JP2010085141A - Method and device for measuring center of in-pile structure in reactor - Google Patents

Method and device for measuring center of in-pile structure in reactor Download PDF

Info

Publication number
JP2010085141A
JP2010085141A JP2008252138A JP2008252138A JP2010085141A JP 2010085141 A JP2010085141 A JP 2010085141A JP 2008252138 A JP2008252138 A JP 2008252138A JP 2008252138 A JP2008252138 A JP 2008252138A JP 2010085141 A JP2010085141 A JP 2010085141A
Authority
JP
Japan
Prior art keywords
core
measuring device
swing
internal structure
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008252138A
Other languages
Japanese (ja)
Inventor
Takanori Sato
貴教 佐藤
Toshiichi Kikuchi
敏一 菊地
Yoshinori Suzuki
義紀 鈴木
Satoru Bushi
哲 武士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2008252138A priority Critical patent/JP2010085141A/en
Publication of JP2010085141A publication Critical patent/JP2010085141A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability in the measurement of the center of an in-pile structure in a nuclear power plant. <P>SOLUTION: In a method for measuring the center of an in-pile structure in a core to measure an installed center of the in-pile structure as an inspection or replacement of the in-pile structure in the nuclear power plant, a target is mounted on a reference in-pile structure for the measurement of the center, a plumb bob center measurement device is mounted on the in-pile structure where its center should be measured, and the work to move the plumb bob center measurement device from the initial position of a plumb end to the center position of the target and to align it is verified by an underwater camera to measure the center of the in-pile structure by the travel of an XY table hanging a plumb bob wire of the device. This improves the reliability in the measurement of the center. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原子力発電プラント供用期間中に実施する定期検査時に、原子炉圧力容器内の炉内構造物据付芯計測を行う際、基準となる炉内構造物と芯計測対象の炉内構造物の芯ずれ量を計測するための芯計測方法および芯計測装置に関する。   The present invention relates to a core in-core structure and a core in-core structure to be core-measured when performing core measurement of the core in the reactor pressure vessel during the periodic inspection performed during the operation period of the nuclear power plant. The present invention relates to a lead measuring method and a lead measuring apparatus for measuring the amount of misalignment of the lead.

原子力発電プラントにおける原子炉炉内構造物の据付芯計測方法としては、アライメントテレスコープを使用する光学的方法や、特開2002−39735号公報に示された芯計測装置を用いた方法がある。   As an installation core measurement method for the reactor internal structure in a nuclear power plant, there are an optical method using an alignment telescope and a method using a core measurement device disclosed in Japanese Patent Application Laid-Open No. 2002-39735.

特開2002−39735号公報の方法は、離間した第1の位置と第2の位置との間の距離が既知であって、その第1と第2の位置間に亘って設置する直線状に形成された基準棒の傾斜量を測定し前記第1と第2位置間の芯ずれ量を計測する方法である。   In the method disclosed in Japanese Patent Laid-Open No. 2002-39735, the distance between the first position and the second position that are separated from each other is known, and the distance between the first position and the second position is linear. It is a method of measuring the amount of misalignment between the first and second positions by measuring the amount of inclination of the formed reference bar.

特開2002−39735号公報JP 2002-39735 A

従来の技術におけるアライメントテレスコープを用いた光学的な方法は、主に原子力発電プラントの建設工事(供用期間前)において実施されていた。   The optical method using the alignment telescope in the prior art has been mainly implemented in the construction work (before the service period) of the nuclear power plant.

しかし、原子力発電プラントの供用期間中に炉内構造物の据付芯計測を行う際は、作業員の被ばく線量低減のために原子炉圧力容器内は満水状態となり、アライメントスコープ(気中)と水の境界部で屈折が起こり正確な芯計測ができない。   However, when measuring the core of the in-reactor structure during the operation period of the nuclear power plant, the reactor pressure vessel is filled with water to reduce the exposure dose of workers, and the alignment scope (in air) and water Refraction occurs at the boundary of the core and accurate core measurement is not possible.

一方、特開2002−39735号公報に示されている、離間した第1と第2の位置間に亘って設置する直線状に形成された基準棒の傾斜量を測定し前記第1と第2の位置の芯ずれ量を計測する方法では、基準棒の長さを第1と第2の位置の距離以上とする必要が有る。例えば、炉心支持板の芯ずれ量を測定する際には第1の位置が炉心支持板の孔で第2の位置がCRDハウジング孔となるが、2点間の距離は約4m有るため芯計測装置の長さは4m以上の大型なものになり、保管場所が制限される上、原子炉建屋オペレーティングフロアで行う炉内搬入前精度確認校正試験では大型試験架台を用いて行う必要が有る。   On the other hand, as shown in Japanese Patent Laid-Open No. 2002-39735, the first and second are measured by measuring the amount of inclination of a linearly formed reference bar installed between the first and second positions that are separated from each other. In the method of measuring the misalignment amount at the position, it is necessary that the length of the reference rod is not less than the distance between the first and second positions. For example, when measuring the amount of misalignment of the core support plate, the first position is the core support plate hole and the second position is the CRD housing hole. The length of the apparatus becomes a large one of 4 m or more, and the storage location is limited. In addition, it is necessary to perform a precision check calibration test before carrying in the reactor building on the operating floor of the reactor building using a large test stand.

