JP2010091066A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2010091066A
JP2010091066A JP2008263453A JP2008263453A JP2010091066A JP 2010091066 A JP2010091066 A JP 2010091066A JP 2008263453 A JP2008263453 A JP 2008263453A JP 2008263453 A JP2008263453 A JP 2008263453A JP 2010091066 A JP2010091066 A JP 2010091066A
Authority
JP
Japan
Prior art keywords
bearing
outer ring
load side
housing
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008263453A
Other languages
Japanese (ja)
Inventor
Futoshi Kosugi
太 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2008263453A priority Critical patent/JP2010091066A/en
Publication of JP2010091066A publication Critical patent/JP2010091066A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)
  • Support Of The Bearing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device having simple construction preventing an unnecessary slip at starting rotation, suppressing a rise of a preload during high-speed rotation, and securing high spindle rigidity. <P>SOLUTION: A spindle 3 of a machine tool is installed on a housing 2 via a load-side bearing 5A and a counter-load-side bearing 5B as angular ball bearings arranged back to back. The load-side bearing 5A has an outer ring 11A which is positioned and fixed onto the housing 2 in the axial direction, and the counter-load-side bearing 5B has an outer ring 11B which is not positioned and fixed to the housing 2 in the axial direction. The axial positions of inner rings 12A, 12B of both bearings 5A, 5B are restricted. The size of an axial internal clearance δ of the bearing 5B is positive in a room-temperature operation stopped condition and negative in an operated condition resulting from a temperature difference between the inner and outer rings and the operation of centrifugal force to produce the fixed-position preload. Between the back face of the outer ring 11B of the bearing 5B and the housing 2, an elastic body 10 is laid for energizing the outer ring 11B of the bearing 5B to the front-face side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、工作機械主軸の支持に用いられる多列アンギュラ玉軸受からなる軸受装置に関する。   The present invention relates to a bearing device including a multi-row angular ball bearing used for supporting a machine tool spindle.

工作機械の中でも、マシニングセンタの主軸装置のように工具を回転させて加工物を削る装置では、高速回転して使用されることが多い。この主軸装置において、主軸を支持する定位置予圧組合せアンギュラ玉軸受では、高速回転時に軸受内部予圧が上昇するため、初期の予圧量の選定が重要である。   Among machine tools, a device that rotates a tool and scrapes a workpiece, such as a spindle device of a machining center, is often used at a high speed. In this main shaft device, in the fixed position preload combination angular contact ball bearing that supports the main shaft, the internal preload of the bearing rises during high-speed rotation, so selection of the initial preload amount is important.

図16は、定位置予圧の概念を示す。同図のように背面合わせに配置した2つのアンギュラ玉軸受25A,25Bに予圧を与える場合は、同図(A)のように内輪32A,32Bの間にアキシアル内部隙間δ1を設け、両側の内輪32A,32Bを互いに軸方向に締めつけることで予圧を与える。同図(B)のように、両側の外輪31A,31B間にアキシアル内部隙間δ2を設けた場合は、予圧が入らない。具体的に説明する。   FIG. 16 shows the concept of fixed position preload. When preload is applied to the two angular ball bearings 25A and 25B arranged back to back as shown in the figure, an axial internal clearance δ1 is provided between the inner rings 32A and 32B as shown in FIG. A preload is applied by tightening 32A and 32B in the axial direction. As shown in FIG. 5B, when the axial internal gap δ2 is provided between the outer rings 31A and 31B on both sides, no preload is applied. This will be specifically described.

図9は、主軸装置の主軸23をフロント側で支持する軸受装置24として、2つのアンギュラ玉軸受25A,25Bを負荷側と反負荷側とに、互いに背面向き合わせで配置した例を示す。この場合の負荷側とは、加工時にアキシアル荷重が負荷される主軸前端部側を言う。この例の軸受装置24では、図10のように反負荷側の軸受25Bの内輪32Bの背面と内輪間座26との間にアキシアル内部隙間δ1を設け、このアキシアル内部隙間δ1が詰まるまで、主軸23に螺合したナット29で、両軸受25A,25Bの内輪32A,32Bを主軸23の肩部23aとスペーサ28との間に締め付けることで、軸受25A,25Bに予圧を与える。両軸受25A,25Bの外輪31A,31Bは、ハウジング22の前端に設けられた外輪押え蓋27とハウジング22の両軸受25A,25Bの外輪31A,31Bが嵌合する軸受嵌合面よりも内径側に突出した内径側突出部22aとで挟まれて軸方向に位置固定されている。   FIG. 9 shows an example in which two angular ball bearings 25A and 25B are arranged on the load side and the anti-load side so as to face each other as the bearing device 24 that supports the main shaft 23 of the main shaft device on the front side. The load side in this case refers to the spindle front end side to which an axial load is applied during machining. In the bearing device 24 of this example, as shown in FIG. 10, an axial internal clearance δ1 is provided between the back surface of the inner ring 32B of the bearing 25B on the anti-load side and the inner ring spacer 26, and the main shaft until the axial internal clearance δ1 is blocked. The bearings 25A and 25B are preloaded by tightening the inner rings 32A and 32B of the bearings 25A and 25B between the shoulders 23a of the main shaft 23 and the spacers 28 with the nuts 29 screwed into the bearings 23. The outer rings 31A and 31B of the two bearings 25A and 25B are on the inner diameter side of the bearing fitting surface where the outer ring holding lid 27 provided at the front end of the housing 22 and the outer rings 31A and 31B of the two bearings 25A and 25B of the housing 22 are fitted. The position is fixed in the axial direction by being sandwiched by the inner diameter side protruding portion 22a protruding in the axial direction.

このように初期状態で予圧が入っている軸受装置24では、主軸23を回転させると軸受25A,25Bの予圧の上昇は、図11のグラフのようになる。この場合、軸受25A,25Bの計算上の限界予圧が200kgf であるとすると、主軸23を10000rpm まで回転させたとき、軸受25A,25Bは過大予圧により過熱状態になる恐れがある。   Thus, in the bearing device 24 in which the preload is in the initial state, when the main shaft 23 is rotated, the increase in the preload of the bearings 25A and 25B is as shown in the graph of FIG. In this case, if the calculated limit preload of the bearings 25A and 25B is 200 kgf, the bearings 25A and 25B may be overheated due to the excessive preload when the main shaft 23 is rotated to 10000 rpm.

図12は、図9の軸受装置24において、両軸受25A,25Bの内輪32A,32Bをナット29で締め付けた状態において、反負荷側の軸受25Bの外輪31Bの背面とハウジング22の内径側突出部22aとの間にアキシアル隙間δ2を設けた例を示す。この場合、外輪31Bに初期隙間があるため、内輪32Bを締め付けても予圧は入らない。なお、この例では、図9の場合の外輪間座30を、ハウジング22の両軸受外輪31A,31Bの嵌合面よりも内径側に突出した内径側突出部22bに置き換えている。
この軸受装置では、図13(A)に示す初期状態から、図13(B)のように反負荷側の軸受25Bの外輪31Bを軸方向に締め付けると、その内輪32Bとボール33Bの間に隙間が生じることが分かる。
FIG. 12 shows the bearing device 24 of FIG. 9 with the inner ring 32A, 32B of both bearings 25A, 25B tightened with a nut 29, and the rear surface of the outer ring 31B of the bearing 25B on the anti-load side and the protruding portion on the inner diameter side of the housing 22 An example in which an axial gap δ2 is provided between 22a and 22a is shown. In this case, since there is an initial gap in the outer ring 31B, no preload is applied even if the inner ring 32B is tightened. In this example, the outer ring spacer 30 in the case of FIG. 9 is replaced with an inner diameter side protruding portion 22b that protrudes more on the inner diameter side than the fitting surface of the both bearing outer rings 31A and 31B of the housing 22.
In this bearing device, when the outer ring 31B of the bearing 25B on the anti-load side is tightened in the axial direction as shown in FIG. 13B from the initial state shown in FIG. 13A, there is a gap between the inner ring 32B and the ball 33B. It turns out that occurs.

