためと示唆される。   On the other hand, in Comparative Example 1 which is an example of drying and firing without performing pulverization and mixing according to the present invention, and in an example using a raw material in which the mesoporous structure of mesoporous silica is destroyed, no toxicity resistance is expressed. Is suggested. Similarly, in Comparative Example 5, which is an example in which the effect of the pre-baking of the present invention is eliminated and the raw materials are pulverized and mixed at one time, it is suggested that no toxicity resistance is exhibited. These suggest that mesoporous silica is not sufficiently present around the catalyst component, and the catalyst component dispersed on the surface is poisoned by the P compound.

石炭焚きボイラから生じる排ガス中には、PやAsなどの脱硝触媒において触媒毒となる成分が含まれており、触媒の耐毒性(耐久性)を解決した本発明は、産業上の利用可能性が高い。   The exhaust gas generated from a coal-fired boiler contains a component that becomes a catalyst poison in a denitration catalyst such as P or As, and the present invention that solved the catalyst's toxicity resistance (durability) is industrially applicable. Is expensive.

本発明による触媒の構造図を示す。1 shows a structural diagram of a catalyst according to the present invention. メソポーラスシリカの概念図を示す。The conceptual diagram of mesoporous silica is shown. シリカを用いた触媒の構造図を示す。The structural diagram of the catalyst using silica is shown. シリカを用いた触媒の構造図を示す。The structural diagram of the catalyst using silica is shown. メソポーラスシリカとP化合物による加速劣化試験後におけるメソポーラスシリカのBET装置のB.J.H法による細孔径分布の測定結果を示す。B. of BET apparatus for mesoporous silica after accelerated degradation test with mesoporous silica and P compound J. et al. The measurement result of pore diameter distribution by H method is shown.

符号の説明Explanation of symbols

1 メソポーラスシリカ
2 メソ孔
3 マクロ孔
4 触媒成分
5 反応ガス
6 リン(P)化合物
7 シリカ
1 Mesoporous silica 2 Mesopores
3 Macropore 4 Catalyst component 5 Reaction gas 6 Phosphorus (P) compound 7 Silica

Claims (3)

チタン酸化物に、予めモリブデン及びバナジウムの活性成分を担持後、予備焼成して得た組成物を第1成分、メソポーラスシリカを第2成分とし、上記第1成分と第2成分とを、水存在下で湿式粉砕後、成形、乾燥及び焼成を順次行うことを特徴とする窒素酸化物除去用触媒の製造方法。   A composition obtained by pre-sintering molybdenum and vanadium active components on titanium oxide and then pre-baking the composition as the first component, mesoporous silica as the second component, and the first component and the second component in the presence of water. A method for producing a catalyst for removing nitrogen oxides, characterized in that, after wet pulverization, molding, drying and firing are sequentially performed. チタン酸化物にバナジウム及びモリブデンの活性成分を担持後の予備焼成温度が250℃以上600℃以下であり、第1成分と第2成分の重量比(触媒粉末/SiO2)が0.2〜1.5であることを特徴とする請求項1記載の窒素酸化物除去用触媒の製造方法。 The pre-baking temperature after supporting the active components of vanadium and molybdenum on the titanium oxide is 250 ° C. or more and 600 ° C. or less, and the weight ratio of the first component to the second component (catalyst powder / SiO 2 ) is 0.2 to 1. The method for producing a catalyst for removing nitrogen oxides according to claim 1, wherein 前記湿式粉砕の方法が、遊星ボールミル粉砕機を用いて水存在下で粉砕することを特徴とする請求項1記載の窒素酸化物除去用触媒の製造方法。   2. The method for producing a catalyst for removing nitrogen oxides according to claim 1, wherein the wet pulverization is performed by using a planetary ball mill pulverizer in the presence of water.
JP2008268807A 2008-10-17 2008-10-17 Method for producing catalyst for removing nitrogen oxides Active JP5243919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268807A JP5243919B2 (en) 2008-10-17 2008-10-17 Method for producing catalyst for removing nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268807A JP5243919B2 (en) 2008-10-17 2008-10-17 Method for producing catalyst for removing nitrogen oxides

Publications (2)

Publication Number Publication Date
JP2010094623A true JP2010094623A (en) 2010-04-30
JP5243919B2 JP5243919B2 (en) 2013-07-24

Family

ID=42256691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268807A Active JP5243919B2 (en) 2008-10-17 2008-10-17 Method for producing catalyst for removing nitrogen oxides

