JP2010089184A - Surface coated cutting tool base material - Google Patents

Surface coated cutting tool base material Download PDF

Info

Publication number
JP2010089184A
JP2010089184A JP2008259552A JP2008259552A JP2010089184A JP 2010089184 A JP2010089184 A JP 2010089184A JP 2008259552 A JP2008259552 A JP 2008259552A JP 2008259552 A JP2008259552 A JP 2008259552A JP 2010089184 A JP2010089184 A JP 2010089184A
Authority
JP
Japan
Prior art keywords
cutting tool
film
base material
tool base
coated cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008259552A
Other languages
Japanese (ja)
Other versions
JP5214392B2 (en
Inventor
Ryoichi Kasuga
良一 春日
Shinichi Kono
信一 河野
Tsutomu Yamamoto
勉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dijet Industrial Co Ltd
Original Assignee
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dijet Industrial Co Ltd filed Critical Dijet Industrial Co Ltd
Priority to JP2008259552A priority Critical patent/JP5214392B2/en
Publication of JP2010089184A publication Critical patent/JP2010089184A/en
Application granted granted Critical
Publication of JP5214392B2 publication Critical patent/JP5214392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool base material having excellent oxidation resistance, heat resistance and abrasion resistance, and capable of stably executing the dry machining of steel and high-speed machining of high-strength material for a long time by improving a coating film formed on a surface of the surface coated cutting tool base material. <P>SOLUTION: An Al-Cr-N coating film with a crystalline structure thereof being a NaCl type structure and expressed by general formula for the (Al<SB>x</SB>, Cr<SB>1-x</SB>)N (where x satisfies the condition of 0.55≤x≤0.75), and an Al-Cr-Ti-N coating film with a crystalline structure thereof being a NaCl type structure and expressed by general formula for the (Al<SB>y</SB>, Cr<SB>1-y-z</SB>, Ti<SB>z</SB>)N (where y and z satisfy the conditions of 0.55≤y≤0.75, 0.2≤z≤0.3, 0.05≤1-y-z≤0.2) are alternately layered on a surface of a surface coated cutting tool base material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超硬合金やサーメット等で構成された切削工具基材の表面に皮膜が形成された被覆切削工具基材に係り、切削工具基材の表面に形成する皮膜を改良し、耐酸化性や耐熱性や耐摩耗性に優れ、鋼材のドライ切削や高硬度材の高速切削が長期にわたって安定して行えるようにした点に特徴を有するものである。   The present invention relates to a coated cutting tool substrate in which a coating is formed on the surface of a cutting tool substrate made of cemented carbide or cermet, etc., and improves the coating formed on the surface of the cutting tool substrate to improve oxidation resistance. It is excellent in heat resistance, heat resistance and wear resistance, and is characterized in that dry cutting of steel materials and high-speed cutting of hard materials can be performed stably over a long period of time.

従来から、超硬合金やサーメット等で構成された切削工具の耐摩耗性等を向上させるため、このような切削工具基材の表面を、TiNやTiCNやTiAlN等で構成された皮膜によってコーティングすることが行われている。   Conventionally, in order to improve the wear resistance and the like of a cutting tool made of cemented carbide or cermet, the surface of such a cutting tool base material is coated with a film made of TiN, TiCN, TiAlN or the like. Things have been done.

しかし、近年においては、高硬度材の加工効率を高めるために、高硬度材を高速で切削加工したり、環境の面から湿式加工に代えて鋼材などをドライ切削加工することが行われるようになり、この切削工具の刃先等の温度が高温になると共に刃先等に加わる負担が大きくなり、上記のように切削工具基材の表面を、TiNやTiCNやTiAlN等で構成された皮膜によってコーティングした切削工具を用いた場合において、長期にわたってこれらの切削加工を安定して行うことができないという問題があった。   However, in recent years, in order to increase the processing efficiency of high-hardness materials, high-hardness materials are cut at high speed, or steel materials and the like are dry-cutting instead of wet processing from the environmental viewpoint. As the temperature of the cutting edge of the cutting tool becomes high and the load applied to the cutting edge becomes large, the surface of the cutting tool base material is coated with a film made of TiN, TiCN, TiAlN, or the like as described above. When a cutting tool is used, there has been a problem in that these cutting processes cannot be stably performed over a long period of time.

このため、従来においては、TiAlN皮膜よりも耐摩耗特性等に優れた皮膜として、特許文献1に示されるように、切削工具基材の表面を、TiとAlとCrとCとNとが所定の原子比の範囲になったTiAlCrCN皮膜で被覆するようにしたものや、特許文献2に示されるように、切削工具基材の表面を、TiとAlとSiとCとNとが所定の原子比の範囲になったTiAlSiCN皮膜で被覆するようにしたものや、特許文献3に示されるように、切削工具基材の表面に、Tiを主体とする窒化物の層と、Si,Cr,Nbから選択される少なくとも一種とTiとを所定の割合で含む窒化物等の皮膜と、TiとAlとを所定の割合で含む窒化物等の皮膜とを積層させたものや、特許文献4に示されるように、AlとCrとが所定の原子比の範囲になったAlCrN皮膜を設けたものが開示されている。   For this reason, conventionally, Ti, Al, Cr, C, and N are predetermined on the surface of the cutting tool base material, as shown in Patent Document 1, as a film having superior wear resistance characteristics and the like than the TiAlN film. As shown in Patent Document 2, the surface of the cutting tool base material is made of Ti, Al, Si, C, and N with predetermined atoms. The surface of the cutting tool base material is coated with a TiAlSiCN film in the ratio range, and a nitride layer mainly composed of Ti and Si, Cr, Nb as shown in Patent Document 3. Or a film made of a nitride film containing at least one selected from Ti and Ti at a predetermined ratio and a film film made of nitride containing Ti and Al at a predetermined ratio, Al and Cr are What provided the AlCrN membrane | film | coat which became the range of ratio is disclosed.

