JP2010084714A - Intake device for multi-cylinder internal combustion engine - Google Patents

Intake device for multi-cylinder internal combustion engine Download PDF

Info

Publication number
JP2010084714A
JP2010084714A JP2008256871A JP2008256871A JP2010084714A JP 2010084714 A JP2010084714 A JP 2010084714A JP 2008256871 A JP2008256871 A JP 2008256871A JP 2008256871 A JP2008256871 A JP 2008256871A JP 2010084714 A JP2010084714 A JP 2010084714A
Authority
JP
Japan
Prior art keywords
intake
intake air
chamber
wall
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256871A
Other languages
Japanese (ja)
Other versions
JP4950976B2 (en
Inventor
Toshiyuki Ikeuchi
俊行 池内
Onya Kitano
温也 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008256871A priority Critical patent/JP4950976B2/en
Publication of JP2010084714A publication Critical patent/JP2010084714A/en
Application granted granted Critical
Publication of JP4950976B2 publication Critical patent/JP4950976B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Characterised By The Charging Evacuation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit enlargement and weight increase of an intake device provided with a negative pressure chamber and efficiently accumulate negative pressure while enabling increase of volume of the negative pressure chamber in which intake negative pressure is accumulated in an intake device for a multi-cylinder internal combustion engine. <P>SOLUTION: A plurality of intake air branch passages 50 for an intake device 10 includes inlets 50i opening to an expansion chamber 32 of an intake air collecting chamber 30 and arranged in a row in an arrangement direction. A collecting chamber wall 21 forming an intake air collecting chamber 30 includes a first and a second end wall 24, 25 opposing in a first direction A1. An upstream end pipe wall 43 forming the inlets 50i projects toward the second side wall 25 from the first side wall 24 in the first direction A1. A communication port 68a of a communication passage 68 communicating to a resonator chamber 62 is positioned closer to the first side wall 24 than the inlets 50i in the first direction A1. Intake air flowing in from the intake air introduction passage 31 flows into the inlets 50i after flowing in the arrangement direction A0 at a section closer to the second side wall 25 than the inlets 50i in the first direction A1 in the expansion chamber 32. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、吸入空気を複数のシリンダに導くための吸気集合室および該吸気集合室から分岐する複数の吸気分岐通路が設けられた多気筒内燃機関の吸気装置に関し、詳細には、吸気集合通路に連通するレゾネータ室が設けられた吸気装置に関する。   The present invention relates to an intake device for a multi-cylinder internal combustion engine provided with an intake manifold chamber for guiding intake air to a plurality of cylinders and a plurality of intake branch passages branched from the intake manifold chamber. The present invention relates to an intake device provided with a resonator chamber that communicates with.

内燃機関の吸気装置において、吸入空気の脈動圧に基づく共鳴を利用するレゾネータは、特定の機関回転速度付近における体積効率を向上させて機関トルクを増大させるため、または、特定周波数付近における吸気騒音の低減のために設けられる。
このようなレゾネータとして、吸入空気が流入する吸気導入通路31を有する吸気集合室と、複数のシリンダにそれぞれ形成された燃焼空間と吸気集合室とをそれぞれ連通させる複数の吸気分岐通路とが設けられた多気筒内燃機関の吸気装置において、レゾネータのレゾネータ室が連通路を通じて吸気集合室に連通するものが知られている。(例えば、特許文献1参照)
特開2003−74428号公報
In an intake device of an internal combustion engine, a resonator that uses resonance based on the pulsation pressure of intake air is intended to increase volumetric efficiency near a specific engine rotation speed to increase engine torque, or to reduce intake noise near a specific frequency. Provided for reduction.
As such a resonator, an intake air collection chamber having an intake air introduction passage 31 into which intake air flows, and a plurality of intake branch passages that respectively connect the combustion spaces formed in the plurality of cylinders and the intake air collection chamber are provided. In the multi-cylinder internal combustion engine, the resonator chamber of the resonator communicates with the intake manifold through the communication path. (For example, see Patent Document 1)
JP 2003-74428 A

吸気装置の吸気集合室に開口する複数の吸気分岐通路の入口が配列方向に並んで配置され、該吸気集合室にレゾネータ室に通通する連通路が開口する多気筒内燃機関においては、レゾネータによる共鳴が発生する運転領域(以下、「共鳴運転領域」という。)以外の運転領域で、空気導入通路から吸気集合室に流入した吸入空気の一部が、連通路に局部的に流入すること、または連通路を通じてレゾネータ室に流入することがある。そのような場合には、吸気集合室から各吸気分岐通路に向かう吸入空気の流れに乱れが発生して、機関トルクが低下する。
そこで、レゾネータの連通路が吸気集合室に開口することに起因する吸気集合室での吸入空気の流れの前述の乱れの発生を抑制するために、複数の吸気分岐通路の入口の配列方向での連通路の開口位置を、該吸気集合室を形成する集合室壁において、所定方向で、吸気導入通路が設けられる端壁とは反対側の端壁付近にすることが考えられる。しかしながら、この場合には、レゾネータ室の配置の自由度が小さくなるうえ、吸入空気の流量(以下、「吸気量」という。)が多く、かつ機関回転速度が高い運転領域である最大出力運転領域付近で、空気導入通路から吸気集合室に流入した吸入空気の慣性が大きいことに起因して、該吸入空気の一部が集合室壁の前記反対側の端壁に当たって偏向され、該偏向された吸入空気の一部が連通路に局部的に入り込むことや、連通路を通じてレゾネータ室にまで流入することがある。このように連通路があるために、吸気集合室から吸気分岐通路に流入する吸入空気の流れに乱れが発生して、吸気分岐通路に流入する吸入空気の流量が減少し、体積効率が低下するので、最大出力運転領域付近での機関トルクが低下し、したがって機関出力が低下する。
In a multi-cylinder internal combustion engine in which the inlets of a plurality of intake branch passages that open to the intake manifold of the intake device are arranged side by side in the arrangement direction, and the communication passage that communicates with the resonator chamber opens in the intake manifold, resonance by the resonator A part of the intake air that has flowed from the air introduction passage into the intake manifold in the operation region other than the operation region (hereinafter referred to as “resonance operation region”), It may flow into the resonator chamber through the communication path. In such a case, turbulence occurs in the flow of intake air from the intake manifold to each intake branch passage, and the engine torque decreases.
Therefore, in order to suppress the occurrence of the above-described turbulence of the intake air flow in the intake air collecting chamber due to the communication passage of the resonator opening to the intake air collecting chamber, in the arrangement direction of the inlets of the plurality of intake branch passages It is conceivable that the opening position of the communication passage is in the vicinity of the end wall opposite to the end wall where the intake introduction passage is provided in a predetermined direction on the collecting chamber wall forming the intake collecting chamber. However, in this case, the degree of freedom of arrangement of the resonator chamber is reduced, the intake air flow rate (hereinafter referred to as “intake amount”) is large, and the maximum output operation region where the engine rotational speed is high. In the vicinity, due to the large inertia of the intake air flowing into the intake air collecting passage from the air introduction passage, a part of the intake air is deflected against the opposite end wall of the collecting chamber wall, and the deflected Part of the intake air may enter the communication path locally or may flow into the resonator chamber through the communication path. Since there is such a communication path, the flow of the intake air flowing into the intake branch passage from the intake manifold is disturbed, the flow rate of the intake air flowing into the intake branch path is reduced, and the volume efficiency is lowered. As a result, the engine torque in the vicinity of the maximum output operation region decreases, and therefore the engine output decreases.

本発明は、このような事情に鑑みてなされたものであり、請求項1〜6記載の発明は、多気筒内燃機関の吸気装置において、レゾネータ室と吸気集合室とを連通させる連通路に起因する吸気集合室内での吸入空気の流れの乱れの発生を抑制することにより、体積効率の向上を図ること、および、レゾネータ室が設けられるレゾネータの配置の自由度を大きくすることを目的とする。   The present invention has been made in view of such circumstances, and the invention according to claims 1 to 6 is attributed to a communication path that communicates the resonator chamber and the intake manifold in the intake device of the multi-cylinder internal combustion engine. An object of the present invention is to improve volumetric efficiency by suppressing the occurrence of disturbance in the flow of intake air in the intake air collecting chamber and to increase the degree of freedom in arranging the resonators in which the resonator chambers are provided.