Country Status (1)

Country Link
JP (1) JP5243919B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154350A (en) * 1991-12-11 1993-06-22 Babcock Hitachi Kk Catalyst for removing nitrogen oxide and production thereof
JPH0671187A (en) * 1992-08-28 1994-03-15 Babcock Hitachi Kk Method for producing exhaust gas purifying catalyst and for purifying exhaust gas
JPH07328437A (en) * 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd Ammonia decomposition catalyst
JPH09108573A (en) * 1995-10-17 1997-04-28 Mitsubishi Heavy Ind Ltd Catalyst for removing nitrogen oxide
JPH09299794A (en) * 1996-05-09 1997-11-25 Mitsubishi Heavy Ind Ltd Denitration catalyst
JP2008221203A (en) * 2007-02-13 2008-09-25 Babcock Hitachi Kk Catalyst for removal of nitrogen oxide and method for removal of nitrogen oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154350A (en) * 1991-12-11 1993-06-22 Babcock Hitachi Kk Catalyst for removing nitrogen oxide and production thereof
JPH0671187A (en) * 1992-08-28 1994-03-15 Babcock Hitachi Kk Method for producing exhaust gas purifying catalyst and for purifying exhaust gas
JPH07328437A (en) * 1994-06-08 1995-12-19 Mitsubishi Heavy Ind Ltd Ammonia decomposition catalyst
JPH09108573A (en) * 1995-10-17 1997-04-28 Mitsubishi Heavy Ind Ltd Catalyst for removing nitrogen oxide
JPH09299794A (en) * 1996-05-09 1997-11-25 Mitsubishi Heavy Ind Ltd Denitration catalyst
JP2008221203A (en) * 2007-02-13 2008-09-25 Babcock Hitachi Kk Catalyst for removal of nitrogen oxide and method for removal of nitrogen oxide

Also Published As

Publication number Publication date
JP5243919B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
KR101139049B1 (en) Catalyst for removal of nitrogen oxide, and method for removal of nitrogen oxide
KR101711240B1 (en) Vanadia-based denox catalysts and catalyst supports
EP2720789B1 (en) Production of titanium oxide- and/or vanadium oxide-based porous materials
EP2614886B1 (en) Nox reduction catalyst for exhaust gas and method for producing same
JP6595088B2 (en) SCR catalyst for removing nitrogen oxides and method for producing the same
Mukherjee et al. Crucial role of titanium dioxide support in soot oxidation catalysis of manganese doped ceria
JP2011067814A (en) Highly heat-resistant aqueous scr catalyst and manufacturing method thereof
JP5880527B2 (en) Exhaust gas purification catalyst
KR20200042921A (en) Synthesis of MoVNbTe shell catalyst for oxidative dehydrogenation of ethane to ethylene
KR102014365B1 (en) SCR Catalyst Added Carbon Supported Active Catalytic Materials and Preparation Method Thereof
JP4982721B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JP6012962B2 (en) Titanium-containing granular powder, exhaust gas treatment catalyst using the same, and production method thereof
ES2811076T3 (en) Catalyst material and procedure for its production
JP5243919B2 (en) Method for producing catalyst for removing nitrogen oxides
US20190015821A1 (en) Catalyst for metal mercury oxidation reactions and nitrogen oxide reduction reactions, and exhaust gas purification method
KR100938716B1 (en) MANUFACTURING METHOD OF MESOPOROUS TiO2 AGGERATE SUPPORTED METAL OXIDE FOR CATALYSTIC COMBUSTION CONTAINING A PLATINUM GROUP ELEMENT
KR20220092474A (en) Selective catalytic reduction catalysts comprising nitrogen doped titanium dioxide support and method of preparing same
JP2008207076A (en) Fluid catalytic cracking catalyst, its producing method and method for producing low-sulfur catalytically cracked gasoline
KR102084504B1 (en) Selective reduction of nitric oxide at high temperatures
KR100979031B1 (en) Catalyst for Nitrogen Oxide Removal and method for Manufacturing the same
JPH0420663B2 (en)
JPH07114964B2 (en) Nitrogen oxide reduction catalyst and method for producing the same
JPH01317545A (en) Preparation of denitrification catalyst
JP2009078249A (en) Denitration catalyst for contact reduction and its manufacturing method
JPH07232075A (en) Catalyst for removing nitrogen oxide and its preparation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5243919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350