しかし、上記の特許文献1,3に示される皮膜を形成したものにおいては、皮膜におけるTiが高温で酸化して皮膜が摩耗しやすくなるという問題があり、また特許文献2,3に示される皮膜を形成したものにおいては、皮膜におけるSiによって鋼材との親和性が高くなり、鋼材の切削時に摩耗が大きくなるという問題があり、また特許文献4に示されるAlCrN皮膜の場合、その硬さが低く、切削工具に用いた場合に摩耗が大きくなるという問題があった。   However, in the case where the film shown in Patent Documents 1 and 3 is formed, there is a problem that Ti in the film is oxidized at a high temperature and the film is easily worn. In the film, there is a problem that Si in the film increases the affinity with the steel material and wear increases when the steel material is cut. In the case of the AlCrN film shown in Patent Document 4, the hardness is low. When used in a cutting tool, there is a problem that wear increases.

さらに、近年においては、特許文献5に示されるように、Alと、Cr,Vから選択される少なくとも一種とを所定の割合で含む窒化物等の皮膜と、Tiの炭窒化物からなる皮膜とを積層させたものが開示されている。   Further, in recent years, as shown in Patent Document 5, a film made of nitride or the like containing Al and at least one selected from Cr and V in a predetermined ratio, and a film made of Ti carbonitride A laminate of these is disclosed.

ここで、高硬度材を高速で切削する場合、切刃のすくい面においては、切り屑との接触があるため、高温でも化学的に安定な耐熱性の高い皮膜が要求される一方、逃げ面においては、切削時に直接被削材と接触するため、より耐摩耗性の高い皮膜が求められ、耐熱性と耐摩耗性との両方の特性が要求されるが、上記の特許文献5に示されるような皮膜を積層させたものにおいても、このような耐熱性と耐摩耗性との両方の特性を十分に向上させることは困難であった。
特開2003−71610号公報 特開平8−209336号公報 特開2000−326106号公報 特開平10−25566号公報 特開2005−262386号公報
Here, when cutting a hard material at high speed, the rake face of the cutting edge is in contact with the chips, so a chemically stable and highly heat-resistant film is required even at high temperatures, while the flank face In this case, since the film is in direct contact with the work material at the time of cutting, a film with higher wear resistance is required, and both characteristics of heat resistance and wear resistance are required. Even in the case where such films are laminated, it has been difficult to sufficiently improve both the heat resistance and wear resistance characteristics.
JP 2003-71610 A JP-A-8-209336 JP 2000-326106 A Japanese Patent Laid-Open No. 10-25566 JP 2005-262386 A

本発明は、超硬合金やサーメット等で構成された切削工具基材の表面に皮膜が形成された被覆切削工具基材における上記のような問題を解決することを課題とするものであり、切削工具基材の表面に形成する皮膜を改良し、耐酸化性や耐熱性や耐摩耗性に優れ、鋼材のドライ切削や高硬度材の高速切削が長期にわたって安定して行えるようにすることを課題とするものである。   An object of the present invention is to solve the above-described problems in a coated cutting tool base material in which a film is formed on the surface of a cutting tool base material made of cemented carbide, cermet, or the like. The problem is to improve the coating formed on the surface of the tool base, and to have excellent oxidation resistance, heat resistance and wear resistance, and to enable stable long-term dry cutting of steel materials and high-speed cutting of hard materials. It is what.

本発明における被覆切削工具基材においては、上記のような課題を解決するため、切削工具基材の表面に、結晶構造がNaCl型構造である一般式(Alx,Cr1-x)N(式中、xは、0.55≦x≦0.75の条件を満たす。)で示されるAl−Cr−N皮膜と、結晶構造がNaCl型構造である一般式(Aly,Cr1-y−z,Tiz)N(式中、y,zは、0.55≦y≦0.75、0.2≦z≦0.3、0.05≦1−y−z≦0.2の条件を満たす。)で示されるAl−Cr−Ti−N皮膜とを交互に積層させた。 In the coated cutting tool base material according to the present invention, in order to solve the above-described problems, a general formula (Al x , Cr 1-x ) N (wherein the crystal structure is an NaCl type structure is formed on the surface of the cutting tool base material. In the formula, x is an Al—Cr—N film represented by 0.55 ≦ x ≦ 0.75, and a general formula (Al y , Cr 1-y whose crystal structure is an NaCl type structure). -z, during Ti z) N (wherein, y, z is the 0.55 ≦ y ≦ 0.75,0.2 ≦ z ≦ 0.3,0.05 ≦ 1-y-z ≦ 0.2 Al—Cr—Ti—N films represented by the above conditions are alternately laminated.

ここで、上記のAl−Cr−N皮膜及びAl−Cr−Ti−N皮膜において、Alの原子比x,yが、0.55≦x≦0.75、0.55≦y≦0.75の条件を満たすようにしたのは、Alの原子比x,yが0.55未満になると、これらの皮膜の硬度が低くなると共に耐酸化性も悪くなる一方、0.75を超えると、これらの皮膜の結晶構造がNaCl型ではなく六方晶となって、これらの皮膜の硬度が低下するためである。   Here, in the Al—Cr—N film and the Al—Cr—Ti—N film, the atomic ratios x and y of Al are 0.55 ≦ x ≦ 0.75 and 0.55 ≦ y ≦ 0.75. When the atomic ratio x, y of Al is less than 0.55, the hardness of these films is lowered and the oxidation resistance is deteriorated. This is because the film has a hexagonal crystal structure instead of the NaCl type, and the hardness of these films decreases.