また、炉心支持板付近は高線量部位のため、傾斜計内の電気回路が放射線により誤作動あるいは破損する可能性がある。仮に放射線により傾斜計に誤作動が生じ、それを基に芯計測値が算出された場合、表示された芯計測値を検証することができないという課題がある。   In addition, since the vicinity of the core support plate is a high-dose site, the electric circuit in the inclinometer may malfunction or be damaged by radiation. If the inclinometer malfunctions due to radiation, and the core measurement value is calculated based on the malfunction, there is a problem that the displayed core measurement value cannot be verified.

本発明の目的は、原子力発電プラントの炉内構造物の芯計測に関して、信頼性を向上することにある。   An object of the present invention is to improve reliability with respect to core measurement of a reactor internal structure of a nuclear power plant.

原子力発電プラントの炉内構造物点検または炉内構造物取替として炉内構造物の据付芯計測を行う原子炉炉内構造物の芯計測方法において、下げ振り式を採用することにある。   A down-swing method is employed in a core measurement method for a reactor internal structure that performs installation core measurement of the reactor internal structure as an in-furnace structure inspection or replacement of the reactor internal structure of a nuclear power plant.

本発明によると、原子力発電プラントの炉内構造物の芯計測に関して、信頼性を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, reliability can be improved regarding the core measurement of the reactor internal structure of a nuclear power plant.

原子力発電プラントの供用期間中に炉内構造物の据付芯計測を行う際、下げ振り先端とターゲットの芯ずれ量を水中カメラで確認する簡易な方法であり、下げ振りは炉水温度のバラツキや高放射線量の影響を受けることなく必ず鉛直下を示すため計測装置の調整の手間を省き、計測に熟練を必要とせず芯計測値の信頼性が高い。   This is a simple method to check the amount of misalignment between the tip of the lower swing and the target with an underwater camera when measuring the core of the reactor internal structure during the operation period of the nuclear power plant. Since the vertical direction is always shown without being affected by a high radiation dose, the trouble of adjusting the measuring device is saved, and the core measurement value is highly reliable without requiring skill in measurement.

また、ターゲットに下げ振り先端が指す芯ずれ量を水中カメラを介してTVモニタで確認し、XYテーブルの移動量で芯計測することから容易である。   In addition, it is easy to check the amount of misalignment indicated by the tip of the swing down to the target on the TV monitor via the underwater camera and measure the center with the amount of movement of the XY table.

また、下げ振り先端とターゲットを直角2方向の至近距離から水中カメラで遠隔目視確認するため、芯ずれ量を判別できる。   In addition, the amount of misalignment can be discriminated because the tip of the downward swing and the target are remotely visually confirmed by the underwater camera from close distances in two perpendicular directions.

また、下げ振り式芯計測装置を炉内構造物孔に設置する際、調芯固定機構を遠隔操作することで、下げ振りワイヤ位置が芯計測する炉内構造物孔の中心位置となるように下げ振り式芯計測装置を固定できる。   Also, when installing the swing-down type core measuring device in the furnace structure hole, the centering fixing mechanism is remotely operated so that the position of the swing-down wire becomes the center position of the core structure hole for core measurement. A swing-down core measuring device can be fixed.

また、下げ振り式芯計測装置には、遠隔自動XY駆動機構により下げ振りワイヤの平面位置(XY方向)をターゲット中心位置または、任意の位置に遠隔移動し、その移動量から芯ずれ量を計算処理して表示することができるため、芯計測作業が容易に行える。   In addition, the downward swing type core measuring device uses the remote automatic XY drive mechanism to remotely move the plane position (XY direction) of the downward swing wire to the target center position or any position, and calculates the amount of misalignment from the amount of movement. Since it can be processed and displayed, the lead measuring operation can be easily performed.

また、下げ振り式芯計測装置には、遠隔自動ワイヤ長さ調整機構により下げ振りワイヤを任意の長さに変えることができるため、据付基準と計測対象の炉内構造物間の距離が相違する複数の炉内構造物や据付寸法が相違する他プラントでの芯計測にも共用使用できるため汎用性が高い。   In addition, the downward swing type core measuring device can change the downward swing wire to an arbitrary length by the remote automatic wire length adjustment mechanism, so that the distance between the installation reference and the in-furnace structure to be measured is different. It is highly versatile because it can be used for core measurement in other plants with different in-furnace structures and installation dimensions.

また、装置保管時および精度確認校正試験時には下げ振りワイヤ長さを必要最小限にすることで、大きな保管エリアの確保が不要となり、校正試験架台構造および構成試験作業の簡素化を図れる。   Also, by keeping the length of the swing-down wire to the minimum necessary when storing the device and during the accuracy check calibration test, it is not necessary to secure a large storage area, and the calibration test frame structure and the configuration test work can be simplified.

また、下げ振り式芯計測装置には、分割式パイプ内径に下げ振りワイヤを通すことにより、下げ振りワイヤの損傷防止および原子炉内炉水流動の影響を受けない。   Further, the downward swing type core measuring device is not affected by the prevention of damage of the downward swing wire and the flow of reactor water by passing the downward swing wire through the inner diameter of the split pipe.