このように、外輪31Bに初期隙間δ2がある軸受装置24では、軸受25A,25Bの予圧変化は図14に示すグラフのようになり、4000rpm 付近までは予圧は入らず、がたつきのある状態のままとなる。このような隙間δ2のある状態での軸受の使用は適切ではなく、不要な滑りにより軌道面とボールの間にうまく油膜形成がされず、金属接触など悪影響を与えることになる。   As described above, in the bearing device 24 having the initial gap δ2 in the outer ring 31B, the change in the preload of the bearings 25A and 25B is as shown in the graph of FIG. Will remain. The use of the bearing in such a state with the gap δ2 is not appropriate, and an oil film is not well formed between the raceway surface and the ball due to unnecessary slip, and adverse effects such as metal contact are caused.

そこで、高速回転時に過大予圧となるのを避けるために、低速回転時と高速回転時とで予圧量を切り換えるようにした予圧切換機構が提案されている(特許文献1)。この場合の予圧上昇は、図15にグラフで示すようになる。
特許第2602325号公報
In order to avoid excessive preload during high speed rotation, a preload switching mechanism has been proposed in which the amount of preload is switched between low speed rotation and high speed rotation (Patent Document 1). The increase in preload in this case is as shown by a graph in FIG.
Japanese Patent No. 2602325

しかし、加工が高速回転に限定されるような場合、低速回転時の予圧は重要ではなく、特許文献1に開示の予圧切換機構を用いると、コストかかり構造も複雑化してしまうという問題がある。
そこで、組込時(停止時)に、図12のように隙間δ2を設けた状態で運転開始することで、予圧の上昇を抑制することが可能である。しかし、この場合には、上記したように停止状態で主軸23にがたつきが生じることになる。このがたつきは、機械の運搬、搬送時に軸受25Bにきずや圧痕を生じさせる原因にもなる。また、回転開始時は軸受25A,25Bに予圧がかかっておらず、不要な滑りにより軸受25Bの軌道面とボールの間にうまく油膜形成がされず、金属接触など悪影響を与えることになる。
However, when machining is limited to high-speed rotation, preload at low-speed rotation is not important, and using the preload switching mechanism disclosed in Patent Document 1 has a problem that the structure is expensive and complicated.
Therefore, it is possible to suppress an increase in preload by starting operation with the gap δ2 as shown in FIG. However, in this case, as described above, rattling of the main shaft 23 occurs in the stopped state. This rattling can also cause flaws and indentations in the bearing 25B during transportation and conveyance of the machine. Further, at the start of rotation, no preload is applied to the bearings 25A and 25B, and an oil film is not formed well between the raceway surface of the bearing 25B and the ball due to unnecessary slip, which causes adverse effects such as metal contact.

この発明の目的は、簡単な構成により、回転開始時の不要な滑りを無くし、かつ高速回転時の予圧上昇を抑制でき、高い主軸剛性を確保できる軸受装置を提供することである。   An object of the present invention is to provide a bearing device that can eliminate unnecessary slip at the start of rotation, suppress an increase in preload during high-speed rotation, and ensure high spindle rigidity with a simple configuration.

この発明の軸受装置は、工作機械の主軸を、この主軸に荷重が作用する端部側である負荷側に配置した軸受と、この負荷側軸受に対する反負荷側に配置した軸受とを介してハウジングに設置し、前記負荷側および反負荷側の軸受は、それぞれアンギュラ玉軸受であって、互いに背面向き合わせとし、負荷側の軸受は外輪を前記ハウジングに対して軸方向に位置固定とし、反負荷側軸受は外輪を前記ハウジングに対して軸方向に非位置固定とし、両側の軸受の内輪の軸方向位置を規制する内輪位置規制手段を設けた軸受装置において、前記ハウジングおよび前記内輪位置規制手段により規制される前記軸受のアキシアル内部隙間を、前記軸受の常温の運転停止状態では正となり、軸受の運転状態では内外輪の温度差と遠心力の作用により負となって定位置予圧が生じる大きさとし、かつ前記反負荷側軸受の外輪の背面と前記ハウジングとの間に、この反負荷側軸受の外輪を正面側へ付勢して軸受運転停止時に予圧を生じさせる弾性体を介在させたことを特徴とする。
この構成によると、停止時や運転開始時は、アキシアル内部隙間が生じているため、定位置予圧は生じていない。しかし、弾性体のばね力により一定のアキシアル荷重が反負荷側軸受の外輪に定位置予圧の代わりとして、定圧予圧として作用するので、ある程度の回転速度に高まるまで、アキシアル内部隙間に起因する主軸のがたつきを無くし、回転開始時の不要な滑りを無くすことができる。回転速度がある程度以上になると、軸受の温度上昇による内外輪の温度差による熱膨張差と、遠心力による内輪拡径の作用とによってアキシアル内部隙間が無くなり、定位置予圧の状態となる。すなわち、運転開始時は定圧予圧となり、運転の進行に従って定位置予圧に切り換わる。以後は徐々に予圧が上昇して行く。また、高速回転時の定位置予圧による運転を可能としていることから、定圧予圧の主軸や、通常高速になると予圧の上昇に有利な定圧予圧に切り換える機構の主軸に比べて、主軸剛性を高めることができる。なお、定位置予圧が生じる状態となる温度や主軸回転数、つまりどの程度の温度や主軸回転数となれば定位置予圧が生じるようにするかの初期アキシアル内部隙間の大きさは、この軸受装置を適用する工作機械や加工目的等に応じて適宜設定すれば良い。
このように、この軸受装置によると、簡単な構成により、回転開始時の不要な滑りを無くし、かつ高速回転時の予圧上昇を抑制でき、高い主軸剛性を確保できる。
The bearing device according to the present invention includes a housing in which a main shaft of a machine tool is disposed on a load side which is an end side where a load acts on the main shaft, and a bearing disposed on an anti-load side with respect to the load side bearing. The load-side and anti-load-side bearings are angular contact ball bearings, facing each other, and the load-side bearing has the outer ring fixed in the axial direction with respect to the housing. The side bearing is a bearing device in which the outer ring is fixed in a non-positional position relative to the housing in the axial direction, and provided with inner ring position restricting means for restricting the axial position of the inner ring of the bearings on both sides by the housing and the inner ring position restricting means. The axial internal clearance of the bearing to be regulated becomes positive when the bearing is stopped at room temperature, and becomes negative when the bearing is operating due to the temperature difference between the inner and outer rings and the centrifugal force. The preload is generated when the bearing operation is stopped by urging the outer ring of the anti-load side bearing to the front side between the rear surface of the outer ring of the anti-load side bearing and the housing. It is characterized by interposing an elastic body.
According to this configuration, the fixed position preload does not occur at the time of stopping or at the start of operation because the axial internal gap is generated. However, since a certain axial load acts as a constant pressure preload on the outer ring of the non-load bearing due to the spring force of the elastic body, it acts as a constant pressure preload, so the main shaft caused by the axial internal clearance is increased to a certain rotational speed. It eliminates rattling and eliminates unnecessary slipping at the start of rotation. When the rotational speed exceeds a certain level, there is no axial internal clearance due to the difference in thermal expansion due to the temperature difference between the inner and outer rings due to the temperature rise of the bearing and the effect of the inner ring diameter expansion due to centrifugal force, resulting in a fixed position preload state. That is, the constant pressure preload is set at the start of the operation, and is switched to the fixed position preload as the operation proceeds. Thereafter, the preload gradually increases. In addition, since operation with constant position preload during high speed rotation is possible, the rigidity of the main shaft is increased compared to the main shaft of constant pressure preload and the main shaft of a mechanism that switches to constant pressure preload, which is advantageous for increasing the preload at normal speed. Can do. In addition, the size of the initial axial internal clearance that determines the temperature at which the fixed position preload is generated and the spindle rotation speed, that is, the temperature and the spindle rotation speed at which the fixed position preload is generated, is determined by this bearing device. What is necessary is just to set suitably according to the machine tool to which this is applied, the processing purpose, etc.
Thus, according to this bearing device, with a simple configuration, unnecessary slip at the start of rotation can be eliminated, an increase in preload during high-speed rotation can be suppressed, and high spindle rigidity can be ensured.