また、上記のAl−Cr−Ti−N皮膜において、Tiの原子比zが0.2≦z≦0.3の条件を満たすようにしたのは、Tiの原子比zが0.2未満になると、皮膜の硬さが低下して耐摩耗性が悪くなる一方、0.3を超えると、皮膜の耐酸化性及び耐熱性が低下するためである。また、Crの原子比1−y−zが0.05≦1−y−z≦0.2の条件を満たすようにしたのは、Crの原子比1−y−zが0.05未満になると、皮膜の耐酸化性が低下する一方、0.2を越えると、皮膜の硬さが低下して耐摩耗性が悪くなるためである。   In the Al-Cr-Ti-N coating, the Ti atomic ratio z satisfies the condition of 0.2 ≦ z ≦ 0.3 because the Ti atomic ratio z is less than 0.2. This is because the hardness of the film is lowered and the wear resistance is deteriorated, whereas when it exceeds 0.3, the oxidation resistance and heat resistance of the film are lowered. Also, the Cr atomic ratio 1-yz satisfies the condition of 0.05 ≦ 1-yz ≦ 0.2 because the Cr atomic ratio 1-yz is less than 0.05. In this case, the oxidation resistance of the film is lowered, whereas if it exceeds 0.2, the hardness of the film is lowered and the wear resistance is deteriorated.

ここで、上記のAl−Cr−N皮膜は特に耐酸化性及び耐熱性に優れる一方、上記のAl−Cr−Ti−N皮膜は特に耐摩耗性に優れており、またこれらの皮膜が同じ結晶構造のNaCl型になっているため、これらの皮膜を交互に積層させた場合、皮膜相互の整合性が高くなって密着性に優れると共に、各皮膜における上記の各特性が合わさって相乗的な効果を発揮し、切削工具基材の表面に、耐酸化性、耐熱性及び耐摩耗性に優れた皮膜が形成されるようになる。   Here, the above Al—Cr—N film is particularly excellent in oxidation resistance and heat resistance, while the above Al—Cr—Ti—N film is particularly excellent in wear resistance, and these films are the same crystal. Because of the NaCl-type structure, when these films are alternately laminated, the consistency between the films is high and the adhesion is excellent, and the above-mentioned characteristics of each film are combined to produce a synergistic effect. As a result, a film excellent in oxidation resistance, heat resistance and wear resistance is formed on the surface of the cutting tool base material.

ここで、上記のAl−Cr−N皮膜は、一般に(111)面のX線回折強度I(111)と(200)面のX線回折強度I(200)とが、I(111)>I(200)の関係を満たし、また上記のAl−Cr−Ti−N皮膜は、一般に、(111)面のX線回折強度I(111)と(200)面のX線回折強度I(200)とが、I(111)<I(200)の関係を満たす。そして、上記のように積層させた皮膜全体における(111)面のX線回折強度I(111)と、(200)面のX線回折強度I(200)とが、I(111)>I(200) の関係を満たすようにすると、理由は明らかではないが、積層された皮膜における上記の特性がさらに向上される。   Here, the above-described Al—Cr—N coating generally has an (111) plane X-ray diffraction intensity I (111) and an (200) plane X-ray diffraction intensity I (200) of I (111)> I. The above-mentioned Al—Cr—Ti—N film satisfies the relationship of (200), and generally, the (111) plane X-ray diffraction intensity I (111) and the (200) plane X-ray diffraction intensity I (200) Satisfies the relationship of I (111) <I (200). Then, the X-ray diffraction intensity I (111) of the (111) plane and the X-ray diffraction intensity I (200) of the (200) plane in the entire film laminated as described above are I (111)> I ( If the relationship 200) is satisfied, the above-described characteristics of the laminated film are further improved, although the reason is not clear.

また、超硬合金やサーメット等で構成された切削工具基材の表面に、上記のAl−Cr−N皮膜とAl−Cr−Ti−N皮膜とを交互に積層させるにあたり、切削工具基材の表面にAl−Cr−Ti−N皮膜を形成した後、Al−Cr−N皮膜とAl−Cr−Ti−N皮膜とを交互に積層させ、切削工具基材の表面と接触する皮膜をAl−Cr−Ti−N皮膜で構成すると、切削工具基材の表面とこれらの皮膜との密着性が高くなって、これらの皮膜が切削工具基材の表面から剥離するのが一層防止されるようになる。   In addition, when alternately laminating the Al-Cr-N coating and the Al-Cr-Ti-N coating on the surface of the cutting tool base made of cemented carbide or cermet, the cutting tool base After forming the Al—Cr—Ti—N film on the surface, the Al—Cr—N film and the Al—Cr—Ti—N film are alternately laminated, and the film in contact with the surface of the cutting tool base material is made of Al— When composed of a Cr-Ti-N coating, the adhesion between the surface of the cutting tool substrate and these coatings is enhanced, and the coating is further prevented from peeling off from the surface of the cutting tool substrate. Become.

また、上記のように切削工具基材の表面に、上記のAl−Cr−N皮膜とAl−Cr−Ti−N皮膜とを交互に積層させた場合において、耐酸化性及び耐熱性に優れたAl−Cr−N皮膜を最表面に位置させると、高硬度材を高速切削する場合のように、切削工具の刃先等の温度が高温になる場合においても十分な耐熱性が得られるようになる。   In addition, when the Al-Cr-N coating and the Al-Cr-Ti-N coating were alternately laminated on the surface of the cutting tool base as described above, the oxidation resistance and heat resistance were excellent. When the Al—Cr—N film is positioned on the outermost surface, sufficient heat resistance can be obtained even when the temperature of the cutting edge of the cutting tool becomes high, as in the case of cutting a high hardness material at high speed. .

なお、上記のように切削工具基材の表面に、上記のAl−Cr−N皮膜とAl−Cr−Ti−N皮膜とを交互に積層させるにあたっては、種々の物理蒸着法によって各皮膜を順々に形成することができるが、切削工具基材と皮膜との密着性や皮膜相互の密着性を高めるためには、アーク放電を利用したアークイオンプレーティング法を用いることが好ましい。   In addition, when alternately laminating the Al—Cr—N film and the Al—Cr—Ti—N film on the surface of the cutting tool base as described above, the respective films are sequentially formed by various physical vapor deposition methods. However, in order to improve the adhesion between the cutting tool base material and the film and the adhesion between the films, it is preferable to use an arc ion plating method using arc discharge.

