JP2010093188A - Photoelectric conversion element, photoelectric conversion element connecting body, and photoelectric conversion module - Google Patents

Photoelectric conversion element, photoelectric conversion element connecting body, and photoelectric conversion module Download PDF

Info

Publication number
JP2010093188A
JP2010093188A JP2008264021A JP2008264021A JP2010093188A JP 2010093188 A JP2010093188 A JP 2010093188A JP 2008264021 A JP2008264021 A JP 2008264021A JP 2008264021 A JP2008264021 A JP 2008264021A JP 2010093188 A JP2010093188 A JP 2010093188A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode
semiconductor layer
conversion element
inter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008264021A
Other languages
Japanese (ja)
Inventor
Akiko Tsunefuka
安紀子 常深
Tsutomu Yamazaki
努 山崎
Rui Mikami
塁 三上
Satoshi Okamoto
諭 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008264021A priority Critical patent/JP2010093188A/en
Publication of JP2010093188A publication Critical patent/JP2010093188A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion element which allows the time required for a wiring process and the cost required for wiring members to be reduced, a photoelectric conversion element connecting body, and a photoelectric conversion module. <P>SOLUTION: The photoelectric conversion element includes: a first-conductivity-type first semiconductor layer; a first electrode 2 which is disposed on the rear surface side of the first semiconductor layer and is electrically connected to the first semiconductor layer; a second-conductivity-type second semiconductor layer which is in contact with the first semiconductor layer and has a portion disposed on the light-receiving surface side of the first semiconductor layer; a light-receiving surface electrode 5 which is provided on the light-receiving surface side of the second semiconductor layer so as to be electrically connected to the second semiconductor layer; second electrodes 7 which are arranged on the rear surface side of the first semiconductor layer, are electrically separated from the first semiconductor layer, and are electrically connected to the second semiconductor layer; and penetrating connecting sections 9 which penetrate the first semiconductor layer, are electrically separated from the first semiconductor layer, and electrically connect the light-receiving surface electrode 5 to the second electrodes 7. On the rear surface side of the first semiconductor layer, the first electrode 2 is disposed on a portion of the periphery of the first semiconductor layer, and a separated region 19 electrically separated from the first semiconductor layer is provided to surround the second electrodes 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光電変換素子、光電変換素子接続体および光電変換モジュールに関する。   The present invention relates to a photoelectric conversion element, a photoelectric conversion element connector, and a photoelectric conversion module.

太陽光エネルギーを直接電気エネルギーに変換する光電変換素子は、近年、特に環境問題の観点から、次世代のエネルギー源としての期待が急激に高まっている。光電変換素子として、現在、主流となっているのは、シリコン結晶を用いたものである。   In recent years, a photoelectric conversion element that directly converts solar energy into electric energy has been rapidly expected as a next-generation energy source particularly from the viewpoint of environmental problems. As a photoelectric conversion element, a silicon crystal is currently used as the mainstream.

その中でも、表面電極面積占有率を減少させるとともに、表面電極下部でのキャリア再結合を抑制するために、MWT(Metallization Wrap Through)光電変換素子が提案されている(非特許文献1)。このMWT光電変換素子は、シリコン基板に形成された貫通孔を通じて表面電極の一部を裏面側に取り回す構造を有し、表面電極の面積占有率を減少させることができる。   Among them, an MWT (Metallization Wrap Through) photoelectric conversion element has been proposed in order to reduce the surface electrode area occupancy and suppress the carrier recombination below the surface electrode (Non-patent Document 1). This MWT photoelectric conversion element has a structure in which a part of the surface electrode is routed to the back side through a through-hole formed in the silicon substrate, and the area occupancy of the surface electrode can be reduced.

また、1つのMWT光電変換素子の裏面のp側電極と、隣接するMWT光電変換素子の裏面のn側電極とを、インターコネクション・フォイルにて接続した光電変換素子接続体が提案されている(非特許文献2)。このインターコネクション・フォイルは、パターニングされたアルミニウム層を有し、アルミニウム層がMWT光電変換素子の裏面の各電極と電気的に接続される部分の表面には耐腐食層(anti-corrosion layer)が形成されるように後処理が施され、その他の部分は絶縁性ワニス(isolating varnish)で被覆されている。MWT光電変換素子の裏面の各電極と耐腐食層とは導電性接着剤を介して導通される。   In addition, a photoelectric conversion element connection body in which a p-side electrode on the back surface of one MWT photoelectric conversion element and an n-side electrode on the back surface of an adjacent MWT photoelectric conversion element are connected by an interconnection foil has been proposed ( Non-patent document 2). This interconnection foil has a patterned aluminum layer, and an anti-corrosion layer is formed on the surface of the portion where the aluminum layer is electrically connected to each electrode on the back surface of the MWT photoelectric conversion element. A post-treatment is applied to form, and the other part is coated with an insulating varnish. Each electrode on the back surface of the MWT photoelectric conversion element is electrically connected to the corrosion-resistant layer through a conductive adhesive.

Filip Granek、他、"A SYSTEMATIC APPROACH TO REDUCE PROCESS-INDUCED SHUNTS IN BACK-CONTACTED MC-SI SOLAR CELLS"、IEEE 4th World Conference on Photovoltaic Energy Conversion、(アメリカ)、2006年、p.1319-1322Filip Granek, et al., "A SYSTEMATIC APPROACH TO REDUCE PROCESS-INDUCED SHUNTS IN BACK-CONTACTED MC-SI SOLAR CELLS", IEEE 4th World Conference on Photovoltaic Energy Conversion, (USA), 2006, p.1319-1322 P.C. de Jong、他、"SINGLE-STEP LAMINATED FULL-SIZE PV MODULES MADE WITH BACK-CONTACTED MC-SI CELLS AND CONDUCTIVE ADHESIVES"、19th European Photovoltaic Solar Energy Conference、(フランス)、2004年、p.2145-2148P.C.de Jong, et al., "SINGLE-STEP LAMINATED FULL-SIZE PV MODULES MADE WITH BACK-CONTACTED MC-SI CELLS AND CONDUCTIVE ADHESIVES", 19th European Photovoltaic Solar Energy Conference, (France), 2004, p.2145-2148

前記インターコネクション・フォイルは、複雑なパターニングを必要とすることから、MWT光電変換素子との接続不良、変換効率の低下等の問題を回避するためには、光電変換素子をインターコネクション・フォイル上に高い位置精度にて配置する必要がある。さらに、パターインターコネクション・フォイルの作製工程や導電性接着剤のコストはインターコネクタに比べ高価である。   Since the interconnection foil requires complicated patterning, in order to avoid problems such as poor connection with the MWT photoelectric conversion element and a decrease in conversion efficiency, the photoelectric conversion element is placed on the interconnection foil. It is necessary to arrange with high positional accuracy. Furthermore, the production process of the putter interconnection foil and the cost of the conductive adhesive are expensive compared to the interconnector.

本発明はこのような実情を鑑みてなされたものであり、安価な配線部材を用いて隣接する光電変換素子間の接続が容易に行え、配線工程にかかる時間および配線部材にかかるコストを低減した光電変換素子、光電変換素子接続体および光電変換モジュールを提供することを目的とする。   The present invention has been made in view of such circumstances, and can easily connect between adjacent photoelectric conversion elements using an inexpensive wiring member, thereby reducing the time required for the wiring process and the cost for the wiring member. It aims at providing a photoelectric conversion element, a photoelectric conversion element connection body, and a photoelectric conversion module.

かくして、本発明によれば、第1導電型の第1半導体層と、該第1半導体層の裏面側に配置され第1半導体層に電気的に接続された第1電極と、第1半導体層に接触しかつ少なくとも一部が第1半導体層の受光面側に配置された第2導電型の第2半導体層と、該第2半導体層の受光面側に第2半導体層に電気的に接続されるように設けられた受光面電極と、第1半導体層の裏面側に配置され第1半導体層と電気的に分離されかつ第2半導体層に電気的に接続された第2電極と、第1半導体層を貫通し第1半導体層と電気的に分離されかつ前記受光面電極と第2電極とを電気的に接続する貫通接続部とを備え、第1半導体層の裏面側において、少なくとも第1半導体層の外周部の一部に第1電極が配置されると共に、第1半導体層の外周部における前記第1電極と対向する部分から第2電極の周囲部に渡って、第1半導体層と電気的に分離された分離領域が設けられている光電変換素子が提供される。   Thus, according to the present invention, the first conductive type first semiconductor layer, the first electrode disposed on the back surface side of the first semiconductor layer and electrically connected to the first semiconductor layer, and the first semiconductor layer And a second semiconductor layer of the second conductivity type, at least part of which is disposed on the light receiving surface side of the first semiconductor layer, and electrically connected to the second semiconductor layer on the light receiving surface side of the second semiconductor layer A light receiving surface electrode provided on the back surface side of the first semiconductor layer, the second electrode electrically separated from the first semiconductor layer and electrically connected to the second semiconductor layer; A through-connection portion that penetrates through one semiconductor layer and is electrically separated from the first semiconductor layer and electrically connects the light-receiving surface electrode and the second electrode, and at least on the back side of the first semiconductor layer, The first electrode is disposed on a part of the outer peripheral portion of the one semiconductor layer, and at the outer peripheral portion of the first semiconductor layer. From the first electrode facing the portion that over the periphery of the second electrode, the photoelectric conversion element electrically isolated isolation region and the first semiconductor layer is provided is provided.

また、本発明の別の観点によれば、隣接して配置された2つ以上の前記光電変換素子と、素子間配線部材とを備え、一の光電変換素子の第2電極と、他の光電変換素子の第1電極とが、前記素子間配線部材によって電気的に接続された第1の光電変換素子接続体、および、隣接して配置された2つ以上の前記光電変換素子と、素子間配線部材とを備え、一の光電変換素子と他の光電変換素子の第1電極同士または第2電極同士が、前記素子間配線部材によって電気的に接続された第2の光電変換素子接続体が提供される。
また、本発明のさらに別の観点によれば、透光性支持板上に複数の前記第1の光電変換素子接続体と複数の前記第2の光電変換素子接続体のうち少なくとも一方が組み合わせられて並べられ、かつ隣接する光電変換素子接続体同士が前記素子間配線部材にて電気的に接続された光電変換モジュールが提供される。
Moreover, according to another viewpoint of this invention, it is equipped with two or more said photoelectric conversion elements arrange | positioned adjacently, and the wiring member between elements, The 2nd electrode of one photoelectric conversion element, and another photoelectric conversion element A first photoelectric conversion element connection body in which the first electrode of the conversion element is electrically connected by the inter-element wiring member, and two or more photoelectric conversion elements arranged adjacent to each other, and the inter-element A second photoelectric conversion element connection body comprising a wiring member, wherein the first electrodes or the second electrodes of one photoelectric conversion element and another photoelectric conversion element are electrically connected by the inter-element wiring member. Provided.
According to still another aspect of the present invention, at least one of the plurality of first photoelectric conversion element connection bodies and the plurality of second photoelectric conversion element connection bodies is combined on a translucent support plate. A photoelectric conversion module in which adjacent photoelectric conversion element connectors are electrically connected by the inter-element wiring member is provided.

本発明によれば、光電変換素子の第1半導体層の裏面側において、少なくとも第1半導体層の外周部の一部に第1電極が配置されると共に、第1半導体層の外周部における前記第1電極と対向する部分から第2電極の周囲部に渡って、第1半導体層と電気的に分離された分離領域が設けられている。
この光電変換素子を複数直列接続する場合、例えば、複数の光電変換素子を同じ向きで1列に並べ、一の光電変換素子の第2電極と他の光電変換素子の第1電極とを直線状の安価な素子間配線部材を用いて容易に短時間で直列接続することができる。この結果、光電変換素子接続体および光電変換モジュールの製造コストを低減することができる。
According to the present invention, on the back surface side of the first semiconductor layer of the photoelectric conversion element, the first electrode is disposed at least in a part of the outer periphery of the first semiconductor layer, and the first electrode in the outer periphery of the first semiconductor layer. An isolation region that is electrically isolated from the first semiconductor layer is provided from the portion facing the one electrode to the periphery of the second electrode.
When a plurality of photoelectric conversion elements are connected in series, for example, the plurality of photoelectric conversion elements are arranged in a line in the same direction, and the second electrode of one photoelectric conversion element and the first electrode of the other photoelectric conversion element are linear. It is possible to easily connect in series in a short time using an inexpensive inter-element wiring member. As a result, the manufacturing cost of the photoelectric conversion element connector and the photoelectric conversion module can be reduced.