請求項1記載の発明は、吸入空気が流入する吸気導入通路(31)を有する吸気集合室(30)と、複数である所定数のシリンダ(C)にそれぞれ形成された前記所定数の燃焼空間(3)と前記吸気集合室(30)とをそれぞれ連通させる前記所定数の吸気分岐通路(50)と、前記吸気集合室(30)に連通路(67,68)を通じて連通するレゾネータ室(62)とが設けられた多気筒内燃機関の吸気装置において、前記各吸気分岐通路(50)は、前記吸気集合室(30)に開口する入口(50i)を有し、前記各入口(50i)は、前記各吸気分岐通路(50)を形成する通路壁(42)の上流端通路壁(43)により形成され、前記所定数の前記入口(50i)は、配列方向(A0)に並んで配置され、前記吸気集合室(30)を形成する集合室壁(21)は、前記配列方向(A0)に直交する直交平面(P)上の第1方向(A1)で離隔すると共に前記第1方向(A1)で対向する第1側壁(24)および第2側壁(25)を有し、前記所定数の前記上流端通路壁(43)が、前記吸気集合室(30)内において、前記第1方向A1で前記第1側壁(24)から前記第2側壁(25)に向かって突出していると共に、前記配列方向(A0)に並んで配置され、前記所定数の前記入口(50i)は、前記第1方向(A1)で前記第2側壁(25)に向かって開口し、前記連通路(67,68)の、前記吸気集合室(30)に開口する連通口(67a,68a)は、前記第1方向(A1)で前記各入口(50i)よりも前記第1側壁(24)寄りに位置し、前記吸気導入通路(31)から流入した吸入空気は、前記吸気集合室(30)内において前記第1方向(A1)で前記各入口(50i)よりも前記第2側壁(25)寄りを前記配列方向(A0)に流れた後に前記各入口(50i)に流入する多気筒内燃機関の吸気装置である。
請求項2記載の発明は、請求項1記載の多気筒内燃機関の吸気装置において、前記吸気導入通路(31)は、前記配列方向(A0)に延びており、前記直交平面(P)での前記吸気導入通路(31)の通路断面を前記配列方向(A0)に平行に延長した仮想延長通路(H)は、前記第1方向(A1)で、前記各入口(50i)よりも前記第2側壁(25)寄りに位置するものである。
請求項3記載の発明は、請求項1または2記載の多気筒内燃機関の吸気装置において、前記集合室壁(21)は、前記配列方向(A0)で対向する前記第1端壁(22)および前記第2端壁(23)を有し、前記第1端壁(22)は吸気導入通路(31)を形成し、前記集合室壁(21)は、前記吸気導入通路(31)から流入した吸入空気が、前記第1方向(A1)で前記第2側壁(25)との間で前記第2端壁(23)に向かって前記配列方向(A0)に流れるように案内する整流壁(28)を有し、前記整流壁(28)に、前記各入口(50i)が開口するものである。
請求項4記載の発明は、請求項1から3のいずれか1項記載の多気筒内燃機関の吸気装置において、前記連通路(67,68)は、前記吸気集合室(30)に常時連通する第1連通路(67)と、機関運転状態に応じて開閉される開閉弁(70)が設けられた第2連通路(68)であり、前記連通口(67a,,68a)は、前記第1連通路(67)の第1連通口(67a)と、前記第2連通路(68)の第2連通口(68a)であり、前記配列方向(A0)で、前記第2連通口(68a)は前記第1連通口(67a)よりも前記吸気導入通路(31)から遠い位置にあるものである。
請求項5記載の発明は、請求項1から4のいずれか1項記載の多気筒内燃機関の吸気装置において、前記各上流端通路壁(43)は管状の壁であり、前記直交平面(P)上で前記第1方向(A1)に直交する第2方向(A2)から見て、前記連通口(67a,68a)の過半は、少なくとも1つの前記上流端通路壁(43A,43B)と重なる位置にあるか、または前記配列方向(A0)で隣接する前記上流端通路壁(43)同士の間に位置するものである。
請求項6記載の発明は、吸入空気が流入する吸気導入通路(31)を有する吸気集合室(30)と、複数である所定数のシリンダ(C)にそれぞれ形成された前記所定数の燃焼空間(3)と前記吸気集合室(30)とをそれぞれ連通させる前記所定数の吸気分岐通路(50)と、前記吸気集合室(30)に連通路(67,68)を通じて連通するレゾネータ室(62)とが設けられた多気筒内燃機関の吸気装置において、前記吸気集合室(30)は、前記吸気導入通路(31)からの吸入空気が流入する主室(32a)と、空隙(33)を形成する仕切壁(28)により前記主室(32a)から部分的に仕切られる副室(32b)とから構成され、前記主室(32a)と前記副室(32b)との間では、前記空隙(33)を通じて前記吸気導入通路(31)から前記主室(32a)に流入した吸入空気の出入りが可能であり、前記主室(32a)には、前記各吸気分岐通路(50)の入口(50i)が開口し、前記副室(32b)には、前記連通路(67,68)の連通口(67a,,68a)が開口する多気筒内燃機関の吸気装置である。
According to the first aspect of the present invention, the predetermined number of combustion spaces respectively formed in an intake air collecting chamber (30) having an intake air introduction passage (31) into which intake air flows and a plurality of predetermined number of cylinders (C). (3) and the predetermined number of intake branch passages (50) communicating with the intake manifold (30), respectively, and a resonator chamber (62) communicating with the intake manifold (30) through the communication passages (67, 68). ) In the multi-cylinder internal combustion engine, each intake branch passage (50) has an inlet (50i) that opens to the intake manifold (30), and each inlet (50i) The upstream end passage wall (43) of the passage wall (42) forming each intake branch passage (50), and the predetermined number of the inlets (50i) are arranged in the arrangement direction (A0). The collecting chamber wall (21) forming the intake collecting chamber (30) has the arrangement direction (A0) The first side wall (24) and the second side wall (25) are spaced apart in the first direction (A1) on the orthogonal plane (P) orthogonal to each other and opposed in the first direction (A1). The upstream end passage wall (43) projects from the first side wall (24) toward the second side wall (25) in the first direction A1 in the intake air collecting chamber (30), and Arranged in the arrangement direction (A0), the predetermined number of the inlets (50i) open toward the second side wall (25) in the first direction (A1), and the communication passages (67, 68). ), The communication ports (67a, 68a) that open to the intake manifold (30) are located closer to the first side wall (24) than the respective inlets (50i) in the first direction (A1), The intake air that has flowed in from the intake air introduction passage (31) flows in the first direction (A1) in the intake air collecting chamber (30). Wherein said second side wall (25) nearer the mouth (50i) After flowing to the arrangement direction (A0) is the intake system for a multi-cylinder internal combustion engine flowing into each inlet (50i).
According to a second aspect of the present invention, in the intake system for a multi-cylinder internal combustion engine according to the first aspect, the intake air introduction passage (31) extends in the arrangement direction (A0), and is arranged in the orthogonal plane (P). A virtual extension passage (H) obtained by extending a passage cross section of the intake introduction passage (31) in parallel with the arrangement direction (A0) is the second direction than the respective inlets (50i) in the first direction (A1). It is located near the side wall (25).
According to a third aspect of the present invention, in the intake device for a multi-cylinder internal combustion engine according to the first or second aspect, the collecting chamber wall (21) is the first end wall (22) facing in the arrangement direction (A0). And the second end wall (23), the first end wall (22) forms an intake introduction passage (31), and the collecting chamber wall (21) flows from the intake introduction passage (31). The rectifying wall that guides the sucked air to flow in the arrangement direction (A0) toward the second end wall (23) with the second side wall (25) in the first direction (A1). 28), and each of the inlets (50i) opens in the rectifying wall (28).
According to a fourth aspect of the present invention, in the intake system for a multi-cylinder internal combustion engine according to any one of the first to third aspects, the communication passage (67, 68) is always in communication with the intake manifold (30). A first communication path (67) and a second communication path (68) provided with an on-off valve (70) that is opened and closed according to the engine operating state, and the communication ports (67a, 68a) A first communication port (67a) of the first communication channel (67) and a second communication port (68a) of the second communication channel (68), and the second communication port (68a) in the arrangement direction (A0). ) Is located farther from the intake air introduction passage (31) than the first communication port (67a).
According to a fifth aspect of the present invention, in the intake device for a multi-cylinder internal combustion engine according to any one of the first to fourth aspects, each upstream end passage wall (43) is a tubular wall, and the orthogonal plane (P ) When viewed from the second direction (A2) orthogonal to the first direction (A1) above, a majority of the communication ports (67a, 68a) overlap with at least one upstream end passage wall (43A, 43B). It is located between the upstream end passage walls (43) adjacent to each other in the arrangement direction (A0).
According to the sixth aspect of the present invention, the predetermined number of combustion spaces respectively formed in the intake air collecting chamber (30) having the intake air introduction passage (31) into which the intake air flows and a plurality of predetermined number of cylinders (C). (3) and the predetermined number of intake branch passages (50) communicating with the intake manifold (30), respectively, and a resonator chamber (62) communicating with the intake manifold (30) through the communication passages (67, 68). ) In the multi-cylinder internal combustion engine, the intake air collecting chamber (30) includes a main chamber (32a) into which intake air from the intake air introduction passage (31) flows and a gap (33). A sub-chamber (32b) partially partitioned from the main chamber (32a) by a partition wall (28) to be formed, and the gap between the main chamber (32a) and the sub-chamber (32b) Intake air flowing into the main chamber (32a) from the intake introduction passage (31) through (33) The inlet (50i) of each intake branch passage (50) is opened in the main chamber (32a), and the communication passage (67, 68) is opened in the sub chamber (32b). This is an intake device for a multi-cylinder internal combustion engine in which the communication ports (67a, 68a) are opened.

請求項1記載の発明によれば、吸気集合室内で配列方向に並んで配置された各吸気分岐通路の入口は、第1方向で集合室壁の第1側壁から集合室壁の第2側壁に向かって突出する上流端通路壁により形成されるので、第1方向で対向する第1,第2側壁の間で、第1側壁から第2側壁に向かって離隔した位置にある。そして、各入口に対して、吸気導入通路から流入した吸入空気は、第1方向で入口よりも第2側壁寄りを入口の配列方向に流れる一方で、吸気集合室とレゾネータ室とを連通する連通路の、吸気集合室での連通口は、第1方向で各入口よりも第1側壁寄りに位置するので、共鳴運転領域以外での運転領域において吸入空気の一部が連通口を通じてレゾネータ室に流入することが抑制される。この結果、吸気集合室に開口する連通口に起因する吸気集合室での吸入空気の流れの乱れの発生が抑制されることにより、吸入空気が吸気集合室から各吸気分岐通路に円滑に流入するので、体積効率が向上して、機関トルクが増加し、ひいては機関出力が増加する。
また、吸気集合室での連通口の開口位置は、第1方向で各入口よりも第1側壁寄りである条件で、配列方向の任意の位置に設定できる。この結果、吸気集合室において、配列方向での連通口の配置の自由度が大きくなり、ひいては連通路およびレゾネータ室の配置の自由度が大きくなるので、レゾネータの配置の自由度が大きくなる。
請求項2記載の事項によれば、仮想延長通路Hが、第1方向で各入口よりも第2側壁寄りに位置するので、吸気集合室内で吸気導入通路から流入した吸入空気が大きな偏向を伴うことなく第2側壁寄りを流れる。この結果、吸気集合室内での吸入空気の流量損失が減少して、体積効率が向上し、したがって機関トルクが増加する。
請求項3記載の事項によれば、吸気集合室内で吸気導入通路から流入した吸入空気は、各入口が開口している整流壁により案内されて第2側壁寄りを流れるので、連通口による吸入空気の流れの乱れの発生が一層抑制されて、体積効率が向上する。
請求項4記載の事項によれば、吸気集合室に開口する第1,第2連通口のうちで、開閉弁により開閉される第2連通路が有する第2連通口は、配列方向で、常時連通している第1連通路が有する第1連通口よりも吸気導入通路から遠い位置にあるので、開閉弁が配列方向で第2連通口よりも吸気導入通路から遠方に位置する入口に流入する吸入空気の流れを乱すことが抑制される。この結果、開閉弁が設けられた連通路が開口する吸気集合室において、所定数の吸気分岐通路のうちで、開閉弁に起因して発生する吸入空気の流れの乱れにより、吸気集合室から吸気分岐通路に流入する吸入空気の流量が低下する吸気分岐通路の数を少なくすることができるので、体積効率が向上する。
請求項5記載の事項によれば、吸気集合室に開口する連通口の過半が、第1方向で入口よりも第1側壁寄りに位置するので、連通口に起因する吸入空気の流れの乱れを抑制することができて、体積効率が向上する。
請求項6記載の発明によれば、吸気集合室が仕切壁により仕切られて形成された主室および副室において、吸気集合室に開口する各吸気分岐通路の入口は、吸気導入通路からの吸入空気が流入する主室に開口する一方、吸気集合室とレゾネータ室とを連通する連通路の、吸気集合室での連通口は、仕切壁により形成された空隙を通じて吸気導入通路から主室に流入した吸入空気の出入りが可能な副室に開口するので、主室と副室との間に位置する仕切壁により、共鳴運転領域以外での運転領域において吸入空気の一部が連通口を通じてレゾネータ室に流入することが抑制される。この結果、吸気集合室に開口する連通口に起因する吸気集合室での吸入空気の流れの乱れの発生が抑制されることにより、吸入空気が吸気集合室から各吸気分岐通路に円滑に流入するので、体積効率が向上して、機関トルクが増加し、ひいては機関出力が増加する。
また、吸気集合室での連通口の開口位置は、副室が形成されている範囲で任意の位置に設定できる。この結果、吸気集合室において、連通口の配置の自由度が大きくなり、ひいては連通路およびレゾネータ室の配置の自由度が大きくなるので、レゾネータの配置の自由度が大きくなる。
According to the first aspect of the present invention, the inlets of the intake branch passages arranged side by side in the arrangement direction in the intake air collecting chamber are in the first direction from the first side wall of the collecting chamber wall to the second side wall of the collecting chamber wall. Since it is formed by the upstream end passage wall projecting toward the first side wall, the first side wall and the second side wall facing each other in the first direction are spaced from the first side wall toward the second side wall. The intake air that has flowed in from the intake air introduction passage to each inlet flows in the first direction closer to the second side wall than the inlet in the inlet arrangement direction, while communicating between the intake air collecting chamber and the resonator chamber. Since the communication port of the passage in the intake manifold is located closer to the first side wall than the respective inlets in the first direction, a part of the intake air passes into the resonator chamber through the communication port in the operation region other than the resonance operation region. Inflow is suppressed. As a result, the occurrence of turbulence in the flow of intake air in the intake manifold caused by the communication opening that opens to the intake manifold is suppressed, so that the intake air flows smoothly from the intake manifold into each intake branch passage. Therefore, the volume efficiency is improved, the engine torque is increased, and the engine output is increased.
Further, the opening position of the communication port in the intake air collecting chamber can be set at an arbitrary position in the arrangement direction under the condition that it is closer to the first side wall than the respective inlets in the first direction. As a result, in the intake air collecting chamber, the degree of freedom of arrangement of the communication ports in the arrangement direction is increased, and as a result, the degree of freedom of arrangement of the communication passage and the resonator chamber is increased, so that the degree of freedom of arrangement of the resonators is increased.
According to the second aspect, since the virtual extension passage H is located closer to the second side wall than the respective inlets in the first direction, the intake air flowing from the intake introduction passage in the intake air collecting chamber is largely deflected. It flows near the second side wall without. As a result, the flow loss of the intake air in the intake air collecting chamber is reduced, the volumetric efficiency is improved, and therefore the engine torque is increased.
According to the third aspect of the present invention, since the intake air that has flowed from the intake air introduction passage in the intake air collection chamber is guided by the rectifying walls that are open at the respective inlets and flows closer to the second side wall, The occurrence of turbulence in the flow is further suppressed, and the volumetric efficiency is improved.
According to the fourth aspect of the invention, the first communication port that is opened and closed by the on / off valve among the first and second communication ports that open to the intake air collecting chamber has the second communication port that is always in the arrangement direction. Since the first communication passage of the first communication passage is in a position farther from the intake introduction passage, the on-off valve flows into the inlet located farther from the intake introduction passage than the second communication port in the arrangement direction. Disturbing the flow of intake air is suppressed. As a result, in the intake air collecting chamber in which the communication passage provided with the open / close valve is opened, the intake air from the intake air collective chamber is disturbed by the disturbance of the intake air flow caused by the open / close valve in the predetermined number of intake branch passages. Since the number of intake branch passages in which the flow rate of intake air flowing into the branch passages can be reduced, volumetric efficiency is improved.
According to the fifth aspect of the present invention, since the majority of the communication ports that open to the intake air collecting chamber are located closer to the first side wall than the inlet in the first direction, the disturbance of the flow of intake air caused by the communication ports is prevented. It can suppress and volume efficiency improves.
According to the sixth aspect of the present invention, in the main chamber and the sub chamber formed by dividing the intake air collecting chamber by the partition wall, the inlet of each intake branch passage opening to the intake air collecting chamber is the intake from the intake air introduction passage. While communicating with the intake chamber and the resonator chamber, the communication port in the intake chamber opens to the main chamber through which air flows, and flows into the main chamber from the intake passage through the gap formed by the partition wall. Since the intake air is opened to the sub chamber where the intake air can enter and exit, the partition wall located between the main chamber and the sub chamber allows a part of the intake air to pass through the communication port in the operation region other than the resonance operation region. It is suppressed that it flows into. As a result, the occurrence of turbulence in the flow of intake air in the intake manifold caused by the communication opening that opens to the intake manifold is suppressed, so that the intake air flows smoothly from the intake manifold into each intake branch passage. Therefore, the volume efficiency is improved, the engine torque is increased, and the engine output is increased.
Further, the opening position of the communication port in the intake air collecting chamber can be set to an arbitrary position within the range where the sub chamber is formed. As a result, in the intake air collecting chamber, the degree of freedom of arrangement of the communication ports is increased, and as a result, the degree of freedom of arrangement of the communication passage and the resonator chamber is increased, so that the degree of freedom of arrangement of the resonators is increased.