本発明における被覆切削工具基材においては、切削工具基材の表面に、結晶構造がNaCl型構造である一般式(Alx,Cr1-x)N(式中、xは、0.55≦x≦0.75の条件を満たす。)で示されるAl−Cr−N皮膜と、結晶構造がNaCl型構造である一般式(Aly,Cr1-y−z,Tiz)N(式中、y,zは、0.55≦y≦0.75、0.2≦z≦0.3、0.05≦1−y−z≦0.2の条件を満たす。)で示されるAl−Cr−Ti−N皮膜とを交互に積層させたため、これらの皮膜相互の整合性が高くて密着性に優れると共に、耐酸化性及び耐熱性に優れたAl−Cr−N皮膜の特性と耐摩耗性に優れたAl−Cr−Ti−N皮膜の特性とが合わさって相乗的な効果を発揮し、切削工具基材の表面に、耐酸化性、耐熱性及び耐摩耗性に優れた皮膜が形成されるようになる。 In the coated cutting tool base material according to the present invention, the general formula (Al x , Cr 1-x ) N (wherein x is 0.55 ≦≦ C) is a NaCl type crystal structure on the surface of the cutting tool base material. satisfies the condition x ≦ 0.75. and Al-Cr-N film represented by), the crystal structure is NaCl-type structure formula (Al y, Cr 1-y -z, Ti z) N ( wherein , Y and z satisfy the conditions of 0.55 ≦ y ≦ 0.75, 0.2 ≦ z ≦ 0.3, and 0.05 ≦ 1-yz ≦ 0.2). Since the Cr-Ti-N coatings are alternately laminated, the properties and wear resistance of the Al-Cr-N coatings, which are highly compatible with each other and have excellent adhesion, as well as excellent oxidation resistance and heat resistance. Combined with the characteristics of the Al-Cr-Ti-N coating with excellent properties, it exhibits a synergistic effect. On the surface of the cutting tool base, oxidation resistance, So film excellent heat and wear resistance is formed.

この結果、本発明における被覆切削工具基材においては、上記のように切削工具基材の表面に積層された各皮膜によって耐酸化性や耐熱性や耐摩耗性が大きく向上され、鋼材のドライ切削や高硬度材の高速切削が長期にわたって安定して行えるようになる。   As a result, in the coated cutting tool base material according to the present invention, the oxidation film, the heat resistance, and the wear resistance are greatly improved by the respective films laminated on the surface of the cutting tool base material as described above, and the dry cutting of the steel material is performed. In addition, high-speed cutting of high hardness materials can be performed stably over a long period of time.

次に、本発明に係る被覆切削工具基材について、実施例を挙げて具体的に説明すると共に、この実施例に係る被覆切削工具基材を用いた切削工具においては、鋼材のドライ切削や高硬度材の高速切削が長期にわたって安定して行えることを、比較例を挙げて明らかにする。なお、本発明に係る被覆切削工具基材は、特に下記の実施例に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, the coated cutting tool base material according to the present invention will be specifically described with reference to examples, and in the cutting tool using the coated cutting tool base material according to this example, dry cutting and high cutting of steel materials are performed. A comparative example will clarify that high-speed cutting of a hard material can be performed stably over a long period of time. The coated cutting tool substrate according to the present invention is not particularly limited to those shown in the following examples, and can be implemented with appropriate modifications within a range not changing the gist thereof.

ここで、各実施例及び各比較例においては、皮膜を形成する切削工具基材として、外径が10mmのソリッド式のボールエンドミルと、縦,横がそれぞれ12.7mm、厚みが4.76mmの微粒子超硬合金インサートとを用い、これらの切削工具基材の表面にそれぞれの皮膜を形成し、皮膜を形成したソリッド式のボールエンドミルからなる工具1、皮膜を形成した微粒子超硬合金インサートを微粒子超硬合金製の外径が20mmになったインサート式のボールエンドミルに装着させた工具2とを得た。   Here, in each example and each comparative example, as a cutting tool base material for forming a film, a solid-type ball end mill having an outer diameter of 10 mm, a length and a width of 12.7 mm, and a thickness of 4.76 mm, respectively. Using a fine particle cemented carbide insert, the respective coatings are formed on the surface of the cutting tool base material, and the tool 1 is a solid ball end mill with the coating formed thereon. A tool 2 mounted on an insert-type ball end mill having an outer diameter of 20 mm made of cemented carbide was obtained.

そして、各実施例及び各比較例において、上記の各切削工具基材に各皮膜を形成するにあたっては、市販の各アークイオンプレーティング装置(神戸製鋼社製:AIP S70)を使用し、皮膜形成用のターゲットの種類を変更させ、所定の成膜条件で、上記の各切削工具基材の表面に各皮膜を形成するようにした。   And in each Example and each comparative example, in forming each film | membrane on each said cutting tool base material, using each commercially available arc ion plating apparatus (the Kobe Steel company make: AIP S70), film | membrane formation The type of target was changed, and each film was formed on the surface of each cutting tool base material under predetermined film forming conditions.