本発明の光電変換素子は、第1導電型の第1半導体層と、該第1半導体層の裏面側に配置され第1半導体層に電気的に接続された第1電極と、第1半導体層に接触しかつ少なくとも一部が第1半導体層の受光面側に配置された第2導電型の第2半導体層と、該第2半導体層の受光面側に第2半導体層に電気的に接続されるように設けられた受光面電極と、第1半導体層の裏面側に配置され第1半導体層と電気的に分離されかつ第2半導体層に電気的に接続された第2電極と、第1半導体層を貫通し第1半導体層と電気的に分離されかつ前記受光面電極と第2電極とを電気的に接続する貫通接続部とを備え、第1半導体層の裏面側において、少なくとも第1半導体層の外周部の一部に第1電極が配置されると共に、第1半導体層の外周部における前記第1電極と対向する部分から第2電極の周囲部に渡って、第1半導体層と電気的に分離された分離領域が設けられていることを特徴とする。   A photoelectric conversion element of the present invention includes a first semiconductor layer of a first conductivity type, a first electrode disposed on the back side of the first semiconductor layer and electrically connected to the first semiconductor layer, and a first semiconductor layer And a second semiconductor layer of the second conductivity type, at least part of which is disposed on the light receiving surface side of the first semiconductor layer, and electrically connected to the second semiconductor layer on the light receiving surface side of the second semiconductor layer A light receiving surface electrode provided on the back surface side of the first semiconductor layer, the second electrode electrically separated from the first semiconductor layer and electrically connected to the second semiconductor layer; A through-connection portion that penetrates through one semiconductor layer and is electrically separated from the first semiconductor layer and electrically connects the light-receiving surface electrode and the second electrode, and at least on the back side of the first semiconductor layer, The first electrode is disposed on a part of the outer periphery of the first semiconductor layer, and the outer periphery of the first semiconductor layer is Wherein the first electrode facing the portion over the periphery of the second electrode, wherein the electrically isolated isolation region and the first semiconductor layer is provided.

つまり、この光電変換素子は、受光面電極の面積を低減して有効発電面積を増加させ、かつ複数の光電変換素子同士の電気的な接続を容易とするために、光電変換素子の比較的広い面積が必要な接続部分を受光面とは反対側の裏面側に配置した上述の構造を備えている。
ここで、本発明において、第1導電型はp型またはn型を意味し、第2導電型は第1導電型とは反対のn型またはp型を意味する。
That is, this photoelectric conversion element has a relatively wide photoelectric conversion element in order to increase the effective power generation area by reducing the area of the light receiving surface electrode and to facilitate electrical connection between the plurality of photoelectric conversion elements. The above-described structure is provided in which a connection portion that requires an area is disposed on the back side opposite to the light receiving surface.
Here, in the present invention, the first conductivity type means p-type or n-type, and the second conductivity type means n-type or p-type opposite to the first conductivity type.

本発明において、前記貫通接続部を第1半導体層と電気的に分離する方法および前記分離領域を容易に形成する方法としては、これらの箇所に第2半導体層を形成することが挙げられる。つまり、第1半導体層における貫通接続部の周囲部分を第2導電型化すると共に、第1半導体層の裏面における分離領域を第2導電型化することにより、第2半導体層を形成する。これについて詳しくは後述する。   In the present invention, as a method of electrically separating the through connection portion from the first semiconductor layer and a method of easily forming the isolation region, forming a second semiconductor layer at these locations can be cited. That is, the second semiconductor layer is formed by making the peripheral portion of the through-connection portion in the first semiconductor layer the second conductivity type and making the isolation region on the back surface of the first semiconductor layer the second conductivity type. This will be described in detail later.

本発明において、光電変換素子の外形は特に限定されるものではないが、シンプルな形状で作製が容易であり、かつ同一の設置面積内に複数の光電変換素子を設置した場合の有効発電面積が大きくなる四角形が好ましい。
この場合、第1半導体層の外周部の外形が四角形であり、第1半導体層の裏面における分離領域を除く領域に金属電極層が形成され、第1電極は第1半導体層の外周部の一辺に沿った位置の金属電極層上に配置され、分離領域は第1半導体層の外周部における第1電極とは反対側の対向辺から第2電極の周囲部に渡って配置されていてもよい。
このようにすれば、第1半導体層の裏面側において、四角形の一辺に沿って直線状の第1電極が配置されるため、第1電極を直線状に1箇所のみ形成すればよく、第1電極の形成工程が容易に短時間で行われる。
In the present invention, the outer shape of the photoelectric conversion element is not particularly limited, but the simple power generation is simple and the effective power generation area when a plurality of photoelectric conversion elements are installed in the same installation area is as follows. A square that is larger is preferred.
In this case, the outer shape of the outer periphery of the first semiconductor layer is square, the metal electrode layer is formed in a region excluding the separation region on the back surface of the first semiconductor layer, and the first electrode is one side of the outer periphery of the first semiconductor layer. The separation region may be disposed from the opposite side of the outer periphery of the first semiconductor layer opposite to the first electrode to the periphery of the second electrode. .
In this way, since the linear first electrode is arranged along one side of the quadrangle on the back surface side of the first semiconductor layer, the first electrode may be formed only at one location in a straight line. The electrode forming process is easily performed in a short time.

さらに、光電変換素子からの電力を効率よく回収するために、第2電極は複数個設けてもよい。
この場合、例えば、貫通接続部が、第1電極の長手方向およびこの方向と直交する方向に複数個並んで配置され、第2電極は、複数個の貫通接続部上にドット状に配置され、分離領域は、前記長手方向と直交する方向に複数個並ぶ第2電極の列を包囲する帯形に形成されていてもよい。あるいは、貫通接続部が、第1電極の長手方向およびこの方向と直交する方向に複数並んで配置され、第2電極は、前記長手方向と直交する方向に複数個並ぶ貫通接続部の列上に帯状に延びて形成され、分離領域は、帯状第2電極を包囲する帯形に形成されていてもよい。
Furthermore, a plurality of second electrodes may be provided in order to efficiently recover power from the photoelectric conversion element.
In this case, for example, a plurality of through-connection portions are arranged side by side in the longitudinal direction of the first electrode and in a direction orthogonal to this direction, and the second electrode is arranged in a dot shape on the plurality of through-connection portions, The separation region may be formed in a band shape surrounding a plurality of second electrode rows arranged in a direction orthogonal to the longitudinal direction. Alternatively, a plurality of through-connection portions are arranged side by side in the longitudinal direction of the first electrode and in a direction orthogonal to this direction, and the second electrode is arranged on a row of the through-connection portions arranged in a direction orthogonal to the longitudinal direction. The separation region may be formed in a band shape surrounding the band-shaped second electrode.

このようにすれば、例えば、2つの光電変換素子を同じ向きでかつ第1電極の長手方向と直交する方向に並べることにより(配置A)、真っ直ぐな帯状の素子間配線部材(後述の第1素子間配線部材と同じ)によって、一方の光電変換素子の第2電極の列と他の光電変換素子の第1電極とを電気的に直列接続した光電変換素子接続体を形成することができる。以下、第1電極の長手方向を「横方向」と称し、第1電極の長手方向と直交する方向を「縦方向」と称する。   In this way, for example, by arranging the two photoelectric conversion elements in the same direction and in a direction perpendicular to the longitudinal direction of the first electrode (Arrangement A), a straight strip-shaped inter-element wiring member (a first element described later) A photoelectric conversion element connection body in which the second electrode row of one photoelectric conversion element and the first electrode of the other photoelectric conversion element are electrically connected in series can be formed by the same as the inter-element wiring member. Hereinafter, the longitudinal direction of the first electrode is referred to as “lateral direction”, and the direction orthogonal to the longitudinal direction of the first electrode is referred to as “vertical direction”.

また、2つの光電変換素子を逆に向けて横方向に並べた場合は(配置B)、真っ直ぐな帯状の第1素子間配線部材を一方の光電変換素子の第2電極の列に接続し、横方向に延びる第2素子間配線部材を第1素子間配線部材に接続し、第2素子間配線部材と他方の光電変換素子の第1電極とを第3素子間配線部材によって接続することにより、2つの光電変換素子を電気的に直列接続した光電変換素子接続体を形成することができる。   Further, when two photoelectric conversion elements are arranged in the horizontal direction facing reversely (Arrangement B), a straight strip-shaped first inter-element wiring member is connected to the second electrode row of one photoelectric conversion element, By connecting the second inter-element wiring member extending in the lateral direction to the first inter-element wiring member, and connecting the second inter-element wiring member and the first electrode of the other photoelectric conversion element by the third inter-element wiring member. A photoelectric conversion element connection body in which two photoelectric conversion elements are electrically connected in series can be formed.

また、2つの光電変換素子を同じ向きで横方向に並べた場合は(配置C)、隣接する2つの光電変換の第1電極同士または第2電極同士を前記第1〜第3素子間配線部材を選択的に用いて電気的に並列接続した光電変換素子接続体を形成することができる。   In addition, when two photoelectric conversion elements are arranged in the horizontal direction in the same direction (Arrangement C), the first to third inter-element wiring members are connected between the two adjacent first or second electrodes of photoelectric conversion. The photoelectric conversion element connection body electrically connected in parallel can be formed selectively.

また、本発明によれば、前記第1〜3素子間配線部材を用いれば、上述の配置A〜Cの光電変換素子接続体を所望の数で組み合わせ、それらを直列と並列の所望の接続形態で接続した光電変換モジュールを形成することができる。したがって、本発明の光電変換素子を用いて所望の出力の光電変換モジュールを容易に作製することができる。   Moreover, according to this invention, if the said 1st-3 element wiring member is used, the photoelectric conversion element connection body of the above-mentioned arrangement | positioning AC will be combined by a desired number, and those desired connection form of a series and parallel Can be formed. Therefore, a photoelectric conversion module having a desired output can be easily manufactured using the photoelectric conversion element of the present invention.

本発明の光電変換素子において、横方向に並ぶ第2電極の複数列は相互に等間隔に配置されていてもよい。このようにすれば、光電変換素子接続体または光電変換モジュールを作製する際、複数の前記第1素子間配線部材を一定間隔で配置することができるため、接続作業をより短時間で行うことができる。
この場合、横方向に並ぶ貫通接続部の複数列も第2電極の複数列と対応した等間隔に配置される。また、受光面電極は、少なくとも第2半導体層の受光面側における各貫通接続部に対応する位置に配置されていればよいが、光電変換素子の電力を効率よく回収するために分枝状に形成されてもよい。なお、受光面電極を細い分枝状に形成することにより、有効発電面積の減少が抑えられ、かつ受光面電極が目立たなくなるため美観が向上するという利点がある。
以下、図面を参照しながら本発明の実施形態を詳説する。なお、以下の実施形態は例示であって、本発明の範囲はそれらに限定されない。
In the photoelectric conversion element of the present invention, the plurality of rows of the second electrodes arranged in the lateral direction may be arranged at equal intervals. In this way, when the photoelectric conversion element connector or the photoelectric conversion module is manufactured, the plurality of first inter-element wiring members can be arranged at regular intervals, so that the connection work can be performed in a shorter time. it can.
In this case, the plurality of rows of through-connecting portions arranged in the horizontal direction are also arranged at equal intervals corresponding to the plurality of rows of the second electrode. In addition, the light receiving surface electrode may be arranged at a position corresponding to each through-connection portion at least on the light receiving surface side of the second semiconductor layer, but is branched in order to efficiently recover the electric power of the photoelectric conversion element. It may be formed. In addition, by forming the light receiving surface electrode in a thin branch shape, there is an advantage that the reduction of the effective power generation area can be suppressed and the light receiving surface electrode becomes inconspicuous and the aesthetic appearance is improved.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the following embodiment is an illustration and the scope of the present invention is not limited thereto.

(実施形態1:第1の光電変換素子の構造)
図1(A)は本発明の光電変換素子の実施形態1を示す受光面側の平面図であり、図1(B)は実施形態1の光電変換素子の裏面側の平面図である。また、図2は図1中のA−A線断面図である。
この光電変換素子10は、p型の第1半導体層1(以下「p型層1」と称する)と、p型層1の裏面側に配置されp型層1に電気的に接続された第1電極2と、p型層1に接触しかつ少なくとも一部がp型層1の受光面側に配置されたn型の第2半導体層3(以下「n型層3」と称する)と、n型層3の受光面側にn型層3に電気的に接続されるように設けられた受光面電極5と、p型層1の裏面側に配置されp型層1と電気的に分離されかつn型層3に電気的に接続された第2電極7と、p型層1を貫通しp型層1と電気的に分離されかつ受光面電極5と第2電極7とを電気的に接続する貫通接続部9とを備える。
Embodiment 1 Structure of First Photoelectric Conversion Element
1A is a plan view on the light-receiving surface side showing Embodiment 1 of the photoelectric conversion element of the present invention, and FIG. 1B is a plan view on the back side of the photoelectric conversion element of Embodiment 1. FIG. FIG. 2 is a cross-sectional view taken along line AA in FIG.
The photoelectric conversion element 10 includes a p-type first semiconductor layer 1 (hereinafter referred to as “p-type layer 1”) and a p-type layer 1 disposed on the back side of the p-type layer 1 and electrically connected to the p-type layer 1. One electrode 2 and an n-type second semiconductor layer 3 (hereinafter referred to as “n-type layer 3”) that is in contact with the p-type layer 1 and at least part of which is disposed on the light-receiving surface side of the p-type layer 1; A light-receiving surface electrode 5 provided so as to be electrically connected to the n-type layer 3 on the light-receiving surface side of the n-type layer 3 and a back surface side of the p-type layer 1 and electrically separated from the p-type layer 1 The second electrode 7 electrically connected to the n-type layer 3 and electrically separated from the p-type layer 1 through the p-type layer 1 and electrically connecting the light-receiving surface electrode 5 and the second electrode 7 to each other. And a through-connection portion 9 connected to the.

