JP2010086618A - Electronic equipment - Google Patents

Electronic equipment Download PDF

Info

Publication number
JP2010086618A
JP2010086618A JP2008255901A JP2008255901A JP2010086618A JP 2010086618 A JP2010086618 A JP 2010086618A JP 2008255901 A JP2008255901 A JP 2008255901A JP 2008255901 A JP2008255901 A JP 2008255901A JP 2010086618 A JP2010086618 A JP 2010086618A
Authority
JP
Japan
Prior art keywords
heat
generating
heat receiving
sound
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008255901A
Other languages
Japanese (ja)
Inventor
Kenji Ogiji
憲治 荻路
Takeshi Toizono
武 樋園
Kenichi Shiode
健一 塩出
Nobuo Masuoka
益岡信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008255901A priority Critical patent/JP2010086618A/en
Publication of JP2010086618A publication Critical patent/JP2010086618A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide electronic equipment in which noise is suppressed with simple constitution and cooling is performed for a noise-generating heating element such as a disk drive device mounted in the electronic equipment. <P>SOLUTION: In a cooling device 8 of a liquid cooling system cooling a sound-generating and heat-generating member 3 generating heat as well as sound, at least one of heat receiving members 81 form one portion of nearly sealed box body structure including a sound-generating and heat-generating member 3 by engagement with a storage base body 91, the heat receiving member 81 forming one portion of the box body structure has sealed space of double structure and constitutes a tank function storing a refrigerant liquid, thermally connects the sound-generating and heat-generating member 3 with a wall plane of the inside of one portion of the box body structure, and constitutes a heat receiving function of receiving heat by the refrigerant liquid flowing in the inside of the sealed space of double structure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電子機器に係わり、発熱と騒音を発する装置の冷却と遮音を小型で、低コストに実現する電子機器に関する。   The present invention relates to an electronic device, and relates to an electronic device that realizes cooling and sound insulation of a device that generates heat and noise in a small size and at low cost.

近年、パーソナルコンピュータ等の電子機器は、情報処理速度の高速化を促進している。例えば、中央演算処理装置(以下、CPUと称する)においては、クロック周波数が格段に高められており、ハードディスクドライブ装置(以下、HDDと称す)や光ディスクドライブ装置(以下、HDDを含めディスク装置と称す)においては、記録情報量の大容量化、転送速度の高速化が図られている。これら電子機器に搭載される各装置は、情報の処理速度の高速化に伴って発熱量を増大する状況にある。   In recent years, electronic devices such as personal computers have promoted an increase in information processing speed. For example, in a central processing unit (hereinafter referred to as a CPU), the clock frequency is remarkably increased, and a hard disk drive device (hereinafter referred to as an HDD) or an optical disk drive device (hereinafter referred to as a disk device including an HDD). ), The amount of recorded information is increased and the transfer speed is increased. Each device mounted on these electronic devices is in a situation where the amount of heat generation increases as the information processing speed increases.

また、電子機器は、使途の多様化に伴い、小型化への要望も大きくなっている。このため、電子機器を構成する電子部品や駆動・構成部品は、その実装が非常に高密度に行われる状況にある。   In addition, with the diversification of uses of electronic devices, demands for miniaturization are increasing. For this reason, the electronic components and drive / components constituting the electronic apparatus are in a state of being mounted with a very high density.

従来、これら電子機器における各々の発熱体にはヒートシンクを設けられ、さらには、各々のヒートシンクに向けて冷却ファンにより冷却風を送風する空冷方式によって冷却されている。しかし、空冷方式は、冷却能力の不足や、電子機器の小型化への阻害要因となっている。上記の状況において、冷却性能の向上を図る上で冷媒液の循環による液冷方式の冷却装置が実用化されている。   Conventionally, each heating element in these electronic devices is provided with a heat sink, and further cooled by an air cooling method in which cooling air is blown by a cooling fan toward each heat sink. However, the air cooling system is a hindrance to the lack of cooling capacity and downsizing of electronic devices. In the above situation, in order to improve the cooling performance, a liquid cooling type cooling device by circulating a refrigerant liquid has been put into practical use.

また、電子機器内に搭載される種々の発熱体のうち、ディスク装置のような駆動部分を有する装置においては、情報の大容量化、および高速処理化によって、ディスクの高速回転における軸受け部の発熱やヘッドのシーク時における音をも増大する状況にある。これらの発熱、及び騒音の増加は、装置における性能の低下を招くだけではなく、周囲の環境への問題をも呈することになる。   Of various heating elements mounted in electronic devices, in a device having a drive portion such as a disk device, heat generation of a bearing portion at high-speed rotation of the disk is achieved by increasing the capacity of information and increasing the processing speed. And the sound during head seek is also increasing. These increases in heat generation and noise not only cause a decrease in performance in the apparatus, but also present a problem for the surrounding environment.

これらの問題を解決するために、例えば、HDDを気密性のある収納体の内部に載置して、収納体外部への音の漏洩を抑制するとともに、一方で収納体内部に滞留される熱を収納体外部に熱移送して放熱する技術が特許文献1、乃至特許文献4に開示されている。   In order to solve these problems, for example, the HDD is placed inside an airtight container to suppress the leakage of sound to the outside of the container, and on the other hand, the heat accumulated in the container Patent Documents 1 to 4 disclose a technique for transferring heat to the outside of the storage body to dissipate heat.

特開2000−133961号公報JP 2000-133961 A 特開2005−353251号公報JP-A-2005-353251 特開2004−326908号公報JP 2004-326908 A 特開2007−287212号公報JP 2007-287212 A

上記の特許文献に記載されている冷却や防音に関する技術においては、つぎの解決しなければならない課題がある。   The techniques related to cooling and soundproofing described in the above-mentioned patent documents have the following problems that need to be solved.