(実施例1〜9及び比較例1〜9)
実施例1〜9及び比較例1〜9においては、上記の皮膜形成用のターゲットとして、実施例1ではAl0.55Cr0.15Ti0.30とAl0.55Cr0.45とを、実施例2ではAl0.55Cr0.15Ti0.30とAl0.65Cr0.35とを、実施例3ではAl0.55Cr0.15Ti0.30とAl0.75Cr0.25とを、実施例4ではAl0.65Cr0.10Ti0.25とAl0.55Cr0.45とを、実施例5ではAl0.65Cr0.10Ti0.25とAl0.65Cr0.35とを、実施例6ではAl0.65Cr0.10Ti0.25とAl0.75Cr0.25とを、実施例7はAl0.75Cr0.05Ti0.20とAl0.55Cr0.45とを、実施例8ではAl0.75Cr0.05Ti0.20とAl0.65Cr0.35とを、実施例9ではAl0.75Cr0.05Ti0.20とAl0.75Cr0.25とを用いた。
(Examples 1-9 and Comparative Examples 1-9)
In Examples 1 to 9 and Comparative Examples 1 to 9, as a target for the above film-forming, and Al 0.55 Cr 0.15 Ti 0.30 and Al 0.55 Cr 0.45 Example 1, Example 2 Al 0.55 Cr 0.15 Ti 0.30 and Al 0.65 Cr 0.35 , Example 3 Al 0.55 Cr 0.15 Ti 0.30 and Al 0.75 Cr 0.25 , Example 4 Al 0.65 Cr 0.10 Ti 0.25 and Al 0.55 Cr 0.45 , Example 5 Al 0.65 Cr 0.10 Ti 0.25 and Al 0.65 Cr 0.35 , Example 6 with Al 0.65 Cr 0.10 Ti 0.25 and Al 0.75 Cr 0.25 , Example 7 with Al 0.75 Cr 0.05 Ti 0.20 and Al 0.55 Cr 0.45 In Example 8, Al 0.75 Cr 0.05 Ti 0.20 and Al 0.65 Cr 0.35 were used, and in Example 9, Al 0.75 Cr 0.05 Ti 0.20 and Al 0.75 Cr 0.25 were used.

一方、比較例1ではAl0.70Cr0.30とTiとを、比較例2ではAl0.70Cr0.10Ti0.20とTiとを、比較例3ではAl0.65Si0.10Ti0.25とTiとを、比較例4ではAl0.65Si0.10Ti0.25とAl0.65Cr0.35とを、比較例5ではAl0.65Cr0.10Ti0.25とAl0.50Cr0.50とを、比較例6ではAl0.65Cr0.10Ti0.25とAl0.80Cr0.20とを、比較例7ではAl0.45Cr0.30Ti0.25とAl0.65Cr0.35とを、比較例8ではAl0.80Cr0.10Ti0.10とAl0.65Cr0.35とを、比較例9ではAl0.50Cr0.10Ti0.40とAl0.65Cr0.35とを用いた。 On the other hand, in comparative example 1, Al 0.70 Cr 0.30 and Ti, in comparative example 2 Al 0.70 Cr 0.10 Ti 0.20 and Ti, in comparative example 3 Al 0.65 Si 0.10 Ti 0.25 and Ti, in comparative example 4 Al Comparison between 0.65 Si 0.10 Ti 0.25 and Al 0.65 Cr 0.35 , Comparative Example 5 with Al 0.65 Cr 0.10 Ti 0.25 and Al 0.50 Cr 0.50 , and Comparative Example 6 with Al 0.65 Cr 0.10 Ti 0.25 and Al 0.80 Cr 0.20 In Example 7, Al 0.45 Cr 0.30 Ti 0.25 and Al 0.65 Cr 0.35 , in Comparative Example 8 Al 0.80 Cr 0.10 Ti 0.10 and Al 0.65 Cr 0.35 , in Comparative Example 9 Al 0.50 Cr 0.10 Ti 0.40 and Al 0.65 Cr 0.35 And were used.

そして、実施例1〜9及び比較例1〜9においては、上記の各皮膜形成用のターゲットを用い、上記の各切削工具基材の表面に皮膜を形成するにあたり、上記のアークイオンプレーティング装置における成膜条件を、窒素ガス圧力3.99Pa、基体温度500℃、アーク電流150A、バイアス電圧−100Vにして、下記の表1に示すように、それぞれ組成の異なる2種類の皮膜を交互に積層させた。   And in Examples 1-9 and Comparative Examples 1-9, when forming a film | membrane on the surface of each said cutting tool base material using said each film formation target, said arc ion plating apparatus As shown in Table 1 below, two types of coatings having different compositions are laminated alternately, with the film formation conditions in FIG. 1 being a nitrogen gas pressure of 3.99 Pa, a substrate temperature of 500 ° C., an arc current of 150 A, and a bias voltage of −100 V. I let you.

そして、このように各切削工具基材の表面に積層させた皮膜全体における(111)面のX線回折強度I(111)と、(200)面のX線回折強度I(200)とを、Cu−Kα線を用いたX線回折装置により測定して、I(111)とI(200) との関係を調べると共に、各切削工具基材の表面に積層された皮膜全体の膜厚を求め、これらの結果を下記の表1に示した。なお、上記のようにして積層させた各皮膜の膜厚は、10〜15nm程度であった。   And the X-ray diffraction intensity I (111) of the (111) plane and the X-ray diffraction intensity I (200) of the (200) plane in the entire film laminated on the surface of each cutting tool base material in this way, Measured with an X-ray diffractometer using Cu-Kα rays to examine the relationship between I (111) and I (200) and determine the total film thickness laminated on the surface of each cutting tool substrate. These results are shown in Table 1 below. The film thickness of each film laminated as described above was about 10 to 15 nm.

そして、上記のようにして皮膜を積層させた実施例1〜9及び比較例1〜9の各工具1については、鋼材(S55C、生材)を、切削速度Vc=100m/min.、送りf=0.2mm/rev.、軸方向の切り込み深さap=1mm、径方向の切り込み深さae=1mmの切削条件で、完全ドライ切削加工し、それぞれ逃げ面の最大摩耗幅が0.3mmになるまでの工具寿命を求め、その結果を下記の表1に示した。   And about each tool 1 of Examples 1-9 and Comparative Examples 1-9 which laminated | stacked the film | membrane as mentioned above, steel material (S55C, raw material) is cut speed Vc = 100 m / min. , Feed f = 0.2 mm / rev. Under the cutting conditions of axial depth of cut ap = 1mm and radial depth of cut ae = 1mm, complete dry cutting is performed, and the tool life until the maximum wear width of the flank is 0.3mm is obtained. The results are shown in Table 1 below.

