JP2010088238A5 - - Google Patents

Download PDF

Info

Publication number
JP2010088238A5
JP2010088238A5 JP2008256337A JP2008256337A JP2010088238A5 JP 2010088238 A5 JP2010088238 A5 JP 2010088238A5 JP 2008256337 A JP2008256337 A JP 2008256337A JP 2008256337 A JP2008256337 A JP 2008256337A JP 2010088238 A5 JP2010088238 A5 JP 2010088238A5
Authority
JP
Japan
Prior art keywords
axis current
command
torque
axis
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256337A
Other languages
Japanese (ja)
Other versions
JP2010088238A (en
JP5252372B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2008256337A priority Critical patent/JP5252372B2/en
Priority claimed from JP2008256337A external-priority patent/JP5252372B2/en
Publication of JP2010088238A publication Critical patent/JP2010088238A/en
Publication of JP2010088238A5 publication Critical patent/JP2010088238A5/ja
Application granted granted Critical
Publication of JP5252372B2 publication Critical patent/JP5252372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

上記課題を解決するために、本発明の一の観点による同期電動機制御装置は、トルク指令を入力し、前記トルク指令に基づいてd軸電流指令を演算するd軸電流指令演算部と、前記トルク指令と前記d軸電流指令とに基づいてq軸電流指令を演算するq軸電流指令演算部とを備え、前記d軸電流指令と前記q軸電流指令とに基づいて同期電動機を駆動する同期電動機制御装置において、前記d軸電流指令演算部が、前記トルク指令に対する前記d軸電流指令のデータテーブルを有し、前記d軸電流指令を前記トルク指令の絶対値に対するテーブル内挿演算をして出力し、前記q軸電流指令演算部が、同期電動機のトルク式を用いて前記q軸電流指令を演算して出力する同期電動機制御装置が適用される。
また、本発明の他の観点による同期電動機制御装置の制御方法は、トルク指令を入力し、前記トルク指令に基づいてd軸電流指令を演算するd軸電流指令演算部と、前記トルク指令と前記d軸電流指令とに基づいてq軸電流指令を演算するq軸電流指令演算部とを備え、前記d軸電流指令と前記q軸電流指令とに基づいて同期電動機を駆動する同期電動機制御装置の制御方法において、前記d軸電流指令演算部が、通常運転前に、前記トルク指令に対する前記d軸電流指令のデータテーブルを自動的に作成するデータテーブル作成処理をし、通常運転時に、前記d軸電流指令を前記トルク指令の絶対値に対するテーブル内挿演算をして出力し、同期電動機のトルク式を用いて前記q軸電流指令を演算して出力する、という手順で処理する同期電動機制御装置の制御方法が適用される。
In order to solve the above-described problem, a synchronous motor control device according to an aspect of the present invention includes a d-axis current command calculation unit that inputs a torque command and calculates a d-axis current command based on the torque command, and the torque A synchronous motor that includes a q-axis current command calculation unit that calculates a q-axis current command based on the command and the d-axis current command, and that drives the synchronous motor based on the d-axis current command and the q-axis current command In the control device, the d-axis current command calculation unit has a data table of the d-axis current command with respect to the torque command, and outputs the d-axis current command by table interpolation calculation with respect to the absolute value of the torque command. Then, a synchronous motor control device in which the q-axis current command calculation unit calculates and outputs the q-axis current command using a torque equation of the synchronous motor is applied.
According to another aspect of the present invention, there is provided a control method for a synchronous motor control device, wherein a torque command is input, a d-axis current command calculation unit that calculates a d-axis current command based on the torque command, the torque command, and a q-axis current command calculation unit that calculates a q-axis current command based on the d-axis current command, and a synchronous motor control device that drives the synchronous motor based on the d-axis current command and the q-axis current command. In the control method, the d-axis current command calculation unit performs a data table creation process that automatically creates a data table of the d-axis current command with respect to the torque command before normal operation. a current command output by the table interpolation calculation with respect to the absolute value of the torque command, calculates and outputs the q-axis current command using a torque-type synchronous motor, is treated with the procedure of synchronization The method of motive control device is applied.