以下、本発明の実施形態を図1〜図4を参照して説明する。
図1を参照すると、本発明が適用された吸気装置10は、車両に搭載される多気筒内燃機関Eに備えられる。火花点火式の4ストローク内燃機関である内燃機関Eは、複数である所定数のシリンダC、この実施形態では4つのシリンダCを有するシリンダブロック1と該シリンダブロック1に結合されたシリンダヘッド2とから構成される機関本体を備え、吸気装置10はシリンダヘッド2に接続される。各シリンダCにはピストンが往復運動可能に嵌合し、該各ピストンは、前記機関本体に回転可能に支持されたクランク軸に、コンロッドを介して連結される。
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
Referring to FIG. 1, an intake device 10 to which the present invention is applied is provided in a multi-cylinder internal combustion engine E mounted on a vehicle. An internal combustion engine E, which is a spark ignition type four-stroke internal combustion engine, includes a predetermined number of cylinders C, a cylinder block 1 having four cylinders C in this embodiment, and a cylinder head 2 coupled to the cylinder block 1. The intake device 10 is connected to the cylinder head 2. A piston is fitted in each cylinder C so as to be able to reciprocate, and each piston is connected to a crankshaft rotatably supported by the engine body via a connecting rod.

各シリンダCおよびシリンダヘッド2は、シリンダヘッド2と前記ピストンとの間に、吸気装置10により形成される吸気通路(以下、単に「吸気通路」という。)を通じて導かれる吸入空気と燃料供給手段である燃料噴射弁により供給される燃料とが混合して形成された混合気が燃焼する燃焼空間3を形成する。各燃焼空間3で発生した燃焼ガスは、前記ピストンを駆動した後、排気ガスとして、シリンダヘッド2に形成された排気ポート5を経て該シリンダヘッド2に接続された排気装置の排気通路を通じて内燃機関Eの外部に排出される。そして、この燃焼ガスにより駆動されて往復運動する前記ピストンは前記クランク軸を回転駆動する。   Each cylinder C and cylinder head 2 is an intake air and fuel supply means guided through an intake passage (hereinafter simply referred to as “intake passage”) formed by the intake device 10 between the cylinder head 2 and the piston. A combustion space 3 is formed in which an air-fuel mixture formed by mixing with fuel supplied by a certain fuel injection valve burns. The combustion gas generated in each combustion space 3 drives the piston, and then serves as exhaust gas through the exhaust port 5 formed in the cylinder head 2 through the exhaust passage of the exhaust device connected to the cylinder head 2. E is discharged to the outside. The piston driven by the combustion gas and reciprocatingly drives the crankshaft.

外気を吸入空気として取り入れる吸気装置10は、吸入空気を清浄にする濾過部材が配置されたエアクリーナ室11aを形成するエアクリーナ11と、上流端部12aでエアクリーナ11に接続管を介して接続されると共に下流端部であるフランジ部12bでシリンダヘッド2に接続される吸気マニホルド12とを備える。
なお、上流および下流は、特に断らない限り、吸入空気の流れに関してのものである。
An intake device 10 that takes in outside air as intake air is connected to an air cleaner 11 that forms an air cleaner chamber 11a in which a filtering member that cleans the intake air is disposed, and is connected to the air cleaner 11 at the upstream end 12a via a connecting pipe. And an intake manifold 12 connected to the cylinder head 2 at a flange portion 12b which is a downstream end portion.
The upstream and downstream are related to the flow of intake air unless otherwise specified.

併せて図2,図3を参照するとアルミニウム合金製の吸気マニホルド12は、エアクリーナ11からの吸入空気が流入する吸気集合室30を形成する吸気集合部20と、吸気集合室30と前記所定数のシリンダCにそれぞれ形成された該所定数としての4つの燃焼空間3とをシリンダヘッド2に形成された吸気ポート4を介して連通する該所定数としての4つの吸気分岐通路50を形成する吸気分岐部40と、レゾネータ室62および該レゾネータ室62と吸気集合室30とを連通させる連通路67,68が設けられたレゾネータ60とを備える。レゾネータ室62は、連通路67,68を通じて吸気集合室30に連通する。   2 and 3, the intake manifold 12 made of aluminum alloy includes an intake air collecting portion 20 that forms an intake air collecting chamber 30 into which intake air from the air cleaner 11 flows, an intake air collecting chamber 30, and the predetermined number of intake air collecting chambers 30. An intake branch that forms four intake branch passages 50 as the predetermined number communicating with the four combustion spaces 3 as the predetermined number formed in the cylinder C via the intake port 4 formed in the cylinder head 2. And a resonator chamber 62 provided with communication passages 67 and 68 for communicating the resonator chamber 62 and the intake air collecting chamber 30. The resonator chamber 62 communicates with the intake manifold 30 through the communication passages 67 and 68.

このため、吸気装置10において、吸入空気は、エアクリーナ室11aを流れて吸気集合室30に導かれ、吸気集合室30から、各吸気分岐通路50を流れて各シリンダCの燃焼空間3に吸入される。したがって、吸気通路は、エアクリーナ室11a、吸気集合室30および4つの吸気分岐通路50により構成される。   Therefore, in the intake device 10, the intake air flows through the air cleaner chamber 11 a and is guided to the intake air collecting chamber 30, and is drawn from the intake air collecting chamber 30 through the intake branch passages 50 into the combustion space 3 of each cylinder C. The Therefore, the intake passage is constituted by the air cleaner chamber 11a, the intake manifold 30 and the four intake branch passages 50.

吸気集合部20は、吸気集合室30を形成する集合室壁21および後述する整流壁28を有する。後述する配列方向A0でもある長手方向A3に細長い空間である吸気集合室30は、吸気集合室30においてエアクリーナ11からの吸入空気が流入する吸気導入通路31と、吸気導入通路31を通った吸入空気が流入すると共に各吸気分岐通路50が開口する拡大室32とを有する。配列方向A0および長手方向A3は、吸気集合室30の吸気導入通路31での吸入空気の主流の流れ方向または該吸気導入通路31が延びている方向にほぼ一致する。
拡大室32は、配列方向A0に長細い空間であると共に、その大部分において配列方向A0に直交する直交平面P(図1には、直交平面Pの一例が示されている。)での断面積が、吸気導入通路31の通路面積および各吸気分岐通路50の通路面積よりも大きい。
配列方向A0で拡大室32に連なる吸気導入通路31は、配列方向A0でエアクリーナ11からの吸入空気を拡大室32に導く。
The intake air collecting section 20 includes an air collecting chamber wall 21 that forms an intake air collecting chamber 30, and a rectifying wall 28 described later. An intake air collecting chamber 30 that is a space elongated in the longitudinal direction A3, which is also an arrangement direction A0, which will be described later, includes an intake air introduction passage 31 into which intake air from the air cleaner 11 flows in the intake air collection chamber 30, and intake air that has passed through the intake air introduction passage 31. And an expansion chamber 32 in which each intake branch passage 50 opens. The arrangement direction A0 and the longitudinal direction A3 substantially coincide with the flow direction of the main flow of intake air in the intake air introduction passage 31 of the intake air collecting chamber 30 or the direction in which the intake air introduction passage 31 extends.
The expansion chamber 32 is a long and narrow space in the arrangement direction A0, and most of the expansion chambers 32 are cut off at an orthogonal plane P (an example of the orthogonal plane P is shown in FIG. 1) orthogonal to the arrangement direction A0. The area is larger than the passage area of the intake intake passage 31 and the passage area of each intake branch passage 50.
The intake air introduction passage 31 connected to the expansion chamber 32 in the arrangement direction A0 guides the intake air from the air cleaner 11 to the expansion chamber 32 in the arrangement direction A0.

集合室壁21は、配列方向A0で互いに対向する第1端壁22および第2端壁23と、直交平面P上での第1方向A1で互いに対向する第1側壁24および第2側壁25と、直交平面P上で第1方向A1に直交する第2方向を上下方向A2としたときに該上下方向A2で互いに対向する第1壁としての底壁26および第2壁としての天井壁27と、を有する。
第1端壁22の一部は、吸気導入通路31を形成する管状の吸気導入壁22aである。そして、拡大室32は、吸気導入壁22a以外の第1端壁22、第1,第2側壁24,25、底壁26および天井壁27によりに形成される。
The collecting chamber wall 21 includes a first end wall 22 and a second end wall 23 facing each other in the arrangement direction A0, and a first side wall 24 and a second side wall 25 facing each other in the first direction A1 on the orthogonal plane P. A bottom wall 26 as a first wall and a ceiling wall 27 as a second wall facing each other in the vertical direction A2 when the second direction orthogonal to the first direction A1 on the orthogonal plane P is the vertical direction A2. Have.
A part of the first end wall 22 is a tubular intake introduction wall 22 a that forms the intake introduction passage 31. The expansion chamber 32 is formed by the first end wall 22, the first and second side walls 24 and 25, the bottom wall 26 and the ceiling wall 27 other than the intake introduction wall 22a.