また、上記のようにして皮膜を積層させた実施例1〜9及び比較例1〜9の各工具2については、高硬度鋼(SKD11、HRC60)を、切削速度Vc=380m/min.、送りf=0.5mm/rev.、軸方向の切り込み深さap=0.1mm、径方向の切り込み深さae=0.4mmの切削条件で、完全ドライ切削加工し、それぞれ逃げ面の最大摩耗幅が0.2mmになるまでの工具寿命を求め、その結果を下記の表1に示した。   Moreover, about each tool 2 of Examples 1-9 and Comparative Examples 1-9 which laminated | stacked the film | membrane as mentioned above, high-hardness steel (SKD11, HRC60) is used for cutting speed Vc = 380 m / min. , Feed f = 0.5 mm / rev. In the cutting conditions of the axial depth of cut ap = 0.1 mm and the radial depth of cut ae = 0.4 mm, complete dry cutting is performed until the maximum wear width of the flank surface reaches 0.2 mm. The tool life was determined and the results are shown in Table 1 below.

Figure 2010089184
Figure 2010089184

この結果、切削工具基材の表面に、この発明の条件を満たすAl−Cr−N皮膜とAl−Cr−Ti−N皮膜とを交互に積層させた実施例1〜9の工具1及び工具2は、切削工具基材の表面に、この発明の条件を満たさない皮膜を積層させた比較例1〜9の工具1及び工具2に比べて、何れも工具寿命が大幅に増加していた。   As a result, the tool 1 and the tool 2 of Examples 1 to 9 in which the Al—Cr—N film and the Al—Cr—Ti—N film satisfying the conditions of the present invention were alternately laminated on the surface of the cutting tool base material. Compared with the tool 1 and the tool 2 of the comparative examples 1-9 which laminated | stacked the film | membrane which does not satisfy | fill the conditions of this invention on the surface of the cutting tool base material, all had a tool life increased significantly.

(実施例10〜13)
実施例10〜13においては、上記の皮膜形成用のターゲットとして、実施例5と同じAl0.65Cr0.10Ti0.25とAl0.65Cr0.35とを用い、上記の各切削工具基材の表面に皮膜を形成するにあたり、上記のアークイオンプレーティング装置における成膜条件のバイアス電圧だけを変更し、実施例10では−70Vに、実施例11では−130Vに、実施例12では−150Vに、実施例13では−200Vにして、下記の表2に示すように、それぞれ実施例5と同じ組成の異なる2種類の皮膜を交互に積層させた。
(Examples 10 to 13)
In Examples 10 to 13, the same Al 0.65 Cr 0.10 Ti 0.25 and Al 0.65 Cr 0.35 as in Example 5 were used as the above-mentioned targets for film formation, and a film was formed on the surface of each of the above cutting tool substrates. In doing so, only the bias voltage of the film forming conditions in the arc ion plating apparatus described above was changed to -70 V in Example 10, -130 V in Example 11, -150 V in Example 12, and in Example 13. At -200 V, as shown in Table 2 below, two types of films having the same composition as in Example 5 were alternately laminated.

そして、このように各切削工具基材の表面に積層させた皮膜全体における(111)面のX線回折強度I(111)と、(200)面のX線回折強度I(200)とを、Cu−Kα線を用いたX線回折装置により測定して、I(111)とI(200) との関係を調べると共に、各切削工具基材の表面に積層された皮膜全体の膜厚を求め、これらの結果を下記の表2に示した。   And the X-ray diffraction intensity I (111) of the (111) plane and the X-ray diffraction intensity I (200) of the (200) plane in the entire film laminated on the surface of each cutting tool base material in this way, Measured with an X-ray diffractometer using Cu-Kα rays to examine the relationship between I (111) and I (200) and determine the total film thickness laminated on the surface of each cutting tool substrate. These results are shown in Table 2 below.

また、上記のように皮膜を積層させた実施例10〜13の工具1及び工具2について、上記の実施例1〜9及び比較例1〜9場合と同様にして、それぞれ工具寿命を求め、その結果を、上記の実施例5の結果と合わせて下記の表2に示した。   Moreover, about the tool 1 and the tool 2 of Examples 10-13 which laminated | stacked the film | membrane as mentioned above, it calculates | requires a tool life similarly to the case of said Examples 1-9 and Comparative Examples 1-9, respectively, The results are shown in Table 2 below together with the results of Example 5 above.

Figure 2010089184
Figure 2010089184

この結果、切削工具基材の表面に積層させた皮膜全体における(111)面のX線回折強度I(111)と、(200)面のX線回折強度I(200)とが、I(111)>I(200) の関係を満たす実施例5,10,11の工具1及び工具2は、I(111)=I(200) の関係になった実施例12の工具1及び工具2や、I(111)<I(200) の関係になった実施例13の工具1及び工具2に比べて、何れも工具寿命が向上していた。   As a result, the X-ray diffraction intensity I (111) of the (111) plane and the X-ray diffraction intensity I (200) of the (200) plane in the entire film laminated on the surface of the cutting tool substrate are I (111 )> I (200) The tools 1 and 2 of Examples 5, 10, and 11 satisfying the relationship of I (200) are the tools 1 and 2 of Example 12 that have the relationship of I (111) = I (200), Compared with the tool 1 and the tool 2 of Example 13 in which the relationship of I (111) <I (200) was satisfied, the tool life was improved.

(実施例14,15)
実施例14,15においては、上記の皮膜形成用のターゲットとして、実施例5と同じAl0.65Cr0.10Ti0.25とAl0.65Cr0.35とを用い、上記のアークイオンプレーティング装置を用いて実施例5と同じバイアス電圧を作用させて、上記の各切削工具基材の表面に皮膜を形成するようにした。
(Examples 14 and 15)
In Examples 14 and 15, Al 0.65 Cr 0.10 Ti 0.25 and Al 0.65 Cr 0.35, which are the same as those in Example 5, were used as the targets for film formation, and Example 5 was performed using the arc ion plating apparatus described above. The same bias voltage was applied to form a film on the surface of each cutting tool substrate.

