JPH07232075A - Catalyst for removing nitrogen oxide and its preparation - Google Patents

Catalyst for removing nitrogen oxide and its preparation

Info

Publication number
JPH07232075A
JPH07232075A JP6025204A JP2520494A JPH07232075A JP H07232075 A JPH07232075 A JP H07232075A JP 6025204 A JP6025204 A JP 6025204A JP 2520494 A JP2520494 A JP 2520494A JP H07232075 A JPH07232075 A JP H07232075A
Authority
JP
Japan
Prior art keywords
catalyst
titania
vanadium
phosphoric acid
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6025204A
Other languages
Japanese (ja)
Inventor
Naomi Yoshida
直美 吉田
Yasuyoshi Kato
泰良 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP6025204A priority Critical patent/JPH07232075A/en
Publication of JPH07232075A publication Critical patent/JPH07232075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst for removing nitrogen oxide which prevents titania from being promoted in sintering with vanadium and has a large specific surface area and high denitrification properties and a method for preparing it. CONSTITUTION:A mixture of a titania sol as a titanium raw material and a phosphate with a hydrophobic aliph. group as a phosphoric acid raw material is temporarily burned at 300 deg.C and thereafter it is burned at 500 deg.C for 2 hours to prepare a titania calcined body and after this titania burned body and a water soln. wherein vanadium sulfate is dissolved are mixed, it is dried by vaporization and then, it is burned at 550 deg.C for 2hr. It is possible thereby to obtain a highly active denitrification catalyst wherein vanadium being a catalyst component is well dispersed in a titania burned body with a high specific surface area.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素酸化物除去用触媒
およびその製造方法に係り、特に比表面積が大きく、高
活性の窒素酸化物除去用触媒およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen oxide removing catalyst and a method for producing the same, and more particularly to a highly active nitrogen oxide removing catalyst having a large specific surface area and a method for producing the same.

【0002】[0002]

【従来の技術】火力発電所等から排出される排ガス中の
窒素酸化物(以下、NOxともいう)の有効な除去方法
であるアンモニア乾式還元法は、排ガスに含まれるNO
xと、排ガスに注入したアンモニアとを、重金属等の触
媒成分を担持した触媒の存在下で反応させることによ
り、排ガス中のNOxをN2 に還元するものである。こ
のようなアンモニア乾式還元法で使用される窒素酸化物
除去用触媒(以下、脱硝触媒ともいう)は、排ガスの組
成や煤塵の有無等に応じて、例えば粒状、板状、ハニカ
ム状に成形されている。また触媒組成は、現在まで種々
提案されているが、一般に、チタン−バナジウムを主成
分としたものが高活性であることが知られている(特公
昭53−28148号公報、特公昭55−23086号
公報)。
2. Description of the Related Art The ammonia dry reduction method, which is an effective method for removing nitrogen oxides (hereinafter, also referred to as NOx) in exhaust gas discharged from a thermal power plant, etc.
By reacting x with ammonia injected into the exhaust gas in the presence of a catalyst carrying a catalyst component such as a heavy metal, NOx in the exhaust gas is reduced to N 2 . Such a catalyst for removing nitrogen oxides used in the ammonia dry reduction method (hereinafter, also referred to as a denitration catalyst) is formed into, for example, a granular shape, a plate shape, or a honeycomb shape depending on the composition of exhaust gas, the presence or absence of soot dust, and the like. ing. Various catalyst compositions have been proposed up to now, but generally, those containing titanium-vanadium as a main component are known to have high activity (Japanese Patent Publication No. 53-28148 and Japanese Patent Publication No. 55-23086). Issue).

【0003】チタン−バナジウム系の触媒は、チタニア
粒子の表面にバナジウムを数%〜十数%担持したものが
一般に知られている。このような脱硝触媒における触媒
活性はチタニアの表面積と担持したバナジウム量とに密
接な関係があり、高比表面積のチタニアに十分な量のバ
ナジウムを担持すれば、高活性の触媒が得られる。
As a titanium-vanadium catalyst, it is generally known that titania particles carry vanadium in the range of several% to several tens%. The catalytic activity of such a denitration catalyst is closely related to the surface area of titania and the amount of supported vanadium. If a sufficient amount of vanadium is supported on titania having a high specific surface area, a highly active catalyst can be obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、活性成
分であるバナジウムはチタニアのシンタリングを促進す
るために、その担持量が増えればそれだけチタニアの表
面積が低下し、バナジウム担持量相当の触媒活性が得ら
れないという問題があった。本発明の目的は、上記従来
技術の問題点を解決し、バナジウムを比較的高濃度で分
散しても表面積が低下しない触媒担体を用い、高比表面
積、かつ高活性の窒素酸化物除去用触媒およびその製造
方法を提供することにある。
However, vanadium, which is an active ingredient, promotes the sintering of titania. Therefore, if the loading amount increases, the surface area of titania decreases accordingly, and a catalytic activity equivalent to the loading amount of vanadium is obtained. There was a problem that I could not. The object of the present invention is to solve the above-mentioned problems of the prior art and to use a catalyst carrier whose surface area does not decrease even when vanadium is dispersed at a relatively high concentration, and which has a high specific surface area and a high activity of a catalyst for removing nitrogen oxides. And to provide a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
本発明者は、チタニアの比表面積とバナジウム担持量と
の関係等について鋭意研究した結果、チタニアまたはチ
タン水和酸化物の表面にリン酸を吸着させ、その後、少
なくとも一度450〜800℃で焼成し、得られた焼成
体にバナジウムを担持することにより、バナジウムのチ
タニアに対するシンタリング作用を低減することがで
き、チタニアの比表面積の低下を防止して触媒活性の高
い脱硝触媒が得られることを見出し、本発明に到達し
た。
Means for Solving the Problems To achieve the above object, the present inventor has diligently studied the relationship between the specific surface area of titania and the amount of vanadium supported, and as a result, phosphoric acid was formed on the surface of titania or titanium hydrate oxide. Is adsorbed, and thereafter, it is calcined at least once at 450 to 800 ° C., and by supporting vanadium on the obtained calcined body, it is possible to reduce the sintering action of vanadium on titania, and to reduce the specific surface area of titania. The inventors have found that a denitration catalyst with high catalytic activity can be obtained by preventing it, and arrived at the present invention.