具体的には、p型層1の外周部の外形が四角形であり、第1電極形成2は四角形のp型層1の外周部の一辺に沿って直線状に配置されている。
また、この光電変換素子10において、貫通接続部9および第2電極7は、第1電極2が形成された領域以外の領域にそれぞれ複数個かつ同数で設けられている。なお、図1中の複数個の黒丸は貫通接続部9を示しているが、実際は第1電極2および第2電極7によって貫通接続部9は覆われているため外部からは見えない。
具体的には、貫通接続部9は、横方向および縦方向に複数並んで配置されている。このとき、複数個の貫通接続部9において、縦方向の間隔は等間隔であり、かつ横方向の間隔は縦方向間隔以上の等間隔である。
また、第2電極7は、複数個の貫通接続部9上にドット状に配置されている。したがって、複数個の第2電極7において、縦方向の間隔は等間隔であり、かつ横方向の間隔は縦方向間隔以上の等間隔である。なお、ドット状第2電極7は貫通接続部9より大きく形成されてn型層3の後述の包囲部分3aに接している。
Specifically, the outer shape of the outer peripheral portion of the p-type layer 1 is a quadrangle, and the first electrode formation 2 is linearly arranged along one side of the outer peripheral portion of the square p-type layer 1.
Further, in the photoelectric conversion element 10, a plurality of through connections 9 and the second electrodes 7 are provided in the same number in the regions other than the region where the first electrode 2 is formed. A plurality of black circles in FIG. 1 indicate the through connection portion 9, but in fact, since the through connection portion 9 is covered with the first electrode 2 and the second electrode 7, it cannot be seen from the outside.
Specifically, a plurality of through-connection portions 9 are arranged in the horizontal direction and the vertical direction. At this time, in the plurality of through-connecting portions 9, the vertical intervals are equal intervals, and the horizontal intervals are equal intervals or more than the vertical intervals.
The second electrode 7 is arranged in a dot shape on the plurality of through-connection portions 9. Therefore, in the plurality of second electrodes 7, the vertical intervals are equal and the horizontal intervals are equal to or greater than the vertical intervals. Note that the dot-like second electrode 7 is formed larger than the through-connection portion 9 and is in contact with an enclosing portion 3 a described later of the n-type layer 3.

さらに、この光電変換素子10は、n型層3が、各貫通接続部9の外周を包囲する前記包囲部分3aと、p型層1の裏面の外周部における第1電極2と対向する辺から第2電極7の各列(縦方向)の周囲部に渡って帯形に形成された分離領域19とをさらに有しており、この包囲部分3aおよび分離領域19によって各貫通接続部9および各第2電極はp型層1と電気的に分離されている。
また、p型層1の裏面側における分離領域19を除く領域には櫛形の金属電極層13が形成されており、p型層1は裏面の金属電極層13と接する部分に高濃度p型層15を有している。そして、金属電極層13上に第1電極2が形成されている。
さらに、高濃度p型層15および金属電極層13をn型層3から絶縁分離するように、各分離領域19の外周縁を含む金属電極層13の外周縁の全周に沿って分離溝21がp型層1まで達する深さで形成されている。
Further, in the photoelectric conversion element 10, the n-type layer 3 is surrounded by the surrounding portion 3 a that surrounds the outer periphery of each through-connection portion 9 and the side facing the first electrode 2 in the outer peripheral portion of the back surface of the p-type layer 1. And a separation region 19 formed in a band shape over the periphery of each row (vertical direction) of the second electrode 7, and each through-connecting portion 9 and each separation region 19 are separated by the surrounding portion 3 a and the separation region 19. The second electrode is electrically separated from the p-type layer 1.
Further, a comb-shaped metal electrode layer 13 is formed in a region excluding the separation region 19 on the back surface side of the p-type layer 1, and the p-type layer 1 is a high-concentration p-type layer in a portion in contact with the back-side metal electrode layer 13. 15. The first electrode 2 is formed on the metal electrode layer 13.
Furthermore, so as to insulate and separate the high-concentration p-type layer 15 and the metal electrode layer 13 from the n-type layer 3, the separation groove 21 is formed along the entire outer periphery of the metal electrode layer 13 including the outer periphery of each isolation region 19. Is formed to a depth reaching to the p-type layer 1.

また、光電変換素子10は、n型層3の受光面上に反射防止膜23を有しており、貫通接続部9および受光面電極5は反射防止膜23を貫通し、受光面電極5はn型層3と接触している。
受光面電極5は、縦方向に並んだ複数個の貫通接続部9と電気的に接続する基部5aと、基部5aに電気的に接続された基部5aよりも幅が狭い枝部5bとで構成されており、複数列の基部5aが平行な複数本の枝部5bによって接続されている。なお、基部5aは貫通接続部9との接合部分で最も幅が広いが、光電変換素子10の有効受光面面積(有効発電面積)をできるだけ広くするために、貫通接続部9間では幅が細くされている。
Further, the photoelectric conversion element 10 has an antireflection film 23 on the light receiving surface of the n-type layer 3, the through connection portion 9 and the light receiving surface electrode 5 penetrate the antireflection film 23, and the light receiving surface electrode 5 is It is in contact with the n-type layer 3.
The light-receiving surface electrode 5 includes a base portion 5a that is electrically connected to a plurality of through-connection portions 9 arranged in the vertical direction, and a branch portion 5b that is narrower than the base portion 5a that is electrically connected to the base portion 5a. The plurality of rows of base portions 5a are connected by a plurality of parallel branch portions 5b. The base portion 5a is widest at the joint portion with the through-connection portion 9, but the width between the through-connection portions 9 is narrow in order to make the effective light receiving surface area (effective power generation area) of the photoelectric conversion element 10 as large as possible. Has been.

(第1の光電変換素子の製造方法)
次に、図1〜図4を参照しながら実施形態1の光電変換素子の製造方法について説明する。なお、図3(A)〜(D)は実施形態1の光電変換素子の製造工程を説明する断面図であり、図4(A)〜(C)は図3(D)の続きの製造工程を説明する断面図である。
(Method for producing first photoelectric conversion element)
Next, the manufacturing method of the photoelectric conversion element of Embodiment 1 is demonstrated, referring FIGS. 3A to 3D are cross-sectional views illustrating a manufacturing process of the photoelectric conversion element of Embodiment 1, and FIGS. 4A to 4C are manufacturing processes subsequent to FIG. FIG.

<貫通孔形成工程>
まず、図3(A)に示すように、四角形のp型半導体基板25に貫通孔25aを形成する。この際、図1で説明した複数の貫通接続部9が形成される位置に複数の貫通孔25aを形成する。
p型半導体基板25としては、特に限定されないが、例えば、p型結晶シリコン基板を用いることができる。以下、p型半導体基板25をp型基板25と略称する場合がある。
また、貫通孔25aの形成方法は、特に限定されないが、例えばレーザ加工によって形成することができる。貫通孔25aの形状は特に限定されず、一例では、四角形(例:正方形、長方形)や円形である。貫通孔25aの大きさも特に限定されず、例えば、四角形の場合は一辺の長さが0.05〜1.0mm程度、円形の場合は直径が0.05〜1.0mm程度とすることができる。また、複数の貫通孔25aの縦横方向の間隔は特に限定されないが、縦方向の間隔は例えば1〜50mm程度の一定間隔、横方向の間隔は1〜50mm程度の一定間隔とすることができる。
<Through hole formation process>
First, as shown in FIG. 3A, a through hole 25a is formed in a rectangular p-type semiconductor substrate 25. At this time, a plurality of through holes 25a are formed at positions where the plurality of through connecting portions 9 described in FIG. 1 are formed.
The p-type semiconductor substrate 25 is not particularly limited. For example, a p-type crystal silicon substrate can be used. Hereinafter, the p-type semiconductor substrate 25 may be abbreviated as a p-type substrate 25.
Moreover, the formation method of the through-hole 25a is not specifically limited, For example, it can form by laser processing. The shape of the through hole 25a is not particularly limited, and in one example, it is a quadrangle (eg, square, rectangle) or a circle. The size of the through hole 25a is also not particularly limited. For example, in the case of a quadrangle, the length of one side can be about 0.05 to 1.0 mm, and in the case of a circle, the diameter can be about 0.05 to 1.0 mm. The vertical and horizontal intervals of the plurality of through holes 25a are not particularly limited, but the vertical interval can be set to a constant interval of about 1 to 50 mm, for example, and the horizontal interval can be set to a fixed interval of about 1 to 50 mm.

<表面凹凸加工工程>
次に、基板25の表面を酸やアルカリの溶液や反応性プラズマを用いてエッチングすることによって表面に凹凸構造(テクスチャ構造)を形成する。
<Surface unevenness processing step>
Next, an uneven structure (texture structure) is formed on the surface of the substrate 25 by etching the surface of the substrate 25 using an acid or alkali solution or reactive plasma.

<n型層形成工程>
次に、図3(B)に示すように、p型基板25にn型不純物を導入することによって、p型基板の外部に露出した表面部分にn型層3を形成する。n型不純物の導入は、例えば、n型不純物を含む材料(例えばPOCl3)を含む高温気体中にp型基板25を放置することによって行うことができる。この工程によって、p型基板25における受光面側、貫通孔25aの内周面、裏面側および外周端面側にn型層3が形成され、n型層3になっていない残りの部分がp型層1になる。
<N-type layer forming step>
Next, as shown in FIG. 3B, an n-type impurity is introduced into the p-type substrate 25 to form the n-type layer 3 on the surface portion exposed to the outside of the p-type substrate. The introduction of the n-type impurity can be performed, for example, by leaving the p-type substrate 25 in a high-temperature gas containing a material containing the n-type impurity (for example, POCl 3 ). By this step, the n-type layer 3 is formed on the light-receiving surface side of the p-type substrate 25, the inner peripheral surface, the back surface side, and the outer peripheral end surface side of the through hole 25a, and the remaining portion that is not the n-type layer 3 is p-type. It becomes layer 1.

n型層3の形成方法は、ここで示した方法に限定されない。n型層3は、例えばn型不純物からなるイオンをp型基板25内にイオン注入することによって形成してもよい。また、p型基板25内にn型不純物を導入してn型層3を形成する代わりに、p型基板25上にCVD法等により別途n型半導体層を形成することによってn型層3を形成してもよい。この場合、p型基板25がそのままp型層1となる。
n型層3は、少なくとも一部がp型層1の受光面側に配置されていればよい。したがって、p型層1の裏面側に配置されたn型層3は、そのまま残しておいてもよく、エッチング等により除去してもよい。また、予めp型基板25の裏面側に拡散防止マスクを配置し、その状態でp型基板25にn型不純物を導入することによってp型層1の裏面側にはn型層3が形成されないようにしてもよい。但し、p型層1の裏面には上述の分離領域19を形成する必要があるため、少なくとも分離領域形成部分はn型層3を残しておくことが好ましい。分離領域形成部分のn型層3を除去した場合、後からその部分のみに絶縁膜(例えば、シリコン酸化膜)を堆積すればよい。
The formation method of the n-type layer 3 is not limited to the method shown here. The n-type layer 3 may be formed, for example, by ion-implanting ions made of n-type impurities into the p-type substrate 25. Further, instead of forming the n-type layer 3 by introducing n-type impurities into the p-type substrate 25, the n-type layer 3 is formed by separately forming an n-type semiconductor layer on the p-type substrate 25 by a CVD method or the like. It may be formed. In this case, the p-type substrate 25 becomes the p-type layer 1 as it is.
The n-type layer 3 only needs to be at least partially disposed on the light-receiving surface side of the p-type layer 1. Therefore, the n-type layer 3 disposed on the back side of the p-type layer 1 may be left as it is or may be removed by etching or the like. In addition, a diffusion prevention mask is disposed in advance on the back side of the p-type substrate 25, and n-type impurities are introduced into the p-type substrate 25 in this state, whereby the n-type layer 3 is not formed on the back side of the p-type layer 1. You may do it. However, since it is necessary to form the above-mentioned isolation region 19 on the back surface of the p-type layer 1, it is preferable to leave the n-type layer 3 at least in the isolation region formation portion. When the n-type layer 3 in the isolation region forming portion is removed, an insulating film (for example, a silicon oxide film) may be deposited only on that portion later.