また、原子力発電プラント供用期間中に原子炉炉内構造物の据付芯計測を行う際は、原子炉圧力容器内は満水状態で、さらに原子炉圧力容器に接続している浄化系の炉水は流動しているが、下げ振りワイヤは分割式パイプ内側を通っているため、ワイヤが炉水流動で振れることが無くなり、下げ振り先端が安定してターゲット上を指し示すことが可能になる。   In addition, when measuring the installation core of the reactor internal structure during the operation period of the nuclear power plant, the reactor pressure vessel is full and the purification reactor water connected to the reactor pressure vessel is Although it is flowing, since the swinging wire passes through the inside of the split pipe, the wire does not swing due to the reactor water flow, and the tip of the swinging swing can stably point on the target.

また、下げ振り式芯計測装置には、分割式パイプの最下端部に下げ振り固定機構(以下シャッターという)を備えていることで、原子炉内への設置および取外し作業の際に下げ振りワイヤの破断等を回避し、下げ振りのシャッター内への出し入れは水中カメラで監視できる。   In addition, the downward swing type core measuring device is provided with a downward swing fixing mechanism (hereinafter referred to as a shutter) at the lowermost end portion of the split pipe so that the downward swing wire can be used during installation and removal work in the nuclear reactor. It is possible to avoid breakage of the camera and monitor the underwater camera to put it in and out of the shutter.

下げ振り式芯計測装置から分割式パイプの最下端部以外を取外した短尺状態とし、遠隔自動ワイヤ長さ調整機構で下げ振りワイヤ長さを必要最小限にすることで、調芯固定機構,遠隔自動XY駆動機構,下げ振りシャッターの調整・動作確認を簡易調整架台により可能にした。   By adjusting the length of the swinging-pick core measuring device except for the bottom end of the split-type pipe to a short length and using the remote automatic wire length adjustment mechanism to minimize the length of the swinging wire, the alignment fixing mechanism and remote Adjustment and operation check of the automatic XY drive mechanism and swing-down shutter are made possible by a simple adjustment stand.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明による芯計測装置により、原子炉炉内構造物の芯計測をしている状態を示す断面図である。   FIG. 1 is a cross-sectional view showing a state in which core measurement of a reactor internal structure is being performed by the core measurement device according to the present invention.

なお、図1は原子力発電所における供用期間中検査において、原子炉圧力容器1内の制御棒駆動機構ハウジング(以下、CRDハウジング)孔2を基準に炉心支持板3の芯計測を実施する場合に適用した例を示す。   FIG. 1 shows a case where core measurement of the core support plate 3 is performed based on the control rod drive mechanism housing (hereinafter referred to as CRD housing) hole 2 in the reactor pressure vessel 1 in the in-service inspection at the nuclear power plant. An applied example is shown.

供用期間中検査内で炉内構造物芯計測を行うには、原子炉圧力容器上蓋(図示せず)を開放した後、原子炉ウェル4を満水にして蒸気乾燥器,汽水分離器,燃料,制御棒,制御棒案内管,燃料支持金具(いずれも図示せず)を遠隔で取外した状態で、原子炉建屋オペレーティングフロア5(以下、オペフロ)にある作業台車または燃料交換用台車6上から作業員がロープとフックを用い、ターゲット7をCRDハウジング孔2に遠隔で設置する。   In order to perform core measurement in the reactor during the service period, after opening the reactor pressure vessel top lid (not shown), the reactor well 4 is filled with water, a steam dryer, brackish water separator, fuel, Work from the work cart or refueling cart 6 on the reactor building operating floor 5 (hereinafter referred to as “operoflo”) with the control rod, control rod guide tube, and fuel support fittings (all not shown) removed remotely. An operator remotely installs the target 7 in the CRD housing hole 2 using a rope and a hook.

次に作業台車または燃料交換用台車6のクレーン8により下げ振り式芯計測装置9(以下、芯計測装置9と略す)を遠隔で原子炉炉内に吊り降して、ターゲット7が設置されたCRDハウジング孔2の真上の炉心支持板孔3−1に設置する。   Next, a swing-down core measuring device 9 (hereinafter abbreviated as core measuring device 9) is remotely suspended in the reactor by the work truck or the crane 8 of the refueling carriage 6, and the target 7 is installed. It is installed in the core support plate hole 3-1 immediately above the CRD housing hole 2.

この芯計測装置9にはケーブル10およびエアホース10が接続され、これらケーブル10およびエアホース10を通して芯計測装置9の機能に必要な電力および圧縮空気が供給される。   A cable 10 and an air hose 10 are connected to the core measuring device 9, and electric power and compressed air necessary for the function of the core measuring device 9 are supplied through the cable 10 and the air hose 10.

なお、芯計測装置9と接続されているこのケーブル10およびエアホース10はオペフロ5上に設置された遠隔操作盤11に接続されている。   The cable 10 and the air hose 10 connected to the lead measuring device 9 are connected to a remote operation panel 11 installed on the operation floor 5.

図2は図1の芯計測装置9およびターゲット7の詳細を示す図である。   FIG. 2 is a diagram showing details of the core measuring device 9 and the target 7 of FIG.