特許文献1に記載されている電子情報機器は、ハードディスク装置を熱伝導部材と吸音部材とによって遮音ケース内に収納して遮音し、熱伝導性部材の一部を遮音ケースの外部に引き出して外部の電子情報機器に取り付けることで外部へ熱移送している。ただ、特許文献1に記載の技術では、外部への熱移送は、熱伝導性部材の熱伝導率と形状に依存する方法のため、冷却性能を十分に得るためには、熱伝導性部材の面積の増大や熱伝導特性の大幅な改善を必要とし、冷却性能への制約懸念がある。   In the electronic information device described in Patent Document 1, a hard disk device is housed in a sound insulation case by a heat conducting member and a sound absorbing member, and sound insulation is performed, and a part of the heat conductive member is drawn outside the sound insulation case to externally. Heat transfer to the outside by attaching to the electronic information equipment. However, in the technique described in Patent Document 1, heat transfer to the outside is a method that depends on the thermal conductivity and shape of the heat conductive member, and in order to obtain sufficient cooling performance, It requires an increase in area and a significant improvement in heat conduction characteristics, and there are concerns about restrictions on cooling performance.

特許文献2に記載のハードディスクドライブ装置は、ハードディスクドライブ装置の一部にヒートパイプを密着させ、外周を防音材で覆って、外部への音の漏洩の抑制と熱の移送を図っている。ただ、特許文献2に記載の技術では、防音材で覆われた外部に熱を移送するためにヒートパイプを設けて熱移送していることから、ヒートパイプの取り付け姿勢や、ヒートパイプを取り付けたドライブ装置の組み込み形態や、取り扱い形態によって、ヒートパイプの課題である熱移送を行えない問題を生じることがある。   In the hard disk drive device described in Patent Document 2, a heat pipe is brought into close contact with a part of the hard disk drive device, and the outer periphery is covered with a soundproofing material to suppress leakage of sound to the outside and transfer heat. However, in the technique described in Patent Document 2, since the heat pipe is provided to transfer heat to the outside covered with the soundproofing material, the heat pipe is installed and the heat pipe is attached. Depending on how the drive device is incorporated and how it is handled, there may be a problem that heat transfer, which is a problem with heat pipes, cannot be performed.

特許文献3に記載の録画再生装置は、ハードディスクで発生する熱を熱伝導性プラスチックによって外部に熱移送し、放熱する構成としている。ただ、特許文献3に記載の技術では、特許文献1と同様に所望の冷却性能を得るに十分な熱移送量を得られない懸念がある。   The recording / playback apparatus described in Patent Document 3 is configured to transfer heat generated by a hard disk to the outside by a heat conductive plastic to dissipate heat. However, in the technique described in Patent Document 3, there is a concern that a heat transfer amount sufficient to obtain a desired cooling performance cannot be obtained as in Patent Document 1.

特許文献4に記載の電子機器は、HDDの発熱を受熱部の内部で通流する冷媒液に受熱させ、HDDと受熱部材とを密閉室に載置する構成としている。ただ、特許文献4に記載の技術では、HDDから発生した熱を水冷方式の冷媒液により密閉室内で受熱して外部に熱移送し、かつ放熱部材によって放熱して冷却性能は向上させているが、密閉室内での冷媒液の漏洩の問題や、冷媒液の補充用のタンクが必要であり装置の大型化など水冷方式の冷却装置としての課題がある。   The electronic device described in Patent Document 4 is configured such that the heat generated by the HDD is received by a refrigerant liquid that flows inside the heat receiving unit, and the HDD and the heat receiving member are placed in a sealed chamber. However, in the technique described in Patent Document 4, the heat generated from the HDD is received in a sealed chamber by a water-cooled refrigerant liquid, transferred to the outside, and radiated by a heat radiating member to improve the cooling performance. There are problems as a cooling device of a water cooling system, such as a problem of leakage of the refrigerant liquid in the sealed chamber, and a tank for replenishing the refrigerant liquid, which increases the size of the apparatus.

上記のように、従来技術は、騒音を生じる発熱体を搭載した電子機器において、騒音と冷却を図る上で解決すべき課題を有している。本発明の目的は、騒音を抑制し、効率よい冷却を行う電子機器を提供することにある。   As described above, the related art has a problem to be solved in order to reduce noise and cooling in an electronic device equipped with a heating element that generates noise. The objective of this invention is providing the electronic device which suppresses noise and performs efficient cooling.

上記課題を解決するために、本発明のハードディスクドライブ等の熱発生する装置を有する電子機器は、前記熱発生する装置を略包含する二重構造の箱体受熱部と、前記箱体受熱部を通流する冷却媒体を冷却する放熱部と、前記箱体受熱部と前記放熱部の間で前記冷却冷媒を循環させる冷媒循環部とを備え、前記箱体受熱部は、前記熱発生する装置を遮音収納するともに、2重構造の密閉空間に冷却媒体が通流し、当該箱体受熱部の内部壁面に前記熱発生する装置が熱接続されて、前記発生熱が前記冷却媒体に受熱されるようにした。   In order to solve the above-described problems, an electronic apparatus having a heat generating device such as a hard disk drive of the present invention includes a double-structure box heat receiving portion that substantially includes the heat generating device, and the box heat receiving portion. A heat dissipating part for cooling the flowing cooling medium; and a refrigerant circulating part for circulating the cooling refrigerant between the box heat receiving part and the heat dissipating part, and the box heat receiving part includes a device for generating the heat. In addition to storing sound insulation, the cooling medium flows through the double-structured sealed space, and the heat generating device is thermally connected to the inner wall surface of the box heat receiving portion so that the generated heat is received by the cooling medium. I made it.