この発明において、前記弾性体が、前記軸受と同心のOリングであっても良い。Oリングを用いると、より一層、構成が簡素にできる。   In this invention, the elastic body may be an O-ring concentric with the bearing. If an O-ring is used, the configuration can be further simplified.

この発明において、前記弾性体が、周方向に分散配置した複数のコイルばねであっても良い。コイルばねを用いると、適切な押し付け力を精度良く得ることが簡単となる。   In the present invention, the elastic body may be a plurality of coil springs distributed in the circumferential direction. Use of a coil spring makes it easy to obtain an appropriate pressing force with high accuracy.

この発明において、前記弾性体が、前記軸受と同心の皿ばねであっても良い。皿ばねを用いると、弾性体による強い予圧を与えることが容易である。   In this invention, the elastic body may be a disc spring concentric with the bearing. When a disc spring is used, it is easy to give a strong preload by an elastic body.

この発明において、前記負荷側の軸受の外輪と反負荷側の軸受の外輪との間に、前記ハウジングにおける両側の軸受の外輪が嵌合する軸受嵌合面よりも内径側に突出した環状の内径側突出部が介在し、この内径側突出部の端面に前記弾性体を設けても良い。このようにハウジング側に弾性体を設けることで、軸受外輪には弾性体の配置用の加工を行うことが不要で、通常の構成の軸受をそのまま用いることができる。   In this invention, between the outer ring of the bearing on the load side and the outer ring of the bearing on the anti-load side, an annular inner diameter protruding to the inner diameter side from the bearing fitting surface on which the outer rings of the bearings on both sides of the housing are fitted A side protrusion may be interposed, and the elastic body may be provided on the end face of the inner diameter side protrusion. By providing the elastic body on the housing side in this way, it is not necessary to perform processing for arranging the elastic body on the bearing outer ring, and a bearing having a normal configuration can be used as it is.

この発明において、前記弾性体を前記反負荷側の軸受の外輪に設けても良い。軸受の外輪に弾性体を設けた場合、軸受を弾性体付きのものとして製造や準備することができて、ハウジング側には弾性体の配置のための加工が不要となり、主軸ハウジング等のハウジングの構成が簡素にできる。   In this invention, you may provide the said elastic body in the outer ring | wheel of the bearing of the said anti-load side. When the outer ring of the bearing is provided with an elastic body, the bearing can be manufactured and prepared with an elastic body, and the housing does not require processing for the arrangement of the elastic body. The configuration can be simplified.

この発明において、前記負荷側の軸受の外輪と反負荷側の軸受の外輪との間に、前記ハウジングにおける両側の軸受の外輪が嵌合する軸受嵌合面よりも内径側に突出した環状の内径側突出部が介在し、この内径側突出部と前記反負荷側の軸受の外輪との間に外輪間座が配置され、この外輪間座に前記弾性体を設けても良い。外輪間座に弾性体を設ける場合は、ハウジング等に比べて小さく、また軸受外輪等に比べて簡素な形状の部品である外輪間座に弾性体を設けることになるため、弾性体を設けながら、より一層簡素な構成とできる。   In this invention, between the outer ring of the bearing on the load side and the outer ring of the bearing on the anti-load side, an annular inner diameter protruding to the inner diameter side from the bearing fitting surface on which the outer rings of the bearings on both sides of the housing are fitted A side protrusion may be interposed, and an outer ring spacer may be disposed between the inner diameter side protrusion and the outer ring of the bearing on the anti-load side, and the elastic body may be provided in the outer ring spacer. When an elastic body is provided in the outer ring spacer, the elastic body is provided in the outer ring spacer, which is smaller than the housing and the like and is a simpler part than the bearing outer ring. Thus, the configuration can be further simplified.

この発明において、前記負荷側および反負荷側のいずれか一方または両方の軸受は、複数列の軸受の組み合わせとしても良い。このような複数列の軸受の組み合わせとしても、運転開始から高速運転までの適切な予圧が得られる。   In the present invention, either one or both of the load side and the anti-load side may be a combination of a plurality of rows of bearings. Even in such a combination of a plurality of rows of bearings, an appropriate preload from the start of operation to high-speed operation can be obtained.

この発明の工作機械主軸装置は、工作機械の主軸を、前記いずれかの発明の軸受装置で支持したものである。
この構成によると、軸受装置において回転開始時の不要な滑りを無くし、かつ高速回転時の予圧上昇を抑制でき、高い主軸剛性を確保できるので、主軸回転精度を確保することができる。
The machine tool spindle device of the present invention is such that the spindle of the machine tool is supported by the bearing device of any one of the above inventions.
According to this configuration, the unnecessary slip at the start of rotation in the bearing device can be eliminated, the increase in the preload at the time of high speed rotation can be suppressed, and high spindle rigidity can be ensured, so that the spindle rotation accuracy can be ensured.