ここで、実施例14においては、下記の表3に示すように、先ずターゲットとしてAl0.65Cr0.10Ti0.25だけを使用して各切削工具基材の表面に所定の膜厚になった(Al0.65Cr0.10Ti0.25)Nの皮膜を形成した後、ターゲットとしてAl0.65Cr0.35とAl0.65Cr0.10Ti0.25とを用い、実施例5と同じ組成の異なる2種類の皮膜を交互に積層させた。 Here, in Example 14, as shown in Table 3 below, first, only Al 0.65 Cr 0.10 Ti 0.25 was used as a target, and a predetermined film thickness was obtained on the surface of each cutting tool base (Al 0.65 After forming a film of Cr 0.10 Ti 0.25 ) N, Al 0.65 Cr 0.35 and Al 0.65 Cr 0.10 Ti 0.25 were used as targets, and two types of films having the same composition as in Example 5 were alternately laminated.

また、実施例15においては、下記の表3に示すように、先ずターゲットとしてAl0.65Cr0.10Ti0.25だけを使用して各切削工具基材の表面に所定の膜厚(Al0.65Cr0.10Ti0.25)Nの皮膜を形成した後、ターゲットとしてAl0.65Cr0.35とAl0.65Cr0.10Ti0.25とを用い、実施例5と同じ組成の異なる2種類の皮膜を交互に積層させ、その後、ターゲットとしてAl0.65Cr0.35だけを使用して、所定の膜厚になった(Al0.65Cr0.35)Nの皮膜を形成した。 In Example 15, as shown in Table 3 below, first, only Al 0.65 Cr 0.10 Ti 0.25 was used as a target, and a predetermined film thickness (Al 0.65 Cr 0.10 Ti 0.25 was formed on the surface of each cutting tool substrate. ) After forming the N film, Al 0.65 Cr 0.35 and Al 0.65 Cr 0.10 Ti 0.25 were used as targets, and two types of films having the same composition as in Example 5 were alternately laminated, and then Al 0.65 was used as the target. Using only Cr 0.35 , a (Al 0.65 Cr 0.35 ) N film having a predetermined film thickness was formed.

そして、このように各切削工具基材の表面に積層させた皮膜全体における(111)面のX線回折強度I(111)と、(200)面のX線回折強度I(200)とを、Cu−Kα線を用いたX線回折装置により測定して、I(111)とI(200) との関係を調べると共に、各切削工具基材の表面に積層された皮膜の膜厚を求め、これらの結果を下記の表3に示した。   And the X-ray diffraction intensity I (111) of the (111) plane and the X-ray diffraction intensity I (200) of the (200) plane in the entire film laminated on the surface of each cutting tool base material in this way, Measured with an X-ray diffractometer using Cu-Kα rays to examine the relationship between I (111) and I (200), and to determine the film thickness of the film laminated on the surface of each cutting tool substrate, These results are shown in Table 3 below.

また、上記のように皮膜を積層させた実施例14,15の工具1及び工具2について、上記の実施例1〜9及び比較例1〜9場合と同様にして、それぞれ工具寿命を求め、その結果を、上記の実施例5の結果と合わせて下記の表3に示した。   Moreover, about the tool 1 and the tool 2 of Examples 14 and 15 which laminated | stacked the film | membrane as mentioned above, it calculates | requires a tool life similarly to the case of said Examples 1-9 and Comparative Examples 1-9, respectively, The results are shown in Table 3 below together with the results of Example 5 above.

Figure 2010089184
Figure 2010089184

この結果、切削工具基材の表面に、所定の膜厚になった(Al0.65Cr0.10Ti0.25)Nの皮膜を形成した後、この上に(Al0.65Cr0.35)Nの皮膜と(Al0.65Cr0.10Ti0.25)Nの皮膜とを交互に積層させた実施例14,15の工具1及び工具2は、実施例5の工具1及び工具2に比べて、さらに工具寿命が増加しており、特に、上記の(Al0.65Cr0.35)Nの皮膜と(Al0.65Cr0.10Ti0.25)Nの皮膜とを交互に積層させた上に、さらに所定の膜厚になった(Al0.65Cr0.35)Nの皮膜を形成した実施例15の工具1及び工具2は、実施例14の工具1及び工具2よりもさらに工具寿命が増加していた。 As a result, a (Al 0.65 Cr 0.10 Ti 0.25 ) N film having a predetermined thickness was formed on the surface of the cutting tool substrate, and then an (Al 0.65 Cr 0.35 ) N film and (Al 0.65 The tool 1 and the tool 2 of Examples 14 and 15 in which the films of Cr 0.10 Ti 0.25 ) N are alternately laminated have a further increased tool life compared to the tool 1 and the tool 2 of Example 5, In particular, the above-described (Al 0.65 Cr 0.35 ) N film and (Al 0.65 Cr 0.10 Ti 0.25 ) N film are alternately laminated, and the predetermined film thickness is further obtained (Al 0.65 Cr 0.35 ) N. The tool life of the tool 1 and the tool 2 of Example 15 in which the coating film of the above was formed was further increased as compared with the tool 1 and the tool 2 of Example 14.

Claims (5)