また、本発明は、上記課題を解決するために下記の構成としている。音を発生するとともに発熱する発音発熱部材と発音発熱部材を冷却する冷却装置とを搭載した電子機器において、発音発熱部材を冷却する冷却装置は、受熱部材と、放熱部材とを複数の配管で接続し冷媒液を循環通流して、熱変換と熱移送を行う液令方式の冷却装置であって、受熱部材の少なくとも1つは、収納基体との契合によって発音発熱部材を包含する略密閉の箱体構造の一部をなし、箱体構造の一部をなす受熱部材は、二重構造の密閉空間を有して冷媒液を貯留するタンク機能を構成し、箱体構造の一部の内側の壁面において発音発熱部材と熱的に接続させ、二重構造の密閉空間の内部を通流する冷媒液によって受熱される受熱部受熱部機能を構成する構造とし、箱体構造の一部の受熱部材と、受熱部部材に通流および滞留される冷媒液とによって、発音発熱部材の熱を冷却し、箱体構造の一部の受熱部部材と、収納基体とによって、発音発熱部材の音を抑制する構成としている。   The present invention has the following configuration in order to solve the above problems. In an electronic device equipped with a sound generating heat generating member that generates sound and generates heat and a cooling device that cools the sound generating heat generating member, the cooling device that cools the sound generating heat generating member connects the heat receiving member and the heat radiating member with a plurality of pipes. A liquid age type cooling device that circulates and flows a refrigerant liquid to perform heat conversion and heat transfer, and at least one of the heat receiving members includes a sound generating heat generating member when engaged with the storage base. The heat receiving member that forms a part of the body structure and forms a part of the box structure has a double-structured sealed space, and constitutes a tank function for storing the refrigerant liquid. A heat receiving member that is thermally connected to the sound generating heat generating member on the wall surface and that receives heat by the refrigerant liquid flowing through the inside of the double-structured sealed space, and a part of the box structure heat receiving member And the cold that flows and stays in the heat receiving member. By a liquid cooled heat pronunciation heat generating member, and a part of the heat receiving section member of the box structure by a housing base body, and to suppress configure the sound pronunciation exothermic member.

本発明によれば、電子機器に搭載されるディスクドライブ装置等の騒音を発生する発熱体に対して、簡素な構成によって騒音を抑制し、冷却を図る電子機器を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, with respect to the heat generating body which generate | occur | produces noise, such as a disk drive apparatus mounted in an electronic device, an electronic device which suppresses a noise by simple structure and aims at cooling can be provided.

以下、本発明の実施の形態について、図面を用いて詳細に説明する。
図1は、本発明における電子機器の一実施の形態を示す概略構成図である。図1において、電子機器1の筐体2の内部には、ハードディスクドライブ装置(HDD)3、および光ディスクドライブ装置4を搭載している。さらには、回路基板5上に載置された半導体電子部品(例えば、CPU)6等を有している。また、電源7などの部材が搭載されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of an electronic apparatus according to the present invention. In FIG. 1, a hard disk drive device (HDD) 3 and an optical disk drive device 4 are mounted inside a housing 2 of the electronic device 1. Furthermore, it has a semiconductor electronic component (for example, CPU) 6 mounted on the circuit board 5. In addition, members such as a power source 7 are mounted.

電子機器1は、これらの電子部品や部材、および装置において前述したように発熱する状況にあることから、これらのいずれかを必要に応じて冷却するために水冷方式の冷却装置8を搭載している。   Since the electronic device 1 is in a state of generating heat as described above in these electronic components, members, and devices, a water-cooling type cooling device 8 is mounted to cool any of these as required. Yes.

本発明は、騒音を発生するHDD3、あるいは光ディスクドライブ装置4を冷却するための構成を特徴とするものであるが、図1に示す実施例は、CPU6、あるいは他の発熱体などとともに冷却することも可能とする冷却装置8を搭載するようにしたものである。したがって、CPU6の冷却は必須の構成ではないことはいうまでもない。   The present invention is characterized by a configuration for cooling the HDD 3 or the optical disk drive 4 that generates noise. However, the embodiment shown in FIG. 1 is cooled together with the CPU 6 or other heating elements. The cooling device 8 that can also be mounted. Therefore, it goes without saying that the cooling of the CPU 6 is not an essential configuration.

より詳細には、図1に示される冷却装置8は、例えばHDD3を包含し、包含したHDD3と熱的に接続してHDD3の発熱を冷媒液によって受熱し、かつ冷媒液を貯留するタンク機能を有する第1の受熱部材81と、第1の受熱部材81において冷媒液に受熱した熱を大気中に放熱する放熱部材82との間を複数の配管83により接続し、ポンプ84により冷媒液を循環する水冷方式を基本的な構成としている。   More specifically, the cooling device 8 shown in FIG. 1 includes, for example, the HDD 3 and has a tank function for thermally connecting to the included HDD 3 to receive heat generated by the HDD 3 by the refrigerant liquid and storing the refrigerant liquid. The first heat receiving member 81 and the heat radiating member 82 that radiates heat received by the refrigerant liquid in the first heat receiving member 81 to the atmosphere are connected by a plurality of pipes 83, and the refrigerant liquid is circulated by the pump 84. The basic structure is the water cooling system.

ここで、第1の受熱部材81は、必ずしも、タンク機能を有する構成とする必要はなく、詳細は後述するが、所定量の冷媒液がHDD3を包含する構成であればよい。   Here, the first heat receiving member 81 is not necessarily configured to have a tank function, and will be described later in detail, but may be a configuration in which a predetermined amount of refrigerant liquid includes the HDD 3.

また、冷媒液の循環流路間において、CPU6と熱的に接続して受熱する第2の受熱部材85とを配置しているが、上記と同様に必須の構成ではなく、必要に応じて、第2の受熱部材85を冷媒液の循環路中に設ければより。   In addition, the second heat receiving member 85 that is thermally connected to the CPU 6 and receives heat is disposed between the circulation channels of the refrigerant liquid, but it is not an essential configuration as described above, and if necessary, If the second heat receiving member 85 is provided in the circulation path of the refrigerant liquid.