【0006】すなわち、本願で特許請求される発明は以
下のとおりである。 (1)チタンの酸化物または水和酸化物と、リン酸、リ
ン酸塩または有機リン酸エステルとの混合物を450〜
800℃で焼成した後、得られた焼成体にバナジウムを
担持させることを特徴とする窒素酸化物除去用触媒の製
造方法。 (2)チタニア(TiO2 )に対するリン(P)の混合
量を0.1〜6重量パーセントとすることを特徴とする
請求項1記載の窒素酸化物除去用触媒の製造方法。 (3)450〜800℃で焼成した、チタンの酸化物ま
たは水和酸化物と、リン酸、リン酸塩または有機リン酸
エステルとの混合物の焼成体にバナジウムを担持したこ
とを特徴とする窒素酸化物除去用触媒。 (4)チタンの酸化物または水和酸化物と、リン酸、リ
ン酸塩または有機リン酸エステルと、タングステン酸化
物、タングステン酸、タングステン酸塩、鉄酸化物およ
び鉄塩のうち少なくとも一種との混合物を450〜80
0℃で焼成した後、得られた焼成体にバナジウムを担持
させることを特徴とする窒素酸化物除去用触媒の製造方
法。
That is, the invention claimed in the present application is as follows. (1) A mixture of titanium oxide or hydrated oxide and phosphoric acid, a phosphate or an organic phosphoric acid ester is added at 450-
A method for producing a catalyst for removing nitrogen oxides, comprising supporting vanadium on the obtained fired body after firing at 800 ° C. (2) The method for producing a catalyst for removing nitrogen oxides according to claim 1, wherein the amount of phosphorus (P) mixed with titania (TiO 2 ) is 0.1 to 6 weight percent. (3) Nitrogen characterized in that vanadium is supported on a fired body of a mixture of titanium oxide or hydrated oxide and phosphoric acid, phosphate or organic phosphate ester, which is fired at 450 to 800 ° C. Oxide removal catalyst. (4) Titanium oxide or hydrated oxide, phosphoric acid, phosphate or organic phosphate, and at least one of tungsten oxide, tungstic acid, tungstate, iron oxide and iron salt 450-80 mixture
A method for producing a catalyst for removing nitrogen oxides, comprising supporting vanadium on the obtained fired body after firing at 0 ° C.

【0007】[0007]

【作用】チタンの酸化物または水和酸化物に、リン酸、
リン酸塩または有機リン酸エステルを混合した後焼成す
ることにより、焼成時のチタニア粒子同士の結合が防止
されるとともに、得られた焼成体にバナジウムを担持す
る際の、バナジウムによるチタニアのシンタリングが緩
和される。従ってリン酸を添加したチタニアは、バナジ
ウムを担持させても比表面積の高い状態を維持すること
ができ、バナジウム担持量に相当する高い脱硝性能を有
する触媒となる。また、チタンの酸化物または水和酸化
物と、リン酸、リン酸塩または有機リン酸エステルの混
合物に、さらに鉄またはタングステンを加えて焼成する
ことにより、チタニアの表面に吸着しない流離したリン
酸が固定されて遊離リン酸の触媒活性に対する悪影響、
例えば活性の低下が軽減される。
[Function] Titanium oxide or hydrated oxide, phosphoric acid,
By firing after mixing the phosphate or organic phosphate ester, the binding of the titania particles during firing is prevented, and when supporting vanadium in the obtained fired body, the sintering of titania by vanadium Is alleviated. Therefore, titania to which phosphoric acid is added can maintain a high specific surface area even when supporting vanadium, and becomes a catalyst having high denitration performance equivalent to the amount of vanadium supported. In addition, a mixture of titanium oxide or hydrated oxide and phosphoric acid, phosphate or organic phosphoric acid ester is further added with iron or tungsten and baked, so that the separated phosphoric acid that does not adsorb on the surface of titania Is fixed, the adverse effect on the catalytic activity of free phosphoric acid,
For example, the decrease in activity is reduced.