この発明の軸受装置は、工作機械の主軸を、この主軸に荷重が作用する端部側である負荷側に配置した軸受と、この負荷側軸受に対する反負荷側に配置した軸受とを介してハウジングに設置し、前記負荷側および反負荷側の軸受は、それぞれアンギュラ玉軸受であって、互いに背面向き合わせとし、負荷側の軸受は外輪を前記ハウジングに対して軸方向に位置固定とし、反負荷側軸受は外輪を前記ハウジングに対して軸方向に非位置固定とし、両側の軸受の内輪の軸方向位置を規制する内輪位置規制手段を設けた軸受装置において、前記ハウジングおよび前記内輪位置規制手段により規制される前記軸受のアキシアル内部隙間を、前記軸受の常温の運転停止状態では正となり、軸受の運転状態では内外輪の温度差と遠心力の作用により負となって定位置予圧が生じる大きさとし、かつ前記反負荷側軸受けの外輪の背面と前記ハウジングとの間に、この反負荷側軸受の外輪を正面側へ付勢して軸受運転停止時に予圧を生じさせる弾性体を介在させたため、簡単な構成により、回転開始時の不要な滑りを無くし、かつ高速回転時の予圧上昇を抑制でき、高い主軸剛性を確保できる。   The bearing device according to the present invention includes a housing in which a main shaft of a machine tool is disposed on a load side which is an end side where a load acts on the main shaft, and a bearing disposed on an anti-load side with respect to the load side bearing. The load-side and anti-load-side bearings are angular contact ball bearings, facing each other, and the load-side bearing has the outer ring fixed in the axial direction with respect to the housing. The side bearing is a bearing device in which the outer ring is fixed in a non-positional position relative to the housing in the axial direction, and provided with inner ring position restricting means for restricting the axial position of the inner ring of the bearings on both sides by the housing and the inner ring position restricting means. The axial internal clearance of the bearing to be regulated becomes positive when the bearing is stopped at room temperature, and becomes negative when the bearing is operating due to the temperature difference between the inner and outer rings and the centrifugal force. The preload is generated when the bearing operation is stopped by biasing the outer ring of the anti-load side bearing to the front side between the housing and the rear surface of the outer ring of the anti-load side bearing. Since an elastic body is interposed, an unnecessary slip at the start of rotation can be eliminated with a simple configuration, and an increase in preload during high-speed rotation can be suppressed, and high spindle rigidity can be ensured.

この発明の第1の実施形態を図1ないし図3と共に説明する。図1(A)はこの実施形態の軸受装置が用いられる工作機械の主軸装置の断面図を示す。この主軸装置1は、ハウジング2内において、主軸3を軸受装置4により回転自在に支持したものである。軸受装置4は、多列アンギュラ玉軸受からなる。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a sectional view of a spindle device of a machine tool in which the bearing device of this embodiment is used. The main shaft device 1 is a housing 2 in which a main shaft 3 is rotatably supported by a bearing device 4. The bearing device 4 is a multi-row angular contact ball bearing.

軸受装置4は、主軸3に荷重が作用する端部側である負荷側に配置した軸受5Aと、この負荷側軸受5Aに対する反負荷側に配置した軸受5Bとを備える。これら両軸受5A,5Bを介して、主軸3の工具取付端3a側となる負荷側部である前部、および後部をハウジング2に支持する。負荷側および反負荷側の軸受5A,5Bは、それぞれ外輪11A,11B,内輪12A,12B,ボール13A,13B,およびボール13A,13Bを保持する保持器14A,14Bを有するアンギュラ玉軸受からなり、互いに背面向き合わせとされている。負荷側の軸受5Aの外輪11Aと反負荷側の軸受5Bの外輪11Bとの間には、ハウジング2における両側の軸受5A,5Bの外輪11A,11Bが嵌合する軸受嵌合面よりも内径側に突出した環状の内径側突出部2aが介在する。両軸受5A,5Bの内輪12A,12B間には内輪間座6が介在する。   The bearing device 4 includes a bearing 5A disposed on the load side, which is an end side where a load acts on the main shaft 3, and a bearing 5B disposed on the side opposite to the load side bearing 5A. A front portion and a rear portion, which are load side portions on the tool mounting end 3 a side of the main shaft 3, are supported by the housing 2 via both the bearings 5 </ b> A and 5 </ b> B. The load-side and anti-load-side bearings 5A and 5B are composed of angular contact ball bearings having outer rings 11A and 11B, inner rings 12A and 12B, balls 13A and 13B, and cages 14A and 14B for holding the balls 13A and 13B, respectively. They are facing each other. Between the outer ring 11A of the bearing 5A on the load side and the outer ring 11B of the bearing 5B on the anti-load side, the inner diameter side of the bearing fitting surface where the outer rings 11A and 11B of the bearings 5A and 5B on both sides of the housing 2 are fitted. An annular inner-side protruding portion 2a protruding is interposed. An inner ring spacer 6 is interposed between the inner rings 12A and 12B of both bearings 5A and 5B.

負荷側の軸受5Aは、その外輪11Aをハウジング2に対して軸方向に位置固定されている。具体的には、ハウジング2の前端に固定される外輪押え蓋7と、前記ハウジング2の内径側突出部2aの端面とに挟まれて、負荷側の軸受5Aの外輪11Aが軸方向に位置固定されている。反負荷側の軸受5Bは、その外輪11Bをハウジング2に対して軸方向に非位置固定とされている。具体的には、反負荷側の軸受5Bの外輪11Bは、ハウジング2の軸受嵌合面に、緩み嵌めの嵌め合いとされている。   The load-side bearing 5 </ b> A has its outer ring 11 </ b> A fixed in the axial direction with respect to the housing 2. Specifically, the outer ring 11A of the bearing 5A on the load side is fixed in the axial direction by being sandwiched between the outer ring holding lid 7 fixed to the front end of the housing 2 and the end surface of the inner diameter side protruding portion 2a of the housing 2. Has been. The bearing 5B on the non-load side has its outer ring 11B fixed to the housing 2 in the axial direction. Specifically, the outer ring 11 </ b> B of the bearing 5 </ b> B on the anti-load side is a loose fit on the bearing fitting surface of the housing 2.

両軸受5A,5Bの内輪12A,12Bは、内輪位置規制手段20により軸方向位置が規制されている。具体的には、負荷側の軸受5Aの内輪12Aの一端面を、主軸3の工具取付端3aに続き大径に形成された肩部3bの端面に係合させ、反負荷側の軸受5Bの内輪12Bの一端面を、円筒部材であるスペーサ8を介してナット9で締め付ける。これにより、両軸受5A,5Bの内輪12A,12Bの軸方向位置が規制される。すなわち、前記内輪位置規制手段20は、主軸3、その肩部3a、内輪間座6、スペーサ8、ナット9などからなる。   The axial positions of the inner rings 12A and 12B of both bearings 5A and 5B are restricted by the inner ring position restricting means 20. Specifically, one end surface of the inner ring 12A of the bearing 5A on the load side is engaged with the end surface of the shoulder portion 3b having a large diameter following the tool mounting end 3a of the main shaft 3, and the bearing 5B on the anti-load side One end surface of the inner ring 12B is tightened with a nut 9 via a spacer 8 which is a cylindrical member. Thereby, the axial direction positions of the inner rings 12A and 12B of both bearings 5A and 5B are restricted. That is, the inner ring position restricting means 20 includes the main shaft 3, its shoulder 3a, the inner ring spacer 6, the spacer 8, the nut 9, and the like.

反負荷側の軸受5Bの外輪11Bの背面とハウジング2との間には、前記内輪位置規制手段20により規制した初期状態で所定量の隙間δが与えられている。この隙間δが、反負荷側の軸受5Bのアキシアル内部隙間となる。このアキシアル内部隙間δの大きさは、軸受5A,5Bの常温(すなわち室温)の運転停止状態では正となり、軸受5A,5Bの運転状態では内外輪の温度差と遠心力による内輪12Bの拡径作用により負となって定位置予圧が生じる大きさとしている。なお、上記アキシアル内部隙間δが負となって定位置予圧が生じる状態となる温度や主軸回転数、つまりどの程度の温度や主軸回転数となれば定位置予圧が生じるようにするかの初期アキシアル内部隙間δの大きさは、この軸受装置1を適用する工作機械や加工目的等に応じて適宜設定すれば良いが、例えば主軸回転数4000rpm (内外輪の温度差約2℃)となる程度で、零となる程度の大きさとされる。
具体例を挙げると、アキシアル内部隙間δとして、数十μmが設定される。
Between the rear surface of the outer ring 11B of the bearing 5B on the opposite load side and the housing 2, a predetermined amount of gap δ is provided in an initial state regulated by the inner ring position regulating means 20. This gap δ becomes an axial internal gap of the bearing 5B on the anti-load side. The size of the axial internal gap δ is positive when the bearings 5A and 5B are stopped at room temperature (ie, room temperature), and the diameter of the inner ring 12B is increased by the temperature difference between the inner and outer rings and centrifugal force when the bearings 5A and 5B are in operation. The magnitude is negative due to the action and generates a fixed position preload. It should be noted that the axial axial clearance δ is negative and the temperature and the spindle speed at which the fixed position preload is generated, that is, the initial axial that determines the temperature and the spindle speed at which the fixed position preload is generated. The size of the internal gap δ may be set as appropriate according to the machine tool to which the bearing device 1 is applied, the processing purpose, and the like. For example, the main shaft rotational speed is 4000 rpm (the temperature difference between the inner and outer rings is about 2 ° C.). The size is such that it becomes zero.
As a specific example, several tens of μm is set as the axial internal gap δ.

反負荷側の軸受5Bの外輪11Bの背面とハウジング2との間には、この反負荷側の軸受5Bの外輪11Bを正面側へ付勢する弾性体10が介在させてある。具体的には、図1(A)のA部を拡大して示す図1(B)のように、ハウジング2の内径側突出部2aの端面に軸受5A,5Bと同心の環状の周溝15を設け、この周溝15に弾性体10としてOリングを収容している。両軸受5A,5Bが組付けられた状態(すなわちアキシアル内部隙間δが初期値の状態)で、Oリングからなる弾性体10は圧縮されており、その復元力により反負荷側の軸受5Bの外輪11Aが正面側へ付勢されている。   Between the back surface of the outer ring 11B of the bearing 5B on the anti-load side and the housing 2, an elastic body 10 that urges the outer ring 11B of the bearing 5B on the anti-load side to the front side is interposed. Specifically, as shown in FIG. 1 (B), which is an enlarged view of portion A in FIG. 1 (A), an annular circumferential groove 15 concentric with the bearings 5A and 5B on the end face of the inner diameter side protruding portion 2a of the housing 2. And an O-ring is accommodated as the elastic body 10 in the circumferential groove 15. In a state where both bearings 5A and 5B are assembled (that is, in a state where the axial internal gap δ is an initial value), the elastic body 10 made of an O-ring is compressed, and the outer ring of the bearing 5B on the anti-load side is compressed by the restoring force. 11A is urged to the front side.

上記構成の作用を説明する。軸受装置4の運転停止時や運転開始時は、反負荷側の軸受5Bの外輪11Bとハウジング2の内径側突出部2aの端面との間に隙間δがあって、この隙間δが反負荷側の軸受5Bのアキシアル内部隙間となり、定位置予圧は生じていない。しかし、ハウジング2の内径側突出部2aの端面と外輪11Bとの間に圧縮状態で弾性体10が介在しているため、弾性体10の弾性復元力により反負荷側の軸受5Bに予圧が与えられる。つまり、ハウジング2の内径側突出部2aの端面と外輪11Bの背面との間のアキシアル隙間δが詰まるまでは、弾性体10の弾性復元力によって、軸受5Bに定圧予圧による予圧が作用する。これにより、ある程度の回転速度に高まるまで、前記アキシアル内部隙間δに起因する主軸3のがたつきを無くし、回転開始時の不要な滑りを無くすことができる。   The operation of the above configuration will be described. When the operation of the bearing device 4 is stopped or started, there is a gap δ between the outer ring 11B of the bearing 5B on the anti-load side and the end face of the inner diameter side protruding portion 2a of the housing 2, and this gap δ is on the anti-load side. This is an axial internal clearance of the bearing 5B, and no fixed position preload occurs. However, since the elastic body 10 is interposed in a compressed state between the end face of the inner diameter side protruding portion 2a of the housing 2 and the outer ring 11B, a preload is applied to the bearing 5B on the anti-load side by the elastic restoring force of the elastic body 10. It is done. In other words, until the axial gap δ between the end surface of the inner diameter side protruding portion 2a of the housing 2 and the back surface of the outer ring 11B is blocked, the bearing 5B is preloaded by the constant pressure preload by the elastic restoring force. As a result, it is possible to eliminate shakiness of the main shaft 3 caused by the axial internal gap δ until the rotational speed is increased to some extent, and to eliminate unnecessary slip at the start of rotation.

反負荷側の軸受5Bでは、回転に伴い、遠心力による内輪12Bの膨張や、内外輪12B,11Bの温度差(通常、内輪12Bの方が温度が高い)により、前記アキシアル内部隙間δが小さくなる。回転速度が速くなり、アキシアル内部隙間δが負の値になると、定位置予圧が生じる。すなわち、定圧予圧から定位置予圧に切り換わる。   In the bearing 5B on the non-load side, the axial internal clearance δ becomes smaller due to the expansion of the inner ring 12B due to centrifugal force and the temperature difference between the inner and outer rings 12B and 11B (normally the inner ring 12B has a higher temperature). Become. When the rotational speed increases and the axial internal gap δ becomes a negative value, a fixed position preload occurs. That is, the constant pressure preload is switched to the fixed position preload.

図2は、前記軸受装置における予圧量の変化をグラフで示したものである。回転速度がある程度以上になると、アキシアル内部隙間δが無くなり、予圧量が上昇する。図2のグラフでは、回転速度が4000rpm を超えたあたりで、遠心力の作用などにより内部隙間が小さくなってきて、ハウジング2の内径側突出部2aの端面と外輪11Bの背面の間のアキシアル内部隙間δが詰まり、定位置予圧の状態となって、以後は徐々に予圧が上昇して行く。この場合の予圧の上昇は、組込時に前記アキシアル内部隙間δが与えられていることから抑制され、10000rpm になっても限界予圧200kgf を越えることは無い。なお、組込時に設定される前記アキシアル内部隙間δの設定量を調整することで、狙いの回転速度においてアキシアル内部隙間δが詰まるようにでき、アキシアル内部隙間δが詰まった以降は通常の定位置予圧状態となる。
なお、同図の例では、回転速度が4000rpm を超えたあたりでアキシアル内部隙間δが零となるが、2000〜6000rpm の範囲で(例えば2000rpm 、3000rpm 、5000rpm 、または6000rpm 程度で)アキシアル内部隙間δが零となるように、初期(運転停止時)のアキシアル内部隙間δを設定しても良い。この場合に、回転速度の上昇は軸受温度の上昇を伴うが、温度変化に係わらずに、回転速度のみに着目して初期のアキシアル内部隙間δを設定しても良い。
FIG. 2 is a graph showing changes in the amount of preload in the bearing device. When the rotational speed exceeds a certain level, the axial internal gap δ disappears and the amount of preload increases. In the graph of FIG. 2, when the rotational speed exceeds 4000 rpm, the internal gap becomes smaller due to the action of centrifugal force, etc., and the axial interior between the end surface of the inner diameter side protruding portion 2a of the housing 2 and the rear surface of the outer ring 11B. The gap δ is clogged and a fixed position preload is reached, and thereafter the preload gradually increases. The increase in the preload in this case is suppressed because the axial internal gap δ is given at the time of assembly, and the limit preload does not exceed 200 kgf even at 10,000 rpm. By adjusting the set amount of the axial internal gap δ set at the time of assembly, the axial internal gap δ can be blocked at the target rotational speed. A preload state is established.
In the example shown in the figure, the axial internal clearance δ becomes zero when the rotational speed exceeds 4000 rpm, but the axial internal clearance δ is within the range of 2000 to 6000 rpm (for example, about 2000 rpm, 3000 rpm, 5000 rpm, or 6000 rpm). The axial internal gap δ at the initial stage (when operation is stopped) may be set so that becomes zero. In this case, an increase in the rotational speed is accompanied by an increase in the bearing temperature, but the initial axial internal gap δ may be set by paying attention only to the rotational speed regardless of the temperature change.

図3は、φ90mmのアンギュラ玉軸受の200kgf 予圧状態での剛性を、定位置予圧の場合と定圧予圧の場合と比較して示すグラフであり、定位置予圧の場合の方が剛性に優れていることを表している。この実施形態の軸受装置4では、上記したように高速回転時の定位置予圧による運転を可能としていることから、図3のグラフからも明らかなように、定圧予圧の主軸や、通常高速になると予圧の上昇に有利な定圧予圧に切り換える機構の主軸に比べて、主軸剛性を高めることができる。
このように、この軸受装置4では、簡単な構成により、回転開始時の不要な滑りを無くし、かつ高速回転時の予圧上昇を抑制でき、高い主軸剛性を確保できる。
FIG. 3 is a graph showing the rigidity of a φ90 mm angular ball bearing in a 200 kgf preload state in comparison with a fixed position preload and a fixed pressure preload, and the fixed position preload is superior in rigidity. Represents that. Since the bearing device 4 of this embodiment can be operated by the fixed position preload at the time of high speed rotation as described above, as is clear from the graph of FIG. Compared with the main shaft of the mechanism that switches to the constant pressure preload which is advantageous for increasing the preload, the main shaft rigidity can be increased.
Thus, in this bearing device 4, with a simple configuration, unnecessary slip at the start of rotation can be eliminated, an increase in preload during high-speed rotation can be suppressed, and high spindle rigidity can be ensured.

また、この軸受装置4を備える前記工作機械の主軸装置1は、軸受装置4において回転開始時の不要な滑りを無くし、かつ高速回転時の予圧上昇を抑制できるので、主軸回転精度を向上させることができる。   Further, the spindle device 1 of the machine tool provided with the bearing device 4 eliminates unnecessary slip at the start of rotation in the bearing device 4 and can suppress an increase in preload during high-speed rotation, thereby improving the spindle rotation accuracy. Can do.

図4はこの発明の他の実施形態を示す。この実施形態では、図1〜図3に示した軸受装置4において、反負荷側の軸受5Bの外輪11Bの背面とハウジング2との間に、複数(図示の例では6〜10個)のコイルばねからなる弾性体10Aを介在させている。具体的には、ハウジング2の内径側に突出した環状の内形側突出部2aの端面に、周方向に分配して複数の凹部16を設け、これらの凹部16に弾性体10Aとしてコイルばねをそれぞれ収容している。両軸受5A,5Bに定位置予圧が与えられた状態で、コイルばねからなる弾性体10Aは圧縮されており、その復元力により反負荷側の軸受5Bの外輪11Aが正面側へ付勢されている。その他の構成および作用効果は図1〜図3の実施形態の場合と同様である。   FIG. 4 shows another embodiment of the present invention. In this embodiment, in the bearing device 4 shown in FIGS. 1 to 3, a plurality of (6 to 10 in the illustrated example) coils are provided between the back surface of the outer ring 11 </ b> B of the bearing 5 </ b> B on the anti-load side and the housing 2. An elastic body 10A made of a spring is interposed. Specifically, a plurality of concave portions 16 are provided in the circumferential direction on the end surface of the annular inner shape protruding portion 2a protruding toward the inner diameter side of the housing 2, and a coil spring is provided as an elastic body 10A in these concave portions 16. Each is housed. The elastic body 10A made of a coil spring is compressed in a state where the fixed position preload is applied to both the bearings 5A and 5B, and the outer ring 11A of the anti-load side bearing 5B is urged to the front side by the restoring force. Yes. Other configurations and operational effects are the same as those of the embodiment of FIGS.

図5はこの発明のさらに他の実施形態を示す。この実施形態では、図1〜図3に示した軸受装置4において、反負荷側の軸受5Bの外輪11Bの背面とハウジング2との間に、軸受5A,5Bと同心の皿ばねからなる弾性体10Bを介在させている。具体的には、ハウジング2の内径側に突出した環状の内形側突出部2aの端面と、これに対向する軸受5Bの外輪11Bの背面との間に、皿ばねからなる弾性体10Bを介在させている。その他の構成および作用効果は図1〜図3の実施形態の場合と同様である。   FIG. 5 shows still another embodiment of the present invention. In this embodiment, in the bearing device 4 shown in FIGS. 1 to 3, an elastic body made of a disc spring concentric with the bearings 5 </ b> A and 5 </ b> B between the rear surface of the outer ring 11 </ b> B of the bearing 5 </ b> B on the opposite load side and the housing 2. 10B is interposed. Specifically, an elastic body 10B made of a disc spring is interposed between the end face of the annular inner protrusion 2a that protrudes toward the inner diameter side of the housing 2 and the back surface of the outer ring 11B of the bearing 5B that faces this. I am letting. Other configurations and operational effects are the same as those of the embodiment of FIGS.

図6はこの発明のさらに他の実施形態を示す。この実施形態では、図1〜図3に示した軸受装置4において、反負荷側の軸受5Bの外輪11Bの背面に軸受5A,5Bと同心の環状の周溝17を設け、この周溝17に弾性体10CとしてOリングを収容している。その他の構成および作用効果は図1〜図3の実施形態の場合と同様である。   FIG. 6 shows still another embodiment of the present invention. In this embodiment, in the bearing device 4 shown in FIGS. 1 to 3, an annular circumferential groove 17 concentric with the bearings 5 </ b> A and 5 </ b> B is provided on the back surface of the outer ring 11 </ b> B of the bearing 5 </ b> B on the opposite load side. An O-ring is accommodated as the elastic body 10C. Other configurations and operational effects are the same as those of the embodiment of FIGS.

図7はこの発明のさらに他の実施形態を示す。この実施形態では、図1〜図3に示した軸受装置4において、ハウジング2の内径側突出部2aと反負荷側の軸受5Bの外輪11Bとの間に外輪間座18が配置され、この外輪間座18と前記内径側突出部2aとの間に弾性体10Dが介在させてある。具体的には、前記外輪間座18の前記内径側突出部2aと対向する端面に軸受5A,5Bと同心の環状の周溝19を設け、この周溝19に弾性体10DとしてOリングを収容している。その他の構成および作用効果は図1〜図3の実施形態の場合と同様である。   FIG. 7 shows still another embodiment of the present invention. In this embodiment, in the bearing device 4 shown in FIGS. 1 to 3, an outer ring spacer 18 is disposed between the inner diameter side protruding portion 2a of the housing 2 and the outer ring 11B of the bearing 5B on the opposite load side. An elastic body 10D is interposed between the spacer 18 and the inner diameter side protruding portion 2a. Specifically, an annular circumferential groove 19 concentric with the bearings 5A and 5B is provided on an end face of the outer ring spacer 18 facing the inner diameter side protruding portion 2a, and an O-ring is accommodated in the circumferential groove 19 as an elastic body 10D. is doing. Other configurations and operational effects are the same as those of the embodiment of FIGS.

図8はこの発明のさらに他の実施形態を示す。この実施形態では、図1〜図3に示した軸受装置4において、負荷側の軸受5Aおよび反負荷側の軸受5Bを、それぞれ2列の軸受の組み合わせとしている。具体的には、負荷側の軸受5Aとして、正面側を主軸3のフロント側に向けたアンギュラ玉軸受が軸方向に2列並べられ、反負荷側の軸受5Bとして、正面側を主軸3のリア側に向けたアンギュラ玉軸受が軸方向に2列並べられている。反負荷側の2列の軸受5B,5Bのうち、ハウジング2の内径側突出部2a寄りの軸受5Bの外輪11Bの背面と前記内径側突出部2aとの間に弾性体10が介在させてある。その他の構成および作用効果は図1〜図3の実施形態の場合と同様である。   FIG. 8 shows still another embodiment of the present invention. In this embodiment, in the bearing device 4 shown in FIGS. 1 to 3, the load-side bearing 5A and the anti-load-side bearing 5B are each a combination of two rows of bearings. Specifically, as the load-side bearing 5A, two angular ball bearings with the front side facing the front side of the main shaft 3 are arranged in the axial direction, and as the anti-load side bearing 5B, the front side is the rear of the main shaft 3. Angular ball bearings facing the side are arranged in two rows in the axial direction. Of the two rows of bearings 5B and 5B on the opposite load side, the elastic body 10 is interposed between the back surface of the outer ring 11B of the bearing 5B near the inner diameter side protruding portion 2a of the housing 2 and the inner diameter side protruding portion 2a. . Other configurations and operational effects are the same as those of the embodiment of FIGS.

なお、同図の実施形態において、図4〜図7に示した各実施形態における弾性体の種類やその弾性体の設置構造を採用しても良い。また、負荷側の軸受5Aおよび反負荷側の軸受5Bの軸受配列数は2列に限らず、3列以上としてもよく、両軸受5A,5Bのうち、いずれか一方の軸受だけを複数列としても良い。   In the embodiment shown in the figure, the type of elastic body and the installation structure of the elastic body in each embodiment shown in FIGS. 4 to 7 may be adopted. Further, the number of bearing arrangements of the load-side bearing 5A and the anti-load-side bearing 5B is not limited to two, but may be three or more, and only one of the bearings 5A and 5B is a plurality of rows. Also good.

また、上記各実施形態は、ハウジング1のフロント側軸受を負荷側軸受5Aとし、リア側軸受を反負荷側軸受5Bとしたが、フロント側軸受を複数のアンギュラ玉軸受の配列からなる軸受装置で構成し、リア側軸受を円筒ころ軸受の配列からなる軸受装置で構成し、そのフロント側軸受につきこの発明を適用しても良い。   In each of the above embodiments, the front side bearing of the housing 1 is the load side bearing 5A and the rear side bearing is the anti-load side bearing 5B. However, the front side bearing is a bearing device comprising an array of a plurality of angular ball bearings. The rear side bearing may be configured by a bearing device having an arrangement of cylindrical roller bearings, and the present invention may be applied to the front side bearing.

(A)はこの発明の第1の実施形態にかかる軸受装置を搭載した工作機械の主軸装置のフロント側の断面図、(B)は(A)におけるA部の拡大図である。(A) is sectional drawing of the front side of the main axis | shaft apparatus of the machine tool which mounts the bearing apparatus concerning 1st Embodiment of this invention, (B) is an enlarged view of the A section in (A). 同軸受装置の予圧上昇を示すグラフである。It is a graph which shows the preload rise of the bearing apparatus. アンギュラ玉軸受に定位置予圧を与えた場合と定圧予圧を与えた場合との剛性を比較して示すグラフである。It is a graph which compares and shows the case where a fixed position preload is given to an angular ball bearing, and the case where a constant pressure preload is given. この発明の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. この発明のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. この発明のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. この発明のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. この発明のさらに他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of this invention. 初期状態で予圧が入っている軸受装置の断面図である。It is sectional drawing of the bearing apparatus in which the preload is contained in the initial state. 同軸受装置の要部の拡大断面図である。It is an expanded sectional view of the important section of the bearing device. 同軸受装置の予圧上昇を示すグラフである。It is a graph which shows the preload rise of the bearing apparatus. 予圧切換機構を用いた軸受装置の予圧上昇を示すグラフである。It is a graph which shows the preload rise of the bearing apparatus using a preload switching mechanism. 初期状態でアキシアル隙間を設けた軸受装置の断面図を示す。Sectional drawing of the bearing apparatus which provided the axial clearance gap in the initial state is shown. (A)は同軸受装置に予圧を付与する前の状態を示す要部断面図、(B)は予圧付与後の状態を示す要部断面図である。(A) is principal part sectional drawing which shows the state before giving preload to the bearing apparatus, (B) is principal part sectional drawing which shows the state after preload provision. 同軸受装置の予圧上昇を示すグラフである。It is a graph which shows the preload rise of the bearing apparatus. 一般の軸受装置の定位置予圧時およびアキシアル隙間付与時の状態を示す説明図である。It is explanatory drawing which shows the state at the time of the fixed position preload of a general bearing apparatus, and the time of axial gap provision.

符号の説明Explanation of symbols

1…主軸装置
2…ハウジグ
2a…内径側突出部
3…主軸
4…側軸受装置
5A,5B…軸受
10,10A,10B,10C,10D…弾性体
11A,11B…外輪
12A,12B…内輪
18…外輪間座
20…内輪位置規制手段
DESCRIPTION OF SYMBOLS 1 ... Main shaft apparatus 2 ... Housing 2a ... Inner diameter side protrusion part 3 ... Main shaft 4 ... Side bearing apparatus 5A, 5B ... Bearing 10, 10A, 10B, 10C, 10D ... Elastic body 11A, 11B ... Outer ring 12A, 12B ... Inner ring 18 ... Outer ring spacer 20 ... Inner ring position restricting means

Claims (9)

工作機械の主軸を、この主軸に荷重が作用する端部側である負荷側に配置した軸受と、この負荷側軸受に対する反負荷側に配置した軸受とを介してハウジングに設置し、前記負荷側および反負荷側の軸受は、それぞれアンギュラ玉軸受であって、互いに背面向き合わせとし、負荷側の軸受は外輪を前記ハウジングに対して軸方向に位置固定とし、反負荷側軸受は外輪を前記ハウジングに対して軸方向に非位置固定とし、両側の軸受の内輪の軸方向位置を規制する内輪位置規制手段を設けた軸受装置において、
前記ハウジングおよび前記内輪位置規制手段により規制される前記軸受のアキシアル内部隙間を、前記軸受の常温の運転停止状態では正となり、軸受の運転状態では内外輪の温度差と遠心力の作用により負となって定位置予圧が生じる大きさとし、かつ前記反負荷側軸受けの外輪の背面と前記ハウジングとの間に、この反負荷側軸受の外輪を正面側へ付勢して軸受運転停止時に予圧を生じさせる弾性体を介在させたことを特徴とする軸受装置。
The main axis of the machine tool is installed in the housing via a bearing arranged on the load side, which is an end side where a load acts on the main spindle, and a bearing arranged on the side opposite to the load side bearing. The bearings on the anti-load side are angular contact ball bearings, facing each other, the bearings on the load side fix the outer ring in the axial direction with respect to the housing, and the bearing on the anti-load side has the outer ring attached to the housing. In a bearing device provided with inner ring position restricting means that is non-position fixed in the axial direction and restricts the axial position of the inner ring of the bearings on both sides.
The axial internal clearance of the bearing, which is regulated by the housing and the inner ring position regulating means, is positive when the bearing is stopped at normal temperature, and is negative due to the temperature difference between the inner and outer rings and the centrifugal force. The size is such that a preload at a fixed position is generated, and the outer ring of the anti-load side bearing is urged to the front side between the rear surface of the outer ring of the anti-load side bearing and the housing to generate pre-load when the bearing operation is stopped. A bearing device comprising an elastic body to be interposed.
請求項1において、前記弾性体が、前記軸受と同心のOリングである軸受装置。   The bearing device according to claim 1, wherein the elastic body is an O-ring concentric with the bearing. 請求項1において、前記弾性体が、周方向に分散配置した複数のコイルばねである軸受装置。   The bearing device according to claim 1, wherein the elastic body is a plurality of coil springs distributed in the circumferential direction. 請求項1において、前記弾性体が、前記軸受と同心の皿ばねである軸受装置。   The bearing device according to claim 1, wherein the elastic body is a disc spring concentric with the bearing. 請求項1ないし請求項4のいずれか1項において、前記負荷側の軸受の外輪と反負荷側の軸受の外輪との間に、前記ハウジングにおける両側の軸受の外輪が嵌合する軸受嵌合面よりも内径側に突出した環状の内径側突出部が介在し、この内径側突出部の端面に前記弾性体を設けた軸受装置。   5. The bearing fitting surface according to claim 1, wherein the outer rings of the bearings on both sides of the housing are fitted between the outer ring of the bearing on the load side and the outer ring of the bearing on the anti-load side. A bearing device in which an annular inner diameter side protruding portion that protrudes further toward the inner diameter side is interposed, and the elastic body is provided on an end surface of the inner diameter side protruding portion. 請求項1ないし請求項4のいずれか1項において、前記弾性体を前記反負荷側の軸受の外輪に設けた軸受装置。   The bearing device according to claim 1, wherein the elastic body is provided on an outer ring of the bearing on the anti-load side. 請求項1ないし請求項4のいずれか1項において、前記負荷側の軸受の外輪と反負荷側の軸受の外輪との間に、前記ハウジングにおける両側の軸受の外輪が嵌合する軸受嵌合面よりも内径側に突出した環状の内径側突出部が介在し、この内径側突出部と前記反負荷側の軸受の外輪との間に外輪間座が配置され、この外輪間座に前記弾性体を設けた軸受装置。   5. The bearing fitting surface according to claim 1, wherein the outer rings of the bearings on both sides of the housing are fitted between the outer ring of the bearing on the load side and the outer ring of the bearing on the anti-load side. An annular inner diameter protruding portion that protrudes further toward the inner diameter side is interposed, and an outer ring spacer is disposed between the inner diameter side protruding portion and the outer ring of the bearing on the anti-load side, and the elastic body is disposed on the outer ring spacer. Bearing device provided with. 請求項1ないし請求項4のいずれか1項において、前記負荷側および反負荷側のいずれか一方または両方の軸受は、複数列の軸受の組み合わせとした軸受装置。   5. The bearing device according to claim 1, wherein one or both of the load side and the anti-load side bearings are a combination of a plurality of rows of bearings. 6. 工作機械の主軸を、請求項1ないし請求項8のいずれか1項に記載の軸受装置で支持した工作機械主軸装置。   A machine tool spindle device in which a spindle of a machine tool is supported by the bearing device according to any one of claims 1 to 8.
JP2008263453A 2008-10-10 2008-10-10 Bearing device Pending JP2010091066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263453A JP2010091066A (en) 2008-10-10 2008-10-10 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263453A JP2010091066A (en) 2008-10-10 2008-10-10 Bearing device

Publications (1)

Publication Number Publication Date
JP2010091066A true JP2010091066A (en) 2010-04-22

Family

ID=42253989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263453A Pending JP2010091066A (en) 2008-10-10 2008-10-10 Bearing device

Country Status (1)

Country Link
JP (1) JP2010091066A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026260A1 (en) * 2010-08-26 2012-03-01 Ntn株式会社 Gear device
KR101257354B1 (en) * 2012-02-21 2013-04-23 주식회사 로텍 Slip ring for high speed
WO2014010542A1 (en) * 2012-07-10 2014-01-16 株式会社空スペース Roller bearing and method for use of same
JP2016534301A (en) * 2013-08-30 2016-11-04 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Bearing assembly and roving machine having the bearing assembly
WO2019111430A1 (en) * 2017-12-04 2019-06-13 三菱電機株式会社 Electric motor and electric fan

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026260A1 (en) * 2010-08-26 2012-03-01 Ntn株式会社 Gear device
KR101257354B1 (en) * 2012-02-21 2013-04-23 주식회사 로텍 Slip ring for high speed
WO2014010542A1 (en) * 2012-07-10 2014-01-16 株式会社空スペース Roller bearing and method for use of same
JP2016534301A (en) * 2013-08-30 2016-11-04 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Bearing assembly and roving machine having the bearing assembly
WO2019111430A1 (en) * 2017-12-04 2019-06-13 三菱電機株式会社 Electric motor and electric fan

Similar Documents

Publication Publication Date Title
US8356944B2 (en) Tapered roller bearing with displaceable rib
JP6012980B2 (en) Bearing device preload adjustment structure
JP2010091066A (en) Bearing device
US9422977B2 (en) Bearing mechanism
JP2006322496A (en) Multi-row angular ball bearing
JP2007211793A (en) Support structure of ball screw shaft
JP2007211820A (en) Ball screw supporting apparatus
JP2013070510A (en) Rotary electric machine
JP5638331B2 (en) Preload adjustment structure for rolling bearings
JP2008019943A (en) Combination bearing
JP2005042894A (en) Double row rolling bearing device
CN110017326B (en) Bearing assembly
JP2001140869A (en) Double-row bearing
JP2010190335A (en) Ball screw device
JP2008032148A (en) Rolling bearing, sealing member for rolling bearing, and rotating shaft supporting structure of wind power generator
JP2009008211A (en) Roller bearing-bearing housing assembling body
JP2010091065A (en) Bearing device
JP2014001800A (en) Bearing device
JP2010190274A (en) Rolling bearing device and method of preloading rolling bearing
JP5891720B2 (en) Hub unit bearing
JP2008298250A (en) Feed driving device
JP7449887B2 (en) friction transmission
JP2010196805A (en) Bearing device
JP2011112191A (en) Creep prevention rolling bearing
JP2006349074A (en) Angular contact ball bearing device