つぎに、本発明におけるHDD3の騒音と発熱を抑制する構造について詳細に説明する。
図2は、本発明における電子機器に搭載されるHDDの遮音と冷却を行うための構成に関する一実施例を示す構成図である。
Next, a structure for suppressing noise and heat generation of the HDD 3 in the present invention will be described in detail.
FIG. 2 is a configuration diagram showing an embodiment relating to a configuration for sound insulation and cooling of an HDD mounted on an electronic apparatus according to the present invention.

図2に記載されている各部材は、説明を分かりやすくするために模式的に記載しており、その形状や大きさの関係を図示しているものではない。図2に示すように、HDD3が、収納基体91と第1の受熱部材81によって形成される密閉箱体の内部に載置される構成である。   Each member illustrated in FIG. 2 is schematically illustrated for easy understanding of the description, and does not illustrate the relationship between the shape and size. As shown in FIG. 2, the HDD 3 is configured to be placed inside a sealed box formed by the storage base 91 and the first heat receiving member 81.

例えば、収納基体91は、HDD3を二点鎖線で示される位置に載置する基台部911を有して、外周前面壁912、及び側面壁913、914とで構成されている。また、第 1の受熱部材81の構造は、詳細については後述するが、上平面部811、及び下平面部812とを有し、一側平面部813を介して略コ字状に形成している。ただ、前記にような略コ字状の形状に限定されるものではなく、略L字状に形成されたものを複数個設け、双方を配管で接続する構成であってもよく、受熱する上平面部811と下平面部812を加工しやすい構造によって形成されることで良い。   For example, the storage base 91 includes a base portion 911 on which the HDD 3 is placed at a position indicated by a two-dot chain line, and includes an outer peripheral front wall 912 and side walls 913 and 914. Although the structure of the first heat receiving member 81 will be described in detail later, it has an upper flat surface portion 811 and a lower flat surface portion 812, and is formed in a substantially U shape via the one side flat surface portion 813. Yes. However, the shape is not limited to the substantially U-shaped shape as described above, and a plurality of substantially L-shaped shapes may be provided and both may be connected by piping. The flat portion 811 and the lower flat portion 812 may be formed by a structure that can be easily processed.

ここで、収納基体91は、HDD3を載置して矢印(イ)、(ロ)方向に進退自在に移動可能としている。HDD3は、収納基体91が、矢印(ロ)方向に移動された状態において基台部911上に載置される。また、収納基体91が矢印(イ)方向に移動することにより、例えば、第1の受熱部材81の平面部(811、812、813)と収納基体91の外周壁(912、913、914)との組み合わせ契合によって、HDD3を封入状態とする略密閉の箱体構造である。   Here, the storage base 91 is configured such that the HDD 3 is placed and can be moved forward and backward in the directions of arrows (A) and (B). The HDD 3 is placed on the base portion 911 in a state where the storage base 91 is moved in the arrow (b) direction. Further, when the storage base 91 moves in the direction of the arrow (A), for example, the flat portions (811, 812, 813) of the first heat receiving member 81 and the outer peripheral walls (912, 913, 914) of the storage base 91, This is a substantially hermetically sealed box structure in which the HDD 3 is in an encapsulated state due to the combination.

つぎに、図2により、HDD3を封入するための略密閉の箱体を形成する一方の部材である第1の受熱部材81の構造について詳細に説明する。   Next, the structure of the first heat receiving member 81, which is one member forming a substantially hermetically sealed box for enclosing the HDD 3, will be described in detail with reference to FIG.

第1の受熱部材81は、対向する平板状部材によって形成される平面的な密閉空間の内部に冷媒を通流する構造とするために、略平板のベース体816とカバー体817とを各々熱伝導性に優れる金属材料(例えば、アルミニウム材)によって略コ字状に形成し、接合部をロー付け等によって結合して内部に密閉空間を形成する構造としている。   The first heat receiving member 81 heats the substantially flat base body 816 and the cover body 817 in order to make the refrigerant flow into the planar sealed space formed by the opposing flat plate members. It is formed in a substantially U shape by a metal material (for example, aluminum material) excellent in conductivity, and has a structure in which an airtight space is formed inside by joining joints by brazing or the like.

ベース体816を平板状としているのは加工を容易にするためであり、カバー体817と同様形状のものを両側より2つ合わせて中間部分でロー付けして構成しても良いことは言及するまでもない。   The reason why the base body 816 has a flat plate shape is to facilitate processing, and it is mentioned that two parts having the same shape as the cover body 817 may be joined from both sides and brazed at an intermediate portion. Not too long.

さらに、略コ字状に形成しているのは、発熱部がHDD3の上下平面とすることから、その発熱面に対向する平面を受熱部とすることからであり、発熱部の位置によって、第の受熱部の構造を略L字、略口字状など異なる形状とされることでも良く、略L字状部材の複数個を配管で結合する構成であっても良い。   Furthermore, the reason why it is formed in a substantially U-shape is that the heat generating part is the upper and lower planes of the HDD 3, and the plane opposite to the heat generating surface is the heat receiving part. The structure of the heat receiving portion may be different in shape such as a substantially L shape and a substantially square shape, or may be configured such that a plurality of substantially L-shaped members are connected by piping.

また、第1の受熱部材81は、その平面部(例えば811、812、813)の外側の平面のいずれかに冷媒液の流入口814、および流出口815を付設している。   Further, the first heat receiving member 81 is provided with a refrigerant liquid inlet 814 and an outlet 815 on any one of the outer planes of the plane portions (for example, 811, 812, 813).

さらには、ベース体816、あるいはカバー体817の上下平面部(811、812)の外側の平面には、絞り加工によって複数個の凹部(内部に向かった凸形状)を形成している。これは、ベース体816、あるいはカバー体817の剛性の強度向上を図るとともに、冷媒液の通流経路を形成し、冷媒液との接触面積を増加し、冷媒液の流速を高めることを可能にするものであり、可能な限り多くの凹部を構成することが好ましい。   Furthermore, a plurality of recesses (convex shapes facing inward) are formed on the outer surface of the base body 816 or the upper and lower flat surfaces (811, 812) of the cover body 817 by drawing. This improves the rigidity of the base body 816 or the cover body 817, forms a flow path for the refrigerant liquid, increases the contact area with the refrigerant liquid, and increases the flow speed of the refrigerant liquid. It is preferable to form as many recesses as possible.

以上のような構成において、改めて、HDD3と第1の受熱部材81との熱的な接続状態について説明する。   In the above configuration, the thermal connection state between the HDD 3 and the first heat receiving member 81 will be described again.

HDD3は、矢印(イ)方向への移動によって、HDD3の外周上下平面のどちらか一方を押圧部材818によって押圧され、押圧部材818と反対側のHDD3の上下平面を、第1の受熱部材81の平面部(811、あるいは812)の内側の壁面と熱的に接続される構成である。また、押圧部材818は、第1の受熱部材81の平面部(812、あるいは811)の内側の壁面とHDD3の押圧側の平面において、熱的に接続されている。   As the HDD 3 moves in the direction of the arrow (A), either one of the outer peripheral upper and lower planes of the HDD 3 is pressed by the pressing member 818, and the upper and lower planes of the HDD 3 on the opposite side of the pressing member 818 are moved on the first heat receiving member 81. It is the structure thermally connected with the inner wall surface of a plane part (811 or 812). Further, the pressing member 818 is thermally connected to the inner wall surface of the flat portion (812 or 811) of the first heat receiving member 81 and the pressing side plane of the HDD 3.

このように接続することによって、HDD3における発生熱は、HDD3の外周上下の両平面から、第1の受熱部材81の平面部(811、812)内側の壁面に熱伝達されることになる。また、受熱部材81は、前述したように内部の密閉空間に冷媒液を通流しながら貯留していることから、内側壁に熱伝達された熱は、冷媒液に受熱される。   By connecting in this way, the heat generated in the HDD 3 is transferred from both the upper and lower flat surfaces of the HDD 3 to the inner wall surface of the first heat receiving member 81 (811, 812). Further, as described above, the heat receiving member 81 is stored while flowing the refrigerant liquid through the internal sealed space, so that the heat transferred to the inner wall is received by the refrigerant liquid.

例えば、図1に示す実施例におけるように、冷媒液の流入口814を上平面部811に設けた場合、放熱部材83により放熱された冷媒液は、HDD3の発熱を上平面部811から多く受熱する構成が好ましい。よって、HDD3は、押圧部材によって上方側に押圧される構成とされる。ただし、HDD3の他の面も、押圧部材を介して熱的に接続されているので、下側に押圧されていてもよい。   For example, as in the embodiment shown in FIG. 1, when the refrigerant liquid inlet 814 is provided in the upper plane portion 811, the refrigerant liquid radiated by the heat radiating member 83 receives a large amount of heat generated by the HDD 3 from the upper plane portion 811. The structure which does is preferable. Therefore, the HDD 3 is configured to be pressed upward by the pressing member. However, since the other surface of the HDD 3 is also thermally connected through the pressing member, it may be pressed downward.

さらに、HDD3の平面部811(812)と第1の受熱部材81との熱的な接続において、熱伝導性シート、あるいは熱伝導グリース等を介在させることが好ましい。   Furthermore, in the thermal connection between the flat portion 811 (812) of the HDD 3 and the first heat receiving member 81, it is preferable to interpose a heat conductive sheet or heat conductive grease.

つぎに、冷媒液の循環状態について説明する。第1の受熱部材81の上平面部811から流入された冷媒液は、上平面部811から受熱した後に、下平面部812側に貯留されている冷媒液に混入されることにより低温化されると共に、下平面部812からも貯留されている冷媒液に受熱される。   Next, the circulating state of the refrigerant liquid will be described. The refrigerant liquid flowing in from the upper flat surface portion 811 of the first heat receiving member 81 receives the heat from the upper flat surface portion 811 and is mixed with the refrigerant liquid stored on the lower flat surface portion 812 side to be lowered in temperature. At the same time, the refrigerant liquid stored also from the lower flat surface portion 812 receives heat.

よって、第1の受熱部材81の密閉空間は、上平面部811側においては、冷媒液の流入における流速を高めて受熱効果を上げるためにも、上平面部811側の密閉空間を極力小さくすることが好ましく、上平面部811側においては、受熱した冷媒液を貯留している冷媒液と混入よることによるコンデンサ機能を発揮させるためにも、下平面部812側の密閉空間を可能な限り大きく形成することが好ましい。   Therefore, the sealed space of the first heat receiving member 81 is made as small as possible on the upper flat surface portion 811 side in order to increase the flow velocity in the flow of the refrigerant liquid and increase the heat receiving effect. Preferably, on the upper flat surface portion 811 side, the closed space on the lower flat surface portion 812 side is made as large as possible in order to exert a capacitor function by mixing the received refrigerant liquid with the stored refrigerant liquid. It is preferable to form.

また、第1の受熱部材81の流出口815から流出される冷媒液は、CPU6に熱的に接続された第2の受熱部材82に通流されて、改めてCPU6から受熱され、さらに放熱部材83に通流されて外気によって放熱される循環を行うものである。   Further, the refrigerant liquid flowing out from the outlet 815 of the first heat receiving member 81 is passed through the second heat receiving member 82 thermally connected to the CPU 6, and is again received from the CPU 6, and further the heat radiating member 83. Is circulated through the air and radiated by the outside air.

ここで、HDD3の発熱量は、CPU6の発熱量に比べて一般的に小さいため、HDD3に対する第1の受熱部材81とCPU6に対する第2の受熱部材82との位置関係は、冷媒液の受熱の許容量を考慮して、図1の白抜き矢印が示すように、HDD3から受熱する第1の受熱部材81をCPU6から受熱する第2の受熱部材82に対して冷媒液の通流における上流側に設けることが好ましい。   Here, since the amount of heat generated by the HDD 3 is generally smaller than the amount of heat generated by the CPU 6, the positional relationship between the first heat receiving member 81 with respect to the HDD 3 and the second heat receiving member 82 with respect to the CPU 6 is the amount of heat received by the refrigerant liquid. In consideration of the allowable amount, as indicated by the white arrow in FIG. 1, the upstream side in the flow of the refrigerant liquid with respect to the second heat receiving member 82 that receives the first heat receiving member 81 that receives heat from the HDD 3 from the HDD 3. It is preferable to provide in.

つぎに、第1の受熱部材81の形状について説明する。例えば、ハードディスクの形状が、3.5インチ径のディスクサイズを搭載するHDD3である場合を例にして説明する。そのHDD3の外形形状は、約145mm×約100mm×約20mmであることから、HDD3に熱的に接続して、HDD3を包含するための第1の受熱部材81の平面部(811、812)の形状は、少なくとも約145mm×約100mm(面積:14,500mm2)よりも大きい、2倍(29,000mm2)の面積となる。   Next, the shape of the first heat receiving member 81 will be described. For example, the case where the shape of the hard disk is the HDD 3 with a 3.5 inch diameter disk size will be described as an example. Since the outer shape of the HDD 3 is about 145 mm × about 100 mm × about 20 mm, the flat portion (811, 812) of the first heat receiving member 81 that is thermally connected to the HDD 3 and includes the HDD 3 is provided. The shape is at least twice as large (29,000 mm 2) as at least about 145 mm × about 100 mm (area: 14,500 mm 2).

一方、水冷装置8における冷媒液を補充するためのタンク容量は、一般的な接続チューブの材質、形状における浸透状態において、約130,000mm3程度を有することが好ましいことから、第1の受熱部材81の内部空間を形成する対向平面間の形状は、約5mm程度として形成されればよく、HDD3の密閉箱体を特段に増大させる要因とはならないものである。   On the other hand, since the tank capacity for replenishing the refrigerant liquid in the water cooling device 8 is preferably about 130,000 mm 3 in the permeation state in the general connection tube material and shape, the first heat receiving member 81 is used. The shape between the opposing planes forming the internal space of the HDD 3 may be about 5 mm, and does not cause a particular increase in the sealed box of the HDD 3.

すなわち、電子機器1において冷媒液を補充することなく所定の期間稼動させるために必要な容量の冷媒液を貯留可能としながら、専用のタンクを保有する必要がないことから、電子機器1内にタンクの設置領域を設ける必要がなく、電子機器1の小型化が可能になる。   That is, since it is possible to store the refrigerant liquid having a capacity necessary for operating the electronic apparatus 1 for a predetermined period without replenishing the refrigerant liquid, it is not necessary to have a dedicated tank. Therefore, the electronic device 1 can be downsized.

次に、上記のような本発明の冷却機能を有する冷却装置8において、HDD3の騒音を抑制する機能いついて説明する。図3は、本発明の第1の受熱部材における騒音を抑制する機能について模式的に説明した図である。   Next, the function of suppressing the noise of the HDD 3 in the cooling device 8 having the cooling function of the present invention as described above will be described. FIG. 3 is a diagram schematically illustrating a function of suppressing noise in the first heat receiving member of the present invention.

図3において、(c)は、本発明における第1の受熱部材81の構造を模式的に示した図であり、(a)、および(b)は、本発明の騒音の抑制効果を説明するための異なる構造を模式的に比較して示した図である。   In FIG. 3, (c) is a diagram schematically showing the structure of the first heat receiving member 81 in the present invention, and (a) and (b) explain the noise suppressing effect of the present invention. It is the figure which showed the different structure for for comparison typically.

図3の(a)、(b)及び(c)に示すハッチング部は、熱伝導性に優れる金属材質による構造物とする。例えば、(a)は、金属製の受熱部材としたヒートシンクを想定するものであり、(b)は、薄肉の金属製の受熱部材空間に冷却風を通風するようなヒートシンクを想定するものであり、(c)は、本発明の薄肉の金属製の受熱部空間に冷媒液を通流する受熱部材を想定するものである。   The hatched portions shown in FIGS. 3A, 3B, and 3C are structures made of a metal material having excellent thermal conductivity. For example, (a) assumes a heat sink as a metal heat receiving member, and (b) assumes a heat sink that allows cooling air to flow through a thin metal heat receiving member space. (C) assumes the heat receiving member which flows a refrigerant | coolant liquid through the thin metal heat receiving part space of this invention.

それぞれの構造において、左側の壁面より左側が略密閉の箱体の内部とし、右側の壁面より右側が略密閉の箱体の外部を示している。HDD3は、左側の壁面内部に包含されていることであり、白抜き矢印(I)がHDD3より発生される騒音を示している。すなわち、第1の受熱部材81の壁面に入射される入射音を示すものである。   In each structure, the left side from the left wall is the inside of the substantially sealed box, and the right side from the right wall is the outside of the substantially sealed box. The HDD 3 is included in the left wall surface, and the white arrow (I) indicates the noise generated from the HDD 3. That is, the incident sound incident on the wall surface of the first heat receiving member 81 is shown.