<反射防止膜形成工程>
次に、図3(C)に示すように、n型層3の受光面側に反射防止膜23を形成する。
この際、反射防止膜23は、n型層3の受光面側に、受光面電極5を形成する領域に開口23aを有するように形成する、あるいは、n型層3の受光面全体に形成する。
反射防止膜23をn型層3の受光面全体に形成する場合、受光面電極5を反射防止膜23上に形成し、ファイアスルーによって受光面電極5とn型層3とを導通させることができる。これについて詳しくは後述する。
反射防止膜23は、表面反射を抑制する機能を有するものであればその材料、厚さおよび形成方法等は特に限定されず、例えば、プラズマCVD法によって厚さ50〜100nm程度のSiN膜からなる反射防止膜23を形成することができる。
<Antireflection film formation process>
Next, as shown in FIG. 3C, an antireflection film 23 is formed on the light receiving surface side of the n-type layer 3.
At this time, the antireflection film 23 is formed on the light receiving surface side of the n-type layer 3 so as to have an opening 23 a in a region where the light receiving surface electrode 5 is formed, or formed on the entire light receiving surface of the n-type layer 3. .
When the antireflection film 23 is formed on the entire light receiving surface of the n-type layer 3, the light receiving surface electrode 5 is formed on the antireflection film 23, and the light receiving surface electrode 5 and the n-type layer 3 are made conductive by fire-through. it can. This will be described in detail later.
The material, thickness, and formation method of the antireflection film 23 are not particularly limited as long as it has a function of suppressing surface reflection. For example, the antireflection film 23 is made of a SiN film having a thickness of about 50 to 100 nm by a plasma CVD method. An antireflection film 23 can be formed.

<金属電極層および高濃度p型層の形成工程>
次に、図3(D)に示すように、p型層1の裏面の分離領域19(縦方向に並ぶ複数の貫通孔25aの列の複数列を包囲する帯形領域)を除く領域に金属電極層13として、例えば櫛形のアルミニウム電極を形成する。アルミニウム電極は、アルミニウムを含むペースト材料を印刷し、焼成することによって形成することができる。この際、アルミニウム電極の直下にアルミニウムが拡散して高濃度p型層15が形成される(図4(A)参照)。なお、金属電極層13は、分離領域19を除く領域以外にp型層1の外周部全周を避けて形成してもよい。
<Process for forming metal electrode layer and high-concentration p-type layer>
Next, as shown in FIG. 3D, a metal is formed in a region excluding the separation region 19 on the back surface of the p-type layer 1 (a belt-shaped region surrounding a plurality of rows of the plurality of through holes 25a arranged in the vertical direction). For example, a comb-shaped aluminum electrode is formed as the electrode layer 13. The aluminum electrode can be formed by printing and baking a paste material containing aluminum. At this time, aluminum diffuses immediately below the aluminum electrode to form the high concentration p-type layer 15 (see FIG. 4A). The metal electrode layer 13 may be formed so as to avoid the entire outer periphery of the p-type layer 1 other than the region excluding the separation region 19.

<第1電極、第2電極および貫通接続部の形成工程>
次に、図4(A)に示すように、p型層1の裏面側に第1電極2および第2電極7を形成し、かつ貫通孔25a内に貫通接続部9を形成する。この際、p型層1の高濃度p型層15上であって、p型層1の外周部の一辺に沿ってかつこの辺よりもやや短い長さで第1電極2を直線状に形成する。また、分離領域19内の各貫通孔25a上に第2電極7を形成する。
<Formation process of 1st electrode, 2nd electrode, and penetration connection part>
Next, as shown in FIG. 4A, the first electrode 2 and the second electrode 7 are formed on the back surface side of the p-type layer 1, and the through connection portion 9 is formed in the through hole 25a. At this time, the first electrode 2 is formed in a straight line on the high-concentration p-type layer 15 of the p-type layer 1, along one side of the outer peripheral portion of the p-type layer 1 and with a length slightly shorter than this side. . Further, the second electrode 7 is formed on each through hole 25 a in the separation region 19.

第1電極2、第2電極7および貫通接続部9の材料は特に限定されず、これらの材料は、同じものであってもよく、互いに異なるものであってもよいが、はんだ付けに適した金属(例えば銀)で形成することが好ましい。
また、第1電極2、第2電極7および貫通接続部9の形成方法は、特に限定されず、例えば、蒸着法、ペースト電極の印刷焼成法、めっき法等によって形成することができる。例えば、第2電極7および貫通接続部9は、裏面側から導電性ペーストを印刷し、焼成する等の方法によって同時に形成することができる。あるいは、第2電極7および貫通接続部9は、蒸着法やめっき法でも同時に形成することができる。
The materials of the first electrode 2, the second electrode 7 and the through connection portion 9 are not particularly limited, and these materials may be the same or different from each other, but are suitable for soldering. It is preferable to form with a metal (for example, silver).
Moreover, the formation method of the 1st electrode 2, the 2nd electrode 7, and the penetration connection part 9 is not specifically limited, For example, it can form by the vapor deposition method, the printing baking method of a paste electrode, the plating method, etc. For example, the 2nd electrode 7 and the penetration connection part 9 can be simultaneously formed by methods, such as printing an electroconductive paste from a back surface side, and baking. Or the 2nd electrode 7 and the penetration connection part 9 can be simultaneously formed also with a vapor deposition method or a plating method.

<受光面電極形成工程>
次に、図4(B)に示すように、n型層3の受光面側に受光面電極5を形成し、受光面電極5を各貫通接続部9と接続する。この際、上述したように、反射防止膜23の開口23aに、例えば、蒸着法、めっき法等によって電極材料を埋め込んでn型層3上に受光面電極5を形成する。あるいは、反射防止膜23上に電極ペーストを印刷し焼成することにより、ファイアスルーによって受光面電極5とn型層3とを接続させてもよい。
<Light-receiving surface electrode formation process>
Next, as shown in FIG. 4B, the light receiving surface electrode 5 is formed on the light receiving surface side of the n-type layer 3, and the light receiving surface electrode 5 is connected to each through connection portion 9. At this time, as described above, the light-receiving surface electrode 5 is formed on the n-type layer 3 by embedding an electrode material in the opening 23a of the antireflection film 23 by, for example, vapor deposition or plating. Alternatively, the light receiving surface electrode 5 and the n-type layer 3 may be connected to each other by fire-through by printing and baking an electrode paste on the antireflection film 23.

受光面電極5は、n型層3に電気的に接続されて光電変換素子10で発生した電力を回収することができるものであれば、その材料は特に限定されず、例えば、銀、アルミニウム、銅、ニッケル、パラジウム等の金属材料で形成することができ、中でも銀が好ましい。また、受光面電極5の形状は特に限定されないが、光電変換素子10で発生した電力を効率よく回収することができる上で、図1(A)で説明した基部5aおよび枝部5bから構成される形状が好ましい。
なお、上述の金属電極層および高濃度p型層の形成工程から受光面電極形成工程までは、順序が変わっても問題はない。
The material of the light-receiving surface electrode 5 is not particularly limited as long as it can be electrically connected to the n-type layer 3 and can recover the electric power generated in the photoelectric conversion element 10. For example, silver, aluminum, It can be formed of a metal material such as copper, nickel, palladium, etc. Among them, silver is preferable. In addition, the shape of the light receiving surface electrode 5 is not particularly limited. However, the light receiving surface electrode 5 includes the base portion 5a and the branch portion 5b described with reference to FIG. The shape is preferable.
It should be noted that there is no problem even if the order is changed from the formation process of the metal electrode layer and the high concentration p-type layer to the formation process of the light receiving surface electrode.

<分離溝形成工程>
次に、図4(C)に示すように、金属電極層13の外周縁の全周に沿って分離溝21を形成し、光電変換素子10の製造を完了する。
分離溝21は、例えばレーザー加工によって形成することができる。
<Separation groove forming process>
Next, as shown in FIG. 4C, separation grooves 21 are formed along the entire circumference of the outer peripheral edge of the metal electrode layer 13 to complete the manufacture of the photoelectric conversion element 10.
The separation groove 21 can be formed by, for example, laser processing.

(実施形態2:第2の光電変換素子)
図5は本発明の光電変換素子の実施形態2の裏面側の平面図である。なお、図5において、実施形態1と同様の要素には同一の符号を付している。
この光電変換素子100において、第2電極107は、n型層3の裏面側の各帯形分離領域19内で縦方向に複数個並ぶ貫通接続部9の列上に帯状に延びて形成されている。この場合も、帯状の第2電極107と金属電極層13との間には分離溝21が形成されているため、第2電極107は金属電極層13および高濃度p型層15と絶縁されている。
実施形態2の光電変換素子100は、このように第2電極107の形状が実施形態1と異なる以外は、実施形態1と同様の構成である。
したがって、この光電変換素子100は、第2電極107を帯状に形成すること以外は、実施形態1と同様の製造方法にて製造することができる。
(Embodiment 2: Second photoelectric conversion element)
FIG. 5 is a plan view of the back side of Embodiment 2 of the photoelectric conversion element of the present invention. In FIG. 5, elements similar to those in the first embodiment are denoted by the same reference numerals.
In this photoelectric conversion element 100, the second electrode 107 is formed to extend in a strip shape on the row of through-connection portions 9 arranged in the vertical direction in each strip-shaped separation region 19 on the back surface side of the n-type layer 3. Yes. Also in this case, since the separation groove 21 is formed between the band-shaped second electrode 107 and the metal electrode layer 13, the second electrode 107 is insulated from the metal electrode layer 13 and the high concentration p-type layer 15. Yes.
The photoelectric conversion element 100 of Embodiment 2 has the same configuration as that of Embodiment 1 except that the shape of the second electrode 107 is different from that of Embodiment 1.
Therefore, this photoelectric conversion element 100 can be manufactured by the same manufacturing method as in Embodiment 1 except that the second electrode 107 is formed in a strip shape.

(実施形態3:第1の光電変換素子接続体)
図6は本発明の実施形態3である第1の光電変換素子接続体の裏面側の平面図である。
この光電変換素子接続体U1は、実施形態1の2つ以上の光電変換素子10a、10bを直列接続したものである。なお、図6において、実施形態1と同様の要素には同一の符号を付している。
(Embodiment 3: First photoelectric conversion element connector)
FIG. 6 is a plan view of the back side of the first photoelectric conversion element connection body according to Embodiment 3 of the present invention.
This photoelectric conversion element connector U1 is obtained by connecting two or more photoelectric conversion elements 10a and 10b of the first embodiment in series. In FIG. 6, the same elements as those in the first embodiment are denoted by the same reference numerals.

詳しく説明すると、光電変換素子接続体U1は、縦方向に隣接して配置された2つの実施形態1の光電変換素子10a、10bと、複数の素子間配線部材17とを備え、一方の光電変換素子10aの縦方向に並ぶ複数個の第2電極7と他方の光電変換素子10bの第1電極2が、真っ直ぐな帯状の素子間配線部材17によって電気的に直列接続されたものである。なお、図6では、光電変換素子10a、10bにおける一部の第2電極7を実線丸で示しかつ全ての貫通接続部9を黒丸で示しているが、実際これらは素子間配線部材17によって覆われているため外部からは見えない。
素子間配線部材17の形状や材料は、特に限定されないが、一例では、平角銅線の表面にはんだをめっきしたものからなる。
More specifically, the photoelectric conversion element connector U1 includes two photoelectric conversion elements 10a and 10b according to the first embodiment that are arranged adjacent to each other in the vertical direction, and a plurality of inter-element wiring members 17, and one photoelectric conversion is performed. A plurality of second electrodes 7 arranged in the longitudinal direction of the element 10a and the first electrode 2 of the other photoelectric conversion element 10b are electrically connected in series by a straight strip-shaped inter-element wiring member 17. In FIG. 6, some of the second electrodes 7 in the photoelectric conversion elements 10 a and 10 b are indicated by solid line circles and all the through-connection portions 9 are indicated by black circles, but these are actually covered by the inter-element wiring member 17. It is not visible from the outside.
The shape and material of the inter-element wiring member 17 are not particularly limited. For example, the inter-element wiring member 17 is formed by plating a surface of a flat copper wire with solder.

光電変換素子接続体U1の作製に際しては、まず、2つの光電変換素子10a、10bを同じ向きで縦方向に並べる。そして、一方の光電変換素子10aの縦方向に並ぶ複数個の第2電極7の列上に、帯状の素子間配線部材17を接合し、各列の素子間配線部材17の光電変換素子10aから外方へ突出した端部を、他方の光電変換素子10bの第1電極2に接合する。
さらに、他方の光電変換素子10bにも第2電極7の各列上に素子間配線部材17を接合する。
なお、実施形態3では、2つの光電変換素子10a、10bを素子間配線部材17にて直列接続した光電変換素子接続体を例示したが、3つ以上の光電変換素子を素子間配線部材にて直列接続してもよい。
In producing the photoelectric conversion element connection body U1, first, the two photoelectric conversion elements 10a and 10b are arranged in the vertical direction in the same direction. And the strip | belt-shaped element wiring member 17 is joined on the row | line | column of the several 2nd electrode 7 located in a line with the vertical direction of one photoelectric conversion element 10a, and from the photoelectric conversion element 10a of the element wiring member 17 of each row | line | column. The end protruding outward is joined to the first electrode 2 of the other photoelectric conversion element 10b.
Further, the inter-element wiring member 17 is joined to the other photoelectric conversion element 10 b on each row of the second electrodes 7.
In the third embodiment, the photoelectric conversion element connection body in which the two photoelectric conversion elements 10a and 10b are connected in series by the inter-element wiring member 17 is illustrated, but three or more photoelectric conversion elements are formed by the inter-element wiring member. You may connect in series.