このように、図4における一連のId* テーブルデータ自動演算の処理では、1分割(最大電流に対する予め定められた分割数毎)の電流振幅Iに対して、電流位相θを0°〜90°まで1分割(電流位相90度に対する予め定められた分割数毎)ずつ変化させて、変化の度に、d軸電流Id、q軸電流Iq、マグネットによる鎖交磁束φMg、d軸インダクタンスLd、q軸インダクタンスLq、トルクTを演算して、演算されたトルクTおよび演算されたd軸電流IdをメモリTrq[j]およびメモリIdref[j]に保存する。また、電流位相θの変化が90°より大きくなれば、電流振幅Iを1分割(最大電流に対する予め定められた分割数毎)ずつ変化させて、前述の電流位相θの変化およびそれに伴う演算とメモリ保存を行う。また、前述の電流位相θを1分割(電流位相90度に対する予め定められた分割数毎)ずつ変化させる過程で、演算されたトルクTがメモリTrq[j]より小さければ、演算されたトルクTおよび演算されたd軸電流IdをメモリTrq[j]およびメモリIdref[j]に保存せずに、電流位相θを変化させる。また、電流振幅Iを1分割(最大電流に対する予め定められた分割数毎)ずつ変化させる過程で、電流振幅Iが最大電流より大きくなれば、一連の処理を終了する。最終的に、保存されたメモリTrq[j]およびメモリIdref[j]が、トルク指令T* に対するd軸電流指令Id* のテーブルデータと成るのである。
As described above, in the series of Id * table data automatic calculation processing in FIG. 4, the current phase θ is set to 0 ° to 90 ° with respect to the current amplitude I of one division (every predetermined division number with respect to the maximum current). Are changed by one division (predetermined number of divisions with respect to a current phase of 90 degrees), and at each change, the d-axis current Id, the q-axis current Iq, the interlinkage magnetic flux φMg by the magnet, and the d-axis inductance Ld, q The shaft inductance Lq and the torque T are calculated, and the calculated torque T and the calculated d-axis current Id are stored in the memory Trq [j] and the memory Idref [j]. If the change in the current phase θ is greater than 90 °, the current amplitude I is changed by one division (each predetermined number of divisions with respect to the maximum current), and the change in the current phase θ and the calculation accompanying it are as follows. Save memory. If the calculated torque T is smaller than the memory Trq [j] in the process of changing the current phase θ by one division (every predetermined division number for the current phase of 90 degrees), the calculated torque T The current phase θ is changed without saving the calculated d-axis current Id in the memory Trq [j] and the memory Idref [j]. If the current amplitude I becomes larger than the maximum current in the process of changing the current amplitude I by one division (every predetermined number of divisions with respect to the maximum current), a series of processing ends. Finally, the stored memory Trq [j] and memory Idref [j] become table data for the d-axis current command Id * with respect to the torque command T *.