芯計測装置9は、調芯固定機構12,遠隔自動XY駆動機構13(以下、XYテーブル13と略す),下げ振りワイヤ14,遠隔自動ワイヤ長さ調整機構15(以下、ワイヤ長さ調整機構15と略す)から構成されている。また、芯計測装置9には分割式パイプ16が取り付いている。   The lead measuring device 9 includes a centering fixing mechanism 12, a remote automatic XY drive mechanism 13 (hereinafter abbreviated as an XY table 13), a downward swing wire 14, a remote automatic wire length adjustment mechanism 15 (hereinafter referred to as a wire length adjustment mechanism 15). For short). A split pipe 16 is attached to the lead measuring device 9.

図3に芯計測装置9の調芯固定機構12の説明図を示す。   FIG. 3 is an explanatory diagram of the alignment fixing mechanism 12 of the core measuring device 9.

調芯固定機構12は、芯計測装置9の下げ振りワイヤ14位置が炉心支持板孔3−1の中心位置となるように芯計測装置9平面位置を調芯し、炉心支持板孔3内径に固定するものである。   The centering fixing mechanism 12 aligns the planar position of the core measuring device 9 so that the position of the downward swing wire 14 of the core measuring device 9 is the center position of the core supporting plate hole 3-1, so that the core supporting plate hole 3 has an inner diameter. It is to be fixed.

操作ポール(図示しない)により調整用ボルト17を遠隔で回転させると、チェーン18に連動した3個のスプロケット19が同じ量回転する。各々スプロケット19の回転によりピン20を通じて3個の偏芯リング21が回転する。ピン20は偏芯リング21の中心から偏芯量22を有して取り付いている。偏芯リング21が回転すると出張り量23が生じ、炉心支持板孔3−1内径に対して3個の偏芯リング21で調芯するのと同時に固定される。この際、3個の偏芯リング21の出張り量23は同じ量になるように調整しておく。なお、調整用ボルト17の回転はトルク管理を行う。   When the adjusting bolt 17 is remotely rotated by an operation pole (not shown), the three sprockets 19 linked to the chain 18 rotate by the same amount. The three eccentric rings 21 are rotated through the pins 20 by the rotation of the sprockets 19. The pin 20 is attached with an eccentric amount 22 from the center of the eccentric ring 21. When the eccentric ring 21 rotates, a protruding amount 23 is generated, and is fixed at the same time as the three eccentric rings 21 are aligned with respect to the inner diameter of the core support plate hole 3-1. At this time, the protruding amount 23 of the three eccentric rings 21 is adjusted to be the same amount. The rotation of the adjusting bolt 17 performs torque management.

図4に芯計測装置9のXYテーブル13の説明図を示す。   FIG. 4 is an explanatory diagram of the XY table 13 of the lead measuring device 9.

XYテーブル13は下げ振りワイヤ14の平面位置(XY方向)を任意位置に遠隔移動させるものである。   The XY table 13 is used to remotely move the planar position (XY direction) of the swing wire 14 to an arbitrary position.

XYテーブル13はXテーブル24,Yテーブル25に分かれており、各々X方向レール26,Y方向レール27上を走行できる。   The XY table 13 is divided into an X table 24 and a Y table 25, and can run on an X direction rail 26 and a Y direction rail 27, respectively.

なお、Xテーブルには下げ振りワイヤ14を通したホルダ28が固定されている。   A holder 28 through which the swing-down wire 14 is passed is fixed to the X table.

Xテーブル24,Yテーブル25は電動モータ29によりボールネジ30を正転・反転方向に回転させることでXテーブル24およびYテーブル25がXレール26,Yレール27上の任意位置に遠隔移動する。   The X table 24 and the Y table 25 are remotely moved to arbitrary positions on the X rail 26 and the Y rail 27 by rotating the ball screw 30 in the forward and reverse directions by the electric motor 29.

この際、ボールネジ30を廻す電動モータ29の回転制御はオペフロ5に設置した遠隔操作盤11で行う。なお、XYテーブル13の移動量は、簡易表示器31と遠隔操作盤11に表示される。   At this time, rotation control of the electric motor 29 that rotates the ball screw 30 is performed by the remote operation panel 11 installed in the operation floor 5. The movement amount of the XY table 13 is displayed on the simple display 31 and the remote control panel 11.

図5に芯計測装置本体9のワイヤ長さ調整機構15の説明図を示す。   FIG. 5 is an explanatory diagram of the wire length adjusting mechanism 15 of the core measuring device main body 9.

電動モータ32の回転力をウォーム33およびウォームホイール34によりドラム回転力に変換してドラム35を回転させる。なお、電動モータ32は正転・反転方向回転が可能なため、ドラム35に巻かれた下げ振りワイヤ14は任意長さに遠隔調整することができる。   The rotating force of the electric motor 32 is converted into a drum rotating force by the worm 33 and the worm wheel 34 to rotate the drum 35. Since the electric motor 32 can rotate in the normal direction and the reverse direction, the downward swing wire 14 wound around the drum 35 can be remotely adjusted to an arbitrary length.

この際、ドラム35を廻す電動モータ32の回転制御はオペフロ5に設置した遠隔操作盤11で行う。なお、下げ振りワイヤ14長さは遠隔操作盤11に表示される。   At this time, the rotation control of the electric motor 32 that rotates the drum 35 is performed by the remote operation panel 11 installed in the operation floor 5. Note that the length of the swing-down wire 14 is displayed on the remote operation panel 11.

図6に芯計測装置9に取り付け可能な分割式パイプ16の説明図を示す。   FIG. 6 is an explanatory diagram of the split pipe 16 that can be attached to the lead measuring device 9.