【0008】本発明において、チタニア焼成体の焼成温
度は450℃〜800℃であり、特に500℃〜600
℃が好ましい。チタニア焼成体へのバナジウムの担持
は、例えばチタニア焼成体をバナジウム塩を含む水溶液
に浸漬した後、例えば500℃〜600℃で焼成するこ
とによって行われる。
In the present invention, the firing temperature of the titania fired body is 450 ° C. to 800 ° C., particularly 500 ° C. to 600 ° C.
C is preferred. The supporting of vanadium on the titania fired body is performed, for example, by immersing the titania fired body in an aqueous solution containing a vanadium salt, and then firing it at 500 ° C. to 600 ° C., for example.

【0009】[0009]

【実施例】次に本発明を実施例によってさらに詳細に説
明する。 実施例1 図1は、この実施例に用いた窒素酸化物除去用触媒の製
造方法の工程図である。図において、この触媒製造方法
は、チタニア焼成体の調製工程と、得られたチタニア焼
成体へのバナジウムの担持工程とに大別され、チタニア
焼成体は次のようにして調製される。すなわち、まず水
30kgにリン酸原料として疏水基が脂肪族であるリン
酸エステル1.32kgを加えて分散した後、チタン原
料として粒子濃度が28.9wt%のチタニアゾル3.
66kgを加えて混練し、乾燥した後、一度300℃で
仮焼成し、その後、550℃で2時間焼成してチタニア
焼成体を得た。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Example 1 FIG. 1 is a process chart of a method for producing a nitrogen oxide removing catalyst used in this example. In the figure, this catalyst production method is roughly divided into a step of preparing a titania calcined body and a step of supporting vanadium on the obtained titania calcined body, and the titania calcined body is prepared as follows. That is, first, 1.32 kg of phosphoric acid ester having a hydrophobic group as an aliphatic is added to 30 kg of water as a phosphoric acid raw material and dispersed, and then titania sol 3. having a particle concentration of 28.9 wt% as a titanium raw material.
After 66 kg was added, the mixture was kneaded, dried, and once calcined at 300 ° C., and then calcined at 550 ° C. for 2 hours to obtain a titania calcined body.

【0010】このチタニア焼成体と、バナジウム原料で
ある、含有量73.66wt%の硫酸バナジル154g
を溶解した水溶液とを混合した後、該混合物を200℃
で蒸発乾固し、次いで550℃で2時間焼成してバナジ
ウム担持窒素酸化物除去用触媒を得た。 実施例2 リン酸エステル1.32kgの代わりに85wt%のオ
ルトリン酸98gを用い、300℃における仮焼成を省
略した以外は上記実施例1と同様にして窒素酸化物除去
用触媒を得た。
154 g of this burned titania and vanadium sulfate, which is a vanadium raw material and has a content of 73.66 wt%.
Was mixed with an aqueous solution in which
After evaporating to dryness at 550 ° C., it was calcined at 550 ° C. for 2 hours to obtain a vanadium-supported nitrogen oxide removing catalyst. Example 2 A catalyst for removing nitrogen oxides was obtained in the same manner as in Example 1 except that 98 g of 85 wt% orthophosphoric acid was used instead of 1.32 kg of phosphoric acid ester, and calcination at 300 ° C. was omitted.

【0011】実施例3 粒子濃度が28.9wt%のチタニアゾル3.66kg
に代えて、硫酸根7wt%を含有する、固体濃度30w
t%のメタチタン酸スラリ3.52kgを用い、オルト
リン酸の添加量を196gとした以外は上記実施例2と
同様にして窒素酸化物除去用触媒を得た。
Example 3 3.66 kg of titania sol having a particle concentration of 28.9 wt%
Instead of, containing 7 wt% of sulfate, solid concentration 30w
A catalyst for removing nitrogen oxides was obtained in the same manner as in Example 2 except that 3.52 kg of t% metatitanate slurry was used and the addition amount of orthophosphoric acid was changed to 196 g.