なお、この実施形態では、図2,図3に示されるように、上下方向A2は、ほぼ鉛直方向に一致し、配列方向A0はほぼ水平方向に一致する。しかしながら、上下方向A2は、ほぼ鉛直方向であることに限定されない。   In this embodiment, as shown in FIGS. 2 and 3, the vertical direction A2 substantially coincides with the vertical direction, and the arrangement direction A0 substantially coincides with the horizontal direction. However, the vertical direction A2 is not limited to the substantially vertical direction.

図1〜図4を参照すると、拡大室32は、吸気導入通路31からの吸入空気が流入する主室32aと、上下方向A2での空隙33を形成する仕切壁としての整流壁28により、主室32aから部分的に仕切られる副室32bとから構成される。主室32aおよび副室32bは、拡大室32が、第1,第2側壁24,25の間において整流壁28により第1方向A1で仕切られることにより形成され、いずれも配列方向A0に長細い空間である。
主室32aと副室32bとの間では、空隙33を通じて吸気導入通路31から主室32aに流入した吸入空気の出入りが可能である。
1 to 4, the expansion chamber 32 includes a main chamber 32 a into which intake air from the intake air introduction passage 31 flows and a rectifying wall 28 as a partition wall that forms a gap 33 in the vertical direction A <b> 2. And a sub chamber 32b partially partitioned from the chamber 32a. The main chamber 32a and the sub chamber 32b are formed by dividing the expansion chamber 32 between the first and second side walls 24, 25 in the first direction A1 by the rectifying wall 28, and both are long in the arrangement direction A0. It is space.
Between the main chamber 32a and the sub chamber 32b, intake air flowing into the main chamber 32a from the intake air introduction passage 31 through the gap 33 can enter and exit.

主室32aは、第1方向A1で整流壁28と第2側壁25との間、上下方向A2で天井壁27と底壁26との間、配列方向A0で第1端壁22と第2端壁23との間で、第2側壁25、天井壁27、第1,第2端壁22,23および整流壁28により形成される。
副室32bは、第1方向A1で整流壁28と第1側壁24との間、上下方向A2で後述する上流端管壁43および連結壁27aと底壁26との間、配列方向A0で第1端壁22と第2端壁23との間で、第1側壁24、各上流端管壁43、連結壁27a、第1,第2端壁22,23および整流壁28により形成される。
The main chamber 32a is formed between the rectifying wall 28 and the second side wall 25 in the first direction A1, between the ceiling wall 27 and the bottom wall 26 in the vertical direction A2, and the first end wall 22 and the second end in the arrangement direction A0. Between the wall 23, a second side wall 25, a ceiling wall 27, first and second end walls 22 and 23, and a rectifying wall 28 are formed.
The sub chamber 32b is arranged between the flow straightening wall 28 and the first side wall 24 in the first direction A1, between the upstream end pipe wall 43 and the connecting wall 27a and the bottom wall 26, which will be described later in the vertical direction A2, and in the arrangement direction A0. Between the first end wall 22 and the second end wall 23, a first side wall 24, each upstream end pipe wall 43, a connecting wall 27 a, first and second end walls 22, 23 and a rectifying wall 28 are formed.

吸気分岐部40は、4つの分岐管41により構成される。上流端部で第1側壁24に連結されると共に下流端部でフランジ部12bに連結されて該フランジ部12bと一体化された各分岐管41は、各吸気分岐通路50を形成する。各分岐管41の管壁は、吸気集合室30からの吸入空気が流入する吸気分岐通路50の通路壁42である。
各吸気分岐通路50の通路壁42は、吸気分岐通路50の入口50iを有する上流端通路53を形成する上流端通路壁としての上流端管壁43を有する。吸気分岐部40の前記上流端部を構成する管状の各上流端管壁43は、第1側壁24に配置されて、吸気集合室30内において第1方向A1で第1側壁24から第2側壁25に向かって突出している。別の例として、各上流端管壁43は、上方に向かって傾斜した状態で、第1方向A1で第2側壁25に向かって突出していてもよい。
この実施形態において、配列方向A0で隣接する上流端管壁43同士を連結する連結壁27aは、天井壁27の一部である。
The intake branch section 40 includes four branch pipes 41. Each branch pipe 41 connected to the first side wall 24 at the upstream end portion and connected to the flange portion 12b at the downstream end portion and integrated with the flange portion 12b forms each intake branch passage 50. The pipe wall of each branch pipe 41 is a passage wall 42 of the intake branch passage 50 into which intake air from the intake manifold 30 flows.
The passage wall 42 of each intake branch passage 50 has an upstream end pipe wall 43 as an upstream end passage wall that forms an upstream end passage 53 having an inlet 50 i of the intake branch passage 50. Each tubular upstream end pipe wall 43 constituting the upstream end portion of the intake branching portion 40 is disposed on the first side wall 24, and the first side wall 24 to the second side wall in the first direction A1 in the intake air collecting chamber 30. Projecting toward 25. As another example, each upstream end pipe wall 43 may protrude toward the second side wall 25 in the first direction A1 while being inclined upward.
In this embodiment, the connecting wall 27a that connects the upstream end pipe walls 43 adjacent in the arrangement direction A0 is a part of the ceiling wall 27.

すべての入口50iは、配列方向A0に並んで配置されて拡大室32の主室32aに開口している。そして、すべての上流端管壁43、および、すべての上流端通路53は、拡大室32内で配列方向A0に並んで配置される。この配列方向A0は、各吸気分岐通路50の配置や各シリンダCの配置に応じて予め設定された所定の方向である。
さらに、前記所定数の分岐管41および吸気分岐通路50は、この配列方向A0に並んで配置されている。そして、この実施形態では、この配列方向A0は、長手方向A3に一致し、さらに配列方向A0および長手方向A3はシリンダブロック1における前記所定数のシリンダCの配列方向に一致する。
All the inlets 50i are arranged side by side in the arrangement direction A0 and open to the main chamber 32a of the expansion chamber 32. All the upstream end pipe walls 43 and all the upstream end passages 53 are arranged side by side in the arrangement direction A0 in the expansion chamber 32. The arrangement direction A0 is a predetermined direction set in advance according to the arrangement of the intake branch passages 50 and the arrangement of the cylinders C.
Further, the predetermined number of branch pipes 41 and intake branch passages 50 are arranged side by side in the arrangement direction A0. In this embodiment, the arrangement direction A0 coincides with the longitudinal direction A3, and the arrangement direction A0 and the longitudinal direction A3 coincide with the arrangement direction of the predetermined number of cylinders C in the cylinder block 1.

また、各上流端管壁43および各上流端通路53の上流側部分は、整流壁28から、第1方向A1に沿ってほぼ平行に、かつ直線状に延びている。
各上流端管壁43は入口50iを形成するエアファンネル部43aを有し、各入口50iは、整流壁28において第1方向A1で第2側壁25に対向する壁面28eに開口する。該壁面28eは、平坦な面、すなわちほぼ平面と、僅かに、かつ滑らかに湾曲した面とにより構成される。上流端通路53は、上流に向かって、または第1方向A1で第2側壁25に向かって湾曲して拡開するエアファンネル部43aにより形成される入口通路としてのエアファンネル通路53を有する。エアファンネル通路53では、上流に向かって通路面積が連続的に増加する。
Further, the upstream portions of the upstream end pipe walls 43 and the upstream end passages 53 extend from the rectifying wall 28 substantially in parallel and linearly along the first direction A1.
Each upstream end pipe wall 43 has an air funnel portion 43a forming an inlet 50i, and each inlet 50i opens in a wall surface 28e facing the second side wall 25 in the first direction A1 in the rectifying wall 28. The wall surface 28e is constituted by a flat surface, that is, a substantially flat surface and a slightly curved surface. The upstream end passage 53 has an air funnel passage 53 as an inlet passage formed by an air funnel portion 43a that is curved and expands toward the upstream side or in the first direction A1 toward the second side wall 25. In the air funnel passage 53, the passage area continuously increases toward the upstream.

図2〜図4を参照すると、集合室壁21に一体成形されて設けられると共に、第1方向A1で第1,第2側壁24,25の間に位置する整流壁28は、上下方向A2に沿って天井壁27から底壁26に向かって延びている板状の垂下壁である。配列方向A0での端部28cを有する整流壁28は、拡大室32内において第1方向A1での吸気導入通路31のほぼ中央に位置する部分28a(図2,図4参照)から配列方向A0で吸気導入通路31に向かうにつれて、第1方向A1で第1側壁24寄りに緩やかに湾曲しながら第1端部22に連なる。
各エアファンネル部43aは、配列方向A0に一列に並んだ状態で、整流壁28に一体成形されて設けられる。
Referring to FIGS. 2 to 4, the rectifying wall 28 located between the first and second side walls 24 and 25 in the first direction A <b> 1 is provided in the up and down direction A <b> 2. A plate-like hanging wall extending from the ceiling wall 27 toward the bottom wall 26 along the wall. The rectifying wall 28 having the end portion 28c in the arrangement direction A0 is arranged in the arrangement direction A0 from the portion 28a (see FIGS. 2 and 4) located substantially at the center of the intake air introduction passage 31 in the first direction A1 in the expansion chamber 32. Then, as it goes toward the intake air introduction passage 31, it continues to the first end 22 while gently curving toward the first side wall 24 in the first direction A1.
The air funnel portions 43a are integrally formed on the rectifying wall 28 in a state of being arranged in a line in the arrangement direction A0.

整流壁28は、配列方向A0での端部28cと第2端壁23との間に配列方向A0での空隙34を形成して、該端壁23から離隔している。また、整流壁28は、上下方向A2での先端部である下端部28bと底壁26との間に、上下方向A2での空隙33を、配列方向A0での整流壁28のほぼ全長、および配列方向A0でのすべての入口50iの配置範囲のほぼ全体に渡って形成して、底壁26から離隔している。   The rectifying wall 28 is spaced apart from the end wall 23 by forming a gap 34 in the arrangement direction A0 between the end 28c in the arrangement direction A0 and the second end wall 23. Further, the straightening wall 28 has a gap 33 in the vertical direction A2 between the lower end portion 28b and the bottom wall 26, which is the tip in the vertical direction A2, and substantially the entire length of the straightening wall 28 in the arrangement direction A0. It is formed over substantially the entire arrangement range of all the inlets 50i in the arrangement direction A0 and is separated from the bottom wall 26.

上下方向A2での整流壁28の幅W1、および、上下方向A2での下端部28bと各連通路67,68の連通口67a,68aとの空隙33の幅W2は、レゾネータ60による共鳴の阻害を防止し、かつ連通口67a,68aに起因する拡大室32内の吸入空気の流れの乱れを減少させる観点から設定される。この実施形態では、幅W1は、各入口50iの径よりも大きい。また、上下方向A2での下端部28bでの位置は、空隙33が、上下方向A2での各入口50iと各連通口67a,68aの間隔W3のほぼ1/2となる位置である。   The width W1 of the rectifying wall 28 in the vertical direction A2 and the width W2 of the gap 33 between the lower end portion 28b and the communication ports 67a and 68a of the communication passages 67 and 68 in the vertical direction A2 impede resonance by the resonator 60. Is set from the viewpoint of preventing the disturbance of the flow of the intake air in the expansion chamber 32 caused by the communication ports 67a and 68a. In this embodiment, the width W1 is larger than the diameter of each inlet 50i. Further, the position at the lower end portion 28b in the vertical direction A2 is a position where the gap 33 is approximately ½ of the interval W3 between the respective inlets 50i and the respective communication ports 67a and 68a in the vertical direction A2.