分割式パイプ16は下げ振りワイヤ14の損傷防止および原子炉内流動による下げ振りワイヤ14の振れを防止するために、芯計測装置の炉心支持板孔3−1からCRDハウジング孔2上のターゲット7部の間(約4m間)で下げ振りワイヤ14を通した状態で取り付いている。   The split pipe 16 is used to prevent the swinging wire 14 from being damaged and to prevent the swinging wire 14 from swinging due to the flow in the reactor, from the core support plate hole 3-1 of the core measuring device to the target 7 on the CRD housing hole 2. It is attached in a state where the swinging wire 14 is passed between the parts (about 4 m).

分割式パイプ16は繋ぎ部36で分割可能な構造となっている。また、分割パイプ16下部には下げ振り固定用シャッター38が取り付いている。シャッター38はエアシリンダ39駆動により遠隔開閉が行え、芯計測装置9の炉内着脱作業時にはシャッター38を閉めて下げ振り37を固定する。これにより、下げ振りワイヤ14が万一破断しても、下げ振り37は分割パイプ16から脱落して原子炉内に落下することが無くなる。芯計測作業実施時はシャッター38を開き、ワイヤ長さ調整機構15によりターゲット7と下げ振り37先端間距離を芯計測が可能な距離に調整する。   The split pipe 16 has a structure that can be split at the connecting portion 36. Further, a lower swing fixing shutter 38 is attached to the lower part of the divided pipe 16. The shutter 38 can be remotely opened and closed by driving the air cylinder 39. When the lead measuring device 9 is attached to and detached from the furnace, the shutter 38 is closed and the lowering swing 37 is fixed. As a result, even if the lower swing wire 14 is broken, the lower swing 37 is not dropped from the split pipe 16 and dropped into the nuclear reactor. When the lead measurement operation is performed, the shutter 38 is opened, and the distance between the target 7 and the tip of the downward swing 37 is adjusted to a distance that allows lead measurement by the wire length adjusting mechanism 15.

また、分割パイプ下部には芯計測用水中カメラ40が2台、シャッター38監視用水中カメラ41が1台取り付いている。   Two core measuring underwater cameras 40 and one shutter 38 monitoring underwater camera 41 are attached to the lower part of the split pipe.

芯計測用水中カメラ40は下げ振り37先端とターゲットを直角2方向から撮影するもので、シャッター38監視用水中カメラ41は下げ振りシャッター38を監視するものであり、各々の映像はオペフロ5に設置された遠隔操作盤11のTVモニタで確認して芯計測を行う。   The underwater camera 40 for core measurement is for photographing the tip of the downward swing 37 and the target from two directions at right angles, and the underwater camera 41 for monitoring the shutter 38 is for monitoring the downward swing shutter 38, and each image is set in the operation floor 5. The lead is measured by checking with the TV monitor of the remote control panel 11 that has been made.

以上はCRDハウジング孔2を基準に炉心支持板孔3−1の芯計測を実施する際の作業手順について記載した例である。   The above is an example in which the work procedure when performing the core measurement of the core support plate hole 3-1 based on the CRD housing hole 2 is described.

なお、炉心支持板孔3−1を基準に上部格子板孔3−2の芯計測を行う際は、芯計測装置9の調芯固定機構12と上部格子板孔3−2用に取替え、ターゲットホール7を炉心支持板孔3−1用に取替えて行う。この際の作業手順は基本的に炉心支持板孔3−1の芯計測と同様となる。   When the core measurement of the upper lattice plate hole 3-2 is performed with reference to the core support plate hole 3-1, the core measurement device 9 is replaced with the alignment fixing mechanism 12 and the upper lattice plate hole 3-2. The hole 7 is replaced with the core support plate hole 3-1. The work procedure at this time is basically the same as the core measurement of the core support plate hole 3-1.

このように、ジェットポンプ3−3を含めた他の炉内構造物の芯計測にも応用できることを特徴としている。   Thus, it is characterized by being applicable to core measurement of other in-furnace structures including the jet pump 3-3.

図7に芯計測装置9をオペフロ5で調整架台41を用いて調整・機能確認試験時の説明図を示す。   FIG. 7 shows an explanatory diagram of an adjustment / function confirmation test using the adjustment stand 41 of the lead measuring device 9 in the operation 5.

芯計測装置9を原子炉圧力容器1に挿入して芯計測作業を行う前に芯計測装置各部位の調整・機能確認試験をオペフロ5で行う際は、分割式パイプ16を必要最小長さになるよう繋ぎ部36から外した状態で専用の調整架台42を用いて行うことができる。   Before the core measuring device 9 is inserted into the reactor pressure vessel 1 and the core measuring operation is performed, when the adjustment / function confirmation test of each part of the core measuring device is performed in the operating floor 5, the split pipe 16 is set to the minimum required length. It can be performed using the dedicated adjustment mount 42 in a state where it is removed from the connecting portion 36.

ここで、調整・機能確認試験とは、調芯固定機構12動作確認,XYテーブル13動作確認,ワイヤ長さ調整機構15動作確認,シャッター38動作確認,水中カメラ40映像確認等である。   Here, the adjustment / function confirmation test includes an operation confirmation of the alignment fixing mechanism 12, an operation confirmation of the XY table 13, an operation confirmation of the wire length adjustment mechanism 15, an operation confirmation of the shutter 38, and an underwater camera 40 image confirmation.