【0012】実施例4 図2は、この実施例に用いた窒素酸化物除去用触媒の製
造方法の工程図である。このプロセスと上記実施例1の
プロセスとはチタニア焼成体の調製方法は異なるが、バ
ナジウムの担持方法は同一である。WO3 として50w
t%含有するメタタングスン酸アンモン320gに実施
例1で用いたチタニアゾル3.66kgを加えて混合、
分散した後、オルトリン酸98gを加えて混合、分散
し、乾燥した後、550℃で2時間焼成した。得られた
チタニア焼成体と実施例1で用いた硫酸バナジル177
gを溶解した水溶液とを混合した後、200℃で蒸発乾
固し、次いで550℃で2時間焼成してバナジウム担持
窒素酸化物除去用触媒を得た。
Example 4 FIG. 2 is a process diagram of a method for producing the nitrogen oxide removing catalyst used in this example. Although this process and the process of Example 1 are different in the method of preparing the fired titania, the method of supporting vanadium is the same. 50w as WO 3
3.66 kg of the titania sol used in Example 1 was added to and mixed with 320 g of ammonium tantanate containing t%,
After the dispersion, 98 g of orthophosphoric acid was added, mixed, dispersed, dried, and then calcined at 550 ° C. for 2 hours. The obtained fired titania and vanadyl sulfate 177 used in Example 1
After mixing with an aqueous solution in which g was dissolved, the mixture was evaporated to dryness at 200 ° C. and then calcined at 550 ° C. for 2 hours to obtain a vanadium-supported nitrogen oxide removing catalyst.

【0013】実施例5 実施例1で調製したチタニア焼成体に、上記実施例4で
使用したメタタングステン酸アンモン320gを加えて
混合、分散した後、550℃で焼成した。得られた焼成
体と実施例1で用いた硫酸バナジル177gを溶解した
水溶液とを混合した後、200℃で蒸発乾固し、次いで
550℃で2時間焼成して窒素酸化物除去用触媒を得
た。
Example 5 To the fired titania body prepared in Example 1, 320 g of ammonium metatungstate used in Example 4 was added, mixed and dispersed, and then fired at 550 ° C. The obtained calcined product was mixed with the aqueous solution in which 177 g of vanadyl sulfate used in Example 1 was dissolved, evaporated to dryness at 200 ° C., and then calcined at 550 ° C. for 2 hours to obtain a catalyst for removing nitrogen oxides. It was

【0014】実施例6 上記実施例1で調製したチタニア焼成体と、水に溶解し
た9水和物の硝酸鉄850gを混合、分散した後、55
0℃で焼成した。得られた焼成体と実施例1で用いた硫
酸バナジル178gを溶解した水溶液とを混合した後、
200℃で蒸発乾固し、次いで550℃で2時間焼成し
て窒素酸化物除去用触媒を得た。
Example 6 The fired titania body prepared in the above Example 1 was mixed with 850 g of water-dissolved nonahydrate iron nitrate (850 g), and then dispersed.
Baked at 0 ° C. After mixing the obtained fired body with an aqueous solution in which 178 g of vanadyl sulfate used in Example 1 was dissolved,
It was evaporated to dryness at 200 ° C. and then calcined at 550 ° C. for 2 hours to obtain a catalyst for removing nitrogen oxides.

【0015】比較例1 実施例1で用いたチタニアゾル3.66kgを乾燥した
後、550℃で焼成し、得られた焼成体を実施例1で用
いた硫酸バナジル154gを溶解した水溶液と混合した
後、200℃で蒸発乾固し、次いで550℃で2時間焼
成して窒素酸化物除去用触媒を得た。
Comparative Example 1 3.66 kg of the titania sol used in Example 1 was dried and then calcined at 550 ° C., and the obtained calcined product was mixed with an aqueous solution in which 154 g of vanadyl sulfate used in Example 1 was dissolved. The mixture was evaporated to dryness at 200 ° C. and then calcined at 550 ° C. for 2 hours to obtain a nitrogen oxide removing catalyst.

【0016】比較例2 上記実施例3で用いたメタチタン酸スラリ3.52kg
に実施例1で用いた硫酸バナジル154gを加えて混合
した後、これを200℃で蒸発乾固し、次いで550℃
で2時間焼成して窒素酸化物除去用触媒を得た。 比較例3 実施例1で用いた粒子濃度が28.9wt%のチタニア
ゾル3.66kgと、同じく実施例1で用いた含有量7
3.66wt%の硫酸バナジル177gを混合した後、
実施例2で用いた85wt%のオルトリン酸98gを加
えて混合、分散し、乾燥した後、550℃で2時間焼成
して窒素酸化物除去用触媒を得た。
Comparative Example 2 3.52 kg of metatitanic acid slurry used in Example 3 above
154 g of vanadyl sulfate used in Example 1 was added to and mixed with the mixture, which was then evaporated to dryness at 200 ° C. and then 550 ° C.
It was calcined for 2 hours to obtain a catalyst for removing nitrogen oxides. Comparative Example 3 3.66 kg of titania sol having a particle concentration of 28.9 wt% used in Example 1 and the same content 7 used in Example 1
After mixing 177 g of vanadyl sulfate of 3.66 wt%,
98 g of 85 wt% orthophosphoric acid used in Example 2 was added, mixed, dispersed, dried and then calcined at 550 ° C. for 2 hours to obtain a catalyst for removing nitrogen oxides.