さらに、直交平面Pでの吸気導入通路31の通路断面を配列方向A0に平行に延長した仮想延長通路Hにおいて、直交平面上での、または配列方向A0から見たときの該仮想延長通路Hの少なくとも一部、好ましくはほぼ半分以上は、第1方向A1で、各入口50iよりも第2側壁25寄りに位置する。
なお、この明細書および特許請求の範囲において、仮想延長通路Hとは、直交平面Pでの吸気導入通路31の通路断面を配列方向A0に平行に延長したときの仮想の通路である。そして、直交平面Pでの前記通路断面は、吸気導入通路31において、配列方向A0に延びている部分であって、少なくとも、最小の通路面積を有する部分を含む部分であればよく、例えば、吸気導入通路31の入口50iが直交平面P上にある場合は、該入口31aを前記通路断面とすることでもよい。そして、この実施形態では、仮想延長通路Hは、該入口31aを前記通路断面としている。なお、図2では、図示の便宜上、二点鎖線で示される仮想延長通路Hは、入口31aから間隔をおいて示されている。
Further, in the virtual extension passage H in which the passage cross section of the intake air introduction passage 31 in the orthogonal plane P is extended in parallel to the arrangement direction A0, the virtual extension passage H of the virtual extension passage H when viewed on the orthogonal plane or from the arrangement direction A0. At least a part, preferably approximately half or more, is located closer to the second side wall 25 than each inlet 50i in the first direction A1.
In this specification and claims, the virtual extension passage H is a virtual passage when the passage cross section of the intake introduction passage 31 in the orthogonal plane P is extended in parallel to the arrangement direction A0. The passage cross section in the orthogonal plane P may be a portion that extends in the arrangement direction A0 in the intake air introduction passage 31 and includes at least a portion having a minimum passage area. When the inlet 50i of the introduction passage 31 is on the orthogonal plane P, the inlet 31a may have the passage cross section. In this embodiment, the virtual extension passage H has the inlet 31a as the passage cross section. In FIG. 2, for the sake of illustration, the virtual extension passage H indicated by a two-dot chain line is shown spaced from the inlet 31a.

そして、整流壁28は、吸気導入通路31から流入した吸入空気の主流が、第2端壁23に向かって拡大室32の主室32a内を配列方向A0に、しかも第1方向A1で各入口50iよりも第2側壁25寄りを流れること、つまり第1方向A1で各入口50iと第2側壁25との間を流れることを可能とする。
このため、整流壁28により、吸気導入通路31から拡大室32に流入した吸入空気は、拡大室32内において、主に主室32a内を、第1方向A1での該第2側壁25と整流壁28と間を含めて第1方向A1で各入口50iよりも第2側壁25寄りを配列方向A0に流れた後に各入口50iに流入して、各吸気分岐通路50を通って対応する燃焼空間3に吸入される。
The rectifying wall 28 is configured so that the main flow of the intake air flowing in from the intake air introduction passage 31 is directed toward the second end wall 23 in the main chamber 32a of the expansion chamber 32 in the arrangement direction A0 and in the first direction A1. It is possible to flow closer to the second side wall 25 than 50i, that is, to flow between each inlet 50i and the second side wall 25 in the first direction A1.
For this reason, the intake air that has flowed into the expansion chamber 32 from the intake introduction passage 31 by the rectifying wall 28 is rectified in the expansion chamber 32 mainly in the main chamber 32a with the second side wall 25 in the first direction A1. Combustion space corresponding to each inlet 50i after flowing in the arrangement direction A0 near the second side wall 25 from each inlet 50i in the first direction A1 including the wall 28 and between each inlet 50i. 3 is inhaled.

そして、仮想延長通路Hにおいて第2側壁25寄りに位置する割合が多くなるほど、吸気導入通路31から主室32aに流入する過程で、吸入空気の流れの偏向が小さくなって、圧力損失による流量損失が少なくなり、さらに連通口67a,68aに起因する吸入空気の流れの乱れも一層抑制される。   As the ratio of the virtual extension passage H located closer to the second side wall 25 increases, the deflection of the flow of intake air becomes smaller in the process of flowing into the main chamber 32a from the intake introduction passage 31, and the flow loss due to pressure loss. Further, the disturbance of the flow of intake air caused by the communication ports 67a and 68a is further suppressed.

図2,図3を参照すると、レゾネータ60は、上下方向A2で、仕切壁としての底壁26を挟んで拡大室32の主室32aおよび副室32bとは反対側に配置されたレゾネータ室62を形成するレゾネータ室壁61と、レゾネータ室62を拡大室32の副室32bと連通させる1以上の連通路、この実施形態では複数としての2つの第1,第2連通路67,68をそれぞれ形成する2つの第1,第2連通管65,66と、1つの連通路68に配置されて内燃機関Eの機関運転状態としての機関回転速度に応じて該連通路68を開閉する開閉弁70とを備える。底壁26はレゾネータ室壁61の一部であり、レゾネータ室壁61はアルミニウム合金製の単一の部材である。また、各連通管65,66は、レゾネータ室壁61と一体成形されて設けられる。   Referring to FIGS. 2 and 3, the resonator 60 has a resonator chamber 62 disposed in the vertical direction A2 on the opposite side of the main chamber 32a and the sub chamber 32b of the expansion chamber 32 across the bottom wall 26 as a partition wall. A resonator chamber wall 61 and one or more communication passages for communicating the resonator chamber 62 with the sub chamber 32b of the expansion chamber 32. In this embodiment, two first and second communication passages 67 and 68 as a plurality are respectively provided. An open / close valve 70 that is arranged in the two first and second communication pipes 65 and 66 to be formed and opens and closes the communication path 68 according to the engine speed as the engine operating state of the internal combustion engine E. With. The bottom wall 26 is a part of the resonator chamber wall 61, and the resonator chamber wall 61 is a single member made of an aluminum alloy. The communication pipes 65 and 66 are provided integrally with the resonator chamber wall 61.

図4を併せて参照すると、第1連通路67は、第1集合室側連通口67aと第1レゾネータ室側連通口67bとを有し、第2連通路68は、第2集合室側連通口68aと第2レゾネータ室側連通口68bとを有する。レゾネータ室壁61において底壁26により構成される第1壁としての上壁に開口する第1,第2連通口67a,68aは、上下方向A2で上流端管壁43または上流端通路53に向かって副室32bに開口する。   Referring also to FIG. 4, the first communication passage 67 has a first collection chamber side communication port 67a and a first resonator chamber side communication port 67b, and the second communication passage 68 is connected to the second collection chamber side communication port 67b. It has a port 68a and a second resonator chamber side communication port 68b. The first and second communication ports 67a and 68a opened in the upper wall as the first wall constituted by the bottom wall 26 in the resonator chamber wall 61 are directed to the upstream end pipe wall 43 or the upstream end passage 53 in the vertical direction A2. Open to the sub chamber 32b.

第1連通路67は、吸気集合室30に常時連通する常時連通型の連通路であり、第2連通路68は、機関運転状態に応じて開閉される開閉弁70が設けられた開閉弁付き連通路である。第1連通路67は、第2連通路68の通路面積よりも小さい通路面積を有し、第1連通路67は、高速回転用の連通路である第2連通路68の通路長よりも長い通路長を有する低速回転用の連通路である。   The first communication path 67 is an always-communication type communication path that always communicates with the intake air collecting chamber 30, and the second communication path 68 has an opening / closing valve provided with an opening / closing valve 70 that is opened / closed according to the engine operating state. It is a communication path. The first communication passage 67 has a passage area smaller than the passage area of the second communication passage 68, and the first communication passage 67 is longer than the passage length of the second communication passage 68 that is a communication passage for high-speed rotation. This is a communication passage for low-speed rotation having a passage length.

第1連通路67は、第1連通口67aから、上下方向A2でレゾネータ室62内をレゾネータ室壁61の底壁61bに向かって延びると共に配列方向A0で第2連通口68bに向かって傾斜した後、配列方向A0に平行に延びている屈曲した通路である。上下方向A2にほぼ平行に直線状に延びている第2連通路68には、円板状の弁体71および弁軸72を有するバタフライ弁からなる開閉弁70が設けられる。開閉弁70は、制御装置により制御されるアクチュエータ75により駆動されて、全閉状態および全開状態に制御される。   The first communication passage 67 extends from the first communication port 67a in the vertical direction A2 in the resonator chamber 62 toward the bottom wall 61b of the resonator chamber wall 61 and is inclined toward the second communication port 68b in the arrangement direction A0. Later, it is a bent passage extending parallel to the arrangement direction A0. The second communication path 68 that extends linearly substantially parallel to the vertical direction A2 is provided with an on-off valve 70 that is a butterfly valve having a disc-like valve body 71 and a valve shaft 72. The on-off valve 70 is driven by an actuator 75 controlled by a control device, and is controlled to a fully closed state and a fully open state.

開閉弁70は、その弁軸72が配列方向A0にほぼ平行に延びていて、回動中心線Lが配列方向A0にほぼ平行な弁である。吸気集合室30内で、全開状態にある開閉弁70に起因する吸入空気の流れの乱れの発生を抑制するために、連通路68から拡大室32内または副室32b内に突出した開閉弁70の弁体71は、弁体71が配列方向A0に平行になるように、したがって吸入空気の流れにほぼ平行になるように配置される。   The on-off valve 70 is a valve whose valve shaft 72 extends substantially parallel to the arrangement direction A0 and whose rotation center line L is substantially parallel to the arrangement direction A0. In order to suppress the occurrence of turbulence in the flow of intake air due to the open / close valve 70 in the fully open state in the intake air collecting chamber 30, the open / close valve 70 protruding from the communication path 68 into the expansion chamber 32 or the sub chamber 32b. The valve body 71 is arranged so that the valve body 71 is parallel to the arrangement direction A0, and therefore substantially parallel to the flow of intake air.

そして、開閉弁70が全閉状態となって第2連通路68が閉塞されて、レゾネータ室62と拡大室32の副室32bとが非連通状態にあるとき、第1連通路67とレゾネータ室62とにより、内燃機関Eの第1機関回転速度域の第1共鳴運転領域において、共鳴が生じて、共鳴過給により体積効率が向上する。そして、内燃機関Eの機関回転速度が第1機関回転速度域よりも高い第2機関回転速度域である第2共鳴運転領域とき、開閉弁70が全開状態となって、第2連通路68を通じて拡大室32の副室32bとレゾネータ室62とが連通する。このため、第1,第2連通路67,68とレゾネータ室62とにより、共鳴が生じて、共鳴過給により体積効率が向上する。開閉弁70は、前記第2機関回転速度域のみで開弁して全開状態になり、前記第2機関回転速度域以外の機関回転速度域では全閉状態になって、弁体71が連通路78内に収容されて、副室32b内に突出しない。   When the on-off valve 70 is fully closed and the second communication path 68 is closed and the resonator chamber 62 and the sub chamber 32b of the expansion chamber 32 are not in communication, the first communication path 67 and the resonator chamber 62, resonance occurs in the first resonance operation region of the first engine rotation speed region of the internal combustion engine E, and volume efficiency is improved by resonance supercharging. When the engine speed of the internal combustion engine E is in the second resonance operation region, which is the second engine rotation speed region that is higher than the first engine rotation speed region, the on-off valve 70 is fully opened and the second communication passage 68 is passed through. The sub chamber 32b of the expansion chamber 32 and the resonator chamber 62 communicate with each other. Therefore, resonance is generated by the first and second communication passages 67 and 68 and the resonator chamber 62, and volume efficiency is improved by resonance supercharging. The on-off valve 70 is opened only in the second engine rotational speed region and is fully opened, and is fully closed in the engine rotational speed region other than the second engine rotational speed region. It is accommodated in 78 and does not protrude into the sub chamber 32b.