この光電変換素子接続体U1は、それ自体が最終製品として用いられても、あるいは、後述する光電変換モジュールの構成部品として用いられてもよい。いずれの場合も、帯状の素子間配線部材17を用いて2つの光電変換素子10a、10bを裏面側のみから接続することができるので、配線作業が容易であり、かつ配線工程にかかる時間を短縮させることができる。また、帯状の素子間配線部材17は比較的安価であるので、製造コストを低減することができる。   This photoelectric conversion element connection body U1 may be used as a final product itself, or may be used as a component of a photoelectric conversion module described later. In any case, since the two photoelectric conversion elements 10a and 10b can be connected only from the back side by using the strip-shaped inter-element wiring member 17, the wiring work is easy and the time required for the wiring process is shortened. Can be made. Further, since the strip-shaped inter-element wiring member 17 is relatively inexpensive, the manufacturing cost can be reduced.

光電変換素子接続体U1を最終製品とする場合、他方の光電変換素子10bの素子間配線部材17は、光電変換素子接続体U1によって発生した電力を外部に取り出すためのリード線として機能する。この場合、複数の素子間配線部材17の端部を1本の配線部材(バスバー)に接続して統合してもよい。またこの場合、光電変換素子接続体U1は、素子間配線部材にて直列接続された複数の光電変換素子の受光面側を支持する透光性支持板、透光性支持板上に載置された複数の光電変換素子の裏面側を被覆し封止する被覆部材等をさらに備えてもよい。
光電変換素子接続体U1を光電変換モジュールの構成部品として用いる場合、他方の光電変換素子10bの素子間配線部材17は、他の光電変換素子接続体の光電変換素子の第1電極と接合されるか、あるいは、電力を外部に取り出すための1本の配線部材(バスバー)に接合される(図10参照)。
When the photoelectric conversion element connection body U1 is used as a final product, the inter-element wiring member 17 of the other photoelectric conversion element 10b functions as a lead wire for taking out the electric power generated by the photoelectric conversion element connection body U1 to the outside. In this case, the end portions of the plurality of inter-element wiring members 17 may be integrated by connecting to one wiring member (bus bar). In this case, the photoelectric conversion element connection body U1 is placed on a translucent support plate and a translucent support plate that support the light receiving surfaces of a plurality of photoelectric conversion elements connected in series by an inter-element wiring member. Further, a covering member that covers and seals the back surfaces of the plurality of photoelectric conversion elements may be further provided.
When the photoelectric conversion element connection body U1 is used as a component of the photoelectric conversion module, the inter-element wiring member 17 of the other photoelectric conversion element 10b is joined to the first electrode of the photoelectric conversion element of the other photoelectric conversion element connection body. Or it is joined to one wiring member (bus bar) for taking out electric power outside (refer to Drawing 10).

光電変換素子接続体U1において、第2電極7とその周囲の金属電極層13とが素子間配線部材17によって短絡されることを防ぐ処置をしてもよい。
この処置の例としては、例えば、(1)金属電極層13の表面のうち少なくとも素子間配線部材17に接触する可能性がある部分を絶縁被覆するか、(2)素子間配線部材17の表面を部分的に絶縁被覆するか、のいずれかの方法が挙げられる。
(1)の方法であれば、第2電極7と素子間配線部材17の位置合わせの精度が低くても、素子間配線部材17を金属電極層13と接触させることなく第2電極7と接続することができる。
(1)の方法において、さらに、素子間配線部材17の幅よりも広い範囲まで金属電極層13の表面を絶縁被覆することが、配線工程の時間を短縮できる上で好ましい。絶縁被覆の方法は、特に限定されないが、例えば、樹脂ペーストをスクリーン印刷塗布する方法が挙げられる。
なお、(1)および(2)の方法は、後述する実施形態4および5の光電変換素子接続体についても適用できる。
In the photoelectric conversion element connector U <b> 1, the second electrode 7 and the surrounding metal electrode layer 13 may be prevented from being short-circuited by the inter-element wiring member 17.
Examples of this treatment include, for example, (1) covering at least a portion of the surface of the metal electrode layer 13 that may contact the inter-element wiring member 17 or (2) the surface of the inter-element wiring member 17. Any of these methods may be used.
With the method (1), the inter-element wiring member 17 is connected to the second electrode 7 without contacting the metal electrode layer 13 even when the alignment accuracy of the second electrode 7 and the inter-element wiring member 17 is low. can do.
In the method (1), it is preferable that the surface of the metal electrode layer 13 is further covered with insulation to a range wider than the width of the inter-element wiring member 17 in order to shorten the wiring process time. Although the method of insulation coating is not specifically limited, For example, the method of screen-printing and applying a resin paste is mentioned.
The methods (1) and (2) can also be applied to the photoelectric conversion element connection bodies of Embodiments 4 and 5 described later.

(実施形態4:第2の光電変換素子接続体)
図7は本発明の実施形態4である第2の光電変換素子接続体の裏面側の平面図である。
この光電変換素子接続体U2は、実施形態1の2つの光電変換素子10a、10bを横方向に並べて直列接続したものである。なお、図7において、実施形態1と同様の要素には同一の符号を付している。
(Embodiment 4: Second photoelectric conversion element connector)
FIG. 7 is a plan view of the back surface side of the second photoelectric conversion element connector according to Embodiment 4 of the present invention.
This photoelectric conversion element connector U2 is obtained by arranging the two photoelectric conversion elements 10a and 10b of Embodiment 1 in the horizontal direction and connecting them in series. In FIG. 7, the same reference numerals are given to the same elements as those in the first embodiment.

光電変換素子接続体U2の作製に際しては、まず、2つの光電変換素子10a、10bを相互に逆向きで横方向に並べ、一方の光電変換素子10aの縦方向に並ぶ複数個の第2電極7の列上に、帯状の第1素子間配線部材17aを接合する。なお、第1素子間配線部材17aは、実施形態3で説明した素子間配線部材17と実質的に同じである。
次に、各列の第1素子間配線部材17aの光電変換素子10aから外方へ突出した端部を横方向に延びる第2素子間配線部材17bに接合し、複数の第3素子間接続部材17cにて第2素子間接続部材17bと他方の光電変換素子10bの第1電極2とを接合する。なお、第3素子間接続部材17cに複数の第2素子間接続部材17bを予め接合しておいてもよい。
さらに、他方の光電変換素子10bにも第2電極7の各列上に第1素子間配線部材17aを接合する。
In producing the photoelectric conversion element connector U2, first, the two photoelectric conversion elements 10a and 10b are arranged in the horizontal direction opposite to each other, and the plurality of second electrodes 7 arranged in the vertical direction of the one photoelectric conversion element 10a. The strip-shaped first inter-element wiring member 17a is joined on the row. The first inter-element wiring member 17a is substantially the same as the inter-element wiring member 17 described in the third embodiment.
Next, the end portion of each row of the first inter-element wiring member 17a protruding outward from the photoelectric conversion element 10a is joined to the second inter-element wiring member 17b extending in the lateral direction, and a plurality of third inter-element connection members At 17c, the second inter-element connection member 17b and the first electrode 2 of the other photoelectric conversion element 10b are joined. A plurality of second inter-element connection members 17b may be bonded in advance to the third inter-element connection member 17c.
Further, the first inter-element wiring member 17 a is joined to each other row of the second electrodes 7 also to the other photoelectric conversion element 10 b.

この光電変換素子接続体U2でも、それ自体が最終製品として用いられても、あるいは、後述する光電変換モジュールの構成部品として用いられてもよく、いずれの場合も、配線工程にかかる時間の短縮化および製造コストの低減を図ることができる。
また、光電変換素子接続体U2を最終製品とする場合、実施形態3と同様に、他方の光電変換素子10bの第1素子間配線部材17aは、光電変換素子接続体U2によって発生した電力を外部に取り出すためのリード線として機能するため、複数の第1素子間配線部材17aの端部を1本の配線部材(バスバー)に接続して統合してもよい。さらに、光電変換素子接続体U2も、第1〜第3素子間配線部材17a、17b、17cにて直列接続された複数の光電変換素子の受光面側を支持する透光性支持板、透光性支持板上に載置された複数の光電変換素子の裏面側を被覆し封止する被覆部材等をさらに備えてもよい。
光電変換素子接続体U2を光電変換モジュールの構成部品として用いる場合、他方の光電変換素子10bの素子間配線部材17は、他の光電変換素子接続体の光電変換素子の第1電極と接合される(図10参照)。
This photoelectric conversion element connector U2 may be used as a final product or as a component of a photoelectric conversion module to be described later. In either case, the time required for the wiring process can be shortened. Further, the manufacturing cost can be reduced.
Further, when the photoelectric conversion element connection body U2 is used as the final product, the first inter-element wiring member 17a of the other photoelectric conversion element 10b receives the electric power generated by the photoelectric conversion element connection body U2 as in the third embodiment. Therefore, the ends of the plurality of first inter-element wiring members 17a may be connected to and integrated with one wiring member (bus bar). Further, the photoelectric conversion element connector U2 also has a light-transmitting support plate that supports the light-receiving surface side of a plurality of photoelectric conversion elements connected in series by the first to third inter-element wiring members 17a, 17b, and 17c. You may further provide the coating | coated member etc. which coat | cover and seal the back surface side of the some photoelectric conversion element mounted on the electroconductive support plate.
When the photoelectric conversion element connection body U2 is used as a component of the photoelectric conversion module, the inter-element wiring member 17 of the other photoelectric conversion element 10b is joined to the first electrode of the photoelectric conversion element of the other photoelectric conversion element connection body. (See FIG. 10).

(実施形態5:第3の光電変換素子接続体)
図8は本発明の実施形態5である第3の光電変換素子接続体の裏面側の平面図である。
この光電変換素子接続体U3は、実施形態1の2つの光電変換素子10a、10bを並列接続したものである。なお、図8において、実施形態1および実施形態4と同様の要素には同一の符号を付している。
(Embodiment 5: Third photoelectric conversion element connector)
FIG. 8 is a plan view of the back surface side of the third photoelectric conversion element connector according to Embodiment 5 of the present invention.
This photoelectric conversion element connector U3 is obtained by connecting the two photoelectric conversion elements 10a and 10b of the first embodiment in parallel. In FIG. 8, the same elements as those in the first and fourth embodiments are denoted by the same reference numerals.

光電変換素子接続体U3の作製に際しては、まず、2つの光電変換素子10a、10bを相互に同じ向きで横方向に並べ、各光電変換素子10a、10bの第1電極2、2を、横方向に延びる第2素子間配線部材17bに複数の第3素子間接続部材17cを介して接合する。
さらに、各光電変換素子10a、10bの縦方向に並ぶ複数個の第2電極7の列上に、帯状の第1素子間配線部材17aを接合する。
なお、実施形態5では、2つの光電変換素子10a、10bを第2および第3素子間配線部材17b、17cを用いて並列接続した光電変換素子接続体を例示したが、3つ以上の光電変換素子を並列接続してもよい。
In producing the photoelectric conversion element connection body U3, first, two photoelectric conversion elements 10a and 10b are arranged in the horizontal direction in the same direction, and the first electrodes 2 and 2 of the photoelectric conversion elements 10a and 10b are arranged in the horizontal direction. Are joined to the second inter-element wiring member 17b extending through the plurality of third inter-element connection members 17c.
Further, a strip-shaped first inter-element wiring member 17a is joined on the row of the plurality of second electrodes 7 arranged in the vertical direction of the photoelectric conversion elements 10a and 10b.
In the fifth embodiment, the photoelectric conversion element connection body in which the two photoelectric conversion elements 10a and 10b are connected in parallel by using the second and third inter-element wiring members 17b and 17c is illustrated. Elements may be connected in parallel.