【0017】比較例4 比較例2の触媒を5wt%濃度のオルトリン酸水溶液に
含浸し、乾燥した後、550℃で2時間焼成して窒素酸
化物除去用触媒を得た。 比較例5 実施例1で用いた粒子濃度が28.9wt%のチタニア
ゾル3.66kgに、実施例4で用いたWO3 として5
0wt%含有するメタタングステン酸アンモン320g
を加えて混合、分散した後、550℃で2時間焼成し、
得られた焼成体と、実施例1で用いた含有量73.66
wt%の硫酸バナジル177gを溶解した水溶液とを混
合した後、200℃で蒸発乾固し、次いで550℃で2
時間焼成して窒素酸化物除去用触媒を得た。
Comparative Example 4 A catalyst for removing nitrogen oxides was obtained by impregnating the catalyst of Comparative Example 2 with a 5 wt% concentration of orthophosphoric acid aqueous solution, drying and calcining at 550 ° C. for 2 hours. Comparative Example 5 To 3.66 kg of titania sol having a particle concentration of 28.9 wt% used in Example 1, 5 as WO 3 used in Example 4 was used.
320 g of ammonium metatungstate containing 0 wt%
And mixed and dispersed, followed by baking at 550 ° C. for 2 hours,
The obtained fired body and the content used in Example 1 of 73.66
After mixing with an aqueous solution in which 177 g of vanadyl sulfate (wt%) was dissolved, the mixture was evaporated to dryness at 200 ° C, and then dried at 550 ° C for 2 hours.
It was calcined for a time to obtain a catalyst for removing nitrogen oxides.

【0018】表1は、本発明の実施例1〜6および比較
例1〜5で得られた触媒の組成およびその脱硝性能を比
較して示したものである。脱硝率は、反応温度:350
℃、SV:120,000h-1の条件における10〜2
0meshの粒状触媒について評価した。
Table 1 compares the compositions of the catalysts obtained in Examples 1 to 6 of the present invention and Comparative Examples 1 to 5 and their denitration performance. The denitrification rate is the reaction temperature: 350
10 to 2 under the condition of C, SV: 120,000 h -1
The 0 mesh granular catalyst was evaluated.

【0019】[0019]

【表1】 [Table 1]

【0020】表1において、実施例1〜6の触媒は、比
較例1〜5の触媒に比べて比表面積が著しく大きく、脱
硝性能が高いことが分かる。実施例1〜2から、リン酸
原料として、リン酸エステルとオルトリン酸の何れを用
いても性能の高い触媒が得られることが分かる。実施例
1において、疏水基が脂肪族であるリン酸エステルを用
いたが、この他に、疏水基が芳香族であるリン酸エステ
ル、レシチンまたはリン酸アンモン等を用いても本実施
例と同様の効果が得られる。
In Table 1, it can be seen that the catalysts of Examples 1 to 6 have a significantly larger specific surface area and higher denitration performance than the catalysts of Comparative Examples 1 to 5. From Examples 1 and 2, it can be seen that a high-performance catalyst can be obtained by using either phosphoric acid ester or orthophosphoric acid as the phosphoric acid raw material. In Example 1, a phosphoric acid ester having a hydrophobic group was used as an aliphatic group. However, in addition to this, a phosphoric acid ester having an aromatic group as a hydrophobic group, lecithin, or ammonium phosphate was used. The effect of is obtained.

【0021】チタニア原料としては、実施例1で用いた
チタニアゾルの他に、メタチタン酸や硫酸チタンを用い
てもよい。また、実施例3のように硫酸根を含むメタチ
タン酸を用いても高活性の触媒が得られるが、硫酸根含
有量は少ない方が比表面積の高い触媒が得られ易いので
望ましい。実施例4〜6は、遊離したリン酸を固定する
ために、タングステンまたは鉄を添加したものであるが
このような添加物を加えることにより、遊離リン酸の触
媒活性に対する妨害を排除することができるので、高活
性の触媒が得られる。
As the titania raw material, in addition to the titania sol used in Example 1, metatitanic acid or titanium sulfate may be used. Although a highly active catalyst can be obtained by using metatitanic acid containing sulfate as in Example 3, it is preferable that the content of sulfate is small because a catalyst having a high specific surface area can be easily obtained. Examples 4-6 add tungsten or iron to immobilize the free phosphoric acid, but the addition of such an additive can eliminate interference with the catalytic activity of free phosphoric acid. Therefore, a highly active catalyst can be obtained.