各連通口67a,68aは、第1方向A1で、少なくとも一部が、好ましくは過半が、さらに好ましくは、図4に示されるように、全体またはほぼ全体が、整流壁28および入口50iよりも第1側壁24寄りに位置する。
配列方向A0(または長手方向A3)で、第2連通口68aは、第1連通口67aよりも吸気導入通路31から遠い位置にある。具体的には、前記所定数の入口50iまたは上流端管壁43、または、該所定数の入口50iまたは上流端管壁43の、配列方向A0での配置範囲を、近接範囲および遠方範囲に配列方向A0で二等分したとき、第1連通口67aは配列方向A0で吸気導入通路31に近い近接範囲に位置し、第2連通口68aは配列方向A0で吸気導入通路31から近接範囲よりも遠い遠方範囲に位置する。
Each communication port 67a, 68a is at least partially, preferably more than half, more preferably more or less entirely in the first direction A1, as shown in FIG. 4, than the rectifying wall 28 and the inlet 50i. Located near the first side wall 24.
In the arrangement direction A0 (or the longitudinal direction A3), the second communication port 68a is located farther from the intake air introduction passage 31 than the first communication port 67a. Specifically, the arrangement range of the predetermined number of the inlets 50i or the upstream end pipe wall 43 or the predetermined number of the inlets 50i or the upstream end pipe wall 43 in the arrangement direction A0 is arranged in the near range and the far range. When bisected in the direction A0, the first communication port 67a is located in the proximity range close to the intake introduction passage 31 in the arrangement direction A0, and the second communication port 68a is closer to the proximity range from the intake introduction passage 31 in the arrangement direction A0. Located in the far range.

具体的には、第1連通路67の連通口67aは、上下方向A2から見て、前記近接範囲に位置する複数の上流端管壁43のうちで吸気導入通路31から最も遠方の上流端管壁43Aの少なくとも一部と重なる位置にある。また、第2連通路68の連通口68aは、上下方向A2から見て、前記遠方範囲に位置する複数の上流端管壁43のうちで吸気導入通路31から最も遠方の上流端管壁43Bの少なくとも一部と重なる位置にある。
そして、この実施形態では、上下方向A2から見て、連通口67aの過半が上流端管壁43Aと重なり、連通口68aの過半が上流端管壁43Bと重なる。
Specifically, the communication port 67a of the first communication path 67 has an upstream end pipe farthest from the intake air introduction path 31 among the plurality of upstream end pipe walls 43 located in the proximity range when viewed in the vertical direction A2. It is in a position overlapping with at least a part of the wall 43A. The communication port 68a of the second communication passage 68 is formed on the upstream end pipe wall 43B farthest from the intake introduction passage 31 among the plurality of upstream end pipe walls 43 located in the far range as viewed in the vertical direction A2. It is in a position that overlaps at least a part.
In this embodiment, the majority of the communication port 67a overlaps with the upstream end pipe wall 43A and the majority of the communication port 68a overlaps with the upstream end pipe wall 43B when viewed in the vertical direction A2.

次に、前述のように構成された実施形態の作用および効果について説明する。
吸入空気が流入する吸気導入通路31を有すると共に吸気集合室30と所定数の燃焼空間3とをそれぞれ連通させる所定数の吸気分岐通路50が設けられた多気筒内燃機関Eの吸気装置10において、各吸気分岐通路50は、通路壁42により形成されると共に、吸気集合室30の拡大室32に開口する入口50iを有し、各入口50iは、通路壁42の上流端管壁43により形成され、前記所定数の入口50iは、拡大室32内で配列方向A0に並んで配置され、吸気集合室30を形成する集合室壁21は、配列方向A0に直交する直交平面P上の第1方向A1で離隔すると共に第1方向A1で対向する第1側壁24および第2側壁25を有し、所定数の上流端管壁43が、拡大室32内において、第1方向A1で第1側壁24から第2側壁25に向かって突出していると共に、配列方向A0に並んで配置され、所定数の入口50iは、第1方向A1で第2側壁25に向かって開口し、各連通路67,68の、拡大室32に開口する連通口67a,68aは、第1方向A1で各入口50iよりも第1側壁24寄りに位置し、吸気導入通路31から流入した吸入空気は、拡大室32内において第1方向A1で各入口50iよりも第2側壁25寄りを配列方向A0に流れた後に各入口50iに流入する。
この構造により、吸気集合室30の拡大室32内で配列方向A0に並んで配置された各吸気分岐通路50の入口50iは、第1方向A1で集合室壁21の第1側壁24から集合室壁21の第2側壁25に向かって突出する上流端管壁43により形成されるので、第1方向A1で対向する第1,第2側壁24,25の間で、第1側壁24から第2側壁25に向かって離隔した位置にある。そして、各入口50iに対して、吸気導入通路31から拡大室32内に流入した吸入空気は、第1方向A1で入口50iよりも第2側壁25寄りを入口50iの配列方向A0に流れる一方で、拡大室32とレゾネータ室62とを連通する各連通路67,68の連通口67a,68aは、第1方向A1で各入口50iよりも第1側壁24寄りに位置するので、レゾネータ60による共鳴が生じる共鳴運転領域以外での運転領域において吸入空気の一部が各連通口67a,68aを通じてレゾネータ室62に流入することが抑制される。この結果、拡大室32に開口する各連通口67a,68aに起因する拡大室32での吸入空気の流れの乱れの発生が抑制されることにより、吸入空気が拡大室32から各吸気分岐通路50に円滑に流入するので、体積効率が向上して、機関トルクが増加し、ひいては機関出力が増加する。
また、拡大室32での各連通口67a,68aの開口位置は、第1方向A1で各入口50iよりも第1側壁24,25寄りである条件で、配列方向A0の任意の位置に設定できる。この結果、拡大室32において、配列方向A0での各連通口67a,68aの配置の自由度が大きくなり、ひいては連通路67,68およびレゾネータ室62の配置の自由度が大きくなるので、レゾネータ60の配置の自由度が大きくなる。
Next, operations and effects of the embodiment configured as described above will be described.
In an intake device 10 for a multi-cylinder internal combustion engine E having an intake air introduction passage 31 through which intake air flows and a predetermined number of intake branch passages 50 communicating the intake manifold chamber 30 and a predetermined number of combustion spaces 3 respectively. Each intake branch passage 50 is formed by a passage wall 42 and has an inlet 50i that opens into the expansion chamber 32 of the intake air collecting chamber 30, and each inlet 50i is formed by an upstream end pipe wall 43 of the passage wall 42. The predetermined number of inlets 50i are arranged side by side in the arrangement direction A0 in the expansion chamber 32, and the collecting chamber wall 21 forming the intake collecting chamber 30 has a first direction on an orthogonal plane P orthogonal to the arranging direction A0. A first side wall 24 and a second side wall 25 that are separated by A1 and are opposed to each other in the first direction A1, and a predetermined number of upstream end pipe walls 43 are disposed in the expansion chamber 32 in the first direction A1. Projecting toward the second side wall 25 and arranged side by side in the arrangement direction A0 The predetermined number of inlets 50i open toward the second side wall 25 in the first direction A1, and the communication ports 67a and 68a of the communication passages 67 and 68 that open to the expansion chamber 32 are in the first direction A1. The intake air that is located closer to the first side wall 24 than the respective inlets 50i and flows in from the intake air introduction passage 31 is arranged in the first direction A1 in the expansion chamber 32 and closer to the second side walls 25 than the respective inlets 50i in the arrangement direction A0. After flowing, it flows into each inlet 50i.
With this structure, the inlets 50i of the intake branch passages 50 arranged in the arrangement direction A0 in the expansion chamber 32 of the intake manifold 30 are arranged from the first side wall 24 of the collective chamber wall 21 in the first direction A1. Since the upstream end pipe wall 43 protrudes toward the second side wall 25 of the wall 21, the second side wall 24 and the second side wall 24, 25 facing each other in the first direction A <b> 1 are second to second. It is in a position separated toward the side wall 25. The intake air that has flowed into the expansion chamber 32 from the intake introduction passage 31 with respect to each inlet 50i flows in the first direction A1 closer to the second side wall 25 than the inlet 50i in the arrangement direction A0 of the inlet 50i. Since the communication ports 67a and 68a of the communication passages 67 and 68 communicating the expansion chamber 32 and the resonator chamber 62 are located closer to the first side wall 24 than the respective inlets 50i in the first direction A1, resonance by the resonator 60 is performed. In the operation region other than the resonance operation region in which the occurrence of the phenomenon occurs, part of the intake air is prevented from flowing into the resonator chamber 62 through the communication ports 67a and 68a. As a result, the occurrence of turbulence in the flow of intake air in the expansion chamber 32 caused by the communication ports 67a and 68a that open to the expansion chamber 32 is suppressed, so that intake air flows from the expansion chamber 32 to the intake branch passages 50. Therefore, the volumetric efficiency is improved, the engine torque is increased, and the engine output is increased.
In addition, the opening positions of the communication ports 67a and 68a in the expansion chamber 32 can be set at arbitrary positions in the arrangement direction A0 under the condition that they are closer to the first side walls 24 and 25 than the respective inlets 50i in the first direction A1. . As a result, in the expansion chamber 32, the degree of freedom of arrangement of the communication ports 67a, 68a in the arrangement direction A0 is increased, and as a result, the degree of freedom of arrangement of the communication passages 67, 68 and the resonator chamber 62 is increased. The degree of freedom of arrangement becomes large.

吸気導入通路31は、配列方向A0に延びており、直交平面Pでの吸気導入通路31の通路断面を配列方向A0に平行に延長した仮想延長通路Hは、第1方向A1で、各入口50iよりも第2側壁25寄りに位置することにより、吸気集合室30内で吸気導入通路31から流入した吸入空気が大きな偏向を伴うことなく第2側壁25寄りを流れる。この結果、吸気集合室30内での吸入空気の流量損失が減少して、体積効率が向上し、したがって機関トルクが増加する。   The intake air introduction passage 31 extends in the arrangement direction A0, and the virtual extension passage H obtained by extending the passage cross section of the intake introduction passage 31 in the orthogonal plane P in parallel to the arrangement direction A0 is the first direction A1 and each inlet 50i. By being located closer to the second side wall 25, the intake air flowing from the intake air introduction passage 31 in the intake air collecting chamber 30 flows closer to the second side wall 25 without significant deflection. As a result, the flow rate loss of the intake air in the intake manifold 30 is reduced, the volume efficiency is improved, and the engine torque is increased.

集合室壁21は、配列方向A0(または長手方向A3)で対向する第1端壁22および第2端壁23を有し、第1端壁22は吸気導入通路31を形成し、集合室壁21は、吸気導入通路31から流入した吸入空気が、第1方向A1で第2側壁25との間で第2端壁23に向かって配列方向A0に流れるように案内する整流壁28を有し、整流壁28に、各吸気分岐通路50の入口50iが開口することにより、吸気集合室30内で吸気導入通路31から拡大室32に流入した吸入空気は、各入口50iが開口している整流壁28により案内されて第2側壁25寄りを流れるので、各連通口67a,68aによる吸入空気の流れの乱れの発生が一層抑制されて、体積効率が向上する。   The collective chamber wall 21 has a first end wall 22 and a second end wall 23 that face each other in the arrangement direction A0 (or the longitudinal direction A3). The first end wall 22 forms an intake air introduction passage 31, and the collective chamber wall 21 has a rectifying wall 28 for guiding the intake air flowing in from the intake air introduction passage 31 to flow in the arrangement direction A0 toward the second end wall 23 with the second side wall 25 in the first direction A1. The inlet 50i of each intake branch passage 50 opens in the rectifying wall 28, so that the intake air flowing into the expansion chamber 32 from the intake introduction passage 31 in the intake manifold 30 is rectified in which each inlet 50i is open. Since the air is guided by the wall 28 and flows near the second side wall 25, the occurrence of turbulence in the flow of intake air through the communication ports 67a and 68a is further suppressed, and the volumetric efficiency is improved.