切削工具基材の表面に、結晶構造がNaCl型構造である一般式(Alx,Cr1-x)N(式中、xは<0.55≦x≦0.75の条件を満たす。)で示されるAl−Cr−N皮膜と、結晶構造がNaCl型構造である一般式(Aly,Cr1-y−z,Tiz)N(式中、y,zは0.55≦y≦0.75、0.2≦z≦0.3、0.05≦1−y−z≦0.2の条件を満たす。)で示されるAl−Cr−Ti−N皮膜とが交互に積層されてなることを特徴とする被覆切削工具基材。 On the surface of the cutting tool base material, a general formula (Al x , Cr 1-x ) N in which the crystal structure is an NaCl type structure (where x satisfies the condition of <0.55 ≦ x ≦ 0.75). and Al-Cr-N film shown in, the crystal structure is NaCl-type structure formula (Al y, Cr 1-y -z, Ti z) N ( where, y, z is 0.55 ≦ y ≦ 0.75, 0.2 ≦ z ≦ 0.3, and 0.05 ≦ 1-yz ≦ 0.2.) Al—Cr—Ti—N films shown in FIG. A coated cutting tool base material characterized by comprising: 請求項1に記載の被覆切削工具基材において、前記のAl−Cr−N皮膜における(111)面のX線回折強度I(111)と、(200)面のX線回折強度I(200)とがI(111)>I(200)の関係を満たし、前記のAl−Cr−Ti−N皮膜における(111)面のX線回折強度I(111)と、(200)面のX線回折強度I(200)とがI(111)<I(200)の関係を満たし、上記のように積層させた皮膜全体における(111)面のX線回折強度I(111)と、(200)面のX線回折強度I(200)とがI(111)>I(200) の関係を満たすことを特徴とする被覆切削工具基材。   The coated cutting tool substrate according to claim 1, wherein the Al-Cr-N coating has an (111) plane X-ray diffraction intensity I (111) and an (200) plane X-ray diffraction intensity I (200). Satisfy the relationship of I (111)> I (200), and the X-ray diffraction intensity I (111) of the (111) plane and the X-ray diffraction of the (200) plane in the Al—Cr—Ti—N film. The intensity I (200) satisfies the relationship of I (111) <I (200), and the (111) plane X-ray diffraction intensity I (111) and (200) plane of the entire film laminated as described above A coated cutting tool substrate characterized in that the X-ray diffraction intensity I (200) of the above satisfies the relationship of I (111)> I (200). 請求項1又は請求項2に記載の被覆切削工具基材において、前記の切削工具基材の表面と接触する皮膜が前記のAl−Cr−Ti−N皮膜であることを特徴とする被覆切削工具基材。   The coated cutting tool base material according to claim 1 or 2, wherein the coating contacting the surface of the cutting tool base material is the Al-Cr-Ti-N coating. Base material. 請求項1〜請求項3の何れか1項に記載の被覆切削工具基材において、前記の切削工具基材の表面に積層された皮膜の最表面に位置する皮膜が前記のAl−Cr−N皮膜であることを特徴とする被覆切削工具基材。   The coated cutting tool base material according to any one of claims 1 to 3, wherein a film located on an outermost surface of the film laminated on the surface of the cutting tool base material is the Al-Cr-N. A coated cutting tool substrate characterized by being a film. 請求項1〜請求項4の何れか1項に記載の被覆切削工具基材において、前記の切削工具基材が超硬合金又はサーメットで構成されていることを特徴とする被覆切削工具基材。   The coated cutting tool base material of any one of Claims 1-4 WHEREIN: The said cutting tool base material is comprised with the cemented carbide or the cermet, The coated cutting tool base material characterized by the above-mentioned.
JP2008259552A 2008-10-06 2008-10-06 Coated cutting tool base Active JP5214392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008259552A JP5214392B2 (en) 2008-10-06 2008-10-06 Coated cutting tool base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008259552A JP5214392B2 (en) 2008-10-06 2008-10-06 Coated cutting tool base

Publications (2)

Publication Number Publication Date
JP2010089184A true JP2010089184A (en) 2010-04-22
JP5214392B2 JP5214392B2 (en) 2013-06-19

Family

ID=42252403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008259552A Active JP5214392B2 (en) 2008-10-06 2008-10-06 Coated cutting tool base

Country Status (1)

Country Link
JP (1) JP5214392B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190043461A (en) * 2017-10-18 2019-04-26 유니온쓰루 가부시키가이샤 Hard film for cutting tools and drill
CN113403579A (en) * 2021-06-22 2021-09-17 南京工业职业技术大学 Preparation method of toughened CrTiNiSiN nano composite coating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144376A (en) * 1998-11-18 2000-05-26 Sumitomo Electric Ind Ltd Film excellent in sliding characteristic
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000144376A (en) * 1998-11-18 2000-05-26 Sumitomo Electric Ind Ltd Film excellent in sliding characteristic
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
WO2006070730A1 (en) * 2004-12-28 2006-07-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool and process for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190043461A (en) * 2017-10-18 2019-04-26 유니온쓰루 가부시키가이샤 Hard film for cutting tools and drill
KR102280954B1 (en) * 2017-10-18 2021-07-23 유니온쓰루 가부시키가이샤 Hard film for cutting tools and drill
CN113403579A (en) * 2021-06-22 2021-09-17 南京工业职业技术大学 Preparation method of toughened CrTiNiSiN nano composite coating

Also Published As

Publication number Publication date
JP5214392B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5662680B2 (en) Surface coated cutting tool
JP2007196365A (en) Insert for milling steel
JP2008188689A (en) Surface coated cutting tool
JP6491031B2 (en) Laminated hard coating and cutting tool
KR20160050056A (en) A coated cutting tool and a method for coating the cutting tool
JP2004106183A (en) Hard film coated tool and its manufacturing method
JP5315527B2 (en) Surface coated cutting tool
JP5315526B2 (en) Surface coated cutting tool
JP2002018606A (en) Coated cutting tool
WO2015076220A1 (en) Hard coating film and target for forming hard coating film
JP2004351586A (en) Hard coating for cutting tool
JP4921984B2 (en) Surface coated cutting tool
JP5214392B2 (en) Coated cutting tool base
JP2016093857A (en) Surface-coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP2008284624A (en) Surface coated cutting tool
JP2008302474A (en) Surface coated cutting tool
JP5376375B2 (en) Surface coated cutting tool
JP2008302473A (en) Surface coated cutting tool
JP6273161B2 (en) Laminated coating with excellent wear resistance
WO2014115846A1 (en) Laminated coating film having excellent abrasion resistance
JP2010076082A (en) Surface coat cutting tool
JP2008132564A (en) Surface-coated cutting tool
JP2004130514A (en) Hard film coated tool and its manufacturing method
WO2017038435A1 (en) Hard coating and hard coating-covered member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250