次に、マグネットによる鎖交磁束・インダクタンス演算部12におけるテーブル内挿演算によりマグネットによる鎖交磁束φMg、d軸インダクタンスLd、q軸インダクタンスLqの演算方法について説明する。図3は、マグネットによる鎖交磁束・インダクタンス演算部12の内部構成を示す図である。図において、121はLdテーブル内挿演算部、122はLqテーブル内挿演算部、123はφMgテーブル内挿演算部である。
Ldテーブル内挿演算部121、Lqテーブル内挿演算部122、φMgテーブル内挿演算部123には、それぞれ予め実験やシミュレーションなどで求めた、d軸電流Idとd軸インダクタンスLdの関係、q軸電流Iq とq軸インダクタンスLqの関係、q軸電流Iqとマグネットによる鎖交磁束φMgの関係がテーブル化されたものが備えられている。また、それぞれの入力に対して内挿演算を行い、d軸インダクタンスLd、q軸インダクタンスLq、マグネットによる鎖交磁束φMgを出力するものである。
図6はd軸電流Idとd軸インダクタンスLdの関係を示すテーブルデータ、図7はq軸電流Iqとq軸インダクタンスLqの関係を示すテーブルデータ、図8はq軸電流Iqとマグネットによる鎖交磁束φMgの関係を示すテーブルデータである。なお、図中のX、Y、Zは正の整数である。
ここで、各テーブルデータは、それぞれ予め実験やシミュレーションなどで求める。各テーブルデータは電流0から最大電流までを何分割かしてデータを取れば十分である。(一方従来技術は、トルク指令に対する最適な電流振幅および電流位相を予め実験やシミュレーションで求める際、電流振幅を何分割かして、また電流位相も何分割かしてその両方を変化させてデータを取る必要があり、本発明に比べ、実験やシミュレーションに手間がかかる。)
Next, a calculation method of the interlinkage magnetic flux φMg, the d-axis inductance Ld, and the q-axis inductance Lq by the magnet by the table interpolation calculation in the interlinkage magnetic flux / inductance calculation unit 12 by the magnet will be described. FIG. 3 is a diagram illustrating an internal configuration of the interlinkage magnetic flux / inductance calculation unit 12 using a magnet. In the figure, 121 is an Ld table interpolation calculation unit, 122 is an Lq table interpolation calculation unit, and 123 is a φMg table interpolation calculation unit.
In the Ld table interpolation calculation unit 121, the Lq table interpolation calculation unit 122, and the φMg table interpolation calculation unit 123, the relationship between the d-axis current Id and the d-axis inductance Ld obtained in advance through experiments and simulations, q-axis A table in which the relationship between the current Iq and the q-axis inductance Lq and the relationship between the q-axis current Iq and the linkage flux φMg due to the magnet are tabulated is provided. In addition, an interpolation operation is performed on each input, and a d-axis inductance Ld, a q-axis inductance Lq, and a flux linkage φMg by a magnet are output.
6 is table data showing the relationship between the d-axis current Id and the d-axis inductance Ld, FIG. 7 is table data showing the relationship between the q-axis current Iq and the q-axis inductance Lq, and FIG. 8 is a linkage between the q-axis current Iq and the magnet. It is table data which shows the relationship of magnetic flux (phi) Mg. In the figure, X, Y, and Z are positive integers.
Here, each table data is obtained in advance by experiments and simulations. For each table data, it is sufficient to take data by dividing the current from 0 to the maximum current. (On the other hand, in the prior art, when the optimal current amplitude and current phase for the torque command are obtained in advance through experiments and simulations, the current amplitude is divided into several parts, and the current phase is also divided into several parts to change both. (Compared to the present invention, it takes more time for experiments and simulations.)

Claims (4)