拡大室32とレゾネータ室62とを連通させる複数の連通路67,68は、吸気集合室30に常時連通する第1連通路67と、機関運転状態に応じて開閉される開閉弁70が設けられた第2連通路68であり、配列方向A0で、第2連通路68の第2連通口68aは第1連通路67の第1連通口67aよりも吸気導入通路31から遠い位置にあることにより、吸気集合室30に開口する第1,第2連通口67a,68aのうちで、開閉弁70により開閉される第2連通路68が有する第2連通口68aは、配列方向A0で、常時連通している第1連通路67が有する第1連通口67aよりも吸気導入通路31から遠い位置にあるので、開閉弁70が全開状態または開弁状態になったときに、拡大室32内に突出する開閉弁70が配列方向A0で第2連通口68aよりも吸気導入通路31から遠方に位置する入口50iに流入する吸入空気の流れを乱すことが抑制される。この結果、開閉弁70が設けられた連通路68が開口する拡大室32において、所定数の吸気分岐通路50のうちで、開弁状態にある開閉弁70に起因して発生する吸入空気の流れの乱れにより、吸気集合室30から吸気分岐通路50に流入する吸入空気の流量が低下する吸気分岐通路50の数を少なくすることができるので、体積効率が向上する。   The plurality of communication passages 67 and 68 that allow the expansion chamber 32 and the resonator chamber 62 to communicate with each other are provided with a first communication passage 67 that always communicates with the intake air collecting chamber 30 and an on-off valve 70 that is opened and closed according to the engine operating state. The second communication passage 68, and in the arrangement direction A0, the second communication port 68a of the second communication passage 68 is located farther from the intake air introduction passage 31 than the first communication port 67a of the first communication passage 67. Of the first and second communication ports 67a and 68a that open to the intake manifold 30, the second communication port 68a of the second communication passage 68 that is opened and closed by the on-off valve 70 is always in communication in the arrangement direction A0. Since the first communication passage 67 is located farther from the intake air introduction passage 31 than the first communication port 67a, it projects into the expansion chamber 32 when the on-off valve 70 is fully opened or opened. Open / close valve 70 flows into the inlet 50i located farther away from the intake passage 31 than the second communication port 68a in the arrangement direction A0. It is prevented that disturb the flow of intake air that. As a result, in the expansion chamber 32 in which the communication passage 68 provided with the opening / closing valve 70 opens, the flow of intake air generated due to the opening / closing valve 70 in the open state among the predetermined number of intake branch passages 50. Due to this disturbance, the number of intake branch passages 50 in which the flow rate of intake air flowing from the intake manifold 30 into the intake branch passages 50 can be reduced, so that volume efficiency is improved.

直交平面P上で第1方向A1に直交する上下方向A2から見て、各連通口67a,68aの過半は、少なくとも1つの上流端管壁43A,43Bと重なる位置にあることにより、吸気集合室30に開口する連通口67a,68aの過半が、第1方向A1で入口50iよりも第1側壁24寄りに位置するので、各連通口67a,68aに起因する吸入空気の流れの乱れを抑制することができて、体積効率が向上する。   When viewed from the up-down direction A2 orthogonal to the first direction A1 on the orthogonal plane P, the majority of the communication ports 67a, 68a are positioned so as to overlap the at least one upstream end pipe wall 43A, 43B. Since the majority of the communication ports 67a and 68a opened at 30 are located closer to the first side wall 24 than the inlet 50i in the first direction A1, the disturbance of the flow of intake air caused by the communication ports 67a and 68a is suppressed. And volumetric efficiency is improved.

吸気集合室30は、吸気導入通路31からの吸入空気が流入する主室32aと、空隙33を形成する仕切壁としての整流壁28により主室32aから部分的に仕切られる副室32bとから構成され、主室32aと副室32bとの間では、空隙33を通じて吸気導入通路31から主室32aに流入した吸入空気の出入りが可能であり、主室32aには、各吸気分岐通路50の入口50iが開口し、副室32bには、各連通路67,68の連通口67a,68aが開口する。
この構造により、吸気集合室30が整流壁28により仕切られて形成された主室32aおよび副室32bにおいて、吸気集合室30に開口する各吸気分岐通路50の入口50iは、吸気導入通路31からの吸入空気が流入する主室32aに開口する一方、吸気集合室30とレゾネータ室62とを連通する各連通路67,68の、拡大室32での連通口67a,68aは、整流壁28により形成された空隙33を通じて吸気導入通路31から主室32aに流入した吸入空気の出入りが可能な副室32bに開口するので、主室32aと副室32bとの間に位置する整流壁28により、共鳴運転領域以外での運転領域において吸入空気の一部が各連通口67a,68aを通じてレゾネータ室62に流入することが抑制される。この結果、吸気集合室30の拡大室32に開口する各連通口67a,68aに起因する拡大室32での吸入空気の流れの乱れの発生が抑制されることにより、吸入空気が吸気集合室30から各吸気分岐通路50に円滑に流入するので、体積効率が向上して、機関トルクが増加し、ひいては機関出力が増加する。
また、吸気集合室30での各連通口67a,68aの開口位置は、副室32bが形成されている範囲で任意の位置に設定できる。この結果、吸気集合室30において、連通口67a,68aの配置の自由度が大きくなり、ひいては連通路67,68およびレゾネータ室62の配置の自由度が大きくなるので、レゾネータ60の配置の自由度が大きくなる。
The intake air collecting chamber 30 includes a main chamber 32a into which intake air from the intake air introduction passage 31 flows, and a sub chamber 32b partially partitioned from the main chamber 32a by a rectifying wall 28 as a partition wall forming a gap 33. The intake air flowing into the main chamber 32a from the intake air introduction passage 31 through the air gap 33 can enter and exit between the main chamber 32a and the sub chamber 32b, and the main chamber 32a has an inlet of each intake branch passage 50. 50i is opened, and communication ports 67a and 68a of the communication passages 67 and 68 are opened in the sub chamber 32b.
With this structure, in the main chamber 32a and the sub chamber 32b formed by partitioning the intake air collecting chamber 30 by the rectifying wall 28, the inlet 50i of each intake branch passage 50 opened to the intake air collecting chamber 30 is connected to the intake air introduction passage 31. The communication ports 67a and 68a in the expansion chamber 32 of the communication passages 67 and 68 that communicate with the intake chamber 30 and the resonator chamber 62 are opened by the rectifying wall 28. Since it opens to the sub chamber 32b through which the intake air flowing into the main chamber 32a from the intake air introduction passage 31 can enter and exit through the formed gap 33, the rectifying wall 28 positioned between the main chamber 32a and the sub chamber 32b In the operation region other than the resonance operation region, a part of the intake air is suppressed from flowing into the resonator chamber 62 through the communication ports 67a and 68a. As a result, the occurrence of turbulence in the flow of intake air in the expansion chamber 32 caused by the communication ports 67a and 68a that open to the expansion chamber 32 of the intake air collection chamber 30 is suppressed, so that the intake air flows into the intake air collection chamber 30. Since the air flows smoothly into the intake branch passages 50, the volumetric efficiency is improved, the engine torque is increased, and the engine output is increased.
Further, the opening positions of the communication ports 67a and 68a in the intake air collecting chamber 30 can be set to arbitrary positions within the range where the sub chamber 32b is formed. As a result, in the intake manifold 30, the degree of freedom of arrangement of the communication ports 67a, 68a is increased, and the degree of freedom of arrangement of the communication passages 67, 68 and the resonator chamber 62 is increased, so the degree of freedom of arrangement of the resonator 60 is increased. Becomes larger.

以下、前述した実施形態の一部が変更された形態について、変更された部分を中心に説明する。
前記所定数の燃焼空間3のうちの少なくとも1つの燃焼空間3に連通する吸気分岐通路は、複数であってもよく、その場合には、内燃機関には、少なくとも前記所定数の吸気分岐通路が設けられることになる。
上下方向A2から見て、各連通口67a,68aは、該連通口67a,68aの一部、またはほぼ全体が、配列方向A0で隣接する上流端管壁43同士の間に位置していてもよい。また、上下方向A2から見て、レゾネータ室62と吸気集合室30とを連通する連通路68の、副室32bまたは拡大室32での連通口68aは、所定数の上流端管壁43のうちで、配列方向A0で吸気導入通路31から最も遠方に位置する上流端管壁43Bよりも遠方寄りで、連通口68aの一部または過半が該上流端管壁43Bと重なる位置にあってもよい。そして、これらいずれの場合にも、これら連通口67a,68aに起因して、拡大室32の主室32a内での吸入空気の流れの乱れの発生が抑制されて、体積効率が向上する。
仮想延長通路Hの全体が、第1方向A1で各入口50iよりも第2側壁25りに位置してもよく、これによれば、第2側壁25寄りに偏向されることが殆どないので圧力損失による吸気量損失が少なくなり、さらに吸入空気の流れの乱れの発生も一層抑制される。
レゾネータは、吸気騒音を低減するためのものであってもよい。
内燃機関Eは、全運転領域に渡って吸気量の制御をするスロットル弁を備えていない内燃機関、例えばディーゼル機関や機関運転状態に応じてリフト量が制御される吸気弁により全運転領域に渡って吸気量が制御される火花点火式内燃機関であってもよい。
内燃機関は、前記実施形態では車両に使用されるものであったが、鉛直方向を指向するクランク軸を備える船外機等の船舶推進装置に使用されるものであってもよい。
Hereinafter, a mode in which a part of the above-described embodiment is changed will be described focusing on the changed portion.
There may be a plurality of intake branch passages communicating with at least one combustion space 3 of the predetermined number of combustion spaces 3. In this case, at least the predetermined number of intake branch passages are provided in the internal combustion engine. Will be provided.
When viewed from the vertical direction A2, the communication ports 67a and 68a may be partially or substantially entirely located between the upstream end pipe walls 43 adjacent to each other in the arrangement direction A0. Good. Further, when viewed from the vertical direction A 2, the communication port 68 communicating with the resonator chamber 62 and the intake air collecting chamber 30 has a communication port 68 a in the sub-chamber 32 b or the expansion chamber 32, of the predetermined number of upstream end pipe walls 43. In the arrangement direction A0, a part or a majority of the communication port 68a may be located farther from the upstream end pipe wall 43B located farthest from the intake air introduction passage 31 and overlap the upstream end pipe wall 43B. . In any of these cases, the turbulence of the flow of the intake air in the main chamber 32a of the expansion chamber 32 is suppressed due to the communication ports 67a and 68a, and the volumetric efficiency is improved.
The entire virtual extension passage H may be positioned closer to the second side wall 25 than the respective inlets 50i in the first direction A1, and according to this, the pressure is hardly deflected toward the second side wall 25. The loss of intake air amount due to the loss is reduced, and the occurrence of disturbance in the flow of intake air is further suppressed.
The resonator may be for reducing intake noise.
The internal combustion engine E is not provided with a throttle valve that controls the intake air amount over the entire operation region, for example, a diesel engine or an intake valve whose lift amount is controlled according to the engine operation state over the entire operation region. A spark ignition internal combustion engine in which the intake air amount is controlled may be used.
Although the internal combustion engine is used for a vehicle in the embodiment, it may be used for a ship propulsion device such as an outboard motor having a crankshaft oriented in the vertical direction.

本発明が適用された吸気装置を備える内燃機関の概略図であり、上下方向から見た図である。It is the schematic of an internal combustion engine provided with the intake device to which the present invention was applied, and is the figure seen from the up-and-down direction. 図1の主にII−II線、および第2連通口については配列方向での中心を通る平面での断面図であり、配列方向に直交する平面での断面を、配列方向から見た図である。FIG. 2 is a cross-sectional view taken along a plane passing through the center in the arrangement direction with respect to the II-II line and the second communication port mainly in FIG. is there. 図2のIII−III線断面図であり、第1方向から見た図である。It is the III-III sectional view taken on the line of FIG. 2, and is the figure seen from the 1st direction. 図3のIV−IV線断面図であり、上下方向から見た図である。It is the IV-IV sectional view taken on the line of FIG. 3, and is the figure seen from the up-down direction.