ここで、HDD3の騒音(入射音)(I)と、略密閉の箱体を透過して漏洩する騒音(透過音)(T)との関係は、(1)式で示される。
T=I−R−h ・・・・・・・・(1)
R:反射音
h:吸音(透過損失)
HDD3の騒音を略密閉の箱体の外部への漏洩を抑制(透過音を小さく)するためには、反射音(R)、および吸音(h)を大きくすれば良いことを示している。
また、透過損失(h)は(2)式で示される。
h=10log10(1+(ωmcosθ/2ρc)2 ・・・・(2)
m:面密度
ρ:空気の密度
c:音速
θ:入射角
よって、(a)に示すような均質一体材料の透過損失(h)は、材質の質量が大きいほど遮音効果が高くなること(質量法則)を示している。このため、大きな遮音効果を得るには非常に大きな質量となることが避けられない。また、反射音が非常に大きく略密閉空間の内部で共振する場合があることから適する方法とはいえない。
Here, the relationship between the noise (incident sound) (I) of the HDD 3 and the noise (transmitted sound) (T) leaking through the substantially hermetically sealed box is expressed by equation (1).
T = IR−h (1)
R: Reflected sound
h: Sound absorption (transmission loss)
This shows that the reflected sound (R) and the sound absorption (h) should be increased in order to suppress the leakage of the HDD 3 to the outside of the substantially sealed box (reduce the transmitted sound).
Further, the transmission loss (h) is expressed by equation (2).
h = 10 log 10 (1+ (ωm cos θ / 2ρc) 2) (2)
m: surface density
ρ: Air density
c: speed of sound
θ: Incident angle Therefore, the transmission loss (h) of the homogeneous integrated material as shown in (a) indicates that the sound insulation effect increases as the mass of the material increases (the law of mass). For this reason, it is inevitable that the mass becomes very large in order to obtain a large sound insulation effect. Further, since the reflected sound is very large and may resonate inside the substantially sealed space, it is not a suitable method.

これに対して、比較的軽量で大きな透過損失を得るためには、二重構造の複合構造が有効であるといわれている。二重構造においては、中間層に設けられる材質の剛性によって大きく異なったものになり、通流する冷媒が空気の場合(b)より冷却液の場合(c)の方が、透過損失の特性として均質な材料の場合(a)に近くなり、質量法則に近似するものである。すなわち、冷媒液を第1の受熱部材81内を通流させることで、略密閉の箱体によるHDD3の遮音効果を向上させることができる。   On the other hand, in order to obtain a relatively light weight and a large transmission loss, it is said that a double structure composite structure is effective. In the double structure, the characteristics of the transmission loss are greatly different depending on the rigidity of the material provided in the intermediate layer, and when the flowing refrigerant is air (b) and the cooling liquid (c). In the case of a homogeneous material, it is close to (a) and approximates the law of mass. That is, by causing the refrigerant liquid to flow through the first heat receiving member 81, the sound insulation effect of the HDD 3 by the substantially sealed box can be improved.

以上のような第1の受熱部材81の構造によって、HDD3の発熱と騒音を簡素で小型な構成によって抑制される電子機器1を提供できるものである。   With the structure of the first heat receiving member 81 as described above, it is possible to provide the electronic device 1 in which the heat generation and noise of the HDD 3 are suppressed by a simple and small configuration.

本発明における電子機器の一実施の形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the electronic device in this invention. 本発明における電子機器に搭載されるHDDの遮音と冷却を行うための構成に関する一実施例を概念的に示す構成図である。It is a block diagram which shows notionally one Example regarding the structure for performing the sound insulation and cooling of HDD mounted in the electronic device in this invention. 本発明の第1の受熱部材における騒音を抑制する構造について模式的に説明した図である。It is the figure which demonstrated typically the structure which suppresses the noise in the 1st heat receiving member of this invention.

符号の説明Explanation of symbols

1…電子機器、2…筐体、3…ハードディスクドライブ装置(HDD)、4…光ディスクドライブ装置、5…回路基板、6…CPU、7…電源、8…冷却装置、81…第1の受熱部材、82…放熱部材、83…配管(群)、84…ポンプ、85…第2の受熱部材、816…ベース体、817…カバー体、814…流入口、815…流出口、818…押圧部材筐体、816…ベース体、817…カバー体、814…流入口、815…流出口、818…押圧部材   DESCRIPTION OF SYMBOLS 1 ... Electronic device, 2 ... Housing | casing, 3 ... Hard disk drive device (HDD), 4 ... Optical disk drive device, 5 ... Circuit board, 6 ... CPU, 7 ... Power supply, 8 ... Cooling device, 81 ... 1st heat receiving member , 82 ... Heat dissipation member, 83 ... Piping (group), 84 ... Pump, 85 ... Second heat receiving member, 816 ... Base body, 817 ... Cover body, 814 ... Inlet, 815 ... Outlet, 818 ... Pressing member housing Body, 816 ... base body, 817 ... cover body, 814 ... inflow port, 815 ... outflow port, 818 ... pressing member

Claims (4)