【0022】比較例1〜2は、従来方法で調製したチタ
ン−バナジウム系触媒であり、上記各実施例に比べる
と、比表面積、特にバナジウム担持後の比表面積が小さ
く脱硝性能も低い。比較例3は、あらかじめチタニア、
バナジウムおよびリン酸を混合して調製した触媒であ
り、実施例触媒と比べて脱硝性能が著しく低いことが分
かる。比較例4は、チタン−バナジウム系触媒にリン酸
を含浸させたものであるが、含浸液がチタニア表面を覆
って細孔を閉塞したために触媒活性が極端に低下したも
のと考えられる。比較例5はチタン−バナジウム−タン
グステン系触媒であり、チタン−バナジウム系触媒と比
較すると脱硝活性は高いが、実施例4〜5と比較すると
相当劣っていることが分かる。
Comparative Examples 1 and 2 are titanium-vanadium catalysts prepared by a conventional method, and have a smaller specific surface area, particularly a specific surface area after supporting vanadium, and a lower denitration performance than the above Examples. Comparative Example 3 was prepared by previously using titania,
It can be seen that the catalyst was prepared by mixing vanadium and phosphoric acid, and the denitration performance was remarkably lower than that of the catalyst of the example. In Comparative Example 4, a titanium-vanadium-based catalyst was impregnated with phosphoric acid, but it is considered that the catalytic activity was extremely reduced because the impregnating liquid covered the titania surface and blocked the pores. Comparative Example 5 is a titanium-vanadium-tungsten-based catalyst, which has a higher denitrification activity than the titanium-vanadium-based catalyst, but is considerably inferior to Examples 4-5.

【0023】図3は、実施例1で調製したチタニア焼成
体のX線回折結果を比較例1で調製したチタニア焼成体
のそれと比較して示したものである。図において、実施
例1のチタニア焼成体は、単にチタニアゾルを焼成した
比較例1に比べてチタニアの粒子成長が小さく、非晶質
に近い構造となっているので比表面積が高くなると考え
られる。
FIG. 3 shows the X-ray diffraction results of the titania fired body prepared in Example 1 in comparison with that of the titania fired body prepared in Comparative Example 1. In the figure, the titania fired body of Example 1 is considered to have a higher specific surface area because the titania particle growth is smaller than that of Comparative Example 1 in which the titania sol is simply fired and the structure is close to amorphous.

【0024】図4は、実施例1のチタニア焼成体および
比較例1のチタニア焼成体における焼成温度と比表面積
との関係を示すものである。図において、比表面積の大
きい焼成体を得るためには、焼成温度も重要な因子であ
り、焼成温度は450℃〜800℃、特に500℃〜6
00℃が好ましいことが分かる。図5は、実施例1の触
媒について、リン酸エステルの添加量と触媒性能との関
係を示したものである。図において、リン酸エステルの
添加量を増加させると、チタニア中のリン量も比例的に
増加し、これに伴ってチタニア焼成体およびバナジウム
担持後の触媒体の比表面積が増大することが分かる。触
媒活性は、チタニア中のリンの含有量が2wt%前後の
ときが最も高く、リン量がそれ以上増えると活性が低下
する傾向が見られる。従って、チタニア中のリン含有量
は0.1〜6wt%であることが好ましく、特に1〜3
wt%のとき高い脱硝性能を示すことが分かる。また、
図5から、本実施例触媒においては、リン酸がチタニア
粒子同士の結合を抑制して焼成による比表面積の低下を
防止するとともに、バナジウムによるチタニアのシンタ
リングが生じにくい触媒構造になっていることが推察さ
れる。
FIG. 4 shows the relationship between the firing temperature and the specific surface area of the titania fired body of Example 1 and the titania fired body of Comparative Example 1. In the figure, the firing temperature is also an important factor for obtaining a fired body having a large specific surface area, and the firing temperature is 450 ° C to 800 ° C, particularly 500 ° C to 6 ° C.
It can be seen that 00 ° C. is preferable. FIG. 5 shows the relationship between the amount of phosphoric acid ester added and the catalyst performance for the catalyst of Example 1. In the figure, it is understood that when the addition amount of the phosphoric acid ester is increased, the phosphorus amount in titania also increases proportionally, and the specific surface area of the titania calcined body and the catalyst body after supporting vanadium increases accordingly. The catalytic activity is highest when the content of phosphorus in titania is around 2 wt%, and the activity tends to decrease when the amount of phosphorus increases beyond that. Therefore, the phosphorus content in titania is preferably 0.1 to 6 wt%, particularly 1 to 3
It can be seen that high wt.% denitration performance is exhibited. Also,
From FIG. 5, in the catalyst of this example, phosphoric acid has a catalyst structure that suppresses the binding of the titania particles to each other to prevent the reduction of the specific surface area due to calcination, and that the sintering of titania by vanadium does not easily occur. Is inferred.

【0025】[0025]

【発明の効果】本願の請求項1および2記載の発明によ
れば、チタンの酸化物または水和酸化物と、リン酸、リ
ン酸塩または有機リン酸エステルとの混合物を450〜
800℃で焼成してチタニア表面にリン酸が吸着した焼
成体とし、この焼成体にバナジウムを担持させたことに
より、複雑な製造工程を必要とせず、比表面積の大きい
チタニア焼成体上に活性成分であるバナジウムが良好に
分散した脱硝性能の高い触媒を比較的安価に得ることが
できる。
According to the invention described in claims 1 and 2 of the present application, a mixture of titanium oxide or hydrated oxide and phosphoric acid, phosphate or organic phosphoric acid ester is added in an amount of 450 to
By firing at 800 ° C. to obtain a fired body in which phosphoric acid is adsorbed on the surface of titania, and by supporting vanadium on the fired body, a complicated manufacturing process is not required, and the active ingredient on the titania fired body having a large specific surface area. It is possible to obtain a catalyst having high denitration performance, in which vanadium is well dispersed, at a relatively low cost.