トルク指令を入力し、前記トルク指令に基づいてd軸電流指令を演算するd軸電流指令演算部と、前記トルク指令と前記d軸電流指令とに基づいてq軸電流指令を演算するq軸電流指令演算部とを備え、前記d軸電流指令と前記q軸電流指令とに基づいて同期電動機を駆動する同期電動機制御装置であって
前記d軸電流指令演算部が、前記トルク指令に対する前記d軸電流指令のデータテーブルを有し、前記d軸電流指令を前記トルク指令の絶対値に対するテーブル内挿演算をして出力し、
前記q軸電流指令演算部が、同期電動機の極数、マグネットによる鎖交磁束、d軸インダクタンス、q軸インダクタンス、d軸電流、q軸電流の各パラメータを有する同期電動機のトルク式を用いて前記q軸電流指令を演算して出力することを特徴とする同期電動機制御装置。
A d-axis current command calculation unit that inputs a torque command and calculates a d-axis current command based on the torque command, and a q-axis current that calculates a q-axis current command based on the torque command and the d-axis current command and a calculation unit, wherein a synchronous motor control device that drives the synchronous motor based on the d-axis current command and said q-axis current command,
The d-axis current command calculation unit has a data table of the d-axis current command with respect to the torque command, and outputs the d-axis current command by performing table interpolation on the absolute value of the torque command,
The q-axis current command calculation unit uses the torque equation of the synchronous motor having the parameters of the number of poles of the synchronous motor, the linkage flux by the magnet, the d-axis inductance, the q-axis inductance, the d-axis current, and the q-axis current. A synchronous motor control device that calculates and outputs a q-axis current command.
前記データテーブルが、通常運転前に自動的に作成されるものであって、
最大電流に対する予め定められた分割数N(Nは正の整数)の1分割毎の電流振幅に対して、電流位相90度に対する予め定められた分割数M(Mは正の整数)の1分割ずつ電流位相を変化させて前記同期電動機のトルク式に代入し、トルク効率が最大となる電流振幅および電流位相における前記トルク指令および前記d軸電流指令を保存したものであることを特徴とする請求項1に記載の同期電動機制御装置。
The data table is automatically created before normal operation,
One division of a predetermined division number M (M is a positive integer) for a current phase of 90 degrees with respect to a current amplitude per division of a predetermined division number N (N is a positive integer) for the maximum current claims by varying the current phase is substituted into the torque equation of the synchronous motor, wherein the torque efficiency is obtained by storing the torque command and the d-axis current command in the current amplitude and current phase that maximizes Item 2. The synchronous motor control device according to Item 1.
トルク指令を入力し、前記トルク指令に基づいてd軸電流指令を演算するd軸電流指令演算部と、前記トルク指令と前記d軸電流指令とに基づいてq軸電流指令を演算するq軸電流指令演算部とを備え、前記d軸電流指令と前記q軸電流指令とに基づいて同期電動機を駆動する同期電動機制御装置の制御方法であって
前記d軸電流指令演算部が、通常運転前に、前記トルク指令に対する前記d軸電流指令のデータテーブルを自動的に作成するデータテーブル作成処理をし、
通常運転時に、前記d軸電流指令を前記トルク指令の絶対値に対するテーブル内挿演算をして出力し、同期電動機の極数、マグネットによる鎖交磁束、d軸インダクタンス、q軸インダクタンス、d軸電流、q軸電流の各パラメータを有する同期電動機のトルク式を用いて前記q軸電流指令を演算して出力する、という手順で処理することを特徴とする同期電動機制御装置の制御方法。
A d-axis current command calculation unit that inputs a torque command and calculates a d-axis current command based on the torque command, and a q-axis current that calculates a q-axis current command based on the torque command and the d-axis current command A control method of a synchronous motor control device, comprising a command calculation unit, and driving a synchronous motor based on the d-axis current command and the q-axis current command,
The d-axis current command calculation unit performs a data table creation process for automatically creating a data table of the d-axis current command for the torque command before normal operation,
During normal operation, the d-axis current command is output by table interpolation with respect to the absolute value of the torque command, and the number of poles of the synchronous motor, linkage flux by the magnet, d-axis inductance, q-axis inductance, d-axis current A method for controlling a synchronous motor control device, wherein the q-axis current command is calculated and output using a torque equation of a synchronous motor having parameters of q-axis current.
前記データテーブル作成処理は、最大電流に対する予め定められた分割数N(Nは正の整数)の1分割毎の電流振幅に対して、電流位相90度に対する予め定められた分割数M(Mは正の整数)の1分割ずつ電流位相を、トルク効率が最大となる電流位相となるまで変化させる電流位相変化処理をし、
トルク効率が最大となる電流振幅および電流位相における前記トルク指令および前記d軸電流指令を演算して保存する保存処理をし、
前記電流振幅が前記最大電流を超えるまで、前記電流位相変化処理および前記保存処理を繰り返す、という手順で処理することを特徴とする請求項に記載の同期電動機制御装置の制御方法。
In the data table creation process, a predetermined division number M (M is a predetermined number of divisions for a current phase) with respect to a current amplitude for each division of a predetermined division number N (N is a positive integer) for the maximum current. A current phase change process for changing the current phase in increments of one (positive integer) until the current phase at which the torque efficiency is maximized,
A storage process for calculating and storing the torque command and the d-axis current command at a current amplitude and a current phase at which torque efficiency is maximized,
4. The control method for a synchronous motor control device according to claim 3 , wherein the current phase change process and the storage process are repeated until the current amplitude exceeds the maximum current.
JP2008256337A 2008-10-01 2008-10-01 Synchronous motor control device and control method thereof Active JP5252372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256337A JP5252372B2 (en) 2008-10-01 2008-10-01 Synchronous motor control device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256337A JP5252372B2 (en) 2008-10-01 2008-10-01 Synchronous motor control device and control method thereof

Publications (3)

Publication Number Publication Date
JP2010088238A JP2010088238A (en) 2010-04-15
JP2010088238A5 true JP2010088238A5 (en) 2012-01-19
JP5252372B2 JP5252372B2 (en) 2013-07-31

Family

ID=42251639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256337A Active JP5252372B2 (en) 2008-10-01 2008-10-01 Synchronous motor control device and control method thereof

Country Status (1)

Country Link
JP (1) JP5252372B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549283B1 (en) * 2011-10-12 2015-09-01 엘에스산전 주식회사 Parameter estimating apparatus for permanent magnet synchronous motor driving system
FI124819B (en) 2012-11-21 2015-02-13 Abb Oy Method and apparatus for maximizing energy efficiency for electric power systems
JP6740890B2 (en) * 2016-12-22 2020-08-19 株式会社明電舎 Inverter control method and inverter control device
CN114616753A (en) * 2019-11-05 2022-06-10 株式会社安川电机 Power conversion device, power conversion method, and system
JP2023128493A (en) 2022-03-03 2023-09-14 ニデックモビリティ株式会社 Motor control device and motor control method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675171B2 (en) * 1998-05-18 2005-07-27 トヨタ自動車株式会社 Electric motor control device and control method
JP3643908B2 (en) * 1999-08-12 2005-04-27 ダイキン工業株式会社 Brushless DC motor control method and apparatus
JP3818086B2 (en) * 2001-06-01 2006-09-06 株式会社日立製作所 Synchronous motor drive
JP4557605B2 (en) * 2004-06-01 2010-10-06 東洋電機製造株式会社 Control device for synchronous machine

Similar Documents

Publication Publication Date Title
JP2011004506A (en) Motor control device
Huang et al. Robust position control of PMSM using fractional-order sliding mode controller
JP2010088238A5 (en)
JP2004166408A (en) Permanent magnet synchronous motor control method
JP2010057218A (en) Pulsation suppression device of electric motor
US20180006587A1 (en) Motor control apparatus and method
Yuan et al. Torque ripple reduction in permanent magnet synchronous machines using angle-based iterative learning control
CN104335479A (en) Variable torque angle for electric motor
JP2011050178A (en) Motor control device and generator control device
WO2017047106A1 (en) Inverter control device
Liu et al. Adaptive controller design for a synchronous reluctance motor drive system with direct torque control
JP5252372B2 (en) Synchronous motor control device and control method thereof
Meyer et al. Direct torque control for interior permanent magnet synchronous motors with respect to optimal efficiency
JP2006204054A (en) Motor control unit and motor drive system having the same
JP5929492B2 (en) Induction machine control device
JP2006054930A (en) Controller for synchronous motor
JP2018046678A (en) Motor control device
Zhang et al. Sensorless Control of Synchronous Reluctance Motor over Full Speed Range
CN105680738A (en) Current control method and system of permanent-magnet synchronous reluctance motor
JP2001286181A (en) Motor control method
JP2003088156A (en) Controller of brushless motor
JP4557605B2 (en) Control device for synchronous machine
WO2014002724A1 (en) Motor control device
Gu et al. An improved direct-self control method for high-speed permanent magnet synchronous motor
JP7344749B2 (en) Rotating electric machine control method and rotating electric machine control system