調整架台42は、炉心支持板孔模擬43,上部格子板孔模擬の取替が可能なため、双方の芯計測装置の調整・機能試験作業に共用できる。   Since the adjustment mount 42 can be replaced with the core support plate hole simulation 43 and the upper lattice plate hole simulation, it can be shared for adjustment and function test work of both core measuring devices.

なお、ターゲット7は簡易水槽44付きのXYテーブル45に設置する。   The target 7 is installed on an XY table 45 with a simple water tank 44.

簡易水槽44に水を張ることで、ターゲット7と下げ振り37先端および芯計測用水中カメラ40先端を実作業と同じ水中条件とすることができる。また、XYテーブル45によりターゲット7を任意位置に変更させて作業員の芯計測装置操作訓練にも使用できる。   By filling the simple water tank 44 with water, the target 7, the tip of the downward swing 37, and the tip of the underwater camera 40 for core measurement can be made under the same underwater conditions as the actual work. In addition, the target 7 can be changed to an arbitrary position by the XY table 45, and it can be used for the operator's core measuring device operation training.

以上に説明したように、本実施例によれば原子力発電プラントの供用期間中に炉内構造物の据付芯計測を行う際、下げ振り先端とターゲットの芯ずれ量を水中カメラで確認する簡易な方法であり、下げ振りは炉水温度のバラツキや高放射線量の影響を受けることなく必ず鉛直下を示すため、芯計測に熟練を必要とせず芯計測値の信頼性が高い。   As described above, according to the present embodiment, when measuring the centering of the in-furnace structure during the operation period of the nuclear power plant, it is easy to confirm the amount of misalignment between the tip of the swing-down and the target with the underwater camera. This is a method, and since the downward swing does not affect the temperature of the reactor water and is not affected by the high radiation dose, it always indicates the vertical direction, so that the core measurement value is highly reliable without requiring skill in core measurement.

また、ターゲットに下げ振り先端が示す芯ずれ量を水中カメラを介してTVモニタで確認し、XYテーブルの移動量で芯計測することから芯計測作業が迅速かつ容易である。   In addition, since the amount of misalignment indicated by the tip of the swinging down on the target is confirmed on the TV monitor via the underwater camera, and the lead is measured by the amount of movement of the XY table, the lead measuring operation is quick and easy.

なお、下げ振り式芯計測装置の分割式パイプは取外し式であり、遠隔自動ワイヤ長さ調整機構で下げ振りワイヤ長さを最小限できるため、装置の保管および調整・機能確認試験を容易に行うことができる。   The split-type pipe of the down-swing type core measuring device is a detachable type, and since the length of the down-swing wire can be minimized by the remote automatic wire length adjustment mechanism, the device can be stored, adjusted, and function-checked easily. be able to.

本発明による芯計測装置により、原子炉炉内構造物の芯計測をしている状態を示す説明図。Explanatory drawing which shows the state which is measuring the core of the reactor internal structure with the core measuring device by this invention. 芯計測装置の詳細構造を示す図。The figure which shows the detailed structure of a lead measuring apparatus. 芯計測装置の調芯固定機構の詳細を示す図。The figure which shows the detail of the alignment fixing mechanism of a core measuring device. 芯計測装置のXYテーブルの詳細を示す図。The figure which shows the detail of XY table of a core measuring apparatus. 芯計測装置の遠隔自動ワイヤ長さ調整機構の詳細を示す図。The figure which shows the detail of the remote automatic wire length adjustment mechanism of a lead measuring device. 芯計測装置に取り付く分割式パイプの詳細を示す図。The figure which shows the detail of the split-type pipe attached to a lead measuring device. 芯計測装置を調整架台により調整・機能確認作業をする際の説明図。Explanatory drawing at the time of adjusting and confirming a function of a lead measuring device by an adjustment stand.

符号の説明Explanation of symbols

1 原子炉圧力容器
2 CRDハウジング孔
3−1 炉心支持板孔
3−2 上部格子板孔
3−3 ジェットポンプ
4 原子炉ウェル
5 オペフロ
6 作業台車または燃料交換用台車
7 ターゲット
8 クレーン
9 芯計測装置
10 ケーブル,ホース
11 遠隔操作盤
12 調芯機構
13,45 XYテーブル
14 下げ振りワイヤ
15 遠隔自動ワイヤ長さ調整機構
16 分割式パイプ
17 調整用ボルト
18 チェーン
19 スプロケット
20 ピン
21 偏芯リング
22 偏芯量
23 出張り量
24 Xテーブル
25 Yテーブル
26 Xレール
27 Yレール
28 ホルダ
29 電動モータ
30 ボールネジ
31 簡易表示器
32 電動モータ
33 ウォーム
34 ウォームホイール
35 ドラム
36 繋ぎ目
37 下げ振り
38 シャッター
39 エアシリンダ
40 芯計測用水中カメラ
41 シャッター監視用水中カメラ
42 調整架台
43 炉心支持板孔模擬
44 簡易水槽
DESCRIPTION OF SYMBOLS 1 Reactor pressure vessel 2 CRD housing hole 3-1 Core support plate hole 3-2 Upper lattice plate hole 3-3 Jet pump 4 Reactor well 5 Operation floor 6 Work carriage or refueling carriage 7 Target 8 Crane 9 Core measuring device 10 Cable, hose 11 Remote operation panel 12 Alignment mechanism 13, 45 XY table 14 Lower swing wire 15 Remote automatic wire length adjustment mechanism 16 Split pipe 17 Adjustment bolt 18 Chain 19 Sprocket 20 Pin 21 Eccentric ring 22 Eccentric ring Amount 23 Projection amount 24 X table 25 Y table 26 X rail 27 Y rail 28 Holder 29 Electric motor 30 Ball screw 31 Simple display 32 Electric motor 33 Worm 34 Worm wheel
35 Drum 36 Joint 37 Lower swing 38 Shutter 39 Air cylinder 40 Underwater camera for core measurement 41 Underwater camera for shutter monitoring 42 Adjustment stand 43 Core support plate hole simulation 44 Simple water tank

Claims (10)

原子力発電プラントの炉内構造物点検または炉内構造物取替として炉内構造物の据付芯計測を行う原子炉炉内構造物の芯計測方法において、
芯計測の基準の炉内構造物にターゲットを取り付け、該芯計測を行う炉内構造物に下げ振り式芯計測装置を取り付け、下げ振り先端の初期位置からターゲット中心位置に移動して合わせる作業を水中カメラで確認し、該下げ振りワイヤを吊っているXYテーブルの移動量により炉内構造物の芯計測を行うことを特徴とする原子炉炉内構造物の芯計測方法。
In the core measurement method of a reactor internal structure that performs installation core measurement of the reactor internal structure as an inspection of the nuclear reactor internal structure or replacement of the reactor internal structure,
Attach the target to the core measurement standard in the furnace structure, attach the down swing type core measuring device to the core structure that performs the core measurement, and move from the initial position of the downward swing tip to the target center position. A core measurement method for a reactor internal structure, wherein the core measurement of the reactor internal structure is performed based on the amount of movement of an XY table on which the swing wire is suspended, which is confirmed by an underwater camera.
原子力発電プラントの供用期間中に実施する原子炉圧力容器内の炉内構造物点検または、炉内構造物取替として炉内構造物の据付芯計測を行う際、芯計測の基準の炉内構造物に遠隔でターゲットを取り付け、芯計測を行う炉内構造物に下げ振り式芯計測装置を遠隔で取り付けて下げ振り先端の初期位置からターゲット中心位置に移動して合わせる作業を水中カメラで遠隔目視確認して、下げ振りワイヤを吊っているXYテーブルの移動量により炉内構造物の芯計測を行うことを特徴とする原子炉炉内構造物の芯計測方法。   When checking the in-core structure in the reactor pressure vessel during the operation period of the nuclear power plant or replacing the in-core structure, the in-core structure used as the standard for core measurement Remotely attach the target to the object and remotely attach the swing-type core measuring device to the in-furnace structure that performs core measurement and move it from the initial position of the swing-down tip to the target center position with a remote camera A core measuring method for a reactor internal structure, characterized in that the core measurement of the reactor internal structure is performed based on the amount of movement of the XY table hanging the swinging wire. 原子力発電プラントの炉内構造物点検または炉内構造物取替として炉内構造物の据付芯計測を行う原子炉炉内構造物の芯計測装置において、
芯計測の基準であり、該炉内構造物に取り付けられたターゲットを備え、該芯計測を行う該炉内構造物に取り付けられた下げ振り式芯計測装置であって、下げ振り先端の初期位置から該ターゲット中心位置に移動して合わせる作業確認可能な水中カメラとを備えたことを特徴とする原子炉炉内構造物の芯計測装置。
In the core measuring device for the reactor internal structure that performs the installation core measurement of the internal structure of the nuclear power plant as the internal structure inspection or replacement of the internal structure of the nuclear power plant,
A standard for core measurement, comprising a target attached to the in-furnace structure, and a downward swing type core measuring device attached to the in-furnace structure for measuring the core, wherein the initial position of the tip of the downward swing A core measuring device for a reactor internal structure, comprising: an underwater camera capable of confirming an operation to move to a target center position from the target.
請求項3記載の芯計測装置において、下げ振り先端とターゲット位置を直角2方向から該水中カメラにて遠隔目視確認が可能なことを特徴とする芯計測装置。   4. The lead measuring device according to claim 3, wherein the tip of the downward swing and the target position can be remotely visually confirmed by the underwater camera from two directions at right angles. 請求項3又は請求項4記載の芯計測装置において、下げ振りワイヤ位置が炉内構造物の中心位置となる調芯固定機構を備えていることを特徴とする芯計測装置。   5. The lead measuring device according to claim 3, further comprising a centering fixing mechanism in which the position of the downward swing wire is the center position of the in-furnace structure. 請求項3乃至請求項5の何れかに記載の芯計測装置は、遠隔自動XY駆動機構により下げ振りワイヤの平面位置(XY方向)をターゲット中心位置または、任意の位置に遠隔移動した移動量とその移動量から芯ずれ量計算処理して表示することを特徴とする芯計測装置。   The lead measuring device according to any one of claims 3 to 5, wherein a distance is obtained by remotely moving the planar position (XY direction) of the swing wire to a target center position or an arbitrary position by a remote automatic XY drive mechanism. A center measuring apparatus, wherein the center misalignment amount is calculated from the amount of movement and displayed. 請求項3乃至請求項6の何れかに記載の芯計測装置は、下げ振りワイヤ長さを遠隔で任意に変えることが可能な遠隔自動ワイヤ長さ調整機構を備えていることを特徴とする芯計測装置。   The lead measuring device according to any one of claims 3 to 6, further comprising a remote automatic wire length adjusting mechanism capable of remotely changing arbitrarily the swinging wire length. Measuring device. 請求項3乃至請求項7の何れかに記載の芯計測装置は、分割式パイプ内径に下げ振りワイヤを通すことにより、下げ振りワイヤの損傷防止および下げ振りワイヤが原子炉内炉水流動の影響を受けない構造を特徴とする芯計測装置。   The core measuring device according to any one of claims 3 to 7, wherein the swinging wire is passed through the inner diameter of the split pipe, thereby preventing the swinging wire from being damaged and the swinging wire being affected by the reactor water flow. Core measuring device characterized by a structure that is not subject to damage. 請求項7記載の芯計測装置は、分割式パイプの最下端部に下げ振りを回収する機構と回収状況を監視する水中カメラを備えていることを特徴とする芯計測装置。   The lead measuring device according to claim 7, further comprising a mechanism for collecting the swing-down swing and an underwater camera for monitoring the collecting state at the lowermost end portion of the split pipe. 請求項3乃至請求項7の何れかに記載の芯計測装置は、分割式パイプを取り外した短尺状態の芯計測装置で、下げ振り中心位置および調芯固定機構と遠隔自動XY駆動機構および遠隔自動ワイヤ長さ調整機構の調整を調整架台により可能にしたことを特徴とする芯計測装置。   The lead measuring device according to any one of claims 3 to 7, wherein the lead measuring device is a short lead measuring device from which the split-type pipe is removed. A lead measuring device characterized in that adjustment of the wire length adjusting mechanism is made possible by an adjusting stand.
JP2008252138A 2008-09-30 2008-09-30 Method and device for measuring center of in-pile structure in reactor Pending JP2010085141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252138A JP2010085141A (en) 2008-09-30 2008-09-30 Method and device for measuring center of in-pile structure in reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252138A JP2010085141A (en) 2008-09-30 2008-09-30 Method and device for measuring center of in-pile structure in reactor

Publications (1)

Publication Number Publication Date
JP2010085141A true JP2010085141A (en) 2010-04-15

Family

ID=42249254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252138A Pending JP2010085141A (en) 2008-09-30 2008-09-30 Method and device for measuring center of in-pile structure in reactor

Country Status (1)

Country Link
JP (1) JP2010085141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806272A (en) * 2018-08-06 2020-02-18 宁波方太厨具有限公司 Power strip temperature rise testing arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110806272A (en) * 2018-08-06 2020-02-18 宁波方太厨具有限公司 Power strip temperature rise testing arrangement
CN110806272B (en) * 2018-08-06 2022-03-18 宁波方太厨具有限公司 Power strip temperature rise testing arrangement

Similar Documents

Publication Publication Date Title
CN101855677B (en) Device for inspecting a fuel rod assembly in the pool of a nuclear plant and corresponding inspection method
TWI697013B (en) Positioning apparatus for use in shutdown nuclear reactor and method of inspecting shutdown nuclear reactor with apparatus
JP6341733B2 (en) Internal inspection device and internal inspection method for horizontal axis pump
KR200472414Y1 (en) Radiographic apparatus of vertical welding department
JPH0755987A (en) Incore inspection-repair device for reactor
KR20080012031A (en) Apparatuf for the inspection of nuclear reactor internal with naked eye
JP2010085141A (en) Method and device for measuring center of in-pile structure in reactor
CN208248468U (en) A kind of robot system detected under water for bridge pier
WO2014119523A1 (en) Apparatus and method for installing reactor repairing device
JP2010175322A (en) Water level follow-up temperature sensor
US9748005B2 (en) Apparatus and method to inspect nuclear reactor components in the core annulus, core spray and feedwater sparger regions in a nuclear reactor
KR101787409B1 (en) Inspection apparatus for interior structure of a calandria with no connectors
JP2007155402A (en) Device for inspecting reactor core internal structure
KR102305327B1 (en) Crane remote telescope servo manipulator system
KR101044055B1 (en) System for inspecting motor
JP2543999B2 (en) Alignment device for accurately determining top position of control rod drive housing, method for measuring vertical alignment, weld repair device, and method for welding control rod drive mechanism housing to stub tube underwater
JP4439404B2 (en) Installation core position measuring device
JP7198715B2 (en) Fuel loading work support system
JP5901281B2 (en) Underwater hole measuring device and underwater reracing method using the device
JP6315605B2 (en) Structure shooting system
KR101776104B1 (en) Lifting apparatus for an inspector of an interior structure of a calandria
KR101776106B1 (en) Falling preventing apparatus of a calandria inspector
JPS6336195A (en) Method of replacing construction of reactor internal structure
CN201886791U (en) Special positioning tool for welding seam radiological examination of sealed end connecting pipe arranged on nuclear power station voltage stabilizer
CN217444080U (en) Fuel single-rod inspection device