【0026】本願の請求項3記載の発明によれば、比表
面積の大きい多孔質構造のチタニア焼成体に活性成分と
してバナジウムを担持したことにより、担持されたバナ
ジウムが被反応物と十分に接触することができるので、
高い脱硝性能が得られる。本願の請求項4記載の発明に
よれば、チタン原料とリン原料とからなるチタニア焼成
体の調製工程において、タングステンまたは鉄を添加し
たことにより、遊離リン酸が固定されるので、より脱硝
性能の高い触媒が得られる。
According to the third aspect of the present invention, since vanadium is supported as an active component on the porous titania calcined body having a large specific surface area, the supported vanadium sufficiently contacts with the reactant. Because you can
High denitration performance can be obtained. According to the invention described in claim 4 of the present application, since free phosphoric acid is fixed by adding tungsten or iron in the step of preparing a titania fired body composed of a titanium raw material and a phosphorus raw material, more denitration performance can be obtained. A high catalyst is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である窒素酸化物除去用触媒
の製造プロセスを示す図。
FIG. 1 is a diagram showing a manufacturing process of a nitrogen oxide removing catalyst which is an embodiment of the present invention.

【図2】本発明の他の実施例における窒素酸化物除去用
触媒の製造プロセスを示す図。
FIG. 2 is a diagram showing a process for producing a nitrogen oxide removing catalyst according to another embodiment of the present invention.

【図3】実施例と比較例におけるチタニア焼成体のX線
回折の結果を示す図。
FIG. 3 is a diagram showing a result of X-ray diffraction of a titania fired body in Examples and Comparative Examples.

【図4】実施例と比較例における焼成温度と比表面積と
の関係を示す図。
FIG. 4 is a diagram showing a relationship between a firing temperature and a specific surface area in Examples and Comparative Examples.

【図5】実施例におけるリン酸エステル添加量と触媒性
能との関係を示す図。
FIG. 5 is a graph showing the relationship between the amount of phosphate ester added and the catalyst performance in the examples.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 27/199 ZAB A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B01J 27/199 ZAB A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チタンの酸化物または水和酸化物と、リ
ン酸、リン酸塩または有機リン酸エステルとの混合物を
450〜800℃で焼成した後、得られた焼成体にバナ
ジウムを担持させることを特徴とする窒素酸化物除去用
触媒の製造方法。
1. A mixture of titanium oxide or hydrated oxide and phosphoric acid, phosphate or organic phosphoric acid ester is fired at 450 to 800 ° C., and then vanadium is supported on the obtained fired body. A method for producing a nitrogen oxide removing catalyst, comprising:
【請求項2】 触媒中、チタニア(TiO2 )に対する
リン(P)の含有量が0.1〜6重量パーセントになる
ようにリン酸、リン酸塩または有機リン酸エステルを混
合することを特徴とする請求項1記載の窒素酸化物除去
用触媒の製造方法。
2. Phosphoric acid, a phosphate or an organic phosphate ester is mixed so that the content of phosphorus (P) with respect to titania (TiO 2 ) is 0.1 to 6 weight percent in the catalyst. The method for producing a catalyst for removing nitrogen oxides according to claim 1.
【請求項3】 450〜800℃で焼成した、チタンの
酸化物または水和酸化物と、リン酸、リン酸塩または有
機リン酸エステルとの混合物の焼成体にバナジウムを担
持したことを特徴とする窒素酸化物除去用触媒。
3. Vanadium is supported on a calcined body of a mixture of titanium oxide or hydrated oxide and phosphoric acid, phosphate or organic phosphate ester, which is calcined at 450 to 800 ° C. A catalyst for removing nitrogen oxides.
【請求項4】 チタンの酸化物または水和酸化物と、リ
ン酸、リン酸塩または有機リン酸エステルと、タングス
テン酸化物、タングステン酸、タングステン酸塩、鉄酸
化物および鉄塩のうち少なくとも一種との混合物を45
0〜800℃で焼成した後、得られた焼成体にバナジウ
ムを担持させることを特徴とする窒素酸化物除去用触媒
の製造方法。
4. Titanium oxide or hydrated oxide, phosphoric acid, phosphate or organic phosphate, and at least one of tungsten oxide, tungstic acid, tungstate, iron oxide and iron salt. With a mixture of 45
A method for producing a catalyst for removing nitrogen oxide, which comprises supporting vanadium on the obtained fired body after firing at 0 to 800 ° C.
JP6025204A 1994-02-23 1994-02-23 Catalyst for removing nitrogen oxide and its preparation Pending JPH07232075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6025204A JPH07232075A (en) 1994-02-23 1994-02-23 Catalyst for removing nitrogen oxide and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6025204A JPH07232075A (en) 1994-02-23 1994-02-23 Catalyst for removing nitrogen oxide and its preparation

Publications (1)

Publication Number Publication Date
JPH07232075A true JPH07232075A (en) 1995-09-05

Family

ID=12159429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6025204A Pending JPH07232075A (en) 1994-02-23 1994-02-23 Catalyst for removing nitrogen oxide and its preparation

Country Status (1)

Country Link
JP (1) JPH07232075A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009031234A1 (en) 2007-09-07 2009-03-12 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst
EP2269732A1 (en) * 2008-03-25 2011-01-05 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst on which influence of iron compound has been suppressed
WO2011099492A1 (en) 2010-02-09 2011-08-18 バブコック日立株式会社 Nox reduction catalyst for exhaust gas of biomass combustion and nox reduction method
KR101382544B1 (en) * 2012-07-13 2014-04-10 한국과학기술연구원 Vanadia-titania catalyst for removing nitrogen oxides and method for manufacturing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2100664A1 (en) * 2007-09-07 2009-09-16 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst
WO2009031234A1 (en) 2007-09-07 2009-03-12 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst
EP2100664A4 (en) * 2007-09-07 2012-10-31 Babcock Hitachi Kk Exhaust gas purification catalyst
JP5126718B2 (en) * 2007-09-07 2013-01-23 バブコック日立株式会社 Exhaust gas purification catalyst
EP2269732A4 (en) * 2008-03-25 2013-01-02 Babcock Hitachi Kk Exhaust gas purification catalyst on which influence of iron compound has been suppressed
EP2269732A1 (en) * 2008-03-25 2011-01-05 Babcock-Hitachi Kabushiki Kaisha Exhaust gas purification catalyst on which influence of iron compound has been suppressed
JP5360834B2 (en) * 2008-03-25 2013-12-04 バブコック日立株式会社 Exhaust gas purification catalyst that suppresses the influence of iron compounds
WO2011099492A1 (en) 2010-02-09 2011-08-18 バブコック日立株式会社 Nox reduction catalyst for exhaust gas of biomass combustion and nox reduction method
KR20120125625A (en) 2010-02-09 2012-11-16 바브콕-히다찌 가부시끼가이샤 Nox reduction catalyst for exhaust gas of biomass combustion and nox reduction method
CN102781581A (en) * 2010-02-09 2012-11-14 巴布考克日立株式会社 NOx reduction catalyst for exhaust gas of biomass combustion and NOx reduction method
JP2011161364A (en) * 2010-02-09 2011-08-25 Babcock Hitachi Kk Denitration catalyst for biomass combustion exhaust gas, and denitration method
KR101382544B1 (en) * 2012-07-13 2014-04-10 한국과학기술연구원 Vanadia-titania catalyst for removing nitrogen oxides and method for manufacturing the same
US9101908B2 (en) 2012-07-13 2015-08-11 Korea Institute Of Science And Technology Vanadia—titania catalyst for removing nitrogen oxides and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US5137855A (en) Catalysts for selective catalytic reduction denox technology
WO1998052681A1 (en) Method for removing nitrogen oxides using natural manganese ores
JPH07232075A (en) Catalyst for removing nitrogen oxide and its preparation
JP3765942B2 (en) Exhaust gas purification catalyst compound, catalyst containing the compound, and process for producing the same
JP3337634B2 (en) Denitration catalyst, its preparation method, and denitration method
JP3783875B2 (en) Catalyst for removing nitrogen oxides using clay minerals and exhaust gas treatment method
JP3657299B2 (en) Nitrogen oxide removing catalyst and method for producing the same
JPH0420663B2 (en)
KR100629574B1 (en) Catalyst for nitrogen oxides reduction using activated carbon and method for preparing the same
JPH07114964B2 (en) Nitrogen oxide reduction catalyst and method for producing the same
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP3076421B2 (en) DeNOx catalyst suppressing sulfur dioxide oxidation and method for producing the same
JP3984122B2 (en) NOx removal catalyst, NOx removal method and method
JP2000237588A (en) Production of catalyst carrier for purifying waste gas
JP3893014B2 (en) Exhaust gas treatment catalyst, its production method and exhaust gas treatment method
JP3785310B2 (en) Organohalogen compound decomposition catalyst, production method thereof, and use
JPH07163876A (en) Ammonia reducing catalyst of nitrogen oxide exhaust gas and production thereof
JPH08131832A (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
WO2023203603A1 (en) Exhaust gas denitration method
JP3632739B2 (en) Titanium oxide-titanium phosphate powder, exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JPH07121361B2 (en) Catalyst for catalytic reduction of nitrogen oxides
KR102378405B1 (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
KR20030006598A (en) Titanium Dioxide Powder For Selective Catalytic Reduction Support For Removing NOx Compounds And Method Of Preparing Thereof
JP3234239B2 (en) Method for removing nitrogen oxides from high-temperature exhaust gas and catalyst for removal
JP2002102696A (en) Denitration catalyst and processing method for exhaust gas using this