この光電変換素子接続体U3でも、それ自体が最終製品として用いられても、あるいは、後述する光電変換モジュールの構成部品として用いられてもよく、いずれの場合も、配線工程にかかる時間の短縮化および製造コストの低減を図ることができる。
また、光電変換素子接続体U3を最終製品とする場合、各光電変換素子10a、10bの第1素子間配線部材17aは、光電変換素子接続体U3によって発生した電力を外部に取り出すためのリード線として機能するため、複数の第1素子間配線部材17aの端部を1本の配線部材(バスバー)に接続して統合してもよい。さらに、光電変換素子接続体U3は、第2および第3素子間配線部材17b、17cにて並列接続された複数の光電変換素子の受光面側を支持する透光性支持板、透光性支持板上に載置された複数の光電変換素子の裏面側を被覆し封止する被覆部材等をさらに備えてもよい。
光電変換素子接続体U3を光電変換モジュールの構成部品として用いる場合、各光電変換素子10a、10bの素子間配線部材17は、他の光電変換素子接続体の光電変換素子の第1電極と接合される(図11、図12参照)。
Even in this photoelectric conversion element connection body U3, it may be used as a final product, or may be used as a component of a photoelectric conversion module to be described later. In either case, the time required for the wiring process is shortened. Further, the manufacturing cost can be reduced.
When the photoelectric conversion element connection body U3 is used as a final product, the first inter-element wiring member 17a of each photoelectric conversion element 10a, 10b is a lead wire for taking out the electric power generated by the photoelectric conversion element connection body U3 to the outside. Therefore, the ends of the plurality of first inter-element wiring members 17a may be integrated by connecting to one wiring member (bus bar). Further, the photoelectric conversion element connection body U3 includes a translucent support plate and a translucent support that support the light receiving surfaces of a plurality of photoelectric conversion elements connected in parallel by the second and third inter-element wiring members 17b and 17c. You may further provide the coating | coated member etc. which coat | cover and seal the back surface side of the some photoelectric conversion element mounted on the board.
When the photoelectric conversion element connection body U3 is used as a component of the photoelectric conversion module, the inter-element wiring member 17 of each photoelectric conversion element 10a, 10b is joined to the first electrode of the photoelectric conversion element of the other photoelectric conversion element connection body. (See FIGS. 11 and 12).

(実施形態6:第4の光電変換素子接続体)
図9は本発明の実施形態6である第4の光電変換素子接続体の裏面側の平面図である。
この光電変換素子接続体U4も、実施形態1の2つの光電変換素子10a、10bを横方向に並べて並列接続したものである。なお、図9において、実施形態1、4および5と同様の要素には同一の符号を付している。
(Embodiment 6: 4th photoelectric conversion element connection body)
FIG. 9 is a plan view of the back surface side of the fourth photoelectric conversion element connector according to Embodiment 6 of the present invention.
This photoelectric conversion element connection body U4 is also one in which the two photoelectric conversion elements 10a and 10b of Embodiment 1 are arranged in parallel in the horizontal direction. In FIG. 9, the same elements as those in the first, fourth, and fifth embodiments are denoted by the same reference numerals.

この光電変換素子接続体U4は、2つの光電変換素子10a、10bの各列の第1素子間配線部材17aが横方向に延びる1本の第2素子間配線部材17bに接合しており、各光電変換素子10a、10bの第1電極2は相互に接続されていない点のみが、実施形態5とは異なる。
なお、実施形態6では、2つの光電変換素子10a、10bを第1および第2素子間配線部材17a、17bにて並列接続した光電変換素子接続体を例示したが、3つ以上の光電変換素子を並列接続してもよい。
In this photoelectric conversion element connection body U4, the first inter-element wiring members 17a in each column of the two photoelectric conversion elements 10a and 10b are joined to one second inter-element wiring member 17b extending in the lateral direction. The only difference from Embodiment 5 is that the first electrodes 2 of the photoelectric conversion elements 10a and 10b are not connected to each other.
In the sixth embodiment, the photoelectric conversion element connection body in which the two photoelectric conversion elements 10a and 10b are connected in parallel by the first and second inter-element wiring members 17a and 17b is illustrated, but three or more photoelectric conversion elements are used. May be connected in parallel.

この光電変換素子接続体U4でも、それ自体が最終製品として用いられても、あるいは、後述する光電変換モジュールの構成部品として用いられてもよく、いずれの場合も、配線工程にかかる時間の短縮化および製造コストの低減を図ることができる。
また、光電変換素子接続体U4を最終製品とする場合、各光電変換素子10a、10bの第1電極2を1本の第2素子間配線部材に複数の第3素子間配線部材を介して接続して統合してもよい。さらに、光電変換素子接続体U4は、第1および第2素子間配線部材17a、17bにて並列接続された複数の光電変換素子の受光面側を支持する透光性支持板、透光性支持板上に載置された複数の光電変換素子の裏面側を被覆し封止する被覆部材等をさらに備えてもよい。
光電変換素子接続体U4を光電変換モジュールの構成部品として用いる場合、各光電変換素子10a、10bの第1電極2は、他の光電変換素子接続体の第1素子間配線部材と接合される(図12参照)。
Even in this photoelectric conversion element connection body U4, it may be used as a final product, or may be used as a component of a photoelectric conversion module to be described later. In either case, the time required for the wiring process is shortened. Further, the manufacturing cost can be reduced.
When the photoelectric conversion element connector U4 is used as a final product, the first electrode 2 of each photoelectric conversion element 10a, 10b is connected to one second inter-element wiring member via a plurality of third inter-element wiring members. And may be integrated. Furthermore, the photoelectric conversion element connection body U4 includes a translucent support plate and a translucent support that support the light receiving surfaces of a plurality of photoelectric conversion elements connected in parallel by the first and second inter-element wiring members 17a and 17b. You may further provide the coating | coated member etc. which coat | cover and seal the back surface side of the some photoelectric conversion element mounted on the board.
When the photoelectric conversion element connection body U4 is used as a component of the photoelectric conversion module, the first electrode 2 of each photoelectric conversion element 10a, 10b is joined to the first inter-element wiring member of the other photoelectric conversion element connection body ( (See FIG. 12).

(実施形態7:第1の光電変換モジュール)
図10は本発明の実施形態7である第1の光電変換モジュールの裏面側の平面図である。
この光電変換モジュールM1は、縦方向の実施形態3の光電変換素子接続体U1(図6参照)と、横方向の実施形態4の光電変換素子接続体U2(図7参照)とが組み合わせられた構造を有する。なお、図10において、実施形態1、3および4と同様の要素には同一の符号を付し、光電変換素子接続体の符号U1、U2は省略している。
(Embodiment 7: first photoelectric conversion module)
FIG. 10 is a plan view of the back side of the first photoelectric conversion module according to Embodiment 7 of the present invention.
This photoelectric conversion module M1 is a combination of the photoelectric conversion element connection body U1 (see FIG. 6) of Embodiment 3 in the vertical direction and the photoelectric conversion element connection body U2 (see FIG. 7) of Embodiment 4 in the horizontal direction. It has a structure. In FIG. 10, the same elements as those in the first, third, and fourth embodiments are denoted by the same reference numerals, and the reference numerals U1 and U2 of the photoelectric conversion element connection body are omitted.

図10では、縦横方向に4つずつ光電変換素子10が並べられ、左から1列目と4列目に3つの光電変換素子10が直列接続された光電変換素子接続体U1が配置され、2列目と3列目に2つの光電変換素子10が直列接続された光電変換素子接続体U1が配置され、1列目と2列目に跨って2つの光電変換素子10が直列接続された光電変換素子接続体U2が配置され、2列目と3列目に跨って2つの光電変換素子10が直列接続された光電変換素子接続体U2が配置され、3列目と4列目に跨って2つの光電変換素子10が直列接続された光電変換素子接続体U2が配置され、これらが接続された光電変換モジュールM1を例示している。   In FIG. 10, four photoelectric conversion elements 10 are arranged in the vertical and horizontal directions, and a photoelectric conversion element connection body U1 in which three photoelectric conversion elements 10 are connected in series is arranged in the first and fourth columns from the left. A photoelectric conversion element connection body U1 in which two photoelectric conversion elements 10 are connected in series is arranged in the first and third columns, and two photoelectric conversion elements 10 are connected in series across the first and second columns. A conversion element connection body U2 is arranged, and a photoelectric conversion element connection body U2 in which two photoelectric conversion elements 10 are connected in series across the second and third rows is arranged, and the third and fourth rows are straddled. A photoelectric conversion module M1 in which a photoelectric conversion element connection body U2 in which two photoelectric conversion elements 10 are connected in series is arranged and these are connected is illustrated.

また、光電変換モジュールM1は、1列目の光電変換素子接続体U1の端の光電変換素子10の第1電極2がバスバー81に配線部材82を介して接続され、4列目の光電変換素子接続体U1の端の光電変換素子10の各第1素子間配線部材17aがバスバー81に接続され、各バスバー81が電力取出し用の正負リード線83、83に接続され、2列目と3列目に跨った光電変換素子接続体U2の第2素子間配線部材17bがリード線84に接続され、正負リード線83、83とリード線84の間にバイパスダイオードDが2個直列接続されている。
このような接続により、ホットスポット耐性を維持しながら高電圧出力の集積型薄膜太陽電池を得ることができる。
Further, in the photoelectric conversion module M1, the first electrode 2 of the photoelectric conversion element 10 at the end of the photoelectric conversion element connection body U1 in the first row is connected to the bus bar 81 via the wiring member 82, and the photoelectric conversion element in the fourth row. Each first inter-element wiring member 17a of the photoelectric conversion element 10 at the end of the connection body U1 is connected to the bus bar 81, and each bus bar 81 is connected to the positive and negative lead wires 83, 83 for power extraction. The second inter-element wiring member 17b of the photoelectric conversion element connector U2 across the eyes is connected to the lead wire 84, and two bypass diodes D are connected in series between the positive and negative lead wires 83 and 83 and the lead wire 84. .
With such connection, an integrated thin film solar cell having a high voltage output can be obtained while maintaining hot spot resistance.

また、この光電変換モジュールM1は、各光電変換素子接続体の受光面側に配置される白板ガラス等のフロントカバーおよびEVA(エチレン・酢酸ビニール共重合体)等の透明樹脂からなる充填材と、各光電変換素子接続体の裏面側に配置されるEVA等の裏面側充填材および耐候性フィルム(例えば、絶縁物と金属箔と絶縁物の積層シート)と、耐候性フィルムの裏面に取り付けられた端子ボックスとを備える(図示省略)。端子ボックスには2個のバイパスダイオードDが収納されている。
前記正負リード線83、83およびリード線84は裏面側充填材および耐候性フィルムに設けられた貫通孔を通じて耐候性フィルムの裏面側へ取り出され、正負リード線83、83は端子ボックス内に設けられた出力端子に接続され、リード線84は2個のバイパスダイオードDと接続される。
Further, this photoelectric conversion module M1 includes a front cover such as white plate glass and a filler made of a transparent resin such as EVA (ethylene / vinyl acetate copolymer) disposed on the light receiving surface side of each photoelectric conversion element connector, A backside filler such as EVA and a weather resistant film (for example, a laminated sheet of an insulator, a metal foil, and an insulator) disposed on the back side of each photoelectric conversion element connector, and attached to the back side of the weather resistant film A terminal box (not shown). Two bypass diodes D are accommodated in the terminal box.
The positive and negative lead wires 83 and 83 and the lead wire 84 are taken out to the back side of the weather resistant film through through holes provided in the back side filler and the weather resistant film, and the positive and negative lead wires 83 and 83 are provided in the terminal box. The lead wire 84 is connected to two bypass diodes D.

光電変換モジュールM1は、例えば次のようにして製造することができる。
まず、フロントカバーの上に充填材を配置し、その上に受光面を下にして複数の光電変換素子10を図10のように配置し、第1〜第3素子間配線部材17a、17b、17cを用いて図10に示すように複数の光電変換素子10を直列接続する。
この際、予め第1素子間配線部材17aを第2電極7に接続した光電変換素子10をフロントカバー上の充填材の上に並べ、その後、第2および第3素子間配線部材17b、17cを用いて光電変換素子接続体U1、U2を組み合わせた状態に各光電変換素子10を接続してもよい。あるいは、予め光電変換素子接続体U1、U2を作製し、これらをフロントカバー上の充填材の上に並べ、その後、各第1素子間配線部材17aを各第1電極2に接続してもよい。
The photoelectric conversion module M1 can be manufactured, for example, as follows.
First, a filler is arranged on the front cover, and a plurality of photoelectric conversion elements 10 are arranged as shown in FIG. 10 with the light receiving surface facing down, and first to third inter-element wiring members 17a, 17b, As shown in FIG. 10, a plurality of photoelectric conversion elements 10 are connected in series using 17c.
At this time, the photoelectric conversion elements 10 in which the first inter-element wiring members 17a are connected in advance to the second electrodes 7 are arranged on the filler on the front cover, and then the second and third inter-element wiring members 17b and 17c are arranged. You may connect each photoelectric conversion element 10 in the state which combined and used the photoelectric conversion element connection bodies U1 and U2. Alternatively, the photoelectric conversion element connection bodies U1 and U2 may be prepared in advance, arranged on the filler on the front cover, and then each first inter-element wiring member 17a may be connected to each first electrode 2. .

次に、1列目の光電変換素子接続体U1の第1電極2をバスバー81に接続し、4列目の光電変換素子接続体U1の各第1素子間配線部材17aをバスバー81に接続し、2列目と3列目に跨った光電変換素子接続体U2の第2素子間配線部材17bをリード線84に接続し、正極リード線83、83を各バスバー81、81に接続する。
続いて、裏面側充填材に設けられた貫通孔に各リード線83、83、84を通し、裏面側充填材を光電変換素子接続体U1、U2の上に配置する。そして、耐候性フィルムに設けられた貫通孔に各リード線83、83、84を通し、耐候性フィルムを裏面側充填材の上に配置する。
このようにして得られた積層体を真空ラミネート装置を用いて加圧・加熱することで、充填材を溶融固化し、端子ボックスの出力端子および2つのバイパスダイオードDに各リード線83、83、84を接続し、端子ボックスを耐候性フィルムに接着して光電変換モジュールM1を得る。
Next, the first electrode 2 of the first row of photoelectric conversion element connections U1 is connected to the bus bar 81, and each first inter-element wiring member 17a of the fourth row photoelectric conversion element connection body U1 is connected to the bus bar 81. The second inter-element wiring member 17b of the photoelectric conversion element connector U2 across the second and third rows is connected to the lead wire 84, and the positive lead wires 83 and 83 are connected to the bus bars 81 and 81, respectively.
Subsequently, the lead wires 83, 83, and 84 are passed through through holes provided in the back surface side filler, and the back surface side filler is disposed on the photoelectric conversion element connectors U1 and U2. And each lead wire 83, 83, 84 is passed through the through-hole provided in the weather resistant film, and a weather resistant film is arrange | positioned on a back surface side filler.
The laminate obtained in this manner is pressurized and heated using a vacuum laminating apparatus, so that the filler is melted and solidified. The lead wires 83, 83, 84 is connected, and the terminal box is adhered to the weather resistant film to obtain the photoelectric conversion module M1.

この光電変換モジュールM1によれば、第1〜第3素子間配線部材17a、17b、17cを用いて複数の光電変換素子10を裏面側のみから接続することができるので、配線作業が容易であり、かつ配線工程にかかる時間を短縮させることができる。また、帯状の素子間配線部材17a〜17cは比較的安価であるので、製造コストを低減することができる。   According to the photoelectric conversion module M1, the plurality of photoelectric conversion elements 10 can be connected only from the back side using the first to third inter-element wiring members 17a, 17b, and 17c, so that the wiring work is easy. In addition, the time required for the wiring process can be shortened. Further, since the strip-shaped inter-element wiring members 17a to 17c are relatively inexpensive, the manufacturing cost can be reduced.

(実施形態8:第2の光電変換モジュール)
図11は本発明の実施形態8である第2の光電変換モジュールの裏面側の概略平面図である。
この光電変換モジュールM2は、縦方向直列の実施形態3の光電変換素子接続体U1(図6参照)と、横方向直列の実施形態4の光電変換素子接続体U2(図7参照)と、横方向並列の実施形態5の光電変換素子接続体U3(図8参照)とが組み合わせられた構造を有する。なお、図11において、実施形態1、3〜5と同様の要素には同一の符号を付し、光電変換素子接続体の符号U1、U2、U3は省略している。
(Embodiment 8: Second photoelectric conversion module)
FIG. 11 is a schematic plan view of the back side of the second photoelectric conversion module according to Embodiment 8 of the present invention.
This photoelectric conversion module M2 includes a vertical-direction series photoelectric conversion element connection body U1 (see FIG. 6), a horizontal-direction serial embodiment photoelectric conversion element connection body U2 (see FIG. 7), and a horizontal It has a structure in which the photoelectric conversion element connector U3 (see FIG. 8) of Embodiment 5 in parallel with the direction is combined. In addition, in FIG. 11, the same code | symbol is attached | subjected to the element similar to Embodiment 1, 3-5, and the code | symbol U1, U2, U3 of a photoelectric conversion element connection body is abbreviate | omitted.

図11では、縦横方向に4つずつ光電変換素子10が並べられ、左から1列目と4列目に3つの光電変換素子10が直列接続された光電変換素子接続体U1が配置され、2列目と3列目に2つの光電変換素子10が直列接続された光電変換素子接続体U1が配置され、1列目と2列目に跨って2つの光電変換素子10が直列接続された光電変換素子接続体U2が配置され、2列目と3列目に跨って2つの光電変換素子10が並列接続された光電変換素子接続体U3が配置され、3列目と4列目に跨って2つの光電変換素子10が直列接続された光電変換素子接続体U2が配置され、これらが接続された光電変換モジュールM2を例示している。   In FIG. 11, four photoelectric conversion elements 10 are arranged in the vertical and horizontal directions, and a photoelectric conversion element connection body U1 in which three photoelectric conversion elements 10 are connected in series is arranged in the first and fourth columns from the left. A photoelectric conversion element connection body U1 in which two photoelectric conversion elements 10 are connected in series is arranged in the first and third columns, and two photoelectric conversion elements 10 are connected in series across the first and second columns. A conversion element connection body U2 is arranged, and a photoelectric conversion element connection body U3 in which two photoelectric conversion elements 10 are connected in parallel across the second and third rows is arranged, and the third and fourth rows are straddled. A photoelectric conversion module M2 is illustrated in which a photoelectric conversion element connection body U2 in which two photoelectric conversion elements 10 are connected in series is arranged.

また、光電変換モジュールM2は、1列目と4列目の光電変換素子接続体U1の端の光電変換素子10の各第1素子間配線部材17aがバスバー81、81に接続され、2列目と3列目に跨った光電変換素子接続体U3の第2素子間配線部材17bおよび両方のバスバー81、81が電力取出し用の正負リード線83、83に接続されている。   In the photoelectric conversion module M2, the first inter-element wiring members 17a of the photoelectric conversion elements 10 at the ends of the first and fourth rows of photoelectric conversion element connections U1 are connected to the bus bars 81 and 81, and the second row. The second inter-element wiring member 17b of the photoelectric conversion element connector U3 and the both bus bars 81, 81 across the third column are connected to the positive and negative lead wires 83, 83 for power extraction.

(実施形態9:第3の光電変換モジュール)
図12は本発明の実施形態9である第3の光電変換モジュールの裏面側の概略平面図である。
この光電変換モジュールM3は、縦方向直列の実施形態3の光電変換素子接続体U1(図6参照)と、横方向並列の実施形態5の光電変換素子接続体U3(図8参照)と、横方向並列の実施形態6の光電変換素子接続体U4(図9参照)とが組み合わせられた構造を有する。なお、図12において、実施形態1、3〜6と同様の要素には同一の符号を付し、光電変換素子接続体の符号U1、U3、U4は省略している。
(Embodiment 9: Third photoelectric conversion module)
FIG. 12 is a schematic plan view of the back side of the third photoelectric conversion module according to Embodiment 9 of the present invention.
This photoelectric conversion module M3 includes a photoelectric conversion element connection body U1 (see FIG. 6) according to the third embodiment in series in the vertical direction, a photoelectric conversion element connection body U3 (see FIG. 8) according to the fifth embodiment in the horizontal direction, It has a structure in which the photoelectric conversion element connector U4 (see FIG. 9) of Embodiment 6 in parallel with the direction is combined. In FIG. 12, elements similar to those in Embodiments 1 and 3 to 6 are denoted by the same reference numerals, and reference numerals U <b> 1, U <b> 3 and U <b> 4 of the photoelectric conversion element connection body are omitted.

図12では、縦横方向に4つずつ光電変換素子10が並べられ、左から1列〜4列目に2つの光電変換素子10が直列接続された光電変換素子接続体U1が配置され、1列〜4列目に跨って4つの光電変換素子10が並列接続された光電変換素子接続体U3が配置され、1列〜4列目に跨って4つの光電変換素子10が並列接続された光電変換素子接続体U4が配置され、これらが接続された光電変換モジュールM3を例示している。
また、光電変換モジュールM3は、光電変換素子接続体U3の第2素子間配線部材17bおよび光電変換素子接続体U4の第2素子間配線部材17bが電力取出し用の正負リード線83、83に接続されている。
In FIG. 12, four photoelectric conversion elements 10 are arranged in the vertical and horizontal directions, and a photoelectric conversion element connection body U1 in which two photoelectric conversion elements 10 are connected in series is arranged in the first to fourth columns from the left. The photoelectric conversion element connection body U3 in which four photoelectric conversion elements 10 are connected in parallel across the fourth to fourth columns is arranged, and the photoelectric conversion in which the four photoelectric conversion elements 10 are connected in parallel across the first to fourth columns The element connection body U4 is arrange | positioned and the photoelectric conversion module M3 to which these were connected is illustrated.
In the photoelectric conversion module M3, the second inter-element wiring member 17b of the photoelectric conversion element connection body U3 and the second inter-element wiring member 17b of the photoelectric conversion element connection body U4 are connected to positive and negative lead wires 83 and 83 for power extraction. Has been.

(他の実施形態)
実施形態1では、貫通接続部および第2電極が複数個同数で設けられた場合を例示したが、貫通接続部および第2電極は1個ずつでもよい。しかし、光電変換素子のサイズに依らず、複数の貫通接続部および第2電極を分散して配置すれば、光電変換素子10で発生した電力を効率的に回収することができる点で好ましい。
(Other embodiments)
In the first embodiment, the case where the plurality of through-connection portions and the second electrodes are provided in the same number is illustrated, but one through-connection portion and two second electrodes may be provided. However, regardless of the size of the photoelectric conversion element, it is preferable to disperse and arrange the plurality of through-connection portions and the second electrode in that the power generated in the photoelectric conversion element 10 can be efficiently recovered.

図1(A)は本発明の光電変換素子の実施形態1を示す受光面側の平面図であり、図1(B)は実施形態1の光電変換素子の裏面側の平面図である。1A is a plan view on the light-receiving surface side showing Embodiment 1 of the photoelectric conversion element of the present invention, and FIG. 1B is a plan view on the back side of the photoelectric conversion element of Embodiment 1. FIG. 図2は図1中のA−A線断面図である。2 is a cross-sectional view taken along line AA in FIG. 図3(A)〜(D)は実施形態1の光電変換素子の製造工程を説明する断面図である。3A to 3D are cross-sectional views illustrating the manufacturing process of the photoelectric conversion element of the first embodiment. 図4(A)〜(C)は図3(D)の続きの製造工程を説明する断面図である。4A to 4C are cross-sectional views for explaining manufacturing steps subsequent to FIG. 3D. 図5は本発明の光電変換素子の実施形態2の裏面側の平面図である。FIG. 5 is a plan view of the back side of Embodiment 2 of the photoelectric conversion element of the present invention. 図6は本発明の実施形態3である第1の光電変換素子接続体の裏面側の平面図である。FIG. 6 is a plan view of the back side of the first photoelectric conversion element connection body according to Embodiment 3 of the present invention. 図7は本発明の実施形態4である第2の光電変換素子接続体の裏面側の平面図である。FIG. 7 is a plan view of the back surface side of the second photoelectric conversion element connector according to Embodiment 4 of the present invention. 図8は本発明の実施形態5である第3の光電変換素子接続体の裏面側の平面図である。FIG. 8 is a plan view of the back surface side of the third photoelectric conversion element connector according to Embodiment 5 of the present invention. 図9は本発明の実施形態6である第4の光電変換素子接続体の裏面側の平面図である。FIG. 9 is a plan view of the back surface side of the fourth photoelectric conversion element connector according to Embodiment 6 of the present invention. 図10は本発明の実施形態7である第1の光電変換モジュールの裏面側の平面図である。FIG. 10 is a plan view of the back side of the first photoelectric conversion module according to Embodiment 7 of the present invention. 図11は本発明の実施形態8である第2の光電変換モジュールの裏面側の概略平面図である。FIG. 11 is a schematic plan view of the back side of the second photoelectric conversion module according to Embodiment 8 of the present invention. 図12は本発明の実施形態9である第3の光電変換モジュールの裏面側の概略平面図である。FIG. 12 is a schematic plan view of the back side of the third photoelectric conversion module according to Embodiment 9 of the present invention.

符号の説明Explanation of symbols

1 第1半導体層(p型層)
2 第1電極
3 第2半導体層(n型層)
3a 包囲部分(n型層)
5 受光面電極
7、107 第2電極
9 貫通接続部
10 光電変換素子
10a 第1光電変換素子
10b 第2光電変換素子
13 金属電極層
15 高濃度p型層
17 素子間配線部材
17a、17b、17c 第1、第2、第3素子間配線部材
19 分離領域(n型層)
21 分離溝
23 反射防止膜
25 p型半導体基板
25a 貫通孔
M1、M2、M3 光電変換モジュール
U1、U2、U3、U4 光電変換素子接続体
1 First semiconductor layer (p-type layer)
2 First electrode 3 Second semiconductor layer (n-type layer)
3a Surrounding part (n-type layer)
DESCRIPTION OF SYMBOLS 5 Light-receiving surface electrode 7,107 2nd electrode 9 Through-connection part 10 Photoelectric conversion element 10a 1st photoelectric conversion element 10b 2nd photoelectric conversion element 13 Metal electrode layer 15 High concentration p-type layer 17 Interelement wiring member 17a, 17b, 17c First, second and third inter-element wiring member 19 Separation region (n-type layer)
21 Separation groove 23 Antireflection film 25 P-type semiconductor substrate 25a Through hole M1, M2, M3 Photoelectric conversion module U1, U2, U3, U4 Photoelectric conversion element connector

Claims (10)

第1導電型の第1半導体層と、該第1半導体層の裏面側に配置され第1半導体層に電気的に接続された第1電極と、第1半導体層に接触しかつ少なくとも一部が第1半導体層の受光面側に配置された第2導電型の第2半導体層と、該第2半導体層の受光面側に第2半導体層に電気的に接続されるように設けられた受光面電極と、第1半導体層の裏面側に配置され第1半導体層と電気的に分離されかつ第2半導体層に電気的に接続された第2電極と、第1半導体層を貫通し第1半導体層と電気的に分離されかつ前記受光面電極と第2電極とを電気的に接続する貫通接続部とを備え、
第1半導体層の裏面側において、少なくとも第1半導体層の外周部の一部に第1電極が配置されると共に、第1半導体層の外周部における前記第1電極と対向する部分から第2電極の周囲部に渡って、第1半導体層と電気的に分離された分離領域が設けられていることを特徴とする光電変換素子。
A first semiconductor layer of a first conductivity type; a first electrode disposed on a back surface side of the first semiconductor layer and electrically connected to the first semiconductor layer; and at least a portion in contact with the first semiconductor layer A second semiconductor layer of a second conductivity type disposed on the light-receiving surface side of the first semiconductor layer, and light reception provided on the light-receiving surface side of the second semiconductor layer so as to be electrically connected to the second semiconductor layer A surface electrode; a second electrode disposed on the back side of the first semiconductor layer; electrically separated from the first semiconductor layer and electrically connected to the second semiconductor layer; A through-connection portion that is electrically separated from the semiconductor layer and electrically connects the light-receiving surface electrode and the second electrode;
On the back surface side of the first semiconductor layer, the first electrode is disposed at least at a part of the outer periphery of the first semiconductor layer, and the second electrode from the portion facing the first electrode in the outer periphery of the first semiconductor layer. A photoelectric conversion element characterized in that an isolation region electrically isolated from the first semiconductor layer is provided over the periphery of the first semiconductor layer.
前記第1半導体層の外周部の外形が四角形であり、第1半導体層の裏面における前記分離領域を除く領域に金属電極層が形成され、第1電極は第1半導体層の外周部の一辺に沿った位置の前記金属電極層上に配置され、前記分離領域は第1半導体層の外周部における第1電極とは反対側の対向辺から第2電極の周囲部に渡って配置されている請求項1に記載の光電変換素子。   The outer shape of the outer periphery of the first semiconductor layer is a square, a metal electrode layer is formed in a region excluding the separation region on the back surface of the first semiconductor layer, and the first electrode is on one side of the outer periphery of the first semiconductor layer. The separation region is disposed from the opposite side of the outer periphery of the first semiconductor layer opposite to the first electrode to the periphery of the second electrode. Item 2. The photoelectric conversion element according to Item 1. 前記分離領域が、前記第1半導体層の裏面に形成された第2半導体層からなる請求項1または2に記載の光電変換素子。   3. The photoelectric conversion element according to claim 1, wherein the isolation region includes a second semiconductor layer formed on a back surface of the first semiconductor layer. 前記貫通接続部が、第1電極の長手方向およびこの方向と直交する方向に複数個並んで配置され、
前記第2電極は、複数個の貫通接続部上にドット状に配置され、
前記分離領域は、前記長手方向と直交する方向に複数個並ぶ第2電極の列を包囲する帯形に形成されている請求項2または3に記載の光電変換素子。
A plurality of the through-connection portions are arranged side by side in the longitudinal direction of the first electrode and in a direction orthogonal to this direction,
The second electrode is arranged in a dot shape on a plurality of through-connection portions,
4. The photoelectric conversion element according to claim 2, wherein the separation region is formed in a band shape surrounding a plurality of second electrode rows arranged in a direction orthogonal to the longitudinal direction. 5.
前記貫通接続部が、第1電極の長手方向およびこの方向と直交する方向に複数並んで配置され、
前記第2電極は、前記長手方向と直交する方向に複数個並ぶ貫通接続部の列上に帯状に延びて形成され、
前記分離領域は、帯状第2電極を包囲する帯形に形成されている請求項2または3に記載の光電変換素子。
A plurality of the through-connecting portions are arranged side by side in the longitudinal direction of the first electrode and in a direction orthogonal to this direction,
The second electrode is formed to extend in a strip shape on a plurality of through connection portions arranged in a direction orthogonal to the longitudinal direction,
The photoelectric conversion element according to claim 2, wherein the separation region is formed in a band shape surrounding the band-shaped second electrode.
前記第1電極の長手方向に並ぶ第2電極の複数列は相互に等間隔に配置されている請求項4または5に記載の光電変換素子。   6. The photoelectric conversion element according to claim 4, wherein the plurality of rows of the second electrodes arranged in the longitudinal direction of the first electrode are arranged at equal intervals. 前記第1半導体層は、前記金属電極層と接する部分に高濃度第1導電型層を有し、
該高濃度第1導電型層および金属電極層を第2半導体層と絶縁分離するための分離溝が、前記分離領域の外周縁に沿って形成されている請求項2〜6のいずれか1つに記載の光電変換素子。
The first semiconductor layer has a high-concentration first conductivity type layer in a portion in contact with the metal electrode layer,
7. The isolation groove for insulatingly separating the high-concentration first conductivity type layer and the metal electrode layer from the second semiconductor layer is formed along an outer peripheral edge of the isolation region. The photoelectric conversion element as described in 2.
隣接して配置された請求項1〜7のいずれか1つに記載の2つ以上の光電変換素子と、素子間配線部材とを備え、
一の光電変換素子の第2電極と、他の光電変換素子の第1電極とが、前記素子間配線部材によって電気的に接続された光電変換素子接続体。
Two or more photoelectric conversion elements according to any one of claims 1 to 7 disposed adjacent to each other, and an inter-element wiring member,
A photoelectric conversion element connection body in which a second electrode of one photoelectric conversion element and a first electrode of another photoelectric conversion element are electrically connected by the inter-element wiring member.
隣接して配置された請求項1〜7のいずれか1つに記載の2つ以上の光電変換素子と、素子間配線部材とを備え、
一の光電変換素子と他の光電変換素子の第1電極同士または第2電極同士が、前記素子間配線部材によって電気的に接続された光電変換素子接続体。
Two or more photoelectric conversion elements according to any one of claims 1 to 7 disposed adjacent to each other, and an inter-element wiring member,
A photoelectric conversion element connection body in which first electrodes or second electrodes of one photoelectric conversion element and another photoelectric conversion element are electrically connected by the inter-element wiring member.
透光性支持板上に請求項8に記載の複数の光電変換素子接続体と請求項9に記載の複数の光電変換素子接続体のうち少なくとも一方が組み合わせられて並べられ、かつ隣接する光電変換素子接続体同士が前記素子間配線部材にて電気的に接続された光電変換モジュール。   A plurality of photoelectric conversion element connection bodies according to claim 8 and a plurality of photoelectric conversion element connection bodies according to claim 9 are combined and arranged on a translucent support plate, and adjacent photoelectric conversions A photoelectric conversion module in which element connection bodies are electrically connected by the inter-element wiring member.
JP2008264021A 2008-10-10 2008-10-10 Photoelectric conversion element, photoelectric conversion element connecting body, and photoelectric conversion module Pending JP2010093188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264021A JP2010093188A (en) 2008-10-10 2008-10-10 Photoelectric conversion element, photoelectric conversion element connecting body, and photoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264021A JP2010093188A (en) 2008-10-10 2008-10-10 Photoelectric conversion element, photoelectric conversion element connecting body, and photoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2010093188A true JP2010093188A (en) 2010-04-22

Family

ID=42255612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264021A Pending JP2010093188A (en) 2008-10-10 2008-10-10 Photoelectric conversion element, photoelectric conversion element connecting body, and photoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2010093188A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042242A1 (en) * 2011-09-22 2013-03-28 三洋電機株式会社 Solar cell, solar cell module, and methods for manufacturing solar cell and solar cell module
WO2015072241A1 (en) * 2013-11-15 2015-05-21 三菱電機株式会社 Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
CN107851674A (en) * 2015-07-13 2018-03-27 维斯幕达有限公司 MWT type photovoltaic cells for special conductive backings
USD833383S1 (en) 2016-11-16 2018-11-13 Solaero Technologies Corp. Solar cell with via
USD835030S1 (en) 2016-12-12 2018-12-04 Solaero Technologies Corp. Solar cell with VIA
USD835571S1 (en) 2016-12-08 2018-12-11 Solaero Technologies Corp. Solar cell with via
US10263131B2 (en) 2014-04-07 2019-04-16 Solaero Technologies Corp. Parallel interconnection of neighboring solar cells with dual common back planes
JP2020025086A (en) * 2018-08-07 2020-02-13 浙江正泰太▲陽▼能科技有限公司 Half-cut module
US10790406B2 (en) 2014-04-07 2020-09-29 Solaero Technologies Corp. Parallel interconnection of neighboring space-qualified solar cells via a common back plane
CN115377232A (en) * 2022-10-24 2022-11-22 浙江晶科能源有限公司 Solar cell and photovoltaic module

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042242A1 (en) * 2011-09-22 2013-03-28 三洋電機株式会社 Solar cell, solar cell module, and methods for manufacturing solar cell and solar cell module
WO2015072241A1 (en) * 2013-11-15 2015-05-21 三菱電機株式会社 Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
JPWO2015072241A1 (en) * 2013-11-15 2017-03-16 三菱電機株式会社 Photoelectric conversion element module and method for manufacturing photoelectric conversion element module
US10263131B2 (en) 2014-04-07 2019-04-16 Solaero Technologies Corp. Parallel interconnection of neighboring solar cells with dual common back planes
US10790406B2 (en) 2014-04-07 2020-09-29 Solaero Technologies Corp. Parallel interconnection of neighboring space-qualified solar cells via a common back plane
US10283662B2 (en) 2014-04-07 2019-05-07 Solaero Technologies Corp. Parallel interconnection of neighboring solar cells with dual common back planes
CN107851674A (en) * 2015-07-13 2018-03-27 维斯幕达有限公司 MWT type photovoltaic cells for special conductive backings
CN107851674B (en) * 2015-07-13 2019-05-07 维斯幕达有限公司 MWT type photovoltaic cell for dedicated conductive backings
USD833383S1 (en) 2016-11-16 2018-11-13 Solaero Technologies Corp. Solar cell with via
USD835571S1 (en) 2016-12-08 2018-12-11 Solaero Technologies Corp. Solar cell with via
USD835030S1 (en) 2016-12-12 2018-12-04 Solaero Technologies Corp. Solar cell with VIA
JP2020025086A (en) * 2018-08-07 2020-02-13 浙江正泰太▲陽▼能科技有限公司 Half-cut module
CN115377232A (en) * 2022-10-24 2022-11-22 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN115377232B (en) * 2022-10-24 2023-10-27 浙江晶科能源有限公司 Solar cell and photovoltaic module

Similar Documents

Publication Publication Date Title
JP5285880B2 (en) Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module
JP2010093188A (en) Photoelectric conversion element, photoelectric conversion element connecting body, and photoelectric conversion module
US9691925B2 (en) Light receiving element module and manufacturing method therefor
KR101164345B1 (en) Wiring member between elements, photoelectric conversion element, and photoelectric conversion element connecting body and photoelectric conversion module using the wiring member between elements and the photoelectric conversion element
JP5111063B2 (en) Photoelectric conversion element and manufacturing method thereof
US20100018562A1 (en) Solar cell, solar cell string and solar cell module
WO2012043516A1 (en) Solar-cell module and manufacturing method therefor
JP2009043842A (en) Solar battery module
JPWO2008090718A1 (en) Solar cell, solar cell array and solar cell module
KR20100019389A (en) Solar cell module
WO2011052597A1 (en) Solar cell element and solar cell module
US9153713B2 (en) Solar cell modules and methods of manufacturing the same
US9490375B2 (en) Solar cell and method for manufacturing the same, and solar cell module
WO2016158299A1 (en) Solar cell, method for manufacturing same, solar cell module and wiring sheet
JP2008010857A (en) Solar cell module
JP2015230985A (en) Solar battery cell, manufacturing method for the same and solar battery panel
JP2010080578A (en) Photoelectric conversion element and manufacturing method therefor
JP2013048146A (en) Solar cell module
JP2010080576A (en) Photoelectric conversion element, and method of manufacturing the same
JP5219977B2 (en) Solar cell element and solar cell module
JP5409838B2 (en) Photoelectric conversion element connector and photoelectric conversion module
JP2014017525A (en) Photoelectric conversion element, photoelectric conversion element connection body and photoelectric conversion module
JP5406976B2 (en) Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module
JP5406975B2 (en) Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module
JP2007165785A (en) Solar cell with interconnector, solar cell string, and solar cell module