符号の説明Explanation of symbols

3…燃焼空間、10…吸気装置、22,23…端壁、24,25…側壁、28…整流壁、30…吸気集合室、31…吸気導入通路、32…拡大室、32a…主室、32b…副室、43…上流端管壁、50…吸気分岐通路、53…上流端通路、60…レゾネータ、62…レゾネータ室、…、67,68…連通路、67a,68a…連通口、70…開閉弁、
E…内燃機関、C…シリンダ、A0…配列方向、A1…第1方向、A2…上下方向、P…直交平面幅、H…仮想延長通路。
DESCRIPTION OF SYMBOLS 3 ... Combustion space, 10 ... Intake device, 22, 23 ... End wall, 24, 25 ... Side wall, 28 ... Rectification wall, 30 ... Intake collecting chamber, 31 ... Intake introduction passage, 32 ... Expansion chamber, 32a ... Main room, 32b ... Sub chamber, 43 ... Upstream end pipe wall, 50 ... Intake branch passage, 53 ... Upstream end passage, 60 ... Resonator, 62 ... Resonator chamber, ..., 67, 68 ... Communication passage, 67a, 68a ... Communication port, 70 ... on-off valve,
E ... Internal combustion engine, C ... Cylinder, A0 ... Arrangement direction, A1 ... First direction, A2 ... Vertical direction, P ... Orthogonal plane width, H ... Virtual extension passage.

Claims (6)

吸入空気が流入する吸気導入通路を有する吸気集合室と、複数である所定数のシリンダにそれぞれ形成された前記所定数の燃焼空間と前記吸気集合室とをそれぞれ連通させる前記所定数の吸気分岐通路と、前記吸気集合室に連通路を通じて連通するレゾネータ室とが設けられた多気筒内燃機関の吸気装置において、
前記各吸気分岐通路は、前記吸気集合室に開口する入口を有し、
前記各入口は、前記各吸気分岐通路を形成する通路壁の上流端通路壁により形成され、
前記所定数の前記入口は、配列方向に並んで配置され、
前記吸気集合室を形成する集合室壁は、前記配列方向に直交する直交平面上の第1方向で離隔すると共に前記第1方向で対向する第1側壁および第2側壁を有し、
前記所定数の前記上流端通路壁が、前記吸気集合室内において、前記第1方向で前記第1側壁から前記第2側壁に向かって突出していると共に、前記配列方向に並んで配置され、
前記所定数の前記入口は、前記第1方向で前記第2側壁に向かって開口し、
前記連通路の、前記吸気集合室に開口する連通口は、前記第1方向で前記各入口よりも前記第1側壁寄りに位置し、
前記吸気導入通路から流入した吸入空気は、前記吸気集合室内において前記第1方向で前記各入口よりも前記第2側壁寄りを前記配列方向に流れた後に前記各入口に流入することを特徴とする多気筒内燃機関の吸気装置。
The predetermined number of intake branch passages that connect the intake air collection chamber having an intake air introduction passage through which intake air flows, the predetermined number of combustion spaces formed in a plurality of predetermined number of cylinders, and the intake air collection chamber, respectively. And an intake device for a multi-cylinder internal combustion engine provided with a resonator chamber communicating with the intake manifold through a communication path,
Each of the intake branch passages has an inlet opening to the intake air collecting chamber,
Each of the inlets is formed by an upstream end passage wall of a passage wall that forms each of the intake branch passages,
The predetermined number of the inlets are arranged side by side in the arrangement direction,
A collecting chamber wall forming the intake collecting chamber has a first side wall and a second side wall that are separated in a first direction on an orthogonal plane orthogonal to the arrangement direction and are opposed in the first direction,
The predetermined number of the upstream end passage walls protrude from the first side wall toward the second side wall in the first direction in the intake air collecting chamber, and are arranged side by side in the arrangement direction.
The predetermined number of inlets open toward the second sidewall in the first direction;
The communication opening of the communication passage that opens into the intake air collecting chamber is located closer to the first side wall than the inlets in the first direction,
The intake air that has flowed in from the intake air introduction passage flows into the respective inlets after flowing in the arrangement direction in the first direction and closer to the second side wall than the respective inlets in the first intake chamber. Intake device for a multi-cylinder internal combustion engine.
前記吸気導入通路は、前記配列方向に延びており、
前記直交平面での前記吸気導入通路の通路断面を前記配列方向に平行に延長した仮想延長通路は、前記第1方向で、前記各入口よりも前記第2側壁寄りに位置することを特徴とする請求項1記載の多気筒内燃機関の吸気装置。
The intake introduction passage extends in the arrangement direction,
A virtual extension passage obtained by extending a cross section of the intake introduction passage in the orthogonal plane in parallel with the arrangement direction is positioned closer to the second side wall than the inlets in the first direction. The intake device for a multi-cylinder internal combustion engine according to claim 1.
前記集合室壁は、前記配列方向で対向する前記第1端壁および前記第2端壁を有し、
前記第1端壁は吸気導入通路を形成し、
前記集合室壁は、前記吸気導入通路から流入した吸入空気が、前記第1方向で前記第2側壁との間で前記第2端壁に向かって前記配列方向に流れるように案内する整流壁を有し、
前記整流壁に、前記各入口が開口することを特徴とする請求項1または2記載の多気筒内燃機関の吸気装置。
The assembly chamber wall has the first end wall and the second end wall facing each other in the arrangement direction,
The first end wall forms an intake air introduction passage;
The collecting chamber wall is a rectifying wall that guides the intake air that has flowed in from the intake introduction passage so that the intake air flows in the first direction toward the second end wall in the first direction. Have
The intake device for a multi-cylinder internal combustion engine according to claim 1 or 2, wherein each of the inlets opens in the rectifying wall.
前記連通路は、前記吸気集合室に常時連通する第1連通路と、機関運転状態に応じて開閉される開閉弁が設けられた第2連通路であり、
前記連通口は、前記第1連通路の第1連通口と、前記第2連通路の第2連通口であり、
前記配列方向で、前記第2連通口は前記第1連通口よりも前記吸気導入通路から遠い位置にあることを特徴とする請求項1から3のいずれか1項記載の多気筒内燃機関の吸気装置。
The communication path is a first communication path that always communicates with the intake manifold, and a second communication path that is provided with an on-off valve that is opened and closed according to an engine operating state.
The communication port is a first communication port of the first communication channel and a second communication port of the second communication channel;
The intake of the multi-cylinder internal combustion engine according to any one of claims 1 to 3, wherein the second communication port is located farther from the intake air introduction passage than the first communication port in the arrangement direction. apparatus.
前記各上流端通路壁は管状の壁であり、
前記直交平面上で前記第1方向に直交する第2方向から見て、前記連通口の過半は、少なくとも1つの前記上流端通路壁と重なる位置にあるか、または前記配列方向で隣接する前記上流端通路壁同士の間に位置することを特徴とする請求項1から4のいずれか1項記載の多気筒内燃機関の吸気装置。
Each upstream end passage wall is a tubular wall;
When viewed from a second direction orthogonal to the first direction on the orthogonal plane, the majority of the communication ports are located at a position overlapping at least one of the upstream end passage walls, or adjacent to the upstream in the arrangement direction. The intake device for a multi-cylinder internal combustion engine according to any one of claims 1 to 4, wherein the intake device is located between end passage walls.
吸入空気が流入する吸気導入通路を有する吸気集合室と、複数である所定数のシリンダにそれぞれ形成された前記所定数の燃焼空間と前記吸気集合室とをそれぞれ連通させる前記所定数の吸気分岐通路と、前記吸気集合室に連通路を通じて連通するレゾネータ室とが設けられた多気筒内燃機関の吸気装置において、
前記吸気集合室は、前記吸気導入通路からの吸入空気が流入する主室と、空隙を形成する仕切壁により前記主室から部分的に仕切られる副室とから構成され、
前記主室と前記副室との間では、前記空隙を通じて前記吸気導入通路から前記主室に流入した吸入空気の出入りが可能であり、
前記主室には、前記各吸気分岐通路の入口が開口し、
前記副室には、前記連通路の連通口が開口することを特徴とする多気筒内燃機関の吸気装置。
The predetermined number of intake branch passages that connect the intake air collection chamber having an intake air introduction passage through which intake air flows, the predetermined number of combustion spaces formed in a plurality of predetermined number of cylinders, and the intake air collection chamber, respectively. And an intake device for a multi-cylinder internal combustion engine provided with a resonator chamber communicating with the intake manifold through a communication path,
The intake air collecting chamber is composed of a main chamber into which intake air from the intake air introduction passage flows, and a sub chamber partially partitioned from the main chamber by a partition wall forming a gap,
Between the main chamber and the sub chamber, the intake air flowing into the main chamber from the intake introduction passage through the gap can enter and exit,
In the main chamber, an inlet of each intake branch passage opens,
An intake device for a multi-cylinder internal combustion engine, wherein a communication port of the communication passage is opened in the sub chamber.
JP2008256871A 2008-10-01 2008-10-01 Intake device for multi-cylinder internal combustion engine Expired - Fee Related JP4950976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256871A JP4950976B2 (en) 2008-10-01 2008-10-01 Intake device for multi-cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256871A JP4950976B2 (en) 2008-10-01 2008-10-01 Intake device for multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JP2010084714A true JP2010084714A (en) 2010-04-15
JP4950976B2 JP4950976B2 (en) 2012-06-13

Family

ID=42248910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256871A Expired - Fee Related JP4950976B2 (en) 2008-10-01 2008-10-01 Intake device for multi-cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JP4950976B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159125A (en) * 1987-12-11 1989-06-22 Sumikin Osaka Plant Koji Kk Gear grinding method
JPH05164007A (en) * 1991-12-12 1993-06-29 Nissan Motor Co Ltd In-take air manifold of internal combustion engine
JPH09250350A (en) * 1996-03-15 1997-09-22 Daihatsu Motor Co Ltd Intake device for internal combustion engine
JPH1182203A (en) * 1997-09-08 1999-03-26 Yamaha Motor Co Ltd Inlet system of multicylinder engine
JP2007162604A (en) * 2005-12-15 2007-06-28 Denso Corp Intake device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159125A (en) * 1987-12-11 1989-06-22 Sumikin Osaka Plant Koji Kk Gear grinding method
JPH05164007A (en) * 1991-12-12 1993-06-29 Nissan Motor Co Ltd In-take air manifold of internal combustion engine
JPH09250350A (en) * 1996-03-15 1997-09-22 Daihatsu Motor Co Ltd Intake device for internal combustion engine
JPH1182203A (en) * 1997-09-08 1999-03-26 Yamaha Motor Co Ltd Inlet system of multicylinder engine
JP2007162604A (en) * 2005-12-15 2007-06-28 Denso Corp Intake device

Also Published As

Publication number Publication date
JP4950976B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4755034B2 (en) Spark ignition multi-cylinder engine
JP4463210B2 (en) Multi-cylinder internal combustion engine having a cylinder head formed with a collective exhaust port
JP4728195B2 (en) Engine intake control device
JP4913118B2 (en) Outboard motor
US7802555B2 (en) Intake control device for an engine
JP2008038838A (en) Internal combustion engine
JP2008101472A (en) Spark ignition multicylinder engine
JP4853481B2 (en) Intake device for internal combustion engine
JPH02176116A (en) Combustion chamber for internal combustion engine
JP2009097404A (en) Supercharging device for engine
JP4906549B2 (en) Intake manifold for multi-cylinder internal combustion engines
JP2008223737A (en) Intake manifold for multi-cylinder internal combustion engine
US8062084B2 (en) Outboard motor
JP5262863B2 (en) Method and apparatus for controlling exhaust system of multi-cylinder engine
JP4950976B2 (en) Intake device for multi-cylinder internal combustion engine
JP4671899B2 (en) Internal combustion engine with intake silencer
JP4950975B2 (en) Intake device for multi-cylinder internal combustion engine
JP6835231B2 (en) Engine intake system
JP5782978B2 (en) Cylinder head and internal combustion engine
JP4078816B2 (en) Exhaust gas recirculation device for V-type engine
JP7288303B2 (en) engine cylinder head structure
JP2010151017A (en) Intake manifold of multi-cylinder internal combustion engine
JP5536526B2 (en) Intake device for internal combustion engine
JP2018173013A (en) Intake device for multiple cylinder engine
JP2020002889A (en) Intake device of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees