JP2010090507A - Ultrafine fiber of antistatic sheath-core polytrimethylene terephthalate - Google Patents

Ultrafine fiber of antistatic sheath-core polytrimethylene terephthalate Download PDF

Info

Publication number
JP2010090507A
JP2010090507A JP2008261580A JP2008261580A JP2010090507A JP 2010090507 A JP2010090507 A JP 2010090507A JP 2008261580 A JP2008261580 A JP 2008261580A JP 2008261580 A JP2008261580 A JP 2008261580A JP 2010090507 A JP2010090507 A JP 2010090507A
Authority
JP
Japan
Prior art keywords
polytrimethylene terephthalate
antistatic
core
sheath
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008261580A
Other languages
Japanese (ja)
Other versions
JP5117983B2 (en
Inventor
Katsushi Kikuchi
勝志 菊池
Original Assignee
Teijin Fibers Ltd
帝人ファイバー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd, 帝人ファイバー株式会社 filed Critical Teijin Fibers Ltd
Priority to JP2008261580A priority Critical patent/JP5117983B2/en
Publication of JP2010090507A publication Critical patent/JP2010090507A/en
Application granted granted Critical
Publication of JP5117983B2 publication Critical patent/JP5117983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polytrimethylene terephthalate ultrafine fiber having soft texture, excellent stretchability and high antistatic properties and a method for stably producing the fiber. <P>SOLUTION: The ultrafine fiber of antistatic sheath-core polytrimethylene terephthalate is a sheath-core conjugate fiber having a core part comprising an antistatic polytrimethylene terephthalate A and a sheath part comprising a polytrimethylene terephthalate B containing 0-10 wt.% of a delustering agent, and satisfying the following conditions (1) to (5): (1) the single fiber fineness is ≤1.5 dtex; (2) the areal ratio of the core part A and the sheath part B (A:B) is 5:95 to 80:20; (3) the strength of the single fiber is ≥3.0 cN/dtex; (4) the friction-charged electrostatic potential of the fiber is ≤2,000 V; and (5) the antistatic polytrimethylene terephthalate A contains specific amounts of a specific polyoxyalkylene polyether and an organic ionic compound and 100 pts.wt. of a polyester. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、制電性を有するポリトリメチレンテレフタレート極細糸及びその製造方法に関するものである。さらに詳しくは、耐久性に優れた制電性とソフト感、ストレッチ性をも満足するポリトリメチレンテレフタレート極細糸を安定して得られる製造方法に関するものである。   The present invention relates to a polytrimethylene terephthalate ultrafine yarn having antistatic properties and a method for producing the same. More specifically, the present invention relates to a production method capable of stably obtaining a polytrimethylene terephthalate ultrafine yarn that satisfies excellent durability, antistatic properties, soft feeling, and stretchability.

従来からポリトリメチレンテレフタレート糸は、布帛にした時、低モジュラスによる柔らかな風合が得られ、高弾性回復によりストレッチ性もあり、繊維の持つシワ回復性、形態安定性などから型崩れしにくく、サラッとした感触が特徴であり、近年では単糸繊度が細い糸を使用した高密度織物による婦人コート地やスポーツアウター地など幅広い分野に使用されるようになった。しかしながら、本来、ポリエステルであるポリトリメチレンテレフタレートは疎水性であるため、単糸繊度の低い糸を使用した高密度織物でも比較的静電気が発生しやすく、現在では後加工での制電剤付与による制電機能付与を行っているのが主流である。しかし、後加工での制電剤付与は制電性能の洗濯耐久性が低く、この対策としてポリマー段階での制電機能付与が求められてきた。   Conventionally, when a polytrimethylene terephthalate yarn is made into a fabric, a soft texture with a low modulus is obtained, and there is also stretchability due to high elastic recovery, and it is difficult to lose shape due to wrinkle recovery and shape stability of the fiber. It is characterized by a smooth feel, and in recent years it has come to be used in a wide range of fields such as women's coats and sports outers made of high-density fabrics using yarns with fine single yarn fineness. However, since polytrimethylene terephthalate, which is a polyester, is hydrophobic, it is relatively easy to generate static electricity even in high-density fabrics using yarns with low single yarn fineness. The mainstream is providing the anti-static function. However, the application of the antistatic agent in the post-processing has low antistatic washing durability, and as a countermeasure against this, it has been required to provide the antistatic function at the polymer stage.

ポリトリメチレンテレフタレートに制電性を発現させようとする試みが行われており、これまでに数多くの提案がなされている。例えば、特許文献1に記載のように、ポリトリメチレンテレフタレートにポリエチレングリコールと5−スルホン酸金属化合物を添加することが知られている。しかしながら、ポリトリメチレンテレフタレートは元々熱安定性に乏しいため、これらの化合物を加えるときわめて安定性に乏しくなり、特に単糸繊度の小さい糸を紡糸する際に、糸切れや毛羽が増え工程通過性が著しく低下するという問題があった。また、特許文献2に記載のように制電性芯鞘型ポリエチレンテレフタレート系繊維とポリトリメチレンテレフタレート繊維からなるポリエステル混用品(混繊糸、布帛等)が提案されている。確かに両者を混用することによりストレッチ性と制電性を満足することはできるが、2種類の繊維が必要となるため生産性の良いものではなかった。   Attempts have been made to develop antistatic properties in polytrimethylene terephthalate, and many proposals have been made so far. For example, as described in Patent Document 1, it is known to add polyethylene glycol and a 5-sulfonic acid metal compound to polytrimethylene terephthalate. However, since polytrimethylene terephthalate is inherently poor in thermal stability, the addition of these compounds makes it extremely poor in stability, especially when spinning yarns with small single yarn fineness, resulting in increased yarn breakage and fluff. There was a problem that the remarkably decreased. Further, as described in Patent Document 2, a polyester blended article (mixed yarn, fabric, etc.) made of antistatic core-sheath type polyethylene terephthalate fiber and polytrimethylene terephthalate fiber has been proposed. It is possible to satisfy both the stretchability and the antistatic property by mixing both, but the productivity is not good because two types of fibers are required.

特開平11−181626号公報Japanese Patent Laid-Open No. 11-181626 特開2006−2258号公報JP 2006-2258 A

本発明の目的は、上述したことから明らかなように、従来の極細ポリトリメチレンテレフタレート糸が持つ、柔らかな風合、ストレッチ性などの性能も維持し、制電性能にも優れた極細ポリトリメチレンテレフタレート糸及びそれを安定して製造する方法を提供することにある。   As is apparent from the above, the object of the present invention is to maintain the performance such as the soft texture and stretchability of the conventional ultrafine polytrimethylene terephthalate yarn, and to achieve excellent antistatic performance. An object of the present invention is to provide a methylene terephthalate yarn and a method for stably producing the yarn.

本発明者らは、上記目的を達成するために鋭意検討した結果、本発明に到達したものであって、即ち本発明によれば、
芯鞘型複合繊維であって、芯部が制電性ポリトリメチレンテレフタレートAで形成され、他方、鞘部が艶消し剤を0〜10wt%含むポリトリメチレンテレフタレートBで形成され、下記(1)〜(5)の条件を満足する制電性芯鞘型ポリトリメチレンテレフタレート極細繊維。
(1)単糸繊度が1.5dtex以下である。
(2)芯部の面積Aと鞘部の面積Bとの比A:Bが5:95〜80:20の範囲である。
(3)単糸の強度が3.0cN/dtex以上である。
(4)繊維の摩擦帯電圧が2000V以下。
(5)制電性ポリトリメチレンテレフタレートAがポリエステル100重量部に対して、制電剤として、(a)下記式で表されるポリオキシアルキレン系ポリエーテルを4〜10重量部及び(b)該ポリエステルと実質的に非反応性の有機イオン性化合物2〜8重量部を含有してなる制電性ポリトリメチレンテレフタレートであること。
Z−[(CHCHO)n(RO)m−R]k
[式中、Zは1〜6個の活性水素原子を有する有機化合物残基、Rは炭素原子数6以上のアルキレン基又は置換アルキレン基、Rは水素原子、炭素原子数1〜40の一価の炭化水素基、炭素原子数2〜40の一価のヒドロキシ炭化水素又は炭素原子数2〜40の一価のアシル基、kは1〜6の整数、nはn≧70/kを満足する整数、mは1以上の整数]
が提供される。
As a result of intensive studies to achieve the above object, the present inventors have reached the present invention, that is, according to the present invention,
It is a core-sheath type composite fiber, the core part is formed of antistatic polytrimethylene terephthalate A, and the sheath part is formed of polytrimethylene terephthalate B containing 0-10 wt% matting agent. An antistatic core-sheath type polytrimethylene terephthalate ultrafine fiber that satisfies the conditions (1) to (5).
(1) The single yarn fineness is 1.5 dtex or less.
(2) The ratio A: B between the area A of the core and the area B of the sheath is in the range of 5:95 to 80:20.
(3) The strength of the single yarn is 3.0 cN / dtex or more.
(4) The frictional voltage of the fiber is 2000V or less.
(5) Antistatic polytrimethylene terephthalate A is 100 parts by weight of polyester, and as an antistatic agent, (a) 4 to 10 parts by weight of polyoxyalkylene polyether represented by the following formula and (b) An antistatic polytrimethylene terephthalate containing 2 to 8 parts by weight of an organic ionic compound that is substantially non-reactive with the polyester.
Z - [(CH 2 CH 2 O) n (R 1 O) m-R 2] k
[Wherein, Z is an organic compound residue having 1 to 6 active hydrogen atoms, R 1 is an alkylene group or substituted alkylene group having 6 or more carbon atoms, R 2 is a hydrogen atom, having 1 to 40 carbon atoms. A monovalent hydrocarbon group, a monovalent hydroxy hydrocarbon having 2 to 40 carbon atoms or a monovalent acyl group having 2 to 40 carbon atoms, k is an integer of 1 to 6, and n is n ≧ 70 / k. Satisfied integer, m is an integer of 1 or more]
Is provided.

又制電性ポリトリメチレンテレフタレートAとポリトリメチレンテレフタレートBとを溶融紡糸するに際して、紡出時の吐出速度と引き取り速度の比(引き取り速度/吐出速度,以降ドラフト比と記す)を300以上、1000未満の範囲で未延伸糸を40℃〜70℃に加熱した第一ローラーで1000〜3000m/minにて巻き付け、次に110〜150℃に加熱した第二ローラーに1.2〜2.5倍に延伸し巻き付け、第二ローラーよりも低速で巻き取る制電性芯鞘型ポリトリメチレンテレフタレート極細繊維の製造方法、
が提供される。
When the antistatic polytrimethylene terephthalate A and polytrimethylene terephthalate B are melt-spun, the ratio of the discharge speed and the take-off speed during spinning (take-off speed / discharge speed, hereinafter referred to as draft ratio) is 300 or more. The undrawn yarn was wound at 1000 to 3000 m / min with a first roller heated to 40 ° C. to 70 ° C. within a range of less than 1000, and then 1.2 to 2.5 on a second roller heated to 110 to 150 ° C. A method for producing an antistatic core-sheath type polytrimethylene terephthalate ultrafine fiber that is stretched twice and wound at a lower speed than the second roller,
Is provided.

本発明の制電性芯鞘型ポリトリメチレンテレフタレート極細繊維は、従来の極細ポリトリメチレンテレフタレート糸が持つ、柔らかな風合、ストレッチ性などの性能も維持し、制電性及び制電耐久性にも優れたポリエステル布帛とすることができる。   The anticorrosive core-sheath type polytrimethylene terephthalate ultrafine fiber of the present invention maintains the soft texture, stretch properties, etc. of conventional ultrafine polytrimethylene terephthalate yarn, and is antistatic and antistatic durability In addition, an excellent polyester fabric can be obtained.

以下本発明の実施形態について詳細に説明する。
本発明でいうポリトリメチレンテレフタレート繊維とは、トリメチレンテレフタレートを主たる繰り返し単位とするポリエステルからなる繊維である。このポリエステルは、トリメチレンテレフタレート単位を構成する成分以外の第3成分を共重合した、共重合ポリトリメチレンテレフタレートであってもよい。上記第3成分(共重合成分)は、ジカルボン酸成分またはグリコール成分のいずれでもよい。ここで「主たる」とは、全繰り返し単位中、90モル%以上であることを表す。
Hereinafter, embodiments of the present invention will be described in detail.
The polytrimethylene terephthalate fiber referred to in the present invention is a fiber made of polyester having trimethylene terephthalate as a main repeating unit. This polyester may be a copolymerized polytrimethylene terephthalate obtained by copolymerizing a third component other than the component constituting the trimethylene terephthalate unit. The third component (copolymerization component) may be either a dicarboxylic acid component or a glycol component. Here, “main” means 90 mol% or more in all repeating units.

第3成分として好ましく用いられる成分としては、ジカルボン酸成分として、2,6−ナフタレンジカルボン酸、イソフタル酸もしくはフタル酸などの芳香族ジカルボン酸、アジピン酸、アゼライン酸、セバシン酸もしくはデカンジカルボン酸などの脂肪族ジカルボン酸、シクロヘキサンジカルボン酸などの脂環式ジカルボン酸など、また、グリコール成分として、エチレングリコール、テトラメチレングリコール、ジエチレングリコール、ポリエチレングリコール、ヘキサメチレングリコール、シクロヘキサンジメタノールもしくは2,2−ビス[4−(2−ヒドロキシエトキシ)フェニル]プロパンなどが例示され、これらは単独または二種以上を使用することができる。かかる芳香族ポリエステルは任意の方法によって合成される。   As the component preferably used as the third component, as the dicarboxylic acid component, aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, isophthalic acid or phthalic acid, adipic acid, azelaic acid, sebacic acid or decanedicarboxylic acid, etc. Aliphatic dicarboxylic acids such as aliphatic dicarboxylic acids and cyclohexanedicarboxylic acids, and the glycol components include ethylene glycol, tetramethylene glycol, diethylene glycol, polyethylene glycol, hexamethylene glycol, cyclohexanedimethanol or 2,2-bis [4 -(2-hydroxyethoxy) phenyl] propane and the like are exemplified, and these can be used alone or in combination of two or more. Such aromatic polyester is synthesized by any method.

本発明で使用する制電剤の一方成分としての下記一般式(1)で表わされるポオキシエチレン系ポリエーテル(a)は、ポリトリメチレンテレフタレートに実質的に不溶性のものであれば、単一のオキシアルキレン単位からなるポリオキシアルキレングリコールであっても、二種以上のオキシアルキレン単位からなる共重合ポリオキシアルキレングリコールであってもよい。
Z−[(CHCHO)n(RO)m−R]k 式(1)
[式中、Zは1〜6個の活性水素原子を有する有機化合物残基、Rは炭素原子数6以上のアルキレン基又は置換アルキレン基、Rは水素原子、炭素原子数1〜40の一価の炭化水素基、炭素原子数2〜40の一価のヒドロキシ炭化水素又は炭素原子数2〜40の一価のアシル基、kは1〜6の整数、nはn≧70/kを満足する整数、mは1以上の整数]
The polyoxymethylene polyether (a) represented by the following general formula (1) as one component of the antistatic agent used in the present invention is a single component as long as it is substantially insoluble in polytrimethylene terephthalate. The polyoxyalkylene glycol may be a polyoxyalkylene glycol comprising two oxyalkylene units or a copolymer polyoxyalkylene glycol comprising two or more oxyalkylene units.
Z - [(CH 2 CH 2 O) n (R 1 O) m-R 2] k equation (1)
[Wherein, Z is an organic compound residue having 1 to 6 active hydrogen atoms, R 1 is an alkylene group or substituted alkylene group having 6 or more carbon atoms, R 2 is a hydrogen atom, having 1 to 40 carbon atoms. A monovalent hydrocarbon group, a monovalent hydroxy hydrocarbon having 2 to 40 carbon atoms or a monovalent acyl group having 2 to 40 carbon atoms, k is an integer of 1 to 6, and n is n ≧ 70 / k. Satisfied integer, m is an integer of 1 or more]

かかるポリオキシアルキレン系ポリエーテルの具体例としては、分子量が4000以上のポリオキシエチレングリコール、分子量が1000以上のポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール、分子量が2000以上のエチレンオキサイド、プロピレンオキサイド共重合体、分子量4000以上のトリメチロールプロパンエチレンオキサイド付加物、分子量3000以上のノニルフェノールエチレンオキサイド付加物、並びにこれらの末端OH基に炭素数が6以上の置換エチレンオキサイドが付加した化合物があげられ、なかでも分子量が10000〜100000のポリオキシエチレングコール、及び分子量が5000〜16000の、ポリオキシエチレングリコールの両末端に炭素数が8〜40のアルキル基置換エチレンオキサイドが付加した化合物が好ましい。   Specific examples of such polyoxyalkylene polyether include polyoxyethylene glycol having a molecular weight of 4000 or more, polyoxypropylene glycol having a molecular weight of 1000 or more, polyoxytetramethylene glycol, ethylene oxide having a molecular weight of 2000 or more, and a propylene oxide copolymer. Polymers, trimethylolpropane ethylene oxide adducts having a molecular weight of 4000 or more, nonylphenol ethylene oxide adducts having a molecular weight of 3000 or more, and compounds in which a substituted ethylene oxide having 6 or more carbon atoms is added to these terminal OH groups. However, polyoxyethylene glycol having a molecular weight of 10,000 to 100,000 and an alkyl group having 8 to 40 carbon atoms at both ends of the polyoxyethylene glycol having a molecular weight of 5000 to 16000. Compound conversion of ethylene oxide are added are preferred.

ポリオキシアルキレン系ポリエーテル化合物の配合量は、前記芳香族ポリエステル100重量部に対して4〜10重量部の範囲である。4重量部未満の場合は単糸繊度が1.5dtex以下の極細繊維においては制電性が低下し、一方10重量部を超える場合は最早制電性の向上効果は認められず、かえって繊維の強度が低下したり、又該ポリエーテルがブリードアウトし易くなるため溶融成形時チップのルーダーへのかみこみ性が低下して、製糸性が悪化するため好ましくない。   The compounding amount of the polyoxyalkylene polyether compound is in the range of 4 to 10 parts by weight with respect to 100 parts by weight of the aromatic polyester. If the amount is less than 4 parts by weight, the antistatic property is reduced in the ultrafine fiber having a single yarn fineness of 1.5 dtex or less, whereas if it exceeds 10 parts by weight, the antistatic effect is no longer recognized. This is not preferable because the strength is lowered and the polyether is likely to bleed out, so that the biting property of the chip into the loader at the time of melt molding is lowered and the yarn forming property is deteriorated.

本発明においてはもう一方の制電剤として有機イオン性化合物を配合する。有機イオン性化合物としては、例えば下記一般式(2)、(3)で示されるスルホン酸金属塩及びスルホン酸第4級ホスホニウム塩を好ましいものとしてあげることができる。
RSOM (2)
[式中、Rは炭素原子数3〜30のアルキル基又は炭素原子数7〜40のアリール基、Mはアルカリ金属又はアルカリ土類金属を示す]
In the present invention, an organic ionic compound is blended as the other antistatic agent. Preferred examples of the organic ionic compound include sulfonic acid metal salts and sulfonic acid quaternary phosphonium salts represented by the following general formulas (2) and (3).
RSO 3 M (2)
[Wherein, R represents an alkyl group having 3 to 30 carbon atoms or an aryl group having 7 to 40 carbon atoms, and M represents an alkali metal or an alkaline earth metal]

上記式(2)においてRがアルキル基のときはアルキル基は直鎖状であっても又は分岐した側鎖を有していてもよい。MはNa,K,Li等のアルカリ金属又はMg,Ca等のアルカリ土類金属であり、なかでもLi,Na,Kが好ましい。かかるスルホン酸金属塩は1種のみを単独で用いても2種以上を混合して使用してもよい。好ましい具体例としてはステアリルスルホン酸ナトリウム、オクチルスルホン酸ナトリウム、ドデシルスルホン酸ナトリウム、炭素原子数の平均が14であるアルキルスルホン酸ナトリウム混合物、ドデシルベンゼンスルホン酸ナトリウム混合物、ドデシルベンゼンスルホン酸ナトリウム(ハード型、ソフト型)、ドデシルベンゼンスルホン酸リチウム(ハード型、ソフト型)、ドデシルベンゼンスルホン酸マグネシウム(ハード型、ソフト型)等をあげることができる。
RSOPR (3)
[式中、Rは上記式(2)におけるRの定義と同じであり、R、R、R、及びRはアルキル基又はアリール基でなかでも低級アルキル基、フェニル基又はベンジル基が好ましい]
In the above formula (2), when R is an alkyl group, the alkyl group may be linear or have a branched side chain. M is an alkali metal such as Na, K, Li or the like, or an alkaline earth metal such as Mg, Ca. Among them, Li, Na, K are preferable. Such sulfonic acid metal salts may be used alone or in combination of two or more. Preferred examples include sodium stearyl sulfonate, sodium octyl sulfonate, sodium dodecyl sulfonate, a mixture of sodium alkyl sulfonate having an average of 14 carbon atoms, a mixture of sodium dodecyl benzene sulfonate, sodium dodecyl benzene sulfonate (hard type) Soft type), lithium dodecylbenzenesulfonate (hard type, soft type), magnesium dodecylbenzenesulfonate (hard type, soft type) and the like.
RSO 3 PR 1 R 2 R 3 R 4 (3)
[Wherein, R is the same as the definition of R in the above formula (2), and R 1 , R 2 , R 3 , and R 4 are an alkyl group or an aryl group, especially a lower alkyl group, a phenyl group, or a benzyl group. Is preferred]

かかるスルホン酸第4級ホスホニウム塩は1種のみを単独で用いても2種以上を混合して使用してもよい。好ましい具体例としては炭素原子数の平均が14であるアルキルスルホン酸テトラブチルホスホニウム、炭素原子数の平均が14であるアルキルスルホン酸テトラフェニルホスホニウム、炭素原子数の平均が14であるアルキルスルホン酸ブチルトリフェニルホスホニウム、ドデシルベンゼンスルホン酸テトラブチルホスホニウム(ハード型、ソフト型)、ドデシルベンゼンスルホン酸テトラフェニルホスホニウム(ハード型、ソフト型)、ドデシルベンゼンスルホン酸ベンジルトリフェニルホスホニウム(ハード型、ソフト型)等をあげることができる。   Such sulfonic acid quaternary phosphonium salts may be used alone or in combination of two or more. Preferred examples include tetrabutylphosphonium alkyl sulfonate having an average of 14 carbon atoms, tetraphenyl phosphonium alkyl sulfonate having an average of 14 carbon atoms, and butyl alkyl sulfonate having an average of 14 carbon atoms. Triphenylphosphonium, tetrabutylphosphonium dodecylbenzenesulfonate (hard type, soft type), tetraphenylphosphonium dodecylbenzenesulfonate (hard type, soft type), benzyltriphenylphosphonium dodecylbenzenesulfonate (hard type, soft type), etc. Can give.

かかる有機のイオン性化合物は1種でも、2種以上併用してもよく、その配合量は、芳香族ポリエステル100重量部に対して2〜8重量部の範囲が好ましい。2重量部未満では単糸繊度が1.5dtex以下の極細繊維において制電性向上の効果が小さく、8重量部を超えると繊維の強度が低下し、且つ該イオン性化合物もブリードアウトし易くなるため、溶融成形時のチップのルーダーかみこみ性が低下して、製糸性も悪化する。   These organic ionic compounds may be used alone or in combination of two or more, and the blending amount thereof is preferably in the range of 2 to 8 parts by weight with respect to 100 parts by weight of the aromatic polyester. If the amount is less than 2 parts by weight, the effect of improving the antistatic property is small in an ultrafine fiber having a single yarn fineness of 1.5 dtex or less. If the amount exceeds 8 parts by weight, the strength of the fiber is lowered and the ionic compound is also likely to bleed out. For this reason, the chip rudder penetration property at the time of melt molding is lowered, and the yarn production property is also deteriorated.

なお、ポリトリメチレンテレフタレートBには、本発明の目的を阻害しない範囲で、公知の艶消し剤を配合している。艶消し剤が10wt%を超えると本発明の親糸となる未延伸糸の紡糸性が悪化するので、その範囲は0〜10wt%とするのが好ましい。   Polytrimethylene terephthalate B is blended with a known matting agent as long as the object of the present invention is not impaired. If the matting agent exceeds 10 wt%, the spinnability of the undrawn yarn that becomes the parent yarn of the present invention is deteriorated, so the range is preferably 0 to 10 wt%.

また、本発明の制電性ポリトリメチレンテレフタレート極細糸は単糸繊度1.5dtex以下である必要があり、1.5dtexを超える場合はソフト性が低下する。好ましくは0.5〜1.5dtexである。又熱応力の最大値(Fmax)が0.25cN/dtex以下であることが好ましい。この範囲とすることにより、ソフトでストレッチ性に優れる織編物が得られる。   Further, the antistatic polytrimethylene terephthalate ultrafine yarn of the present invention needs to have a single yarn fineness of 1.5 dtex or less, and when it exceeds 1.5 dtex, the softness is lowered. Preferably it is 0.5-1.5 dtex. The maximum value (Fmax) of thermal stress is preferably 0.25 cN / dtex or less. By setting it within this range, a woven or knitted fabric that is soft and has excellent stretchability can be obtained.

更に、ポリトリメチレンテレフタレートAとポリトリメチレンテレフタレートBの芯鞘面積比は5:95〜80:20の範囲にする必要がある。面積比が5:95より小さい場合にはポリトリメチレンテレフタレートAによる制電性能の発現が不十分になり、80:20よりも大きくなる場合は、10%以上のアルカリ減量を施した場合に、芯部の制電性ポリトリメチレンテレフタレートAが溶出し、制電性能が低下する、又は糸の強度が低下し、2.0cN/dtex以下となり、布帛にした場合の強度が不足する為、スポーツ衣料等、強度を必要とする用途には適さず、用途が限られたものとなるので好ましくない。   Furthermore, the core-sheath area ratio of polytrimethylene terephthalate A and polytrimethylene terephthalate B needs to be in the range of 5:95 to 80:20. When the area ratio is smaller than 5:95, the expression of the antistatic performance by polytrimethylene terephthalate A becomes insufficient, and when larger than 80:20, when the alkali weight loss of 10% or more is applied, Since the antistatic polytrimethylene terephthalate A in the core is eluted, the antistatic performance is reduced, or the strength of the yarn is reduced to 2.0 cN / dtex or less, and the strength when used as a fabric is insufficient. It is not suitable for applications that require strength, such as clothing, and is not preferable because the applications are limited.

以上に説明した本発明の芯鞘型ポリトリメチレンテレフタレート極細糸は、溶融紡糸するに際して、紡出時の吐出速度と引き取り速度の比(引き取り速度/吐出速度,以降ドラフトと記す)を300以上、1000未満の範囲で引き取った未延伸糸を1.2〜2.5倍でそのまま延伸することで安定した制電性能が得られる。ドラフトが300以下の場合はポリエステルAによる制電性能の発現が不十分になると同時に口金吐出孔周辺へのポリマーの滲み出しが多くなり、それによる断糸で工程通過性が低下し、ドラフトが1000以上の場合には制電性能は発現するものの、紡糸性が低下する為、好ましくない。延伸倍率が1.2倍以下では十分な糸強度をえることが出来ず、2.5倍以上では熱応力の最大値(Fmax)が0.25cN/dtex以上となりソフト風合に優れる織編物が得ることが出来ないうえに、巻き取られたパッケージの捲き締まりが大きく、捲き姿が著しく悪化することで工程通過性が低下する。   The core-sheath type polytrimethylene terephthalate ultrafine yarn of the present invention described above has a ratio of a discharge speed and a take-off speed during spinning (take-off speed / discharge speed, hereinafter referred to as a draft) of 300 or more when melt spinning. Stable antistatic performance can be obtained by drawing an undrawn yarn taken in a range of less than 1000 as it is by 1.2 to 2.5 times. When the draft is 300 or less, the expression of the antistatic performance by the polyester A becomes insufficient, and at the same time, the polymer oozes out to the periphery of the nozzle discharge hole. In the above case, although antistatic performance is exhibited, it is not preferable because spinnability is lowered. When the draw ratio is 1.2 times or less, sufficient yarn strength cannot be obtained. When the draw ratio is 2.5 times or more, the maximum value (Fmax) of the thermal stress is 0.25 cN / dtex or more, and a woven or knitted fabric excellent in soft feel is obtained. In addition to being unable to obtain, the wound package is greatly tightened, and the appearance of the winding is significantly deteriorated, so that the process passability is lowered.

従ってこの範囲で口金吐出孔径、紡糸速度、延伸倍率を適宜設定すればよいが、吐出径をΦ0.1〜0.4mm、引き取り速度1000〜3000m/minの範囲で溶融紡糸し、延伸倍率1.2〜2.5とすると、容易にかつ効率よく得られるので好ましい。
このようにして得られる本発明のポリトリメチレンテレフタレート極細糸は、従来のポリトリメチレンテレフタレート極細糸が持つ、柔らかな風合、ストレッチ性などの性能も維持し、制電性能にも優れたポリエステル布帛を得ることができる。
Accordingly, the nozzle discharge hole diameter, spinning speed, and draw ratio may be appropriately set within this range. However, melt spinning is performed with the discharge diameter in the range of 0.1 to 0.4 mm and the take-up speed of 1000 to 3000 m / min. A value of 2 to 2.5 is preferable because it can be easily and efficiently obtained.
The polytrimethylene terephthalate ultrafine yarn of the present invention thus obtained is a polyester excellent in antistatic performance while maintaining the soft texture, stretchability, etc. of the conventional polytrimethylene terephthalate ultrafine yarn. A fabric can be obtained.

以下、実施例により、本発明を更に具体的に説明する。なお、実施例における各項目は次の方法で測定した。
(1)固有粘度
オルソ−クロルフェノールに溶解し、ウベローデ粘度管を用い、35℃で測定した。
(2)熱応力の最大値(Fmax)
熱応力測定装置(例えば、カネボウエンジニアリング社製、商品名KE−2)を用いて測定する。延伸糸を20cmの長さに切り取り、これの両端を結んで輪を作り測定器に装填する。初荷重0.044cN/dTex、昇温速度100℃/分の条件で測定し、熱収縮応力の温度変化をチャートに記録し、熱収縮応力の最大値を読み取る。
(3)織物の風合い(ソフト感)
レベル1:ソフトでしなやかな感触がある
レベル2:ややソフト感が乏しいが反撥性は感じられる
レベル3:カサカサした触感あるいは硬い触感である。
(4)織物のストレッチ率
ストレッチ率(S:%)は、カートテック(株)製のKES−FB1を用いて、20cm×20cmの織物試料を引っ張り速度=20mm/秒で織物の緯方向に伸長したときの4.9cN/cm応力下での伸び(A:cm)より、次式によって求めた。
S(%)=[(A/20)]×100A
(5)帯電性試験方法
A法(半減期測定法)
本発明の複合仮撚加工糸を、筒編みし、染色し、調湿後、試験片をコロナ放電場で帯電させた後、この帯電圧が1/2に減衰するまでの時間(秒)をスタテイック オネストメータで測定する。時間(秒)が短い方が 制電性能が優れていると判断した。
(6)帯電性試験方法
B法(摩擦帯電圧測定法)
試験片を回転させながら摩擦布で摩擦し、発生した帯電圧を測定する。L1094帯電性試験方法B法(摩擦帯電圧測定法)に順ずる。制電効果については、摩擦帯電圧が、約2000V以下(好ましくは1500V以下)であれば、制電効果が奏される。
(7)紡糸断糸
複合紡糸設備で1週間溶融紡糸を行い断糸した回数を記録し、1日1錘当りの紡糸断糸回数を紡糸断糸とした。ただし、人為的あるいは機械的要因による断糸は断糸回数から除外した。
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each item in an Example was measured with the following method.
(1) Intrinsic viscosity Dissolved in ortho-chlorophenol and measured at 35 ° C. using an Ubbelohde viscosity tube.
(2) Maximum value of thermal stress (Fmax)
Measurement is performed using a thermal stress measurement device (for example, trade name KE-2 manufactured by Kanebo Engineering Co., Ltd.). Cut the drawn yarn into a length of 20 cm, tie both ends of the drawn yarn to make a loop, and load it into the measuring instrument. Measure under conditions of initial load of 0.044 cN / dTex and temperature increase rate of 100 ° C./min, record the temperature change of heat shrinkage stress on a chart, and read the maximum value of heat shrinkage stress.
(3) Texture of fabric (soft feeling)
Level 1: Soft and supple feel Level 2: Slightly soft feeling but repellent feel Level 3: Rough feel or hard feel
(4) Stretch ratio of woven fabric Stretch ratio (S:%) is a 20 cm x 20 cm woven fabric sample stretched in the weft direction of the woven fabric at a pulling speed = 20 mm / sec using KES-FB1 manufactured by Cartec Co., Ltd. From the elongation under stress of 4.9 cN / cm (A: cm), the following equation was obtained.
S (%) = [(A / 20)] × 100A
(5) Chargeability test method A method (half-life measurement method)
After the composite false twisted yarn of the present invention is knitted, dyed, conditioned, and the test piece is charged in a corona discharge field, the time (seconds) until the charged voltage is attenuated to ½ Measure with a static Honestometer. The shorter the time (seconds), the better the anti-static performance.
(6) Chargeability test method B method (friction charging voltage measurement method)
While rotating the test piece, the test piece is rubbed with a friction cloth and the generated charged voltage is measured. Conforms to L1094 electrification test method B (friction band voltage measurement method). Regarding the antistatic effect, if the frictional voltage is about 2000 V or less (preferably 1500 V or less), the antistatic effect is exhibited.
(7) Spinning and severing In the compound spinning facility, melt spinning was performed for one week and the number of times of severing was recorded, and the number of times of severing per spindle per day was defined as severing. However, thread breakage due to artificial or mechanical factors was excluded from the number of breaks.

[実施例1]
常法により得られたポリトリメチレンテレフタレート反応混合物を重合反応缶に移し、次いで1時間30分かけて760mmHgから1mmHgまで減圧するとともに260℃まで昇温して重縮合反応せしめた後、下記化学式(4)
[ただし、jは18〜28の整数で平均21、Pは平均値として100、mは平均値として5である]
で表される水不溶性ポリオキシエチレン系ポリエーテルを5部及びドデシルベンゼンスルホン酸ナトリウムを3部、真空下で添加し、さらに240分間重縮合反応せしめ、次いで酸化防止剤としてチバカイギー社製イルガノックス1010を0.4部真空下で添加し、その後さらに30分間重縮合反応をおこなった。重合反応工程で、制電剤を添加し、得られたポリマーは常法にてチップとなした。
[Example 1]
The polytrimethylene terephthalate reaction mixture obtained by a conventional method was transferred to a polymerization reaction vessel, then depressurized from 760 mmHg to 1 mmHg over 1 hour and 30 minutes and heated to 260 ° C. to cause a polycondensation reaction. 4)
[Where j is an integer of 18 to 28 and average 21; P is 100 as an average value; m is 5 as an average value]
5 parts of water-insoluble polyoxyethylene-based polyether and 3 parts of sodium dodecylbenzenesulfonate were added under vacuum, followed by a polycondensation reaction for 240 minutes, and then as an antioxidant, Irganox 1010 manufactured by Ciba Kaigie Co., Ltd. Was added under a vacuum of 0.4 parts, followed by a polycondensation reaction for another 30 minutes. In the polymerization reaction step, an antistatic agent was added, and the resulting polymer was converted into a chip by a conventional method.

このポリマーの固有粘度は0.950、軟化点230℃、得られたチップを常法により乾燥した。乾燥ポリマーを紡糸設備にて各々常法で溶融し、スピンブロックを通して、スピンパックに導入し芯鞘複合繊維構造の芯側ポリマーとし、鞘側ポリマーは制電剤を添加していないホモポリマーとした。該スピンパックに組み込まれた直径0.30φmmの円形吐出孔を48個穿設した紡糸口金から溶融ポリマーを吐出し、通常のクロスフロー型紡糸筒からの冷却風で冷却・固化し、紡糸油剤を付与しつつ一つの糸条として集束し、2000m/minの速度で引き取り、紡糸ドラフト420とし、1.35倍に延伸し62dtex/48フィラメント(平均単糸繊度1.29dtex)のポリトリメチレンテレフタレート延伸糸を得た。この延伸糸を用い経糸密度200本/2.54cm、緯糸密度170本/2.54cmの比較的高密度の平織物を製織し、その品位を評価した。また、得られた延伸糸を用いてメリヤス編地を製造し、制電性を測定した。溶融紡糸時の工程安定性及び制電性能の結果を表1に示す。   The intrinsic viscosity of this polymer was 0.950, the softening point was 230 ° C., and the obtained chip was dried by a conventional method. Each dried polymer is melted in a spinning machine in the usual manner, and is introduced into a spin pack through a spin block to form a core-side polymer of a core-sheath composite fiber structure, and the sheath-side polymer is a homopolymer to which no antistatic agent is added. . The molten polymer is discharged from a spinneret with 48 circular discharge holes with a diameter of 0.30φmm incorporated in the spin pack, cooled and solidified with cooling air from a normal cross-flow type spinning cylinder, and the spinning oil is supplied. While concentrating, it is converged as one yarn, taken up at a speed of 2000 m / min, drawn into a spinning draft 420, drawn 1.35 times, and stretched with polytrimethylene terephthalate with 62 dtex / 48 filaments (average single yarn fineness 1.29 dtex) I got a thread. A comparatively high density plain woven fabric having a warp density of 200 / 2.54 cm and a weft density of 170 / 2.54 cm was woven using the drawn yarn, and its quality was evaluated. Further, a knitted fabric was manufactured using the obtained drawn yarn, and the antistatic property was measured. Table 1 shows the results of process stability and antistatic performance during melt spinning.

[実施例2]
実施例1において制電剤として水不溶性ポリオキシエチレン系ポリエーテルを4重量部、ドデシルベンゼンスルホン酸ナトリウム2重量部とした以外は実施例1と同じ手法でポリトリメチレンテレフタレート延伸糸を得た。溶融紡糸時の工程安定性及び制電性能の結果を表1に示す。
[Example 2]
A polytrimethylene terephthalate drawn yarn was obtained in the same manner as in Example 1 except that 4 parts by weight of water-insoluble polyoxyethylene-based polyether and 2 parts by weight of sodium dodecylbenzenesulfonate were used as antistatic agents in Example 1. Table 1 shows the results of process stability and antistatic performance during melt spinning.

[実施例3]
実施例1において制電剤として水不溶性ポリオキシエチレン系ポリエーテルを6重量部、ドデシルベンゼンスルホン酸ナトリウム4重量部とした以外は実施例1と同じ手法でポリトリメチレンテレフタレート延伸糸を得た。溶融紡糸時の工程安定性及び制電性能の結果を表1に示す。
[Example 3]
A polytrimethylene terephthalate drawn yarn was obtained in the same manner as in Example 1 except that 6 parts by weight of water-insoluble polyoxyethylene-based polyether and 4 parts by weight of sodium dodecylbenzenesulfonate were used as antistatic agents in Example 1. Table 1 shows the results of process stability and antistatic performance during melt spinning.

[比較例1]
実施例1において制電剤としての水不溶性ポリオキシエチレン系ポリエーテル、ドデシルベンゼンスルホン酸ナトリウムを添加しなかったこと以外は実施例1と同じ手法でポリトリメチレンテレフタレート延伸糸を得た。溶融紡糸時の工程安定性及び制電性能の結果を表1に示す。
[Comparative Example 1]
A polytrimethylene terephthalate drawn yarn was obtained in the same manner as in Example 1 except that the water-insoluble polyoxyethylene-based polyether as an antistatic agent and sodium dodecylbenzenesulfonate were not added in Example 1. Table 1 shows the results of process stability and antistatic performance during melt spinning.

[比較例2]
実施例1において制電剤として水不溶性ポリオキシエチレン系ポリエーテルを5重量部、ドデシルベンゼンスルホン酸ナトリウムを0重量部とした以外は実施例1と同じ手法でポリトリメチレンテレフタレート延伸糸を得た。溶融紡糸時の工程安定性及び制電性能の結果を表1に示す。
[Comparative Example 2]
A polytrimethylene terephthalate drawn yarn was obtained in the same manner as in Example 1 except that 5 parts by weight of water-insoluble polyoxyethylene-based polyether and 0 parts by weight of sodium dodecylbenzenesulfonate were used as antistatic agents in Example 1. . Table 1 shows the results of process stability and antistatic performance during melt spinning.

[比較例3]
実施例1において制電剤として水不溶性ポリオキシエチレン系ポリエーテルを0重量部、ドデシルベンゼンスルホン酸ナトリウム3重量部とした以外は実施例1と同じ手法でポリトリメチレンテレフタレート延伸糸を得た。溶融紡糸時の工程安定性及び制電性能の結果を表1に示す。
[Comparative Example 3]
A polytrimethylene terephthalate drawn yarn was obtained in the same manner as in Example 1 except that 0 part by weight of water-insoluble polyoxyethylene-based polyether and 3 parts by weight of sodium dodecylbenzenesulfonate were used as antistatic agents in Example 1. Table 1 shows the results of process stability and antistatic performance during melt spinning.

[比較例4]
1400m/分の引き取り速度で紡糸ドラフトを296とし、2.14倍の延伸倍率とした以外は実施例1と同じ手法でポリトリメチレンテレフタレート延伸糸を得た。溶融紡糸時の工程安定性及び制電性能の結果を表1に示す。
[Comparative Example 4]
A polytrimethylene terephthalate drawn yarn was obtained in the same manner as in Example 1 except that the spinning draft was 296 at a take-up speed of 1400 m / min and the draw ratio was 2.14 times. Table 1 shows the results of process stability and antistatic performance during melt spinning.

用途として、学生服、ユニフォーム、耐光性についても、体質が強いのが特徴である。又、制電性を発揮する部分がつつみこまれているので、洗濯耐久性に優れたポリエステル布帛を提供することができる。   It is characterized by a strong constitution for school uniforms, uniforms, and light resistance. Moreover, since the part which demonstrates antistatic property is enveloped, the polyester fabric excellent in washing durability can be provided.

Claims (2)

芯鞘型複合繊維であって、芯部が制電性ポリトリメチレンテレフタレートAで形成され、他方、鞘部が艶消し剤を0〜10wt%含むポリトリメチレンテレフタレートBで形成され、下記(1)〜(5)の条件を満足する制電性芯鞘型ポリトリメチレンテレフタレート極細繊維。
(1)単糸繊度が1.5dtex以下である。
(2)芯部の面積Aと鞘部の面積Bとの比A:Bが5:95〜80:20の範囲である。
(3)単糸の強度が3.0cN/dtex以上である。
(4)繊維の摩擦帯電圧が2000V以下であること。
(5)制電性ポリトリメチレンテレフタレートAがポリエステル100重量部に対して、制電剤として、(a)下記式で表されるポリオキシアルキレン系ポリエーテルを4〜10重量部及び(b)該ポリエステルと実質的に非反応性の有機イオン性化合物2〜8重量部を含有してなる制電性ポリトリメチレンテレフタレートであること。
Z−[(CHCHO)n(RO)m−R]k
[式中、Zは1〜6個の活性水素原子を有する有機化合物残基、Rは炭素原子数6以上のアルキレン基又は置換アルキレン基、Rは水素原子、炭素原子数1〜40の一価の炭化水素基、炭素原子数2〜40の一価のヒドロキシ炭化水素又は炭素原子数2〜40の一価のアシル基、kは1〜6の整数、nはn≧70/kを満足する整数、mは1以上の整数]
It is a core-sheath type composite fiber, the core part is formed of antistatic polytrimethylene terephthalate A, and the sheath part is formed of polytrimethylene terephthalate B containing 0-10 wt% matting agent. An antistatic core-sheath type polytrimethylene terephthalate ultrafine fiber that satisfies the conditions (1) to (5).
(1) The single yarn fineness is 1.5 dtex or less.
(2) The ratio A: B between the area A of the core and the area B of the sheath is in the range of 5:95 to 80:20.
(3) The strength of the single yarn is 3.0 cN / dtex or more.
(4) The frictional voltage of the fiber is 2000V or less.
(5) Antistatic polytrimethylene terephthalate A is 100 parts by weight of polyester, and as an antistatic agent, (a) 4 to 10 parts by weight of polyoxyalkylene polyether represented by the following formula and (b) An antistatic polytrimethylene terephthalate containing 2 to 8 parts by weight of an organic ionic compound that is substantially non-reactive with the polyester.
Z - [(CH 2 CH 2 O) n (R 1 O) m-R 2] k
[Wherein, Z is an organic compound residue having 1 to 6 active hydrogen atoms, R 1 is an alkylene group or substituted alkylene group having 6 or more carbon atoms, R 2 is a hydrogen atom, having 1 to 40 carbon atoms. A monovalent hydrocarbon group, a monovalent hydroxy hydrocarbon having 2 to 40 carbon atoms or a monovalent acyl group having 2 to 40 carbon atoms, k is an integer of 1 to 6, and n is n ≧ 70 / k. Satisfied integer, m is an integer of 1 or more]
請求項1記載の制電性ポリトリメチレンテレフタレートAとポリトリメチレンテレフタレートBとを溶融紡糸するに際して、紡出時の吐出速度と引き取り速度の比(引き取り速度/吐出速度,以降ドラフトと記す)を300〜1000の範囲で未延伸糸を40℃〜70℃に加熱した第一ローラーで1000〜3000m/minにて巻き付け、次に110〜150℃に加熱した第二ローラーに1.2〜2.5倍に延伸し巻き付け、第二ローラーよりも低速で巻き取って得られることを特徴とする請求項1記載の制電性芯鞘型ポリトリメチレンテレフタレート極細繊維の製造方法。   When melt spinning the antistatic polytrimethylene terephthalate A and polytrimethylene terephthalate B according to claim 1, a ratio between a discharge speed and a take-off speed at the time of spinning (take-off speed / discharge speed, hereinafter referred to as draft). In the range of 300 to 1000, the undrawn yarn was wound at 1000 to 3000 m / min with a first roller heated to 40 ° C. to 70 ° C., and then 1.2 to 2.2. The method for producing antistatic core-sheath-type polytrimethylene terephthalate ultrafine fibers according to claim 1, which is obtained by drawing and winding 5 times and winding at a lower speed than the second roller.
JP2008261580A 2008-10-08 2008-10-08 Antistatic core-sheath type polytrimethylene terephthalate extra fine yarn Active JP5117983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261580A JP5117983B2 (en) 2008-10-08 2008-10-08 Antistatic core-sheath type polytrimethylene terephthalate extra fine yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261580A JP5117983B2 (en) 2008-10-08 2008-10-08 Antistatic core-sheath type polytrimethylene terephthalate extra fine yarn

Publications (2)

Publication Number Publication Date
JP2010090507A true JP2010090507A (en) 2010-04-22
JP5117983B2 JP5117983B2 (en) 2013-01-16

Family

ID=42253487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261580A Active JP5117983B2 (en) 2008-10-08 2008-10-08 Antistatic core-sheath type polytrimethylene terephthalate extra fine yarn

Country Status (1)

Country Link
JP (1) JP5117983B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192402A (en) * 2016-07-08 2016-12-07 陈小初 Antibacterial and mouldproof polyester-nylon composite superfine fibre with ultrafiltration antibacterial film and production method
CN106192069A (en) * 2016-07-08 2016-12-07 陈小初 Fire-retardant polyester-nylon composite superfine fibre with ultrafiltration antibacterial film and production method
KR20180026108A (en) * 2016-09-02 2018-03-12 주식회사 희성다이텍 Method For Water-repellent Treatment And Anti-static Treatment of Polyester fabric

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098493A (en) 1986-11-10 1992-03-24 Tayco Developments, Inc. Method of fabricating springs formed of rope pressure-saturated or impregnated with binder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232117A (en) * 1995-02-23 1996-09-10 Nippon Ester Co Ltd Polyester yarn of ultrafine denier
JPH11222730A (en) * 1998-02-06 1999-08-17 Toray Ind Inc Polyester-based anti-electrostatic conjugate fiber
JP2006265786A (en) * 2005-03-25 2006-10-05 Toray Ind Inc Polytrimethylene terephthalate ultra fine filaments

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232117A (en) * 1995-02-23 1996-09-10 Nippon Ester Co Ltd Polyester yarn of ultrafine denier
JPH11222730A (en) * 1998-02-06 1999-08-17 Toray Ind Inc Polyester-based anti-electrostatic conjugate fiber
JP2006265786A (en) * 2005-03-25 2006-10-05 Toray Ind Inc Polytrimethylene terephthalate ultra fine filaments

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106192402A (en) * 2016-07-08 2016-12-07 陈小初 Antibacterial and mouldproof polyester-nylon composite superfine fibre with ultrafiltration antibacterial film and production method
CN106192069A (en) * 2016-07-08 2016-12-07 陈小初 Fire-retardant polyester-nylon composite superfine fibre with ultrafiltration antibacterial film and production method
KR20180026108A (en) * 2016-09-02 2018-03-12 주식회사 희성다이텍 Method For Water-repellent Treatment And Anti-static Treatment of Polyester fabric

Also Published As

Publication number Publication date
JP5117983B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
KR101322154B1 (en) Scalloped oval bicomponent fibers with good wicking, and high uniformity spun yarns comprising such fibers
JP2006342488A (en) Conjugated fiber excellent in post-processability and method of producing the same
KR100469108B1 (en) Spun yarn
JP5117983B2 (en) Antistatic core-sheath type polytrimethylene terephthalate extra fine yarn
TW200831726A (en) Antistatic core-sheath type ultrafine-denier false-twisted polyester yarn, process for production thereof, and antistatic water-repellent fabrics comprising the yarn
JP2011047068A (en) Water-repelling polyester blended yarn
JP6056103B2 (en) Polyester fiber
JP4321232B2 (en) Lightweight polyester composite fiber
WO2008007803A1 (en) Antistatic polyester false twist yarn, process for producing the same, and antistatic special composite false twist yarn including the antistatic polyester false twist yarn
JP4818004B2 (en) Antistatic polyester false twisted yarn and method for producing the same
JP2010156064A (en) Rip-stop taffeta fabric with capability of releasing dust, and fiber product
JP2010007191A (en) Ultrafine drawn fiber having antistatic property and normal-pressure cation-dyeable property, and method for producing the same
JP4818068B2 (en) Antistatic water repellent fabric and clothing
JP5290833B2 (en) Antistatic fabric manufacturing method and apparel manufacturing method
JP2009209478A (en) Ultrafine drawn yarn having antistatic property and method for producing the same
JP4145205B2 (en) Special composite false twisted yarn and method for producing the same
JP4818007B2 (en) Special composite false twisted yarn having antistatic properties and method for producing the same
JP2012012748A (en) Ultra fine combined filament yarn and fabric having antistaticity
JP2010255128A (en) Circular knitted fabric and fiber product
JP2010126837A (en) Antistatic ultrafine textured yarn having uv-blocking effect and method for producing the same
JP2010090516A (en) Polyester multifilament
JP2012012747A (en) Polyester combined filament yarn excellent in antistaticity and wrinkle recovery
JP2010196179A (en) Antistatic polyester blended yarn having excellent wrinkle recovery
JP2010163711A (en) Thin polyester woven fabric having antistaticity
JP2010159521A (en) Antistatic combined-filament false twist polyester yarn and method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350