音を発生するとともに発熱する発音発熱部材と前記発音発熱部材を冷却する冷却装置とを搭載した電子機器において、
前記発音発熱部材を冷却する冷却装置は、受熱部材と、放熱部材とを複数の配管で接続し冷媒液を循環通流して、熱変換と熱移送を行う液令方式の冷却装置であって、
前記受熱部材の少なくとも1つは、収納基体との契合によって前記発音発熱部材を包含する略密閉の箱体構造の一部をなし、
前記箱体構造の一部をなす受熱部材は、二重構造の密閉空間を有して前記冷媒液を貯留するタンク機能を構成し、前記箱体構造の一部の内側の壁面において前記発音発熱部材と熱的に接続させ、前記二重構造の密閉空間の内部を通流する冷媒液によって受熱される受熱部機能を構成する構造とし、
前記箱体構造の一部の受熱部材と、前記受熱部部材に通流および滞留される前記冷媒液とによって、前記発音発熱部材の熱を冷却し、
前記箱体構造の一部の受熱部部材と、前記収納基体とによって、前記発音発熱部材の音を抑制することを特徴とする電子機器。
In an electronic device equipped with a sound generation heating member that generates sound and generates heat, and a cooling device that cools the sound generation heat generation member,
The cooling device that cools the sound generating heat generating member is a liquid age type cooling device that performs heat conversion and heat transfer by connecting a heat receiving member and a heat radiating member with a plurality of pipes to circulate and flow a refrigerant liquid,
At least one of the heat receiving members forms a part of a substantially hermetically sealed box structure including the sound generating heat generating member by engagement with a storage base,
The heat receiving member forming a part of the box structure has a double-structured sealed space, and constitutes a tank function for storing the refrigerant liquid, and the sound generation heat is generated on the inner wall surface of a part of the box structure. A structure that constitutes a heat receiving portion function that is thermally connected to the member and is received by the refrigerant liquid flowing through the inside of the double-structured sealed space;
The heat of the sound-generating heat generating member is cooled by a part of the heat receiving member of the box structure and the refrigerant liquid that flows and stays in the heat receiving member.
An electronic apparatus, wherein a sound of the sound-generating heat generating member is suppressed by a part of the heat receiving member of the box structure and the storage base.
請求項1に記載の電子機器において、
前記略密閉の箱体は、熱伝導性の優れる金属製の材質による前記受熱部部材と、前記発音発熱部材を載置して、進退自在に移動可能な収納基台とを契合することによって構成されることを特徴とする電子機器。
The electronic device according to claim 1,
The substantially hermetically sealed box is configured by engaging the heat receiving member made of a metal material having excellent thermal conductivity and a storage base on which the sound generating heat generating member is mounted and movable forward and backward. Electronic device characterized by being made.
ハードディスクドライブ等の熱発生する装置を有する電子機器において、
前記熱発生する装置を略包含する二重構造の箱体受熱部と、
前記箱体受熱部を通流する冷却媒体を冷却する放熱部と、
前記箱体受熱部と前記放熱部の間で前記冷却冷媒を循環させる冷媒循環部とを備え、
前記箱体受熱部は、前記熱発生する装置を遮音収納するともに、2重構造の密閉空間に冷却媒体が通流し、当該箱体受熱部の内部壁面に前記熱発生する装置が熱接続されて、前記発生熱が前記冷却媒体に受熱されることを特徴とする電子機器。
In an electronic device having a heat generating device such as a hard disk drive,
A double-layered box heat receiving portion substantially including the heat generating device;
A heat dissipating part for cooling the cooling medium flowing through the box heat receiving part;
A refrigerant circulation part for circulating the cooling refrigerant between the box heat receiving part and the heat dissipation part,
The box body heat receiving unit is configured to soundproof and store the heat generating device, and a cooling medium flows through a double-structured sealed space, and the heat generating device is thermally connected to an inner wall surface of the box heat receiving unit. The generated heat is received by the cooling medium.
請求項3に記載の電子機器において、
前記箱体受熱部は、前記熱発生する装置の発熱面に熱接続する第1の空間と前記熱接続面に対向する第2の空間と前記第1と第2の空間を接続する第3の空間から成り、第1の空間から前記第3の空間を通りに前記第2の空間に冷却媒体が通流する2重構造の凹形状のベース体と、
前記ベース体を収納するカバー体とを備えることを特徴とする電子機器。
The electronic device according to claim 3,
The box heat receiving portion connects a first space thermally connected to a heat generating surface of the heat generating device, a second space facing the heat connecting surface, and a third space connecting the first and second spaces. A double-structured concave base body comprising a space through which a cooling medium flows from the first space through the third space to the second space;
An electronic apparatus comprising: a cover body that houses the base body.
JP2008255901A 2008-10-01 2008-10-01 Electronic equipment Pending JP2010086618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008255901A JP2010086618A (en) 2008-10-01 2008-10-01 Electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008255901A JP2010086618A (en) 2008-10-01 2008-10-01 Electronic equipment

Publications (1)

Publication Number Publication Date
JP2010086618A true JP2010086618A (en) 2010-04-15

Family

ID=42250413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008255901A Pending JP2010086618A (en) 2008-10-01 2008-10-01 Electronic equipment

Country Status (1)

Country Link
JP (1) JP2010086618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113093A (en) * 2017-01-09 2018-07-19 廣達電腦股▲ふん▼有限公司 Streamlined noise prevention device and arithmetic device including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113093A (en) * 2017-01-09 2018-07-19 廣達電腦股▲ふん▼有限公司 Streamlined noise prevention device and arithmetic device including the same

Similar Documents

Publication Publication Date Title
JP3594900B2 (en) Display integrated computer
JP4876975B2 (en) Cooling device and heat receiving member for electronic equipment
JP2005158101A (en) Disk array apparatus
JP5472955B2 (en) Heat dissipation module
JP2011077403A (en) Electronic device
JP6126149B2 (en) Air-cooled laser apparatus provided with a heat conducting member having a radiation fin
WO2003043397A1 (en) Electronic apparatus
JP2006234255A (en) Radiator and liquid cooling system comprising the same
JP4720688B2 (en) Electronic control unit cooling system
JP2016200316A5 (en)
JP2017152614A (en) Liquid cooling type cooling device
US7669642B1 (en) Thermal module
JP2008171943A (en) Rack for electronic equipment and amplifier rack
JP5117287B2 (en) Electronic equipment cooling system
JP2010086618A (en) Electronic equipment
JP4214106B2 (en) Electronic device cooling device
JP2004356555A (en) Heat-receiving element and cooling device using the same
JP2006235914A (en) Liquid cooling system, and small electronic device equipped with the same
JP2005150240A (en) Liquid circulation type cooling apparatus and electronic apparatus using same
JP2007335624A (en) Liquid-cooled cooler for electronic appliance
JP2008202880A (en) Cooling system
JP2009088051A (en) Cooling device for electronic instrument
JP3755535B2 (en) Heat transport device
JP2006060142A (en) Electronic equipment
JP2011223019A (en) Cooling device and cooling device for electronic apparatus